
Polluino: An Efficient Cloud-based Management of
IoT Devices for Air Quality Monitoring

Giovanni B. Fioccola∗, Raffaele Sommese, Imma Tufano, Roberto Canonico∗ and Giorgio Ventre∗
∗Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

Università degli Studi di Napoli “Federico II”
Napoli, Italy

Email: giovannibattista.fioccola@unina.it, raffaele.sommese@protonmail.ch, immatufano@yahoo.it,
roberto.canonico@unina.it, giorgio.ventre@unina.it

Abstract—The Internet of Things paradigm originates from
the proliferation of intelligent devices that can sense, compute
and communicate data streams in a ubiquitous information and
communication network. The great amounts of data coming from
these devices introduce some challenges related to the storage and
processing capabilities of the information. This strengthens the
novel paradigm known as Big Data. In such a complex scenario,
the Cloud computing is an efficient solution for the managing of
sensor data. This paper presents Polluino, a system for monitoring
the air pollution via Arduino. Moreover, a Cloud-based platform
that manages data coming from air quality sensors is developed.

Keywords—IoT, cloud computing, air pollution monitoring.

I. INTRODUCTION

The Internet of Things (IoT) is a paradigm that has recently
become very attractive in the modern wireless telecommu-
nications context. This paradigm indicates “a world-wide
network of interconnected objects uniquely addressable, based
on standard communication protocols” [1]. The fundamental
idea of the IoT is the distribution of ubiquitous “objects” or
“things”, which collect and exchange data in order to reach a
common objective by means of mutual interactions [2]. The
Internet of Things makes these objects responsive, adaptive
and omnipresent around our lives. The IoT is inspired by
the success of the Radio Frequency IDentification (RFID),
Near Field Communication (NFC), and Sensor Network (SN)
technologies, which allow to integrate communication and
information systems in the environment. Physical entities are
provided with local intelligence and connectivity to the In-
ternet, making them smart. Hence, a smart object is defined
as a cyber-physical system or an embedded system, which
consists of a physical device and a component that processes
sensor data and guarantees a wireless communication to the
Internet. Therefore, the vision of the Internet of Things can
be built from smart objects, which are physical objects that
have also sensing, processing and networking capabilities.
In detail, these embedded systems are able to sense, log
and understand all the interactions between themselves and
the outer world. The connection of these physical objects
to the Internet provides access to remote sensor data, so
that it is possible to control the physical world from a dis-
tance [3]. This opens new opportunities for the Information
and Communication Technologies (ICT) sector, by introducing
services and applications that exploit recent technologies in
order to create additional business opportunities. The real
innovation introduced by the IoT is not related to the functional

characteristics of the aforementioned smart objects; indeed, a
lot of embedded systems were previously able to connect to
the Internet. The novelty is the distribution of a great num-
ber of interconnected devices and the diversification of both
systems and applications, thus creating pervasive computing
environments. IoT solutions are capable of making a valuable
contribution to several application fields and market sectors,
while improving the quality of our lives. In particular, IoT tech-
nologies might play a leading role in the following areas: smart
home/smart building management, smart cities, environmental
monitoring, health-care, smart business/inventory and product
management, security and surveillance. An IoT application
area that has been gaining popularity over the last few years is
the Smart Environment [4] [5]. In this context, IoT objects are
used to sense natural phenomena and environmental conditions
in a distributed manner and by integrating heterogeneous data
sources, with the aim of monitoring and detecting possible
anomalous conditions in the environment. The small size of
IoT sensing objects allows monitoring of critical areas and
environment data in real-time, preventing health problems.

To gather, store and analyze data generated by IoT devices,
the availability of Cloud computing services represents the
ideal complement to IoT [6]. A fundamental aspect of the
Internet of Things is the integration with the Cloud infras-
tructure, which hosts interfaces and web-based applications
that enable the communication with sensors and external
systems. Therefore, the Cloud computing infrastructure might
provide data access and management features, with the aim of
collecting and managing data made available by smart objects.
As a result, novel services are provided to users. In a Smart
Environment, IoT objects and Cloud services are integrated,
and new services are created by combining resources pro-
vided by different stakeholders. Thing-driven approaches use
protocols that are specifically designed for the communication
between different devices, such as MQTT, REST API over
HTTP/HTTPS, WebSockets, XMPP and CoAP. IoT objects
generate significant amount of information, because of the
extensive coverage of sensors and the continuous sensing of
data. Gartner report1 estimated that 2.9 billion of connected
things were in use in the consumer sector in 2015 and
will reach over 13 billion in 2020, while by 2019 there
will be 780 million of wearable devices and 2.2 billion of
smartphones. As a result, the real-time data processing has
become a new challenge, since one of the fundamental aspects

1http://www.gartner.com/newsroom/id/2905717

of the IoT is the ability to respond to a trigger in real-
time. Object unique addressing, storage and representation of
the exchanged data are the most problematic topics to be
addressed. Indeed, massive amounts of data must be stored,
processed and presented in a readable and easily interpretable
way for smart monitoring. Hence, appropriate languages and
standardized formats, models and metadata must be used, in
order to extract suitable information from data and guarantee
interoperability among several applications. In this way, IoT
applications might benefit from automated reasoning, a key
feature for the large-scale distribution of this novel technology.
However, IoT devices have limited performance in terms of
both computational resources and energy autonomy. Minimiz-
ing the energy spent for communication and computing pur-
poses is also a primary concern, because devices are typically
battery equipped [7]. New solutions must be developed in
order to optimize energy usage, while maintaining Quality of
Service (QoS) at an acceptable level. The QoS management is
complicated also by the distribution of heterogeneous devices.
Hence, resource efficiency, energy management, robustness
and scalability problems must be taken into account when
proposing IoT solutions [8].

In the Smart Environment context, IoT might be used
to address the air pollution problem, which has both social
and economical relevance. Ground-level ozone and particulate
matter might cause asthma and respiratory diseases. People
with asthma are more sensitive to the effects of air pollutants
such as sulphur dioxide, nitrogen oxides or airborne particles.
One of the main causes of air pollution is the emission of
polluting gases from vehicles. Indeed, urban traffic contributes
to the air quality degradation and Greenhouse Gas (GHG)
emissions. A real time monitoring of the presence and the
concentration of pollutants is necessary, in order to detect
air quality status and trends. By allowing a continuous real-
time monitoring of outdoor pollutant levels, IoT might help
city managers and health agencies to take the most suitable
and effective decisions in case the environmental conditions
become not compatible with the public health.

In this paper, we present Polluino, a system for monitoring
the air pollution based on Arduino. We have implemented a
prototype of this system and have deployed it in Marigliano,
Napoli, Italy. Moreover, we present a Cloud-based platform
that manages data collected from gas sensors. A comparison
between two Cloud computing service models and between
two IoT communication protocols is performed. Finally, an
efficient approach to manage the power consumption of the
IoT devices is proposed, based on the aforementioned Cloud-
based analysis.

II. ENVIRONMENTAL MONITORING

Air pollution means “the presence in the earth’s atmo-
sphere of one or more contaminants in sufficient quantity to
cause short- or long-term deleterious effects to human, animal,
or plant life, or the environment” [9]. These contaminants may
be classified as being either anthropogenic (i.e. resulting from
human activities), or caused by natural events (such as fires,
eruption), or resulting by the decomposition of organic com-
pounds. Regardless of their origin, pollutants can be divided
into:

• Primary pollutants, such as carbon, nitrogen, sulfur,
and halogen compounds. They are released directly
into the atmosphere from sources, and have high
health impacts.

• Secondary pollutants, such as nitrogen dioxide, hy-
drogen peroxide, ozone, sulfate and nitrate aerosols.
They are not directly emitted. These pollutants are
formed by atmospheric chemical processes acting
upon primary pollutants, and event other gaseous
species (non pollutant) in the atmosphere.

The environmental impact of the air pollutants is variable.
Some compounds have a short lifetime (a few hours or days)
and they mainly impact on a local scale, that is where they
were produced or released. Other compounds are released over
a long period of time, allowing them to spread over large
areas, by producing an effect on the whole planet. A real time
monitoring of the presence and the concentration of pollutants
is necessary, in order to detect air quality status and trends.
Indeed, air pollution might cause acute and chronic effects on
human health, ecosystems and cultural heritage.

III. DEVICE IMPLEMENTATION FOR AIR QUALITY
MONITORING

The air pollution monitoring involves the collection of
environmental data by using several external sensors. In this
paper, we present Polluino, an Arduino-based sensor device
that collects and transmits data collected by multiple sensor
modules. In detail, the following environmental parameters are
collected with the aim of measuring air pollution levels: Car-
bon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Dioxide
(NO2), Methane (CH4), Hydrogen Sulfide (H2S), Ozone (O3),
Ammonia (NH3), Particulate Matter (PM), Benzene (C6H6),
Ethanol (C2H6O), Toluene (C7H8), Propane (C3H8). Moreover,
other parameters like temperature, humidity, light intensity,
presence of flames and rains are monitored. In this section,
the implementation of the proposed framework is discussed.
In particular, the multiple technologies involved in this work
are detailed:

• Arduino is a flexible open source micro-controller that
works with several communication and sensing tech-
nologies. This single-board development environment
allows to read data coming from sensors and to control
different devices. The Arduino board consists of an
open hardware design with an ATmega2560 micro-
controller. An on-board input/output support is also
provided.

• ESP8266-01 is a low cost Wi-Fi module with an AT
command library. It allows the micro-controller to
connect to the Internet through a Wi-Fi connection.
Moreover, ESP8266 has a full TCP/IP protocol stack
integrated on the chip.

• Twelve gas sensors: MQ-2 (C3H8), MQ-3 (C2H6O),
MQ-4 (CH4), MQ-7 (CO), MQ-131 (O3), MQ-135
(C6H6), MQ-136 (H2S), MQ-137 (NH3), MQ-138
(C7H8), MG-811 (CO2), WSP-1110 (NO2), Sharp
GP2Y1010AU0F (PM).

• Five environmental sensors: DS18B20 Temperature,
DHT11 Humidity, Photo-resistor, Flames, Raindrops.

Fig. 1. Integration of Step-Down module, ESP8266-01, and Arduino board,
which is equipped with air quality and environmental sensors

• Step-Down module. It is an integrated circuit that
is useful for the design of a step-down switching
regulator.

There are some limitations in terms of resolution. Indeed,
the inputs coming from analog sensors operate by default at 10-
bit resolution. This is the resolution of the Analog-to-Digital
Converter (ADC) and provides a scale of 0 to 1023. The Step-
Down DC-to-DC converter is a switch-mode power supply
that has a power efficiency of 95%. This module is useful
because we want to assemble a low-power device that can be
exploited in several situations, both in places where there is a
current source and in isolated places, where battery and solar
sources are used. A mechanism is also implemented for the
shutdown of the sensors when they do not produce useful data,
with the aim of decreasing energy consumption. The on/off
switching of the sensors is controlled remotely according to
sensor-based data that are stored and managed directly in the
Cloud infrastructure. The Arduino collects all the data from
sensors and forwards them to the Cloud platform by using
the Wi-Fi module ESP8266, which is connected to Arduino
through an on-board serial port.
In this work, we consider a Smart City scenario. Typical
characteristics of Smart Cities are the mobility and the variety
of nodes (user mobile devices, sensors, and vehicles), which
can be equipped with at least a network interface, and the
widespread availability of free Wi-Fi access points [10]. There-
fore, we suppose that a short-medium range communication
technology like Wi-Fi is available. However, the standard Wi-
Fi might not be always available and an alternative approach
to transfer data must be considered. Therefore, we have also
evaluated the possibility of using GSM/3G communications,
but these are more expensive solutions. An experimental ver-
sion of the proposed system has been implemented in practice
(see Figure 1).

IV. POLLUINO MANAGEMENT PLATFORM

In this section, we illustrate the software platform we have
designed to manage a set of Polluino devices, which have
been deployed for air monitoring. Preliminarily, we discuss the
variety of Cloud services that can be used to deploy such a
platform, namely: Sensing as a Service, Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS).

A. Cloud Computing Service Models for Sensor Management

A sensor management platform has three main actors:
sensor owners, Cloud providers and data consumers. In the
Sensing as a Service approach, the owners of the sensors
are able to publish data collected from all their available
devices, with the aim of getting a return on investment [11].
In details, sensors will be used over the Internet either for
free or by paying a fee. Consumers are able to select sensors
from which collect data within a given time period. By using
this approach, companies acquire more accurate data in real-
time, while avoiding the deployment of sensors and the manual
collection of data from users. This model is built on top of
the IoT infrastructure and services. Several servers manage
sensing requests received from different users, collect data
from sensors and return them to the users. The infrastructure
and the front-end reporting tools are granted by the Cloud
provider. Privacy and security issues must be taken into
account when designing and implementing a Sensing as a
Service solution. In the PaaS approach, the Cloud provider
offers runtimes, databases, middlewares, frameworks, brokers
and other services for IoT device communications. One of the
most important software programs that have been used in this
context is Node-RED.
In the IaaS approach, the monitoring infrastructure is built
by sensor owners, who deploy sensors in the environment
and create the management infrastructure by relying on Cloud
provider IaaS services. Large amounts of sensor data can be
stored and analyzed by using processing, storage, networks,
and other fundamental computing resources.

B. A Selection of Suitable Cloud Services

An example of Sensing as a Service model is provided
by ThingSpeak, which uses a REST API approach for the
communication between IoT devices and the Cloud. The key
element of this platform is the channel, which stores and
retrieves data generated from sensors via REST API. A channel
includes the following elements: (i) 8 fields for storing data;
(ii) 3 location fields useful to store latitude, longitude and
elevation; (iii) 1 status field that allows to describe data stored
in the channel. The ThingSpeak public channel has been
used to analyze and visualize collected data with the built-
in “Analysis” and “Visualizations” MATLAB apps. In Figure
2, an example of relative humidity data is shown. Data has
been captured by the DHT11 sensor on a Polluino device, and
displayed in real-time with ThingSpeak.

Fig. 2. Relative humidity graph

ThingSpeak allows the computation of statistical metrics,
such as average, median, min, max, sum, timescale and so

forth. Finally, JavaScript-based charts, read/write API key
management, and a time-zone management are also pro-
vided. A commercial Platform as a Service solution is IBM’s
Bluemix. Bluemix provides a PaaS platform that supports
several runtimes like Node.js, PHP, Go, and so on. As for the
Infrastructure as a Service approach, there is a wide variety of
commercial Cloud providers, such as Amazon AWS, Microsoft
Azure, Google Cloud, and so on.

C. Software Platform Design

Having considered the complex processing requirements
of the sensor management platform, we opted for the PaaS
approach. In particular, we decided to deploy a Node-RED
application on top of the Node.js runtime in Bluemix. Node-
RED is a browser-based visual tool for software development
that allows to wire together IoT devices. It is a generic event-
processing engine that is included in the IBM “Bluemix IoT
starter application”. By using the PaaS approach, data collected
from air quality sensors can be used to trigger automated
actions. Once emergency events are detected, selected town
council members will receive an email alert in a timely and re-
liable manner. Alert messages can be easily configured through
PushingBox API. For example, a notification is automatically
sent when threshold limit values for contaminant gases are
exceeded.
The existing correlation between air pollutants and meteo-
rological parameters, which will be discussed in Section V,
persuaded us to evaluate the possibility of saving energy. To
this end, gas sensors can be turned off during periods in
which their performance and accuracy are affected by adverse
weather conditions. Moreover, gas sensors are also turned off
during time slots in which a lower concentration of greenhouse
gases in the atmosphere has been observed. The proposed
Node-RED application is able to selectively turn off sensors,
while keeping the Arduino board switched on.
Data management in the Cloud infrastructure is also important.
In the IoT context, the best approach for data storage and
retrieval is the use of a NoSQL or a Time Series (TS) database,
which is optimized for managing arrays of numbers indexed
by time. All the data are provided in the JSON format, and
can be retrieved and plotted. In our context, data collected
from sensors are stored in Cloudant, a NoSQL Database as
a Service (DBaaS) that handles a wide variety of data types,
including JSON files.

V. POWER-SAVING STRATEGY

In this section, we present an energy-efficient approach
that allows to turn off gas sensors in a smart way, so as to
reduce power consumption. A calibration procedure has been
preliminarily defined in order to improve the accuracy of the
air quality sensors. To this end, calibrations are performed by
taking a number of readings in clean air, more specifically
in Monteforte Irpino (AV), a city located in a leafy semi-
rural landscape with low-density population. This procedure
provides a baseline of clean air against which accurate air
quality levels can be measured.
The experimental evaluation consists of three sets of trials.
The first one was started on the 18th of April 2016. This set
of trials focuses on a correlation analysis between greenhouse
gas concentrations and daily values of some meteorological

parameters (temperature, relative humidity and rainfall). All
the gas and environmental sensors were used. The data was
collected over one week and results are shown in Figure 3.
For the sake of simplicity, only the influence of rainfall on the
PM concentration is illustrated.

Fig. 3. Hourly variation of rainfall and PM emissions observed during a
week

The influence of temperature over PM depends on the
fact that atmospheric dispersion conditions mainly occur under
warm air than cold air masses. Moreover, the particulate matter
is efficiently scavenged by precipitations, resulting in a re-
moval mechanism of the PM from the atmosphere. An increase
in precipitation causes a decrease in PM. Finally, changes in
humidity also affect PM, because increasing humidity also
increases PM water content and the uptake of semi-volatile
components.
The second set of trials, started on the 25th of April 2016,
involved the use of gas sensors only. The data was collected
over one week, so as to analyze the daily concentration trend
of air pollutants. Figure 4 shows the hourly variation of CO,
O3, NO2, and PM emissions observed during that week.

Fig. 4. Hourly variation of CO, O3, NO2, and PM emissions observed during
a week

The main purpose of the proposed system is to alert
town council members when the air quality values exceed the
threshold range. Therefore, gas sensors are turned on during
time slots in which, according to data shown in Figure 4, a
higher concentration of greenhouse gases in the atmosphere

has been observed. Hence, our strategy consists in waking up
the gas sensors only for the time needed to acquire a new
set of samples, and turning them off afterwards. A MOSFET
IRL540 is used for each sensor in order to turn it on/off. The
MOSFET acts as a switch that can disconnect and reconnect
circuits when needed, controlled via the digital output pins of
the Arduino board. These actions are triggered based on data
being processed by the IoT Cloud platform. In this way, power
consumption is optimally managed through a periodic sensing
approach, and the number of samples (hence the amount of
data to be processed) is also reduced. A better approach would
require an adaptive sensing strategy, in order to dynamically
adapt the on/off of the sensors to the dynamics of the en-
vironment. But each sensor is characterized by a wake-up
latency, which is “the time required by the sensor to generate
a correct value once activated” [12]. Gas sensors used in this
research work are simple and cost effective, requiring more
than 12 hours before reading data. The collected data is not
significant if the reading is performed before the wake-up
latency time, hence these sensors are not suited for power-
cycling. Therefore, we are not able to follow a more efficient
approach, which for example involves the activation of the
sensors whenever fixed threshold limit values for contaminant
gases are exceeded. In the marketplace, more technologically
advanced gas sensors are available. They require a shorter
warm-up time, but this makes them even more expensive.
Instead, our system consists of devices of much lower cost
(the Polluino project costs 150 euros), and this also enables
future large-scale distributions.
The third set of trials was started on the 2th May 2016. The city
of Marigliano (NA) was selected to collect data. All the gas
and environmental sensors were used. The data was collected
over one month. By taking into account our previous remarks
and Figure 4, sensors have been powered on during time slots
shown in Table I.

TABLE I. GAS SENSOR ACTIVITY PLANNING

Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Week 1 12-14 17-19 18-21 11-13
Week 2 12-14 17-19 18-21 11-13
Week 3 12-14 17-19 18-21 11-13
Week 4 12-14 17-19 18-21 11-13

When all the sensors are on, the average power consump-
tion of the described system is 9.8 W, distributed as follows:
Arduino/ESP 1.5 W, gas sensors 8 W, environmental sensors
0.3 W. This consumption has been computed by using a PC-
based wattmeter, plugged in for 24 hours to get an accu-
rate reading. The appliance’s monthly electricity consumption
in constant use is 6.6 kWh, while the monthly electricity
consumption by considering our approach is 3.5 kWh. Our
approach has led to savings of 47%. Further savings have been
obtained by turning off the gas sensors during heavy rainy
days, according to the previous considerations, for a total of
22 hours. As a result, additional savings of 0.20 kWh have
been reached.

VI. A COMPARISON OF IOT COMMUNICATION
PROTOCOLS

In the PaaS model, several protocols might be used in order
to establish connections and communications among different
IoT subsystems. In this context, a comparison between REST

API (see Figure 5a) and MQTT (see Figure 5b) is performed.

(a) REST API (b) MQTT

Fig. 5. Platform as a Service approach based on REST API and MQTT

The Constrained Application Protocol (CoAP), which is
a lightweight RESTful protocol based on UDP that inher-
its the same client/server paradigm adopted in HTTP [13],
has not been considered in this work. The reason is that
ESPDUINO, which is an ESP8266 wrapped in an Arduino
board, contemplates only a native MQTT/RESTful client li-
brary for ESP8266, while a CoAP implementation has not
been developed yet. REST is an approach that leverages the
HTTP protocol, by using standardized methods (e.g. GET,
PUT, POST, DELETE, etc.) to deal with resources. In re-
gard to the Message Queuing Telemetry Transport (MQTT)
protocol, all the Internet of Things objects connect as clients
to the MQTT broker on the Cloud. This broker dispatches the
exchanged messages between the different devices. MQTT is a
lightweight publish/subscribe messaging protocol for Wireless
Sensor Networks (WSN). This protocol is designed for easily
connecting IoT objects to the Internet in a Machine-to-Machine
(M2M) scenario. MQTT is able to support low-bandwidth,
high-latency or unreliable network environments. Therefore,
it is an optimal solution for mobile applications, because
exchanged packets are characterized by small size headers and
low-power usage. Clients subscribe to be notified of incoming
messages that belong to specific topics, and other clients
publish on those topics. A topic is an UTF-8 string, which is
used by the broker to filter messages for each connected client.
MQTT is efficient and event-driven, indeed a client constantly
receives all the messages sent to that topic by other clients.
Instead, in the REST API approach a continuous polling is
needed every-time a consumer entity wants to check for status
updates. MQTT is used in the Facebook Messenger application
for status updates, with the aim of saving the battery life of
devices. MQTT is characterized by three levels of QoS:

• At most once (0): this is the minimal QoS level and it
provides a best effort delivery. A message is sent to the
receiver only once, and there is not acknowledgment.

• At least once (1): a message is sent more than once,
until the sender gets an acknowledgement.

• Exactly once (2): a message is received only once, and
whenever a packet gets lost, the sender is responsible
for resending the last message.

In our scenario, the QoS values 0 and 1 are acceptable, while
in a domotic scenario a QoS 2 value is more advisable in order
to control specific loads.

A. Performance Evaluation

In this section, a comparison between MQTT and REST
API protocols is presented. The evaluation of each solution
is performed in terms of latency, defined as the time elapsed
from the moment the client sends a request until the moment
it receives the response. As expected, MQTT guarantees the
best performance, because of the latency introduced by the
three-way-handshake used by TCP to establish and close the
HTTP connection. Instead, MQTT maintains session state
information (see Figure 6). The tests have been repeated with
a mobile connection 3G, and the same differences between
MQTT and REST-API protocols were revealed.

Fig. 6. Latency results according to the payload size

Finally, protocol overhead has been evaluated. The over-
head is caused by packet headers, both at the application layer
and transport layer. In the REST approach, the handshake
packets have been considered too. Results in Figure 7 show
that the REST architecture has a high overhead, which affect
the performance and the cost of a mobile-network based IoT
solution.

Fig. 7. Protocol overhead analysis

Ultimately, the MQTT approach is recommended when
there are latency constraints and expensive data plans for
IoT applications, which have an individual monthly fixed data
allowance.

VII. CONCLUSION

In this paper, a system for monitoring the air pollution via
Arduino is presented. Based on IoT principles, a communi-
cation of the air quality sensors with the Cloud platform is
established. A comparison between two Cloud computing ser-
vice models and between two IoT communication protocols is
performed. Finally, an efficient approach to manage the power
consumption of the IoT devices is proposed. Our approach has
led to power savings of 47%. According to the results achieved
and the ease of implementation, the prototype of Polluino is
up-and-coming in terms of both costs and performance. The
proposed approach might be used to find an optimal way
of controlling traffic lights, in order to improve traffic while
minimizing air pollution levels. Moreover, our future work will
target the comparison between MQTT and CoAP protocols,
and the use of a battery source instead of a permanent power
supply.

REFERENCES

[1] D. Bandyopadhyay and J. Sen, “Internet of Things: Applications and
Challenges in Technology and Standardization,” Wirel. Pers. Commun.,
vol. 58, no. 1, pp. 49–69, May 2011.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, October 2010.

[3] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Boston, MA: Springer US, 2011, ch. Internet of
Things, pp. 307–323.

[4] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafind-
ralambo, “A Survey on Facilities for Experimental Internet of Things
Research,” IEEE Communications Magazine, vol. 49, no. 11, pp. 58–67,
November 2011.

[5] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart
community: an internet of things application,” IEEE Communications
Magazine, vol. 49, no. 11, pp. 68–75, November 2011.

[6] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “On the integration
of cloud computing and internet of things,” in Proceedings of the 2014
International Conference on Future Internet of Things and Cloud, ser.
FICLOUD ’14. Washington, DC, USA: IEEE Computer Society, 2014,
pp. 23–30.

[7] A. Biral, M. Centenaro, A. Zanella, L. Vangelista, and M. Zorzi, “The
Challenges of M2M Massive Access in Wireless Cellular Networks,”
Digital Communications and Networks, vol. 1, no. 1, pp. 1 – 19, 2015.

[8] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M Service Platforms: Survey,
Issues, and Enabling Technologies,” IEEE Communications Surveys
Tutorials, vol. 16, no. 1, pp. 61–76, January 2014.

[9] D. E. Painter, Air Pollution Technology. Reston Publishing Company
Inc., 1974.

[10] A. Morelli, C. Stefanelli, M. Tortonesi, and N. Suri, “Mobility Pattern
Prediction to Support Opportunistic Networking in Smart Cities,” in
Proceedings of the 2013 International Conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications, ser. MOBILWARE
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 166–
175.

[11] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
As a Service Model for Smart Cities Supported by Internet of Things,”
Trans. Emerg. Telecommun. Technol., vol. 25, no. 1, pp. 81–93, January
2014.

[12] C. Alippi, G. Anastasi, M. D. Francesco, and M. Roveri, “Energy
management in wireless sensor networks with energy-hungry sensors,”
IEEE Instrumentation Measurement Magazine, vol. 12, no. 2, pp. 16–
23, April 2009.

[13] G. Tanganelli, C. Vallati, and E. Mingozzi, “Coapthon: Easy develop-
ment of coap-based iot applications with python,” in Proceedings of
the IEEE 2nd World Forum on Internet of Things (WF-IoT), December
2015, pp. 63–68.

