
GaaS: Customized Grids in the Clouds

G.B. Barone1, R. Bifulco1, V. Boccia2,
D. Bottalico1, R. Canonico1, L. Carracciuolo3

1 Università degli Studi di Napoli Federico II
gbbarone@unina.it, roberto.bifulco2@unina.it, davide.bottalico@unina.it,

roberto.canonico@unina.it
2 Italian National Institute of Nuclear Physics, Italy

vania.boccia@na.infn.it
3 Italian National Research Council, Italy

luisa.carracciuolo@cnr.it

Abstract. Cloud Computing has been widely adopted as a new paradigm
for providing resources because of the advantages it brings to both users
and providers. Even if it was firstly targeted at enterprises wishing to re-
duce their equipment management costs, it has been rapidly recognized
as both an enabler for new applications and as a mean to allow en-
terprises of all sizes at running high demanding applications. Recently,
Cloud Providers are trying to attract new applications, such as scien-
tific ones, that today already benefit from distributed environment like
Grids. This work presents a way to remove the paradigm mismatch be-
tween Cloud and Grid Computing, enabling the use of Cloud-provided
resources with well-established Grid-like interfaces, avoiding the need
for users to learn new resources access and use models. The proposed
approach is validated through the development of a prototype imple-
mentation and its integration in a working Grid environment.

Keywords: Virtualization, Cloud Computing, Grid Computing

1 Introduction

On-demand computing is a model in which computing resources are made avail-
able to users as needed. It could be considered a valid solution for people who
need a huge amount of resources, to reduce the Total Time to Solution, and
cannot bear the costs of systems. In particular, these costs grow up when the
needed resources are provided by specialized systems, e.g., HPC ones.

The scientific community developed the Grid Computing paradigm to en-
able the sharing of huge amount of resources through a well-defined distributed
infrastructure model, in order to solve large scale problems in a collaborative
manner. The Grid Computing resources aggregation model is rather “static”: a
group of organizations set up several Grid management services and computing
resources in a layered structure that separates the management responsibilities
(and corresponding management services) among the organizations involved in
the Grid.



Users belonging to the organizations forming the Grid can retrieve informa-
tion on resources (e.g., their number, status, configuration, etc.) and access them,
but can neither change the topology of the grid (e.g., by increasing the number of
resources) or manage resources configuration and composition. It would be desir-
able to have a more “elastic” infrastructure in which users can ask for resources
on-demand, to suit their needs in terms of resources type and configuration (i.e
compilers, scientific libraries, problem solving environments, etc.).

With the advent of new applications and the pervasiveness of IT into ev-
eryday activities, also the industrial and private sectors have developed a need
for fast access to high demanding IT infrastructures at low costs. The industry
answer to these needs has been the Cloud Computing model.

According to the official NIST definition, “Cloud Computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources ... that can be rapidly provisioned and released
with minimal management effort or service provider interaction” [10].

Cloud Computing assumes different names depending on the provided re-
sources. When provided resources are computing nodes and storage, Cloud Com-
puting is called Infrastructure as a Service (IaaS). Other resources types include
application developing environments (Platform as a Service, PaaS in short) and
specific software applications (Software as a Service).

Given the flexibility in resources management through the Cloud Computing
paradigm, it seems a promising approach to provide flexible Grid Computing
infrastructures through the combination of the Grid and Cloud paradigms.

Some interest has been already shown in this direction [11]. So far, the pro-
posed approaches may be labeled as either “Grid over Cloud” or “Cloud over
Grid”, since the composition of the two paradigms may be performed through
either the exploitation of IaaS-provided resources to build Grid infrastructures
or through the use of Grid-provided computing resources to create IaaS clouds.

In this paper we describe our experience in designing and implementing a so-
lution that creates more flexible Grid infrastructures, by exploiting IaaS-provided
resources, in a novel way resembling the PaaS paradigm. We call our solution
Grid as a Service (GaaS).

The paper is organized as follows: in the next section is presented the Grid
reference architecture, in section 3 we provide an overview on the state of art
about the integration of Cloud and Grid service models, in section 4 we describe
the GaaS model and in section 5 is reported a case study related to the deploy-
ment of a prototype on the SCoPE Grid Computing Infrastructure[12]. Finally,
in section 6 we present future works and conclude.

2 Grid Computing reference architecture

We assume as Grid reference architecture the one implemented by the middle-
ware gLite-EMI, developed in the context of EGI (European Grid Infrastruc-
ture). The gLite-EMI middleware provides a Grid infrastructure that is acces-
sible to community members organized into Virtual Organizations (VO). A VO



Fig. 1. A gLite-based infrastructure with some central services (UI, VOMS, WMS, IS)
and three grid sites (with a CE and several WN).

is defined in [7], as “a set of individuals and/or institutions defined by such
sharing rules...“. “VOs vary tremendously in their purpose, scope, size, dura-
tion, structure, community and sociology”. In particular, people from a scientific
community, sharing the same “experiment”/applications, can constitute a VO.

VO “managers” make available all the software needed to run the applications
of interest of the community on computing resources (the applicative level of the
middleware).

The Grid infrastructure is a distributed infrastructure whose management is
centralized, while the computation functions are distributed among several sites.
The infrastructure provides users with high level services for scheduling and
running computational jobs, accessing and moving data, and obtaining informa-
tion on the infrastructure itself. Services are embedded into a consistent secu-
rity framework [8]. Those provided are services for authentication/authorization
(e.g. VOMS - Virtual Organization Management System), resources allocation
and discovery (e.g. LB/WMS - Logging & Bookiping and Wokload Management
System), infrastructure Information System (IS). Computing resources (WNs -
Worker Nodes) are provided by means of CE (Computing Element) that is an
endpoint with a set of queues handled by an LRMS (Local Resource Management
System). User can access these services from a User Interface (UI).

Management services (UI, VOMS, WMS) are instantiated only once and
shared among all the sites, while computing-related services (IS, CE) are repli-
cated in each site. A graphical representation of a minimal gLite-based Grid
infrastructure is presented in figure 1.

To use the Grid infrastructure, the user has to (1) authenticate himself on the
infrastructure; (2) define a job in terms of resources requirements and tasks to be
performed; (3) submit the job to the infrastructure by selecting the appropriate
resource queue; (4) monitor the job status; (5) retrieve the job execution results.



The resource queue is an abstraction provided by the Grid architecture to either
group resources based on their properties and to share such resources among
several users.

The typical Grid usage model described so far does not allow the user in
customizing the grid environment. Users cannot change the Grid infrastructure
that runs their experiment, in particular, a user cannot create a new Grid site
nor add an existing site for his VO. Also the Grid sites are static and cannot
be customized by users, hence, it is not possible to add new worker nodes to a
site to extend its capabilities, and it is also not allowed to organize resources
into customized queues to shape them in accordance to the computation needs.
Finally, even the configuration of the worker nodes cannot be changed.

3 Related works

In this section we describe related work about the Cloud and Grid integration,
presenting examples of “Cloud-over-Grid” and “Grid-over-Cloud” approaches.

An example implementation of the “Cloud-over-Grid” is presented in [15],
where CLEVER, a cloud management system, is used to provide an IaaS system
over Grid. The solution requires the installation of both a specialized CLEVER’s
management software and a virtual machine monitor (e.g. VirtualBox) into Grid
worker nodes. When the CLEVER cloud requires more resources, new worker
nodes can be assigned to it, to dynamically extend the resources available to the
cloud.

WNoDeS [14] applies a “Cloud-over-Grid” approach as well. WNoDeS (Worker
Nodes on Demand Service), developed by the Italian National Institute for Nu-
clear Physics (INFN), is a solution to virtualize computing resources and to make
them available through local, Grid or Cloud interfaces. The Grid infrastructure
is exploited through the use of a “special” gLite job: the “power on”. Users de-
fine “Power on” jobs selecting tailored virtual machine images to be lunched on
computational resources managed by the CE.

In [5] is described an example of “Grid-over-Cloud”, that transparently pro-
vides dynamically-instantiated VM-based worker nodes, in an EGEE production
grid.

StratusLab [9] is applying a “Grid-over-Cloud” approach as well. The Stra-
tusLab project aims at developing a complete, open-source cloud distribution
that can be deployed in production in both academic and industrial environ-
ments. StratusLab provides Grid services using StratusLabs IaaS system re-
sources. The provided Grid infrastructure can exploit the dynamic nature of
the cloud, provisioning resources as needed and running user-level (and commu-
nity level) services using pre-packaged appliances, selected by users and made
available by a “marketplace”.

In [4] we presented the design and implementation of an on demand com-
puting service, which is able to obtain a right trade-off among management cost
reduction, environmental sustainability and user satisfaction. In particular, the



work described an experience in designing and implementing a flexible infras-
tructure, built on the basis of local or remote cloud resources, with the aim of
saving energy to reduce the overall operational cost and to improve environmen-
tal sustainability.

Recently, also commercial Cloud Providers are trying to explore the HPC
market, by providing resources for, e.g., scientific computations. Most notably,
Amazon, is offering “cluster compute” instances, through its Elastic Compute
Cloud service, whose resources are tailored for HPC, i.e., they are provided with
huge amounts of RAM, processing power, and are deployed on a 10 Gigabit
Ethernet network with low delay[1]. To ease the execution of specific workloads,
some tools provide automatic configuration of Amazon resources. An example
in such sense is CloudFlu[6], that allows the easy execution of OpenFOAM[13]
jobs on an automatically configured cluster of Amazon EC2 HPC resources.

4 GaaS: Grid as a Service

In 2012, the European Middleware Initiative (EMI, http://www.eu-emi.eu) has
published a report in which they describe four possible integration scenarios of
virtualized infrastructures in the Grid computing architecture [11]. In this paper,
we present Grid-as-a-Service (GaaS), a service model designed according to the
Dynamic Grid Services scenario described in that report:

[Dynamic Grid Services] utilizes the cloud infrastructure to provision
grid services using IaaS/PaaS/SaaS models. The grid services, or suit-
able subsets of the current grid services, can therefore be instantiated
on demand ... by deploying and configuring the services on base virtual
machines according to specific user community requirements and then
disposed of when not needed anymore.

The GaaS model combines the advantage of providing users with an usage
model that is familiar to the traditional Grid, with the possibility of flexible man-
agement of computational resources in a IaaS-like manner. Hence, our model can
be classified as a Platform-as-a-Service for extending Grid environments with
elastic (e.g., virtual) resources. By using GaaS, “privileged” grid users, e.g. the
VO administrator, can define new Grid Sites, add computational resources to ex-
isting Grid Sites and modify the resources aggregation scheme, e.g., site queues.
In particular, GaaS provides privileged users with the following functions:

1. WNs management (fig. 2.a): definition, addition and deletion of WN to be
used by the Grid infrastructure;

2. Queues management (fig. 2.b): dynamic management of resources in queues,
and queues policies configuration;

3. Sites management (fig. 2.c): creation and management of new Grid Sites;

GaaS flexibility provides several advantages to traditional Grid infrastruc-
tures, e.g., WNs can be customized with software tailored to a given set of users,



(a) WNs management (b) Queues management (c) Site management

Fig. 2. The GaaS solution.

as well as queues can be configured to fulfill a specific computation needs. More-
over, GaaS support the creation of complete Grid sites in order to, e.g., enable
a community that has to share resources for the life time of a project, to avoid
the burden of configuring from scratch all the required services and resources.
Computational resources can be both virtual and physical. The use of virtual
resources is not denied to HPC users but, if virtual resources are chosen, users
are notified by IS, about the possible performance limitations.

Even if our approach is based on a Grid-over-Cloud model similar to the Stra-
tusLab one, in GaaS resources are made available through their configuration
in Grid abstractions, e.g., queues. Hence, provided resources can be reconfig-
ured or differently aggregated on the basis of users needs (in a way resembling
the PaaS paradigm). Moreover, GaaS enables the provisioning of several high
level functions: from queues creation/reconfiguration to the instantiation and
configuration of whole grid sites.

5 The SCoPE case study

For the validation of the proposed model we implemented a prototype and in-
tegrated it into the context of the S.Co.P.E. Datacenter at University of Naples
Federico II, a self contained grid infrastructure that offers storage and computa-
tional resources and all the high level core services for infrastructure management
(VOMS, WMS, IS, etc.). Moreover S.Co.P.E. resources are integrated also into
national IGI and international EGI relevant distributed computational infras-
tructures and used from people belonging to different scientific reserach fields
and to VOs from very rilevant international experiments (e.g. LHC, ATLAS,
Super-B, etc.). Thus S.Co.P.E. is a suitable context to validate effectively our
approach by means of a prototype.

Our prototype is based on the gLite-EMI [8] Grid middleware and on the
OpenNebula [2] cloud management system. The modularity of OpenNebula al-
lows for fast introduction of new features to the management system, hence, it



allows the easy integration of the Cloud-provided resources into the Grid infras-
tructure. A subset of the S.Co.P.E. resources are assigned to the OpenNebula
managed resources pool. Such resources host an hypervisor, currently Xen [3],
to create virtual machines (VM), that are then used as dynamically provided
resources for the Grid infrastructure. VMs are used to both create Grid’s WNs
and management services such as CE, IS, etc.

The main efforts in the prototype development were (i) the definition of
templates for gLite-EMI services configuration, and (ii) the enabling of their
fast provisioning.

In many IaaS management system (and in OpenNebula as well), VM tem-
plates are usually stored in a “template repository”. A new VM is created copy-
ing the selected template to the running location of the VM. The duration of
this process is the main factor in the resources deployment time. Since the copy
process involves the storage infrastructures that are hosting the template repos-
itory and the newly created VMs disks, assuming that a minimal VM template
is several hundreds of megabytes big, the process, for each VM creation, takes a
time in the order of dozens of seconds.

To optimize the infrastructural resources used during the provisioning pro-
cess, and to reduce the overall provisioning time, we took into account the pecu-
liarities of the GaaS system. In particular, we made the following observations:

1. all the VMs are prescribed to host the same operating system, which is
imposed by the gLite-EMI middleware;

2. all the VMs hosting the Grid services (e.g., WN, CE, etc.) can be produced
by customizing the configuration of a single VM template;

We designed our VM disk provisioning system in order to provide fast VM cre-
ation and avoid as much data copy as possible. Our solution is based on the
GNU/Linux’s Logical Volume Manager (LVM). LVM allows the creation of log-
ical volumes (LV) and the creation of snapshots starting from a reference LV.
Snapshots can be read and written, since their creation is performed through
the use of a “delta meta-data”, that contains all the differences with the original
LV. This approach makes the creation of a snapshot really fast (a few millisec-
onds) since it involves no copy of data. Once the snapshot is created, following
observation 2, a configuration script is executed to customize the virtual re-
source according to its functional destination. Since both read and write actions
involve an a read/update of the delta meta-data, the operating performance of
the snapshot could be compromised in particular conditions. In our case, we are
mainly interested into reading performance, and, moreover, we assume that the
majority of reads happen in the bootstrapping process of a VM (e.g., for the
loading of the required applications).

In figure 3 is presented a performance comparison of read and write op-
erations on 64 KBs data blocks. These tests were executed on an HP DL380
Proliant server equipped with two Intel Pentium IV Xeon 2.8 GHz CPUs, 5 GB
of PC-2100 RAM. The server was running a Debian Linux with the OS kernel
configured to use only 1 GB of RAM. We compare the results obtained by op-
erating on both a raw partition (labeled as “normal”) and on a LVM snapshot



(labeled as “snapshot”). For various amounts of read/written data (ranging from
512 bytes up to 8 GBytes), we compare the throughput achieved for write (left
graphs) and read (right graphs) operations. Figure 3 shows the results of six
series of experiments. On the left hand of the figure, graphs a), c) and e) present
the throughput obtained by write operations performed in the following cases:
graph a) refers to operations performed on freshly mounted disks, with no OS
caching effects, graph c) refers to sequential write operations performed several
times on the same data, in order to maximize the OS caching effects, graph e)
refers to random write operations. On the right hand of the figure, graphs b), d)
and f) present the results for similar experiments involving read operations.

From the graphs it can be easily observed the effect of caches on performance,
when data size is bigger than the available filesystem cache (our system had
about 512 MBs of cache space). What is of particular interest for us, is that the
performance drop when snapshots are used is marginal, since the delta meta-data
is likely stored in the system cache anyway, hence, we can fast provision resources
to the grid, without paying any sensible penalty on disk performance. Moreover,
performance drops are visible when the written/read data size is bigger than
the filesystem cache, in particular for write operations. Since snapshots are just
used to create VMs’ OS bootable disks, i.e., disks that contains the OS and the
applications code but that are not meant to be used as data storage, they are
mainly involved in read operations, and the dimension of read data is likely to
be smaller or comparable with the dimension of the filesystem cache. Hence, we
expect little or no performance drop in the VM operations.

6 Conclusion and Future Work

In this paper we presented GaaS, a PaaS model for Grid Computing systems,
that lets VO administrartors to dynamically customize the grid environment they
are offering to VO’s unprivileged members. VO administrators can define new
Grid Sites, add computational resources to Grid Sites and modify the resources
aggregation scheme (queues). We implemented a prototype of our model and
deployed it in a real-world Grid Datacenter. Moreover, our prototype implements
a virtual resources fast provisioning scheme, that exploits some properties of the
Grid environment. Our implementation uses standard GNU/Linux tools, i.e.,
LVM, and a careful definition of easily customizable virtual resource templates.

Even if the presented work is a successful proof-of-concept, many issues still
have to be solved. In particular we have to assess the applicability of virtualized
resources in HPC contexts, the payed overhead, and the possibility to extend
the model to a mix of virtualized and physical resources according to the users
needs.

We are working on solutions able to allow new communities wishing to use
the grid to instantiate new grid infrastructure also for the non existing VOs.
Moreover, we are also planning an evaluation of the impact on management
operations and costs of our approach, in order to integrate a smart management



Fig. 3. Storage write (left column) and read (right column) performance. The y axis
shows the read and write throughput (bytes/sec), while the x axis shows the amount
of data read/written. Graphs a, b refer to sequential operations with no OS caching
effects. Graphs c, d refer to sequential repeated operations to maximize OS caching
effects. Graphs e, f refer to random operations.

of resources with the aim of providing energy savings, in a Green Computing
perspective.

Acknowledgments. This work is part of the activities of a multidisciplinary
group (GTT) that is responsible for the S.Co.P.E. infrastructure management.
The work is also part of the activities carried out by GTT in the context of the
Italian Grid Infrastructure (IGI).

References

1. Amazon: High Performance Computinig (HPC) on AWS, http://aws.amazon.

com/hpc-applications/



2. Andic, M., Dejan, Llorente, I.M., Montero, R.S.: Opennebula: A cloud management
tool. Internet Computing, IEEE 15(2), 11 –14 (march-april 2011)

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS
Operating Systems Review. vol. 37, pp. 164–177. ACM New York, NY, USA (2003)

4. Barone, G., Bifulco, R., Boccia, V., Bottalico, D., Carracciuolo, L.: Toward a flex-
ible, environmentally conscious, on demand high performance computing service.
In: Data Compression, Communications and Processing (CCP), 2011 First Inter-
national Conference on. pp. 136 –138 (june 2011)

5. Childs, S., Coghlan, B., McCandless, J.: Dynamic virtual worker nodes in a produc-
tion grid. In: Min, G., Di Martino, B., Yang, L., Guo, M., Runger, G. (eds.) Fron-
tiers of High Performance Computing and Networking - ISPA 2006 Workshops, Lec-
ture Notes in Computer Science, vol. 4331, pp. 417–426. Springer Berlin/Heidelberg
(2006), http://dx.doi.org/10.1007/11942634_44

6. CloudFlu: CloudFlu - HPC cloud computing for OpenFOAM (R) users, http:

//sourceforge.net/projects/cloudflu/

7. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (Aug
2001), http://dx.doi.org/10.1177/109434200101500302

8. Laure, E., et al.: Programming the Grid with gLite. Computational Methods in
Science and Technology 12(1), 33–45 (2006)

9. Loomis, C., Airaj, M., Bégin, M., Floros, E., Kenny, S., O’Callaghan, D.: Stra-
tusLab Cloud Distribution. In: Petcu, D., Vázquez-Poletti, J. (eds.) European Re-
search Activities in Cloud Computing, pp. 260–282. Cambridge Scholars Publishing
(2012)

10. Mell, P., Grance, T.: The NIST definition of Cloud Computing
11. Memon, M., Nagy, Z., Yen, E., Koeroo, O.: Virtualization and Cloud Comput-

ing Task Force Report V.0.7 (2012), http://cdsweb.cern.ch/record/1359910/

files/EMIVirtCloudReport-v0.7.doc

12. Merola, L.: The S.Co.P.E. Project. In: Proceedings of the Final Workshop of Grid
Projects of the Italian National Operational Programme 2000-2006 Call 1575. pp.
18–35. Consorzio COMETA (2009)

13. OpenFOAM-Foundation: OpenFOAM, http://www.openfoam.com/
14. Salomoni, D., Italiano, A., Ronchieri, A.: WNoDeS, a tool for integrated Grid

and Cloud access and computing farm virtualization. In: Proceedings of the Inter-
national Conference on Computing in High Energy and Nuclear Physics (CHEP
2010). pp. 18–35 (2011)

15. Tusa, F., Paone, M., Villari, M., Puliafito, A.: Clever: A cloud cross-computing
platform leveraging grid resources. In: UCC. pp. 390–396. IEEE Computer Society
(2011), http://dblp.uni-trier.de/db/conf/ucc/ucc2011.html#TusaPVP11


