
1

Emulation of Software Faults: a Field Data Study and a Practical Approach

Appendix A - G-SWFIT fault emulation operators

In this Annex we describe the fault emulation operators for our current implementation of G-SWFIT. We

started with this particular set because it contains the most representative faults, according to our field-

data study. We present here the operators for the IA32 architecture using the Intel notation.

Each operator is described according to the rules that define the search pattern and the code change to

apply to the locations identified by the search pattern. The search is bound by constraints that help to

avoid locations where the code change would not emulate a realistic fault. Note that the same constraint

may appear in different operators. These constraints were defined based on our field data study presented

in section 3 of the paper.

The process of target code analysis is based on a per-module strategy: each module of the target is

analyzed separately from the others. This makes sense as modules are also self contained units at the

source-code level (or at least they should, according to the programming best practices). A module is

typically a sub-routine (a function in C, function/procedure in Pascal, etc.).

Modules starting and ending points relate to very specific instruction patterns and offer useful information

to the code-analysis process (Table A.1). More specifically it is possible to determine the stack frame size

(the value “immed“ in the instruction “sub exp, immed”). The size of the stack frame offers hints on how

many local variables are used in a particular module (some of the operators require this information).

Table A.1 – Module entry and exit points.

push ebp mov esp, ebp
mov ebp, esp pop ebp
sub esp, immed ret

Note: variations may include instructions enter / leave

Module entry point Module exit point

stack frame
setup

stack frame
cleanup

Instruction sequence Explanation Instruction sequence Explanation

2

A.1 Operator for missing function call – OMFC

Operator OMFC (detailed in Table A.2) locates function calls in a context where the value returned by the

function call (if any) is not used. The removal a function call from a context where its return value was

being used would not represent real software faults. This operator also avoids removing calls in locations

where that call is the single statement within its containing block (a comparative example is given in

Table A.3).

Table A.2 – Operator OMFC.

Operator Example Example with fault Search pattern Code change

OMFC
function(…..); function(…..); CALL target-address CALL instruction

removed

Contraints
Return value of the function must not being used Constraint C01
Call must not be the only statement in the block Constraint C02

Constraint C01 is implemented by checking that the CALL instruction is not followed by instructions that

represent the usage of the returned value. The standard method of returning values from functions is via

the EAX register. Thus, it is only needed to check if the value of that register is used after the call

instruction. Any instruction that sets a new value for that register stops this check. If the instruction

related to the call are followed by the signature of exit point of the module we assume that the return

value of that function is being used in a return statement (as in the following: return function();).

Constraint C02 is implemented as follows: in a first step the full instruction sequence related to the

function call is identified (as precisely as possible). This sequence includes the parameter passing before

the actual call code and the “add esp, immed” instruction to reclaim the stack space used by the those

parameters and the use of the return value (if any). It is worth noting that the “immed” value in the

instruction “add esp, immed” enables the detection of how many parameters were passed to the function

being called. In a second step, the boundaries of the code block where the call is located are identified.

The following instructions mark block boundaries: module entry/exit points, unconditional jumps, and

conditional jumps to backward locations. Table A.3 clarifies this issue with example of source code and

compiled code for a call which is the single statement in its code block and call which is not the single

statement within its code block. It is worth noting that the distinction of single statement / non-single

statement can be adapted to any type of fault location.

3

Table A.3 – Single statement vs. multiple statements.

 if (a= = 123) { mov offA[ebp], 123 if (a= = 123) { mov off-A[ebp], 123
 b = function(c); cmp offA[ebp], 0 b = function(c); cmp off-A[ebp], 0
 } je loc-01 c+ + ; je loc-01

 }
mov eax, off-C[ebp] mov eax, off-C[ebp]
push eax push eax
call function-address call function-address
add esp, 4 add esp, 4
mov off-B[ebp], eax mov off-B[ebp], eax

loc-01:
mov ecx, off-C[ebp]
add ecx, 1
mov off-C[ebp], ecx

loc-01:

Single statement Not single statement

Source code Compiled code Source code Compiled code

A.2 Operator for missing variable initialization with a value – OMVIV

This operator reproduces the omission of the initialization of a given local variable with a constant value

(Table A.4).

Table A.4 – Operator OMVIV.

Operator Example Example with fault Search pattern Code change

OMVIV
var = value var = value mov offset [ebp], value MOV instruction

removed

Contraints
Assignment must not be the only statement in the block Constraint C02
Variable must be inside stack frame Constraint C03
Must be the first assignment for that variable in the module Constraint C04
Assignment must not be inside a loop Constraint C05
Assignment must not be part of a for construct Constraint C06

Constraint C02 is addressed in the same manner as in the previous operator. The only difference is that

the sequence of low-level instructions is related to an assignment instead of a function call.

Constraint C03 addresses some situations where the compiler uses temporary locations within the stack to

hold temporary values. This can happen in the evaluation complex expressions. We also observed that the

use of macros also tend to cause this situation. This constraint filters out these cases because the stack

locations involved do not relate to real variables in the source-code. Valid fault locations for this operator

are those that involve parameters passed to the function (if any) or local variables. Function parameters

are memory locations within the stack with a positive offset relative to ebp; local variables are locations

4

within the stack with a negative offset relative to ebp and within the stack frame (recall that this

information is retrieved from the module entry point instruction sequence).

The fact that this operator only searches for variable initialization implies that only the first occurrence of

an assignment to that particular variable are eligible for fault locations. Constraint C04 checks this

requirement analyzing the module code from the beginning to detect any instruction that modifies the

contents of the memory location of the variable under consideration.

Any assignment that occurs within a loop can never be considered as variable initialization because the

assignment will occur several times. Thus, any assignment occurring within a loop will be considered as a

simple variable assignment and not an initialization (variable assignments are addressed through different

operators). Code inside a loop is relatively easy to identify though the existence of a jump instruction later

in the module that jumps to an address lower than that of the code being considered. This verification is

addressed by constraint C05.

Variables that constitute loop counters in for constructs are not interesting to emulate a missing variable

initialization fault. This observation is based on our field-data study as none of the missing variable

initialization where located within a for construct1. Constraint C06 addresses this issue by detecting the

instruction patterns that relates to for constructs (some compiler optimization settings may interfere with

the ability to detect for constructs). Table A.5 presents an example of this type of construct.

Table A.5 – Example of code relative to a for construct.

 for (i= 0; i< 10; i+ +) mov off-i [ebp], 0
 { jmp loc-02
 /* ... */ loc-01:
 } mov eax, off-i [ebp]

add eax, 1
mov off-i [ebp], eax

loc-02:
cmp off-i [ebp], 10
jge loc-03

... code inside the loop

jmp loc-01 jump to next iteration
loc-03: code past the loop

initialization + jump

variable modificatin
followed by a test

test stop condition

Source code Compiled code Pattern notes

for construct

1 From a programmer viewpoint, we also believe that it is much more difficult to forget to initialize a loop counter than to initialize a
regular variable. However, we based our decision on the field-data study.

5

A.3 Operator for Missing Variable Assignment with a Value – OMVAV

This operator reproduces the omission of the assignment of a given local variable with a constant value

(Table A.6). The first assignment to a given variable within a module is considered an initialization and it

is if filtered out by constraint C07. This constraint is implemented in a similar way to constraint C04. The

difference is that the decision mandated by the constraint is reversed: the fault location is considered

eligible only is there is at least one previous instruction that stores a value or register in the stack location

related to the variable being considered. All other constrains are as described before.

Table A.6 – Operator OMVAV.

Operator Example Example with fault Search pattern Code change

OMVAV
var= …
…
var = value

var= …
…
var = value

mov offset [ebp], value MOV instruction
removed

Contraints
Assignment must not be the only statement in the block Constraint C02
Variable must be inside stack frame Constraint C03
Must not be the first assignment for that variable in the module Constraint C07
Assignment must not be part of a for construct Constraint C06

A.4 Operator for Missing Variable Assignment with an Expression – OMVAE

Operator OMVAE is similar to operator OMVAV with the difference that it addresses variables being

assigned the result of an expression instead of a constant value (see Table A.7). The applicable constrains

are also the same as those of operator OMVAV.

Table A.7 – Operator OMVAE.

Operator Example Example with fault Search pattern Code change

OMVAE
var= …
…
var = expression

var= …
…
var = expression

mov offset [ebp], reg MOV instruction
removed

Contraints
Assignment must not be the only statement in the block Constraint C02
Variable must be inside stack frame Constraint C03
Must not be the first assignment for that variable in the module Constraint C07
Assignment must not be part of a for construct Constraint C06

6

Operators OMVAE and OMVAV can be merged into a new one (operator OMVA). This new operator

would share the constrains and code changes and would have the following search pattern “mov

offset[ebp],...”.

A.5 Operator for Missing If Around statements – OMIA

Operator OMIA reproduces a missing if condition surrounding a set of statements (see Table A.8). The

effect of this fault type is that the statements surrounded by the if construct are always executed instead of

being executed only if a given condition is true. The effect of the operator is the removal of the

instructions that cause the execution flow to jump over the statements surrounded by the if construct.

Table A.8 – Operator OMIA.

Operator Example Example with fault Search pattern Code change

OMIA

if (expression)
{
 statements
}

if (expression)
{
 statements
}

cmp reg, …
jcond after
...
cmp reg, …
jcond after
statements
after:

The conditional
jumps to the address
after are removed
It may be a single
jump if the
expression is simple

Contraints
The if construct must not be associated to an else construct Constraint C08
statements must not include more than five statemens and not include loops Constraint C09

Notes
Currently, the side effects of the fisrt sub-expression of the complete expression is not ommitted
There may be several cond. jumps to after if expression is composed of several sub-expressions

The code change includes the removal of the all instructions located between the removed jumps and that

change the contents of the memory. This removal is intended to emulate the omission of the side effects

of expressions such as “i++ > val”. In this case the side is the modification of the variable i. The operator

does not emulate the removal of the side effects of the first sub-expression (if the expression of composed

of several sub-expressions). The non removal of the possible side effects of the first sub-expression may

cause some loss in the operator accuracy.

Our field data study suggests that the statements related to a missing if statement were always function

calls and assignments. All assignments to variables ultimately refer to the modification of a memory

location (except register variables). Constraint C09 addresses this aspect: the missing statements are

contiguous and belong to the same code block. Additionally, there can be no jump instructions inside the

considered location because if-constructs and loops are not allowed in these locations. The use of

7

optimized compilation may cause this constraint loose some accuracy if some variables are entirely kept

in processor registers. The use of macros in the source code may also affect this constraint if the macro

expansion contains a large portion of code.

Cases in which the if construct being removed is associated to an else construct are considered as a

different fault type and addressed though another operator (described below). Constraint C08 filters out

situations of if-else by detecting the particular interleaved jump instructions that is specific to this

construct (see Table A.9).

Table A.9 – Example of code related to an if-else construct.

 if (a = = 123) { cmp off-a[ebp], 123 condition test
 /* ... */ jne loc-01 jump to "else" part
 }
 else { ...
 /* ... */
 } jmp loc-02 uncond. Jmp
 /* remaining code */ loc-01: first jmp dest.

...

loc-02: code inside the loop
remaining code
... jump to next iteration

code past the loop

 "if true" code

 "else" code

Source code Compiled code Pattern notes

if-else construct

Adjacent

A.6 Operator for Missing IF construct and surrounded Statements – OMIFS

Operator OMIFS emulates a missing if construct and the statements surrounded by it (see Table A.10).

This effect is achieved changing the conditional jumps into unconditional jumps. Thus, the surrounded

statements are always avoided. This operator is similar to OMIA with the difference that the statements

surrounded by the if construct are removed from the execution flow. The same constrains also apply.

8

Table A.10 – Operator OMIFS.

Operator Example Example with fault Search pattern Code change

OMIFS

if (expression)
{
 statements
}

if (expression)
{
 statements
}

cmp reg, …
jcond after
...
cmp reg, …
jcond after
statements
after:

All the conditional
jumps to the address
after are made into
unconditional jumps

Contraints
The if construct must not be the only statement in the block Constraint C02
The if construct must not be associated to an else construct Constraint C08
statements must not include more than five statemens and not include loops Constraint C09

Notes
Currently, the side effects of the fisrt sub-expression(e.g., "var+ + > 0") s not ommitted
There may be several cond. jumps to after if expression is composed of several sub-expressions

This operator removes the possible side effects of the sub-expressions composing the conditional

expression of the if construct. The method is the same as in the case of operator OMIA.

A.7 Operator for Missing IF construct plus statements plus else before statements – OMIEB

Operator OMIEB emulates a missing if construct and the statements surrounded by it plus an else

statement before a set of statements (see Table A.11). This operator is in fact similar to operator OMIA

with the difference that the if construct must be associated to an else construct. The effect of this operator

is the modification of the conditional jumps related to the expression evaluation into unconditional jumps

to the start of the statements inside the else construct. Thus, the statements surrounded by the if construct

are always avoided and execution flows directly to the statements surrounded by the else construct.

It is possible that the expression used as the condition in the if construct has side effects (e.g., “i-->0”). To

emulate the omission of side effects in the expression of the if construct being removed, any call

instructions or memory-storing instruction existing between the conditional jumps are removed.

9

Table A.11 – Operator OMIEB.

Operator Example Example with fault Search pattern Code change

OMIEB

if (expression)
{
 statements-IF
}
else
{
 statements-ELSE
}

… remaining code

if (expression)
{
 statements-IF
}
else
{
 statements-ELSE
}

… remaining code

flag-affecting instr.
jcond elsecode
… instrs (IF)

jmp after
elsecode:
… instrs (ELSE)

after:
… remaining code

- All the conditional
jumps to the address
loc01 are changed
into unconditional
jumps
- Call instructions and
stores to memory
existing between the
cond jumps are
removed

Notes
There may be several cond. jumps to elsecode if expressions is composed of several sub-expressions
The side-effects (if any) of the first sub-expression are not ommited

A.8 Operator for Missing “and sub-expression” in logical expression used in branch condition –

OMLAC

Operator OMLAC emulates the omission of part of a logical expression used in a branch condition (Table

A.12). The logical expression is composed of a sequence of at least two sub-expressions linked together

with the logical operator AND. If at least one of the sub-expressions evaluates to “false” the entire

expression will also evaluate to “false” and the condition fails. Thus, these expressions usually originate a

series of conditional jumps instructions to the same address (one for each sub-expression). The target

address of the conditional jumps is the position in the code just after the instructions that are to be

executed if the expression is “true”. The effect of the omission of one of the sub-expressions can be

emulated by removing its related jump instruction.

Table A.12 – Operator OMLAC.

Operator Example Example with fault Search pattern Code change

OMLAC

if (expr1 && expr2
 … && exprN)
{
 statements
}

if (expr1 && expr2
 … && exprN)
{
 statements
}

Note: each expr
removed is a fault

flag-affecting instr.
jcond after
...
flag-affecting instr.
jcond after
statements
after:

One of the
conditional jumps is
removed (each one is
a different fault)

Notes
The complete logical expression must contain at least two sub-expresssions

10

A.9 Operator for Missing “or sub-expression” in logical expression used in branch condition –

OMLOC

Operator OMLOC emulates the omission of part of a logical expression used in a branch condition (Table

A.13). The logical expression is composed of a sequence of at least two sub-expressions linked together

with the logical operator OR. Each sub-expression is enough to make the entire expression have the result

“true”. Therefore, the typical instruction sequence related to this type of construct contains a sequence of

conditional jumps each one pointing to the same address. This address is the location of the code to be

executed when the logical expression is true. That portion of code is preceded by a jump to an address just

after its last instruction. This jump is executed only if all sub-expressions fail. To emulate the omission of

one of the sub-expression the conditional jump related to that sub-expression is removed.

Table A.13 – Operator OMLOC.

Operator Example Example with fault Search pattern Code change

OMLOC

if (expr1 | | expr2
 … | | exprN)
{
 statements
}

if (expr1 | | expr2
 … | | exprN)
{
 statements
}

Note: each expr
removed is a fault

flag-affecting instr.
jcond before
…
flag-affecting instr.
jcond before
...
flag-affecting instr.
jcond after
before:
statements
after:

One of the
conditional jumps is
removed (each one is
a different fault)

Notes
The complete logical expression must contain at least two sub-expresssions

A.10 Operator for Missing Localized Part of the Algorithm – OMLPA

Operator OMLPA attempts to reproduce the omission of a small localized part of the algorithm (example

in Table A.14). We concluded from our field-data study that this type of faults never involved the

omission of if / if-else and loop constructs (the missing statements were always function calls and

assignments). This is addressed by constraint C10. This constraint is similar to C09 as described before

with one additional restriction: the missing statements are contiguous and belong to the same code block.

Thus, eligible location for this fault can not contain target addresses of jumps elsewhere in the modules

(this constraint is verified analyzing the entire module).

11

Table A.14 – Operator OMLPA.

Operator Example Example with fault Search pattern Code change

OMLPA

…
statement
statement
…
statement
…

…
statement
statement
…
statement
…

Sequence of instructions
not containg more that
five mov [address], …
and not containing cycles
or jump destinations

All instructions are
removed

Contraints
The statements to remove must not be the only code within its block Constraint C02
statements are in the same block, do not include more than 5 stats. nor loops Constraint C10

If the code removed were the complete block (e.g., all the instructions inside a loop) this would not

correspond to a realistic fault. Constrains C02 assures that such situations are avoided.

A.11 Operator for Wrong Value Assigned to a Variable – OWVAV

This operator emulates the assignment of a wrong value to a variable (Table A.15). To avoid random

factors in fault injection the wrong value to use in the fault emulation is obtained in a deterministic

manner: the bits of the least significant byte of the value are inverted. We choose the least significant byte

in order to affect all data sizes. The initialization of a variable with a wrong value is considered a different

fault type (less common, according the data-filed study results). Constraint C07 filters out variable

initializations. Constraints C03 and C06 have the same reasoning as in the operators OMVAE and

OMVAV.

Table A.15 – Operator OWVAV.

Operator Example Example with fault Search pattern Code change

OWVAV
var= …
…
var = value

var= …
…
var = value & 0xFF

mov offset [ebp], value All bits of the low
order byte are
reversed

Contraints
Variable must be inside stack frame Constraint C03
Must not be the first assingment to that variable in the module Constraint C04
The assignment must not be part of a for construct Constraint C06

A.12 Operator for Wrong variable in parameter of function Call – OWPFV

Operator OWPFV emulates the use of a wrong variable as a parameter in a function call (Table A.16).

This operator locates CALL instructions is a similar way as OMFC does. Variables being used as

parameters are identified by the detecting push reg instructions where reg was previously fetched from

12

the stack (these actions mean the fetching and pushing of a stack-resident variable). The emulation

consists of changing the variable that is being fetched. To that effect the offset into the stack is changed

by four bytes (assuming a 32 bits architecture). Recall that a local variable is identified as a reference to a

stack location with a negative offset relative to ebp, and a parameter passed to the module is identified as

a reference to a stack location with a positive offset relative to ebp. The algorithm to decide how the

offset to the variable is modified is a follows:

• If the variable originally being used is a local variable (offset negative) and there are at least two

local variables in that module, the offset is changed to point to the neighbor variable: the offset is

increased by 4 unless the original variable is the last one, in which case he offset is decreased by

4. Recall that the number of local variables can be hinted by the stack frame size which is

available in the module entry point.

• If the variable originally being used is a parameter of the module (offset positive) and there are at

least two parameters passed to that module, the offset is changed to point to the neighbor

parameter: the offset is decreased by 4, unless the original variable is the last one, in which case

the offset is increased by 4. The number of parameters passed to the module cannot be directly

assessed as in the case of the local variables. To determine the number of parameters, the code of

the entire module is analyzed and the number of references to distinct positive offsets in the stack

is counted.

• If the original variable is a local variable and there is only one local variable, but there is at least

one parameter passed to the module, then the offset is changed to point to the first parameter.

• If the original variable is a parameter passed to the module and there is only one parameter, but

there is at least one local variable, then the offset is changed to point to the first local variable.

Constraint C09 assures the verification that there must be at least two variable in the module (either local

variable or parameters).

This operator has the limitation that it does not consider the data type of the variables. As such, it is

possible that a given mutation may not relate to a syntactically correct change in the source-code.

13

Table A.16 – Operator OWPFV.

Operator Example Example with fault Search pattern Code change

OWPFV
function(…, var1, ...) function(…, var2, ...) mov reg, offset [EBP]

push reg
call address

offset is changed to
refer another variable

Contraints
Variable must be inside stack frame Constraint C03
There must be at leat two variables in this module Constraint C11

Notes
There may be more than one push instruction depending on the number of parameters
For a given call, each offset that is changed is a different fault

A.13 Operator for Wrong Arithmetic Expression in a function Parameter – OWAEP

This operator emulates faults that consist on having a wrong arithmetic expression used as parameter of a

function call. To emulate this fault operator OWAEP omits the last arithmetic operation prior to the

expression result being pushed into the stack (see Table A.17).

Table A.17 – Operator OWAEP.

Operator Example Example with fault Search pattern Code change

OWAEP
function(expr); function(incomplete

expr);
arith. inst. affecting reg
push reg
call address

The arithmetic
instruction is
ommited

Notes
The effect of this operator is as if the last operation of the expression is ommited

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

