
Next Generation CDN services
for Community Networks

Vittorio Manetti, Roberto Canonico,
Walter de Donato, Giorgio Ventre

Dipartimento di Informatica e Sistemistica
Universit́a di Napoli Federico II

via Claudio 21, 80125 Napoli, ITALY
Email: {vittorio.manetti, roberto.canonico}@unina.it,

{walter.dedonato, giorgio.ventre}@unina.it

Andreas Mauthe, Gareth Tyson
Computing Department, InfoLab21
Lancaster University, Lancaster, UK

Email: a.mauthe@lancaster.ac.uk,
g.tyson@comp.lancs.ac.uk

Abstract—Technological developments of the last few years
have favoured the creation of distributed networking infrastruc-
tures (usually referred to as Community Networks) where the
resources are made available to the members of a community
of people. With emerging large-scale community infrastructures
the opportunities for new commercial services and for innovative
business models are becoming feasible. Since one of the most
resource-demanding services today is access to user-generated
content through the web, suitable content delivery services are
needed in the context of Community Networks in orders to make
an effective usage of shared resources.

In this paper we describe two architectures we have designed
to provide optimized delivery of multimedia web content (e.g.
video but also other kinds of User Generated Content) within
Community Networks. Both architectures work without any kind
of cooperation from the original content providers but assume
that a basic web caching service is provided within the network,
either by commercial Service Providers or by the community
members themselves.

While the first architecture relies on a traditional centralized
control entity, the second is designed according to the peer-to-
peer paradigm, in order to provide better scalability, robustness
to failures and self-configurability. Experimental results are also
presented aimed at evaluating the performance gains for end-
users from a localized distribution of content in scenarios in
which community members are distributed in clusters sparse at
different geographic locations.

I. I NTRODUCTION

The technological developments of the last few years have
enabled new forms of interactions and collaboration between
individuals, allowing collaboration of sparse communities of
people (a.k.a.Network Communities) sharing common in-
terests as well as producing synergies in pursuing common
objectives. At the application level, these trends have been
facilitated by technologies such as Web2.0, social network
platforms, mobile computing, and so on. In the last few
years this phenomenon has evolved to a more advanced stage,
involving new forms of resource sharing and the creation
of distributed networking infrastructures (usually referred to
as Community Networks) which are made available to the
members of the community supported by collaboration [1].

A number of Wireless Community Networks (WCNs) have
been established to provide Internet access to community

members. These networks have been created either through
spontaneous collaboration of people who share their xDSL
home connection to the Internet, or through the initiative of
local institutions. For example, councils and universities have
started to offer wireless access to Internet services to user
communities (e.g. students) in limited areas or public build-
ings. The most popularspontaneousWCN is the one created
by the so calledFON community [2]. FON members (i.e.
Foneros) share some of their home xDSL Internet connection
and get worldwide free access to the Communitys WiFi Hot
Spots. With the availability of such large-scale community
infrastructures opportunities for new commercial services and
for innovative business models is becoming reality. The FON
community, for instance, has established a business consisting
of selling Internet access to those who decide not to share any
connection with the rest of the community.

One of the challenges for Community Networks is to
provide them with autonomic capabilities for optimal utiliza-
tion of shared resources. Shared resources in a Community
Network may be, for instance:

• bandwidth of Internet connections (e.g. xDSL lines);
• bandwidth of wireless links (e.g. access points, Wireless

Mesh routers, ...);
• storage space;
• computational power.

One of the most resource-demanding services today is
access to user-generated content through the web. This is
just the most basic service to be provided in such kinds of
infrastructures, acting as the basis for more complex ‘Content
Services’, enabling users not only to consume content, but also
to search for particular pieces of content, to combine audiovi-
sual rendering effects, and to edit complex multimedia objects.
Nonetheless, to make an effective usage of the resources made
available to the community, proper content delivery services
are needed also in the context of Community Networks.

In this paper we describe two architectures that have been
designed to provide optimized delivery of web content (such
as videos and other kinds of User Generated Content) within
Community Networks. Both architectures assume that:



2

Fig. 1. Centralized Architecture

1) content is delivered through them without any kind of
cooperation of the original content providers;

2) a basic web caching service is provided within the
network either by commercial Service Providers or by
the community members themselves.

While the first architecture relies on a traditional centralized
control entity, the second one is designed according to struc-
tured peer-to-peer principles, in order to be more scalable,
more robust to failures and self-configurable.

We also present initial experimental results showing the
performance gain for end-users from localized distribution of
content in scenarios in which community members are dis-
tributed in clusters, sparsely at different geographic locations.

II. A CDN FOR USER COMMUNITIES WITH CENTRALIZED

CONTROL

The goal of this work is to create more flexible and dynamic
CDNs that provide on-demand services. Such infrastructures
should be able to support a negotiable number of Content
Producers and to deliver web content to dynamically config-
ured user communities. To this end, we have defined a novel
architecture that manages a set of dynamically located content
replicas. Further, there are one or more user communities com-
posed by users that continuously join and leave the network.

The proposed architecture (figure 1) is composed of three
different entities: a caching system,n Proxy nodes, and a CDN
Coordinator.

The caches composing the caching system are provided
by third parties (e.g. Internet Service Providers) and are
distributed throughout the network. Each cache is used for
performing the typical functionalities and, in addition, each of
them implements some monitoring and configuration modules.

A Proxy node is assigned for each subset of users (i.e.
community). The Web client by which users send content
requests, has to be configured in a way to automatically
forward such requests to the Proxy node. Knowing the content
location scheme and being destination for each content request
sent by users, it is redirecting requests to the cache, which
offers the desired content. The Proxy implements a content-
aware request routing mechanism based on the content location
scheme. Processing an incoming request consists of choosing

the cache to forward the request to. To this end the Proxy
node exploits a Content Routing Table (figure I) composed
by entries associating each content with the corresponding
cache. In addition to this task, the Proxy node has to be able
to forward requests directly to the Original Server when the
requested content is not available into the cache system.

Further, the aim is to provide a system that is capable of
adapting itself, considering the changing scenarios. In order
to achieve this goal, a number of parameters have to be
monitored, i.e.: the network condition, the traffic generated by
each cluster, the community users’ behaviour, and whatever
information that could be used to change the caching system
configuration and/or the content location scheme. To this end,
we introduce the CDN Coordinator, a node that performs
centralized control of the entire architecture.

A. Details about the CDN Coordinator functionality

The CDN Coordinator is responsible for the following tasks:

• monitoring the architecture and collecting information;
• computing the optimal content location scheme;
• configuring the caching system;
• updating the Content Routing Table of the Proxy nodes.

Concerning the first task, the CDN Coordinator collects
information about: i) the available bandwidth, ii) the traffic
generated by each subset of users, iii) the number of requests
for each content that is available in the caching system.
The CDN Coordinator does not measure these parameters
directly, but collects information provided by entities towhich
this task is assigned. Software (introduced in section II-B)
is used to determine the available bandwidth between the
network through which the users access to the Internet, and the
caching system; the CDN Coordinator periodically acquires
this information. Each cache keeps statistical information
about each incoming content requests; the CND Coordinator
collects such information accessing directly the log files of the
nodes composing the caching system.

With this information the CDN Coordinator can perform its
main functionality, i.e. computing the optimal content location
scheme and reconfiguring the caching system. This work
is performed when particular conditions occur. Thus, it can
be considered anevent drivenprocess. After computing the
optimal location scheme the CDN Coordinator coordinates all
the entities composing the architecture, aiming to impose that
the computed request routing policies will be followed.

Starting from the Simple Plant Location classical model, we
defined an optimal location scheme that computes an objective
function that is based on the following parameters:

• the time needed for the transmission between client and
cache, and between server and cache, for each content;

• the cache locating fee;
• the available budget;
• information about the use of the links between each

client-cache pair, and each server-cache pair, for each
content item;

• the content location scheme;



3

Prot. Host Port Path Host Port

http www.somehost.com 80 * Cache1 8080
http www.somehost.com 80 /path/video.avi Cache2 3128
http * 80 /path Cache3 8080

TABLE I
CONTENT ROUTING TABLE

• the request rate for each content item;
• the number of requests the cache is able to satisfy;
• the size of each content item;
• the total amount of available storage for each cache;
The objective function computed during this process has the

goal to minimize the time needed to complete the delivery pro-
cess for each content item; such function has to be computed
taking into account a number of constraints, such as:

• budget constraint: the cost needed to activate the caching
system has to be lower than the available budget;

• the clients can request a content item from a specified
cache only if the content item was located on that cache;

• each content item located on a cache has to be taken from
a single server;

• a client can request a particular content item only on a
single cache;

• a content item can be located on a cache only if that
cache was activated;

• the total number of requests for a content item on a cache
cannot be higher than the number of requests the cache
can satisfy;

• the total size of the web objects located in a cache cannot
be higher than the total amount of storage available on
that cache.

Since the location problem is solved, the CDN Coordinator
manages, on one hand, the content uploading process pro-
viding instructions to each cache about the content to store
and the origin servers to contact. This process is implemented
using a push-based approach. It provides, on the other hand,
instructions to the Proxy nodes about the computed content
location scheme and about the request routing policies that
have been selected. Concerning this latter task, using a prop-
erly realized communication protocol, the CDN Coordinator
directly accesses the Content Routing Table of each Proxy in
order to update them.

Each Proxy node manages a Content Routing Table imple-
menting an association between a content and the correspond-
ing cache. Each table entry contains the following information:
key - value, where key is the URL of the resource, and
value is the cache to which the request for this resource has
to be redirected. TheContent Routing Management Protocol
(CRMP) is the protocol through which the CDN Coordinator
accesses to the Content Routing Table of the Proxy nodes in
order to insert, update and drop table entries.

B. Details on the CDN Coordinator software architecture

The CDN Coordinator has been implemented as a frame-
work using Java; such framework manages plugins that are

Fig. 2. Testbed realized on Planetlab

used to collect information needed to compute the content
location scheme, and a list of Proxies and Caches composing
the architecture.

Cache nodes have been implemented using Squid, an Open
Source proxy cache server; PathChirp is used to measure the
available bandwidth between Proxy nodes and caches.

In our prototype we realized two plugins: theSquidStat-
sPlugin and thePathChirpPlugin. The first has the task to
periodically query the cache nodes to obtain statistical infor-
mation about the access rate to each content item (this work
is performed checking the Squid log files). The PathChirp-
Plugin acquires information measured by PathChirp about the
available bandwidth.

III. PERFORMANCESTUDIES

To evaluate the performance of the proposed architecture in
a realistic scenario, we conducted some experiments exploiting
the Planetlab [3] infrastructure. We setup a testbed (shownin
figure 2) using five nodes of the sliceuninaonelabcdn; such
nodes are located as follows:

• at University Federico II of Napoli (Italy)

– Wget client (CL): planetlab01.dis.unina.it
– Proxy server (PX): planetlab02.dis.unina.it

• at University Carlo III of Madrid (Spain)

– Cache server Squid (C1): planetlab1.it.uc3m.es

• at University of Technology of Troyes (France)

– Cache server Squid (C2): planetlab1.utt.fr

• at Supelec center of Rennes (France)

– web server Apache (WS): pl1.rennes.supelec.fr

The nodes were selected to highlight the advantages ob-
tained using the proposed architecture. In details, the web
server is located in a network with a bandwidth limited Internet
access and the two caches are geographically far from each
other.

The experiments were conducted measuring content deliv-
ery time in different scenarios. An object of approximately



4

Scenario µ[s] σ[s]

A CL → C1 → WS 69.9 10.6
B CL → C1 3.5 0.6
C CL → PX → C1 → WS 58.7 7.5
D CL → PX → C1 3.4 0.2

E CL → C2 → WS 128.6 14.1
F CL → C2 78.7 13.5
G CL → PX → C2 → WS 125.5 25.0
H CL → PX → C2 72.8 7.9

TABLE II
RESPONCE TIME FOR A CONTENT REQUEST

4MB (4.162.048 bytes) was placed on the web server and,
for each scenario, eight requests for this content item were
executed by the client. The scenarios were set in order to
obtain the content:

• directly from the Web Server (CL→WS)
• from the Caches in case of miss (CL→C1→WS and

CL→C2→WS)
• from the Caches in case of hit (CL→C1 and CL→C2)
• from the web server through the Proxy (Cl→PX→WS)
• from the Caches through the Proxy in case of miss

(CL→PX→C1→WS and CL→PX→C2→WS)
• from the Caches through the Proxy in case of hit

(CL→PX→C1 and CL→PX→C2)

We evaluate the response time of the requests, namely the
time elapsed between the request and the complete reception
of the content. Table II reports the average and the standard
deviation of the response time obtained for each scenario.

The results show that obtaining the content from C1 is the
best choice, because its bandwidth towards CL is larger than
those between CL and WS/C2. Moreover, as C1 is located in
Spain and C2 and WS located in France, it demonstrates that
a geographical proximity does not imply faster data transfers.
Finally, looking at C, E, G and I scenarios results, the impact
of the presence of PX between CL and C1/C2 does not
degrade the performance. These results confirm that a careful
configuration of the content routing table of the Proxy can
significantly improve the content delivery time.

IV. A PEER-TO-PEERCDN SERVICE FOR USER

COMMUNITIES

In this section the alternative peer-to-peer approach is
introduced. The P2P-based architecture is more flexible due
to its self-organisation capabilities and thus more suitable for
wireless and ad-hoc community content networks.

Thecooperative CDNhas been implemented as a prototype.
Its architecture consists of two layers:

• A traditional web caching layer (Amazon S3 [4], for in-
stance,), comprising a set of web caching nodes provided
either by third parties (e.g. Internet Service Providers)
or by selected community members (e.g. Linux boxes
running squid). Such caches are connected to the access
infrastructure through broadband symmetric links and
they are made available to the community with the

Fig. 3. Architecture

specific task of reliably delivering cached content to end-
users.

• A structured peer-to-peer system implementing a Dis-
tributed Hash Table (DHT) and providing an indexing
function. The cooperative peer-to-peer network is formed
by end-users that collaborate to redirect users requests
towards the most suitable web caching node, with the goal
of minimizing the latency perceived during the content
delivery process from the selected web cache.

An alternative solution to the use of a traditional caching
system, could be the realization of a cooperative peer-to-peer
caching mechanism implemented by the users themselves, as
well as for the indexing mechanism. Nevertheless, this solution
could suffer from churn problems and/or problems concerning
the users’ connectivity (that is probably asymmetric). We
are proposing caching as a service provided by ISPs to
communities, rather than a cooperative resource sharing effort
from the community itself. ISPs are in a favourable position
to place caches in locations with symmetric connectivity , and
they probably prefer to deploy traditional web caches in their
infrastructures rather than peers of a cooperative web caching
p2p system.

A first main difference between the centralized architecture
and the P2P-based architecture concerns the lookup mecha-
nism: we are proposing for this latter case the use of a Dis-
tributed Hash Table instead of a Content Routing Table replica
on each Proxy node. The rationale behind this architectural
design choice is that, in order to speed up the deployment of
such infrastructures for community networks, we intend to rely
on the cooperative effort of community members themselves,
and for this reason we did not include in the P2P architecture
the complex Content Routing services implemented in the
proxies of the centralized architecture.

Likewise, as for the request redirection mechanisms, we
assumed that we cannot rely on redirection mechanisms imple-
mented in the original server or in DNS servers, since the CDN
is established without support of the content providers. Wealso
assume that ISPs are not willing to do packet introspection
to transparently redirect HTTP flows towards our caches.
The P2P infrastructure is then established by the community
peers to cooperatively implement the redirection schemes,to



5

discover the web objects in the web caches and to balance the
load among the caches.

Finally, as for the management functions, we assume that
web objects to be provided by the P2P CDN are still going
to be inserted into the DHT by a single user, the CDN
administrator, who has the power of creating a reference to
a given URL into the DHT.

A. Architectural details

In this subsection we describe in more detailsDonizetti,
a hybrid content distribution system that we have designed
according to the general principles above presented. The
Donizetti architecture is composed of a collection of stable
distributed web caches (in the order of hundreds) located as
close as possible to a cluster of users and shared among the
members of a community. Communities implement a P2P
indexing system for locating the cache responsible for each
web object. This indexing system is based on, Pastry [5],
a scalable and reliable Distributed Hash Table which also
provides some form of control over the characteristics of the
overlay. Unlike PAST, a distributed file system built on top of
Pastry, Donizetti relies on an external web caching system to
store the cached web objects, and the DHT is only used to
maintain references to the stored objects.

Plain DHTs suffer of the well-known churn problem that
occurs when nodes continually join and leave the network in
an unpredictable fashion. A classical approach to improve the
performance of a DHT under churn is to leverage the natural
heterogeneity in the system by using super-peers [6], [7].
Super-peers are selected nodes with extra capabilities, but also
extra duties. A super-peer acts as a server to a dynamic subset
of weaker (client) peers. These weak peers submit queries to
their super-peers and receive results from them. Super-peers
are connected to each other forming an overlay network of
their own, submitting and answering requests on behalf of the
weak peers.

Donizetti refers to a model based on the use of super-peers
. The upper layer of the CDN infrastructure consists of a DHT
whose peers are located in the user terminal, where they act
in cooperation with the web browser. Whilenormal peersmay
be embedded in the browser itself (e.g. as a browser plug-in),
super peers need to exist independently of the user browser.
For this reason they will be implemented as service daemons
running on selected nodes (with the permission of the end-
users). Election mechanisms for super peers are still under
investigation.

We identify the super-peer nodes asIndexers. Each Indexer
is linked to a Cache trough a n-to-1 association, and imple-
ments a DHT interface trough which it interacts with other
Indexers and with normal peers.

Due to the natural organization of users in clusters, we may
suppose that all peers in a cluster refer to the same Indexer as
first hop for their requests to the CDN.

The we browser of each user terminal is equipped with a
plug-in that, considering a specified requested content item,
verifies if the content delivery service is available for such

Fig. 4. Content Delivery process

content item; if alternative, it sends an HTTP GET directly to
the origin web server.

Using its own browser, the user performs a request for a
specified content item. Supposing that the content delivery
service is available for such content item, the browser sends
an HTTP GET request to the local DHT peer, which, in turn,
forwards it to the associated super-peer (acting as Indexer).
Such request passes through a number of Indexers until it
arrives on the node responsible for the requested content; this
peer sends a response to the DHT peer running in the user
terminal, providing it with the IP address of the Cache to
which it is associated. The DHT peer finally redirects the
browser to the Cache.

Hence, in Donizetti, DHT nodes do not perform content
caching , but they only keep references of the web objects’
URLs. This choice has its motivation in the fact that Indexers
may be connected to the Internet through an xDSL connection,
and not be suitable to serve web objects to the rest of the
community.

As for content assignment to caches, we are currently
investigating mechanism that allow the system to keep content
items as close as possible to users who request them most
often. We are also currently defining proper mechanisms to
replicate and delete content items throughout the DHT for
maintenance and optimisation purposes. We intend to define
proper ways to manage, address and discover replicas of the
same web object in the caching layer through the p2p indexing
layer. One of the strengths of our architecture is that it is self-
organizing, i.e. it does not need a central coordination function
to manage the allocation of resources.

In order to evaluate the effectiveness of the proposed ar-
chitecture, we are currently implementing a simulation model
of Donizetti, based on the OverSim [8] and HttpTools [9]
extensions of the OMNET++ network simulator [10].

V. RELATED WORK

In [11] Cheng et al. present a group-based P2P web caching
system named IntraCache. IntraCache looks at how to exploit
browser caches of nodes in intranets and use an interest group
model to organize peers in the system. Peer interest groups
are a set of active peers, who have the same interests and
are involved in sharing browser web caches. The proposed
overlay network consists of three kinds of peers: fat peers,
thin peers and P2P registrar. This latter maintains the peers’



6

current status information and records the relationship between
fat peers and thin peers. Further, the interest group information
includes the scale and current interest vector. Fat peers may
be a past proxy server or produced dynamically by thin peers
in one group. The Peer Manager and Index Builder thread
running in the fat peer manages the peer status and index
information in one group respectively. In addition, some hot
browser cache content items are also store in fat peers. Thin
peers are a common node, which can communicate and share
resources directly with any node in the P2P network.

In [12] Garbacki et al. present a two-level caching infras-
tructure; the proposed architecture assumes the existenceof
caches of two types. Weak peers keep lists of super-peers
that proved in the past to be in some way most suitable
for them. Super-peers index files residing the weak peers
that were recently requested by some peers. The adopted
approach consists of placing shared caches at a set of selected
(super-) nodes. These caches are used (i.e. shared) by many
peers at the same time. A peer that joins the system is
automatically associated with one or more super-peers and
can immediately use the information collected by these super-
peers. The information stored at a node depends on the type
of this node. Each weak peer has a super-peer cache which
contains the identities of super-peers (e.g., their IP addresses
and port numbers). Each super-peer has a file cache of pointers
to files stored at some peers. The probability that the search
succeeds is high if the requested information is possessed by
only one of the super-peers. Whenever a weak peer initiates a
search, it first checks the file caches of the super-peers known
to it. If the file is not found in one of these caches, a system-
wide search in the super-peer network is initiated. The pointer
to the located file is then cached by one of the super-peers
known to the weak peer that initiated the search.

In [13] Tyson et al. present a peer-to-peer caching architec-
ture called Corelli. This allows users in communities without
sufficient resources to build a dedicated caching infrastructure
to cooperatively build their own peer-to-peer equivalent.In
Corelli communities specific peers monitor the request trends
of the network. When these nodes consider the community’s
behaviour to be cacheable, a selection of the highest capacity
peers dynamically instantiate themselves as caching peers.
Other peers in the community then forward requests through
this virtual cache allowing the caching peers to replicate popu-
lar content. As demand varies, the Corelli Cache dynamically
expands and contracts to use greater or fewer peer resourcesto
best reflect the requirements of the community. This can occur
even to the extent of caches being entirely removed from the
community if request trends become uncatchable.

VI. CONCLUSION AND FUTURE WORK

Community Networks are shared infrastructures made avail-
able to the members of a community of people. The existence
of common interests among the community members, as
well as the scarcity of communication resources suggest the
opportunity of establishing a new kind of Content Deliver
Infrastructures particularly suited to this new scenario.In

this paper we describe two architectures we have designed
to provide optimized delivery of multimedia web content
within Community Networks. The first kind of infrastructure
is particulary meant as a service provided by a third party, and
requires deployment of nodes with different functions within
the network. The second one relies on the cooperative effort
of community members and is designed according to a p2p
model. Both types of infrastructures assign the responibility
of content management to a unique administrator user. We
have described the main architectural differences of the two
architectures and presented some preliminary results of an
experimental evaluation conducted on PlanetLab.

VII. A CKNOWLEDGEMENTS

This work has been supported by the European Union
under the IST Content (FP6-2006-IST-507295) project. The
CONTENT Network of Excellence targets Content Delivery
Networks for Home Users, as an integral part of Networked
Audio-Visual Systems and Home Platforms.

REFERENCES

[1] T. Plagemann, R. Canonico, J. Domingo-Pascual, C. Guerrero, and
A. Mauthe, “Infrastructures for Community Networks,”Content Deliv-
ery Networks, p. 367, 2008.

[2] [Online]. Available: http://www.fon.com
[3] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,

and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-Coverage
Services,”ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 00–00, July 2003.

[4] [Online]. Available: http://aws.amazon.com/s3/
[5] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems,” Lecture Notes
in Computer Science, pp. 329–350, 2001.

[6] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structured superpeers:
Leveraging heterogeneity to provide constant-time lookup,” in Proceed-
ings of the 3rd IEEE Workshop on Internet Applications, WIAPP’03,
2003, pp. 104–111.

[7] Y. Zhu, H. Wang, and Y. Hu, “A super-peer based lookup in structured
peer-to-peer systems,” inProceedings of the 16th International Confer-
ence on Parallel and Distributed Computing Systems, PDCS’03.

[8] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” inProceedings of 10th IEEE Global
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, May 2007.

[9] K. Jonsson, “HttpTools: A Toolkit for Simulation of Web Hosts in
OMNeT++,” in Proceedings of the 2nd OMNeT++ workshop, 2009.

[10] A. Varga et al., “The OMNeT++ discrete event simulation system,” in
Proceedings of the European Simulation Multiconference, ESM01, 2001,
pp. 319–324.

[11] H. Cheng, Z. Gu, and J. Ma, “IntraCache: An Interest group-based P2P
Web Caching System,” inProceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium, IPDPS’07, 2007, pp.
1–8.

[12] P. Garbacki, D. Epema, and M. Van Steen, “A two-level semantic
caching scheme for super-peer networks,” inProceedings of the 10th
International Workshop on Web Content Caching and Distribution,
WCW’05., 2005, pp. 47–55.

[13] G. Tyson, A. Mauthe, S. Kaune, M. Mu, and T. Plagemann, “Corelli:
A Peer-to-Peer Dynamic Replication Service for Supporting Latency-
Dependent Content in Community Networks,” inProceedings of the
16th Multimedia Computing and Networking Conference, MMCN’09,
2009.


