
Link Multiplexing in a Xen-based
Network Emulation System

Pasquale Di Gennaro, Roberto Bifulco, and Roberto Canonico

University of Napoli Federico II, Italy
Dipartimento di Informatica e Sistemistica

Via Claudio, 21 - 80125 - Napoli, Italy
{pasquale.digennaro,roberto.bifulco,roberto.canonico}@unina.it

Abstract. Network emulation has gained wide interest in the commu-
nity of network researchers to evaluate the effectiveness of new protocols
and applications in controllable and realistic network scenarios. To ensure
scalability, modern emulation systems rely on the use of virtualization
techniques to create complex networked systems by means of the com-
putational resources available in a cluster of computers. In the context of
network emulation systems, link multiplexing is the problem of emulat-
ing multiple point-to-point connections on top of a single Ethernet link.
In this paper we present how link multiplexing is implemented in NEP-
TUNE, a Xen-based network emulation system developed at University
of Napoli Federico II. We compare our technique with those adopted in
other network emulation systems. We also present experimental results
aimed at investigating the performance limits of our system and at pro-
viding researchers with useful insights into the faithfulness of emulated
scenarios.

Key words: Network Emulation, Xen, Performance Evaluation.

1 Introduction

Network emulation is an experimental methodology that is widely adopted to
test innovative protocols and distributed applications in realistic and controllable
scenarios. Unlike simulation, which reproduces a system’s behavior by model-
ing all the interacting components of the system, emulation allows researchers
to test a real implementation of a system component, by making it interact in
real-time with other real world or modeled components of the system [1]. In the
specific case of networked systems, emulation consists in reproducing a “virtual”
network setup on top of a collection of physical devices. In particular, one of the
issues of network emulation is the ability of reproducing the behavior of differ-
ent communication links (such as geographic point-to-point links, shared LANs,
wireless LANs, and so on) on top of a general purpose facility. One of the first
emulation tools was dummynet [2], a software system developed by Luigi Rizzo
as an extension of the FreeBSD kernel. Dummynet makes a FreeBSD system
able to shape and delay the traffic flowing through it. Due to the ease of deploy-
ment, dummynet is often used in small scale testbeds to emulate the behavior of

congested wide area networks for testing of protocols and applications. A modi-
fied version of dummynet has also been recently deployed in PlanetLab Europe
[3], where FreeBSD “Dummynet Boxes” have been deployed in front of a subset
of PlanetLab Europe nodes. Dummynet Box can be dynamically configured, so
that individual users (slivers) can independently and concurrently set up the
characteristics of an emulated link for their experiments [4]. Modern network
emulation systems are able to reproduce in a virtual environment the behav-
ior of complex network topologies, and let these virtual networks interact with
real applications under test. The architectures of these emulation systems are
extremely different, ranging from centralized implementations, reproducing the
emulated network within a single computer, to distributed emulation facilities,
usually relying on clusters of PCs interconnected by programmable networking
devices. We call this latter kind of systems “cluster-based network emulation
systems”. Since realistic evaluation scenarios often require thousands of nodes,
scalability is a key requirement for network emulation systems. Different so-
lutions have been proposed in the literature to scale-up the maximum size of
emulated networks. Grau et. al classify them into parallelization, abstraction,
node virtualization, and time virtualization [5]. Node virtualization has been
used in several cluster-based network emulation systems, such as University of
Utah’s EmuLab [6] and University of Stuttgart’s NET [7] [8]. NEPTUNE is
a cluster based network emulation system developed at University of Napoli
Federico II that makes use of Xen for node virtualization [9],[10]. Besides node
multiplexing, a network emulation system needs proper techniques to emulate
the behavior of different point-to-point links on top of a shared networking in-
frastructure. This latter problem is usually referred to as link multiplexing. In
this paper we present and experimentally evaluate the “One Link per Virtual
Interface” technique (OLVI in short) we use in NEPTUNE as the basis for link
multiplexing. OLVI combines Xen bridging with the emulation features provided
by the NetEm extension of the Linux kernel [11] to multiplex several point-to-
point communication links, each of which with its own bandwidth and delay,
on top of a single high-performance LAN. The rest of the paper is organized as
follows. Section II discusses the resources multiplexing problem and how virtu-
alization has been used in some reference emulation systems. In Section III we
present NEPTUNE, and, in particular, the OLVI technique. In Section IV we
present the results of a performance evaluation study aimed at investigating the
limits of OLVI. Finally, in Section V we compare our results with what has been
presented in other research works aimed at evaluating the performance of Xen
in virtualized network infrastructures and draw our conclusions.

2 Virtualization in Network Emulation Systems

A typical network emulation system is composed of a set of physical resources
(links, LAN switches, PCs) that are used to reproduce an emulated networking
environment. Several strategies can be adopted to map the emulated scenarios
on top of the available physical resources. While conservative allocation policies

may easily lead to underutilization, better resource utilization might be achieved
if they could be decomposed in many “virtual resources”, each appearing as a
separate physical resource. Such a technique is usually referred to as resource
multiplexing. In the context of network emulation we are interested in two par-
ticular forms of resource multiplexing: node multiplexing and link multiplexing
[12]. Node multiplexing is the problem of emulating more than a network node
on the same physical node, while link multiplexing focuses on emulating multiple
point-to-point connections on top of one or more shared links.

Virtualization technologies are a widely used solution for resource multiplex-
ing problems. In general terms, virtualization is a technique in which a software
layer multiplexes lower-level resources for the benefit of higher level software
programs and systems. Virtualization can be applied to either single physical
resources of a computing system (e.g. a single device) or to a complete comput-
ing system. When applied in this latter sense, (a.k.a. Platform Virtualization),
it allows the coexistence of multiple “Virtual Machines” in the same computing
host. Platform virtualization is implemented by means of an additional software
layer, called Virtual Machine Monitor (VMM) (or hypervisor), that acts as an
intermediary between the system hardware resources and the Operating System.
There are many approaches to platform virtualization: Full Virtualization im-
plements in software a full virtual replica of the emulated system’s hardware, so
that the operating system and user applications may run on the virtual hardware
exactly as they would in the original system. Paravirtualization, instead, makes
available a software interface to virtual machines that is similar but not identi-
cal to the underlying hardware in order to improve scalability and performance
over full virtualization, at the cost of requiring the guest operating system to be
explicitly ported for the para-API. Finally, Operating system-level virtualization
further improves scalability allowing a physical server to run multiple isolated
operating system instances sharing the same kernel with little overhead, but at
the cost of a reduced flexibility.

While node multiplexing is inherently a problem of platform virtualization,
link multiplexing is a more specific problem that can be solved in different ways,
at different layers of the communications stack. Several network emulation sys-
tems have been designed (or re-designed) in order to use virtualization techniques
for efficient resource multiplexing. University of Utah’s Emulab, as first exam-
ple, implements node multiplexing by means of a modified version of FreeBSD
Jail. ModelNet [13] implements node multiplexing by means of so called Virtual
Nodes (VNs) which is just a process level isolation approach, while link multi-
plexing is implemented by combining IP aliasing, a socket interposition library
and centralized Core Nodes running dummynet. University of Stuttgart’s NET
implements link multiplexing by combining the use of VLANs and a virtual
device driver, NETShaper, which allows to dynamically configure bandwidth,
delay and loss rate [14]. Besides network emulation systems, virtualization tech-
niques have also been used for resource multiplexing in large scale distributed
testbeds. The VINI project has created a virtual network infrastructure allowing
experimental evaluation of protocols and services under real traffic loads, in con-

trollable network conditions [15]. VINI uses two container based virtualization
technologies for node multiplexing, VServer and NetNS, in addition to Ethernet
EGRE tunneling [16] for layer 2 encapsulation.

The use of virtualization techniques is also at the basis of NEPTUNE, a
cluster-based network emulation system developed at University of Napoli Fed-
erico II. NEPTUNE relies on Xen [17] for node multiplexing, which implements
paravirtualization by means of an hypervisor and several domains, running on
top of that hypervisor. The hypervisor controls guest domains access to the
physical machine’s hardware resources, while for the sake of reliability and ef-
ficiency, device drivers are kept in an isolated “driver domain” (Domain 0, or
dom0) with special privileges. Domain0 is created at boot time and, through it,
users may create and terminate other unprivileged domains (domUs), control
CPU scheduling parameters and resource allocation policies.

3 NEPTUNE

NEPTUNE is an open-source cluster-based network emulation system developed
at University of Napoli “Federico II” that can be used to assess new networking
technologies and protocols (e.g. new QoS routing protocols and Traffic Engi-
neering schemes in MPLS-based networks), as well as new distributed applica-
tions and architectures (e.g. multimedia peer-to-peer applications). NEPTUNE
provides researchers with the ability of interactively designing multiple virtual
network topologies, which are then deployed onto a cluster of real machines
and used as if they were dedicated physical testbeds. NEPTUNE was designed
with two goals in mind: manageability and portability. Manageability, because
we wanted that NEPTUNE could have been easily deployed and managed by
system administrators. Portability, since NEPTUNE is not linked to specific
hardware solutions, but it can be installed on general purpose machines and its
features can be conveniently extended by software developers. In NEPTUNE,
an experiment is a collection of virtual nodes deployed on a subset of a cluster’s
physical nodes, each running a virtualization layer, and properly configured in
order to reproduce a user-defined virtual network topology. To achieve higher
degrees of scalability, complex systems are reproduced by allocating multiple
virtual network nodes onto each of the cluster’s real nodes (node multiplexing).
Likewise, multiple virtual links are multiplexed onto the same shared physical
link by associating each virtual link endpoint to a different virtual NIC (link mul-
tiplexing). Multiple fully isolated experiments can be run by NEPTUNE at the
the same time, while providing users with the illusion of having allocated a dedi-
cated infrastructure (virtual cluster). A role-based authentication system allows
flexible definition of roles and actions allowed to each role. Roles and permis-
sions are stored in XML files for simple editing, to allow system administrators
modify policies even at run-time.

3.1 NEPTUNE Architecture

NEPTUNE’s physical architecture (Figure 1) is composed of three parts: i) a
set of worker nodes providing computational resources used to reproduce em-
ulated networks, ii) a centralized repository providing storage space to worker
nodes and iii) a front-end node, NeptuneManager, hosting system management
software. All these physical components are connected by a switched LAN, car-
rying what we call “control traffic”. Worker nodes are also connected by a sec-
ond high-performance LAN, carrying traffic generated by users’ experiments.
All users (both normal users and administrators) access the system through the
NeptuneManager web interface. All system functions are exposed by this inter-
face, so users can set up and execute their emulation experiments by means of
a user-friendly AJAX web-interface.

3.2 Usage Model

An experiment life-cycle begins with the definition of a virtual network topology.
Once the topology is defined, an experiment can be allocated onto the cluster’s
physical nodes. A running experiment can be either suspended for future real-
location or definitively terminated. Allocation of experiments onto the cluster
is made under control of system administrators, who need to explicitly accept
users requests. Once accepted, experiment’s topology allocation process starts.
Such allocation process is automatic, involving tasks like virtual nodes mapping
on cluster’s physical nodes and IP addresses assignments.

Fig. 1. NEPTUNE architecture.

To define virtual topologies, users can both write a topology description in
a custom XML format or use an interactive graphic tool embedded into the
web user interface. It is also possible to select pre-defined topologies for fast
experiment definition, modify and in case save them as new topology templates.

To define virtual nodes software configuration, users can access via the Nep-
tune web interface a ”Virtual Nodes Template Images Repository” and select
a VM template for each of the emulated nodes. VM templates, which enclose
OS filesystem and in case other software, can be modified and saved as new
templates for reuse.

Furthermore, users can control an experiment status and can execute actions
to terminate that experiment or save it. Our current implementation of exper-
iment status saving only creates copies of virtual nodes file systems, as saving
the whole status of a running experiment is a distributed snapshot problem [18]
which is actually out of the scope of our system. Commands and tools to manage
and monitor virtual nodes and links are provided too. Finally, remote access is
made available to each of the experiment nodes through a VPN tunnel.

3.3 Node multiplexing in NEPTUNE

Node multiplexing is implemented in NEPTUNE by means of Xen, using vir-
tual machines as network nodes. Our current implementation relies on libvirt
virtualization APIs [19], making it feasible supporting different virtualization
technologies in the future. Mapping of virtual nodes onto the cluster physical
nodes is described by an allocation map which can be generated either manually
by a system administrator or automatically, by means of a software module im-
plementing a Lin-Kernighan derived optimization algorithm [20]. When a virtual
network is to be deployed on the physical cluster, NeptuneManager distributes
Virtual Machine template instances to the physical cluster nodes. This distri-
bution process is composed of two phases for each virtual node: 1) raw copy
of the virtual machine image file containing VM template, and 2) VM creation
on the target virtual machine monitor. During this last phase, virtual hardware
resources are provided to the virtual node according to node definition provided
by the experiment topology description. Use of Xen for node multiplexing pro-
vides a totally virtualized environment to test applications. Xen isolates virtual
machines from each other and guarantees them the availability of resources as-
signed at VM creation time. Because of the total isolation between VMs, it is
possibile to run custom operating systems on each VM and, hence, custom net-
work stacks. This allows us to correctly emulate different network devices, e.g.
routers, within a single physical host.

3.4 Link Multiplexing in NEPTUNE

In several network emulation systems, link multiplexing is performed by means
of Virtual LANs (VLANs). Such a solution is implemented by properly configur-
ing the Ethernet switches and does not require any configuration and processing
in the cluster nodes. This makes, however, the system configuration software ex-
tremely dependent on the characteristics of the network switches. For the above
reason, we decided not to use VLANs in NEPTUNE and we adopted a network
device independent solution for link multiplexing that we call “One Link per

Virtual Interface” (OLVI in short). The OLVI technique is implemented by ex-
ploiting the network virtualization mechanisms implemented in Xen. Every time
a new virtual machine is instantiated, Xen creates a new pair of “connected vir-
tual ethernet interfaces”, with one end of each pair within the virtual machine
and the other end within the virtual machine monitor. Virtualised network inter-
faces have their own ethernet MAC addresses, whose values can be assigned at
virtual machine creation time [21][22]. When using OLVI technique, each point-
to-point link is identified by its end points, which are virtual NICs in virtual
nodes. Since a unique MAC address is assigned to each virtual NIC, virtual
links are uniquely identifiable within NEPTUNE. To completely implement link
emulation, virtual links need to be configured according to specific user-defined
properties. Such properties are assigned to emulated links through the use of a
queuing discipline and a traffic shaper that are associated to both ends of an
emulated link. Queuing discipline are enforced through the traffic control module
of the Linux kernel, while traffic shaping is done through NetEm, another Linux
kernel module, provided by default from kernel2.6 distributions, that gives the
possibility to emulate delay, loss rate, re-ordering and duplication over a link.

Fig. 2. Link multiplexing in NEPTUNE.

A major problem when dealing with the creation of virtual links is the need
to assign IP addresses to both ends of virtual links, according to a general IP
addressing scheme. In NEPTUNE users can manually define IP addresses for
a link’s end-point, but such a task is tedious, error prone and not viable when
dealing with big topologies. For these reasons NEPTUNE also provides an al-
gorithm that automatically assigns subnets to links and IP addresses to their
end-points. Furthermore, since several experiments can be running on the same
shared infrastructure, the algorithm also ensures non overlapping of address
spaces used by different experiments. This latter requirement is also enforced
when experiments use manual allocation of IP addresses.

4 Experimental Evaluation

The need to create repeatable experimental scenarios to test network applica-
tions and protocols is the main reason for the adoption of simulation and em-
ulation techniques. Node and link virtualization in network emulation testbeds
provide users with the possibility of trading off the amount of physical resources
to be allocated to a given experiment for emulation accuracy. First target of our
experimental evaluation is to identify limits of proposed multiplexing techniques
and in particular the maximum network throughput a NEPTUNE’s virtual node
can achieve. Here we discuss experimental results demonstrating the maximum
throughput obtainable when one VM is running on top of the hypervisor: these
performance values are an upper bound for the case of multiple concurrent VMs
running on top of the same physical hardware. To assess performance levels of
NEPTUNE, first of all we need to find a reference performance value. To this
end, we set up a preliminary experimental scenario (Setup #0), in which two
identical machines are connected by a point-to-point 1Gbps Ethernet cable. Both
nodes are HP ProLiant DL380 servers, each equipped with two Intel Pentium IV
Xeon 2.8 GHz CPUs, 5 GB of PC-2100 RAM, one 100 Mbps Ethernet NIC and
one Gigabit Ethernet NIC. The adopted CPUs support the Hyper-Threading
Intel technology. Both hosts run native GNU/Linux (CentOS5.3) with a 2.6.18
Linux kernel.

In such a scenario, we run the D-ITG suite [23] to generate network traffic
and measure effective throughput in terms of generated/received packets per
second (pkt/s). We used D-ITG to generate UDP constant bit rate traffic, at
different rates, with packets size of 1042 bytes “on wire”.

Fig. 3. Experimental setup #1.

Similar experiments were repeated among the same pair of physical machines,
but in a different experimental scenario (Setup #1 shown in Figure 3): one of the
two hosts runs a Xen Virtual Machine Monitor (Xen version 3.1.2) with a 2.6.18

Linux kernel plus a single domU virtual machine. Two different experiments were
run in this configuration: Experiment 1.1, where domU node acted as CBR traffic
generator, and Experiment 1.2, where domU acted as receiver. Due to the use
of Hyper-Threading, our systems appear having four “logical” CPUs, numbered
as CPU0, CPU1, CPU2 anc CPU3. The CPU enumeration order used by Xen
is: hyperthreads, cores, sockets. On our system, the four CPUs are then mapped
as follows:

– cpu 0 : socket 0, [core 0], hyperthread 0;
– cpu 1 : socket 0, [core 0], hyperthread 1;
– cpu 2 : socket 1, [core 0], hyperthread 0;
– cpu 3 : socket 1, [core 0], hyperthread 1.

We configured Xen by constraining domUs to use no more than one CPU at a
time.

Experiment run in Setup #0 provides us with the maximum number of pack-
ets per second that our Linux-based hosts are able to receive. Since experiments
run in Setup #1 show a lower throughput, we are confident that this performance
penalty is caused by the use of Xen.

 0

 20000

 40000

 60000

 80000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

R
x

ra
te

 (
pk

t/s
)

Tx rate (pkt/s)

Linux->Linux
DomU->Linux

Fig. 4. DomU transmission performance.

Figure 4 shows achieved throughput for Experiment 1.1, compared to through-
put measured in Setup #0. This graph demonstrated that domU performance
is about 75% of the native GNU/Linux host, providing ourself with an upper
bound for transmission capabilities of a NEPTUNE virtual node. Figure 5 shows
achieved throughput for Experiment 1.2, again compared to throughput mea-
sured in Setup #0. This graph shows that, as receiver, domU performance is
65% of native GNU/Linux.

Figures 6 and 7 show the average CPU load measured during Experiments
1.1 and 1.2, as reported by the virt-top monitoring tool. The overall CPU capac-
ity refers to the whole set of four logical CPUs, hence, due to the configuration of

 0

 20000

 40000

 60000

 80000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

R
x

ra
te

 (
pk

t/s
)

Tx rate (pkt/s)

Linux<-Linux
DomU<-Linux

Fig. 5. DomU reception performance.

domUs, each domU may consume as much as 25% of the overall CPU capacity.
Figure 6 shows that the traffic generating domU consumes as much CPU as
possible even at low packet rates, while dom0 increases the CPU utilization as
the packet rate increases. Figure 7 shows that a Xen domU acting as a packet
receiver linearly increases its CPU utilization with the packet arrival rate up
to a given threshold. Since incoming packets are first processed by dom0, the
domU CPU load reflects the dom0 curve up to a threshold value (50 kpacket/s
in Figure 7). For packet rates above this latter threshold, domU saturates its
CPU utilization curve.

Fig. 6. DomU transmission performance.

We also carried out an experimental evaluation of the impact of NetEm on
performance of the emulation layer. These experiments were performed using the
same pair of physical machines as for previous experiments, but engaging a dif-

Fig. 7. DomU reception performance.

ferent scenario (Setup #2 shown in Figure 8). Since our tests were unidirectional,
we only configured NetEm on the transmitting side.

Fig. 8. Experimental setup #2.

Again, we performed two experiments. In both of them, we configured the
emulation layer to emulate a virtual link of limited bandwidth, by means of
a token bucket filter (TBF). Our goal was to evaluate if the combination of
bandwidth limitation mechanisms and virtualization layer (Xen) produced any
unexpected effects on the throughput and jitter experienced by packets carried
by the emulated link. Figure 9 shows traffic received by the native GNU/Linux
host, for several TBF limits applied at the sender side, when the rate of generated
traffic was progressively increased. This graph demonstrates that traffic rate has
been correctly shaped, delivering the expected bandwidth.

In Figure 10 we compare jitter values experienced on link when using two
different configurations: in the fist one, traffic sender run on native GNU/Linux

(no virtualization layer here), while in the second one a Virtual Machine worked
as sender (Figure 6). In both cases we generated 25 Mbps of UDP costant bit
rate traffic over a virtual link tailored at 20 Mbps by applying a TBF shaper.
Results show that the virtualization layer has no significative effects on the jitter,
that maintained similar properties.

 4000

 8000

 12000

 16000

 20000

 0 10000 20000 30000 40000 50000 60000 70000

R
x

ra
te

 (
kb

it/
s)

Tx rate (kbit/s)

Accuracy - 1 DomU

TBF: 4000kbit
TBF: 8000kbit

TBF: 12000kbit
TBF: 16000kbit
TBF: 20000kbit

Fig. 9. Token Bucket bw limitation.

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0 10 20 30 40 50 60
jit

te
r

Time (seconds)

physical / virtual machine jitter comparison

Physical Machine
Virtual Machine

Fig. 10. Jitter.

5 Conclusions

Several papers presented performance evaluation analysis of Xen networking.
Our work is not specifically aimed at evaluating Xen performance. Nonethe-
less, since Virtual Machine Monitor layer is a major component of our network
emulator architecture, experiments we presented in this paper are strongly re-
lated to those presented in other works. In [24], packet forwarding performance
of Xen’s dom0 and domUs are evaluated and compared to native GNU/Linux.
Results show that dom0, in the absence of concurrent domUs, has comparable
performance (within 5%) of native GNU/Linux. On the other hand, a remarkable
performance drop is experienced by domUs, especially in the case of multiple con-
currently active domUs running on top of the VMM. This paper also compares
performance of Xen’s bridging and routing configurations in terms of packet for-
warding within domUs. This last work is of less interest for our purposes, since
we assumed the use of bridging configuration for Xen in the NEPTUNE archi-
tecture. Other papers ([25][26]) have evaluated overhead caused by the VMM
layer, for previous versions of Xen (v2.x). In [25] a detailed profiling of Xen shows
that the execution of I/O operations in a domU has a higher instructions count
with respect to both native GNU/Linux and dom0, which explains throughput
degradation. Here, authors also examine how performance can be negatively af-
fected by the use of a general virtual NIC driver that causes domUs to execute
operations like TCP segmentation in software, ignoring physical NIC TCO (TCP
segmentation offload) capabilities, which are instead used by native GNU/Linux

and dom0. Our experiments show similar results to those presented in previous
papers. The relevance of results we provide is mainly to identify an upper bound
to the capabilities of our emulation system, in order to guarantee correctness of
the emulation. More thorough investigations are currently being performed, to
evaluate how other parameters, such as packet size, cpu load, number of con-
current virtual machines per physical node and so on, may affect accuracy of
network emulation in NEPTUNE.

6 Acknowledgements

The research leading to these results has been partially funded by the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n224263-OneLab2.

References

1. Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., Huang, P.,
McCanne, S., Varadhan, K., Xu, Y., Yu, H.: Advances in network simulation.
IEEE Computer 33(5) (May 2000) 59–67

2. Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols.
SIGCOMM Comput. Commun. Rev. 27(1) (1997) 31–41

3. PlanetLab: PlanetLab Europe. http://www.planet-lab.eu/

4. M. Carbone, G. Cecchetti, L.R.: Integrated dummynet and planetlab. http:

//www.onelab.eu/images/PDFs/Deliverables/d4e.2.pdf OneLab Project FP6-
2004-IST-4 Public Deliverable D4E.2.

5. Grau, A., Maier, S., Herrmann, K., Rothermel, K.: Time jails: A hybrid approach
to scalable network emulation. In: PADS ’08: Proceedings of the 22nd Workshop
on Principles of Advanced and Distributed Simulation, Washington, DC, USA,
IEEE Computer Society (2008) 7–14

6. Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb,
K., Lepreau, J.: Large-scale virtualization in the emulab network testbed. In:
ATC’08: USENIX 2008 Annual Technical Conference on Annual Technical Con-
ference, Berkeley, CA, USA, USENIX Association (2008) 113–128

7. Herrscher, D., Leonhardi, A., Rothermel, K.: On node virtualization for scalable
network emulation. In: Proceedings of the 2005 International Symposium on Per-
formance Evaluation of Computer and Telecommunication Systems (SPECTS ’05).
(July 2005)

8. Maier, S., Herrscher, D., Rothermel, K.: Experiences with node virtualization for
scalable network emulation. Comput. Commun. 30(5) (2007) 943–956

9. Di Gennaro, P., Bifulco, R., Canonico, R., Ventre, G.: Neptune: Network emulation
for protocol tuning and evaluation Poster presented at the 2nd ICST International
Conference on Simulation Tools and Techniques (SIMUTOOLS09), Rome, March
2009.

10. Di Gennaro, P., Bifulco, R., Canonico, R.: Neptune project sources homepage.
http://code.google.com/p/neptune-network-emulator/

11. Hemminger, S.: Network emulation with netem. http://linux-net.osdl.org/

index.php/Netem In Linux Conf Au, April 2005.

12. Canonico, R., Di Gennaro, P., Manetti, V., Ventre, G.: Virtualization techniques
in network emulation systems. In Boug, L., Forsell, M., Traff, J.L., Streit, A.,
Ziegler, W., Alexander, M., Childs, S., eds.: Euro-Par Workshops. Volume 4854 of
Lecture Notes in Computer Science., Springer (2007) 144–153

13. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker,
D.: Scalability and accuracy in a large-scale network emulator. In: Proceedings of
the Fifth Symposium on Operating Systems Design and Implementation (OSDI),
USENIX Assoc (2002) Dept. of Comput. Sci., Duke Univ., Durham, NC, USA.

14. Herrscher, D., Rothermel, K.: A dynamic network scenario emulation tool. In:
Proceedings of the 11th International Conference on Computer Communications
and Networks (ICCCN 2002). (October 2002)

15. Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J.: In vini veritas:
realistic and controlled network experimentation. SIGCOMM Comput. Commun.
Rev. 36(4) (2006) 3–14

16. Bhatia, S., Motiwala, M., Mhlbauer, W., Mundada, Y., Valancius, V., Bavier, A.,
Feamster, N., Peterson, L., Rexford, J.: Trellis: A platform for building flexible,
fast virtual networks on commodity hardware. In: Proceedings of ROADS 2008.
(2008)

17. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Procs. of the 19th
ACM Symposium on Operating Systems Principles, SOSP’03, ACM Press (2003)
164–177

18. Burtsev, A., Radhakrishnan, P., Hibler, M., Lepreau, J.: Transparent checkpoints
of closed distributed systems in emulab. In: EuroSys ’09: Proceedings of the fourth
ACM european conference on Computer systems, New York, NY, USA, ACM
(2009) 173–186

19. RedHat, et others: LibVirt virtualization API. http://www.libvirt.org

20. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM Comput. Commun. Rev. 33(2) (2003) 65–81

21. Xen: Xen wiki. http://wiki.xensource.com/xenwiki/XenNetworking

22. Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing network virtualization in xen.
(2006) 15–28

23. Botta, A., Dainotti, A., Pescapé, A.: Multi-protocol and multi-platform traffic
generation and measurement INFOCOM 2007 DEMO Session, Anchorage (Alaska,
USA), May 2007.

24. Egi, N., Greenhalgh, A., Handley, M., Hoerdt, M., Mathy, L., Schooley, T.: Evalu-
ating xen for router virtualization. In: Computer Communications and Networks,
2007. ICCCN 2007. Proceedings of 16th International Conference on. (2007) 1256–
1261

25. Menon, A., Santos, J.R., Turner, Y., Janakiraman, j.G., Zwaenepoel, W.: Diag-
nosing performance overheads in the xen virtual machine environment. In: VEE
’05: Proceedings of the 1st ACM/USENIX international conference on Virtual ex-
ecution environments, New York, NY, USA, ACM Press (2005) 13–23

26. Cherkasova, L., Gardner, R.: Measuring cpu overhead for I/O processing in the
xen virtual machine monitor. (2005) 387–390

