
Software Aging Analysis of the Android Mobile OS
Domenico Cotroneo, Francesco Fucci, Antonio Ken Iannillo, Roberto Natella, Roberto Pietrantuono
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Abstract—Mobile devices are significantly complex, feature-
rich, and heavily customized, thus they are prone to software reli-
ability and performance issues. This paper considers the problem
of software aging in Android mobile OS, which causes the device
to gradually degrade in responsiveness, and to eventually fail.
We present a methodology to identify factors (such as workloads
and device configurations) and resource utilization metrics that
are correlated with software aging. Moreover, we performed
an empirical analysis of recent Android devices, finding that
software aging actually affects them. The analysis pointed out
processes and components of the Android OS affected by software
aging, and metrics useful as indicators of software aging to
schedule software rejuvenation actions.

I. INTRODUCTION

Mobile devices (including smartphones, tablets and wear-
ables) assist people in their personal activities, and are today
a fundamental resource to communicate and to benefit from
cloud services: mail, data storage, e-commerce, banking, and
social networking are only few examples. In the near future,
they will become digital wallets and keepers of digital identity.
Moreover, mobile devices are used in business contexts to
access to sensitive enterprise data and services.

As a result, users expect a reliable platform, which should
be responsive and avoid smartphone crashes and data losses.
Assuring the reliability of mobile devices is a challenge
for smartphone vendors: devices have become significantly
complex and feature-rich, are upgraded at a fast pace, and are
heavily customized by vendors in order to differentiate their
products from competitors.

The increase of software complexity inevitably leads to
software bloat and reliability issues. The Android mobile OS,
which currently dominates the smartphone market, grew up
to more than 6 millions of lines of Java and C++ code1.
Moreover, previous studies showed that software complexity
and vendor customizations have a negative impact on Android
reliability in terms of bug density and vulnerabilities [2]–[4].
In turn, this reflects in poor quality perceived by users, and
affects the popularity of mobile products on the market.

This paper considers the problem of the software aging
phenomenon in the Android mobile OS. Software aging can
cause the device to slowly degrade its performance and to
eventually fail, due to the accumulation of errors in the system
state and to the incremental consumption of resources, such as
physical memory. Software aging can be attributed to software

1LOCs computed with David A. Wheeler’s SLOCCount [1] on the Android
Open Source Project (AOSP), the baseline version of the Android OS, version
5.0, not including further LOCs from external open-source projects (such as
the Linux kernel and SQLite) and from vendor customizations.

bugs that manifest themselves as memory leakage and frag-
mentation, unreleased locks, stale threads, data corruption, and
numerical error accumulation [5], [6]. We found evidence2 that
these bugs affect the Android OS, thus exposing commercial
Android devices on the market to software aging issues.

Contributions. In this paper, we present an experimental
methodology to analyze software aging issues in the Android
mobile OS. The methodology uses statistical methods to
identify which factors (such as workloads and device con-
figurations) exacerbate performance degradation and resource
consumption. Moreover, the methodology analyzes the corre-
lation between software aging and resource utilization metrics,
in order to pinpoint which subsystems are affected by aging
and to support the design of software rejuvenation strategies.
We used the methodology for an extensive empirical analysis
of software aging in recent Android devices, pointing out that:

• Android devices are indeed affected by software aging.
Our devices experienced a noticeable performance degra-
dation (in terms of low responsiveness of the system) after
few hours of stress testing. The magnitude of degradation
is influenced by the workload (apps, events) and by the
configuration (in particular, storage availability).

• Software aging issues can be attributed to specific pro-
cesses inside the Android OS, including the System
Server, the System UI and the Surface Flinger, which
exhibit inflated memory consumption. Moreover, specific
services inside them, such as the Activity Manager and
the Power Manager, exhibit aging trends.

• Performance degradation trends are correlated with re-
source utilization metrics from the kernel, such as process
PSS size and pages merged by KSM, and with the time
spent on garbage collection. These metrics are useful as
symptoms of software aging, and to schedule software
rejuvenation actions in Android.

The paper is structured as follows. Section II discusses
related work on software aging analysis and mobile reliability.
Section III describes the proposed methodology for software
aging analysis. Sections IV and V present the plan and the
results of our empirical case study. Section VI closes the paper.

2At the time of writing (May 2016), we found 137 resource leak issues
recorded by developers on the AOSP issue tracker [7], by querying for the
word “leak” (https://goo.gl/5lY5u7) from a pool of 7585 total reports (https:
//goo.gl/VkLzXI), and represent 1.8% of all reports. This number is a lower
bound for aging-related bugs, since aging issues are not limited to memory
leaks, may have been reported using different keywords, or may have not
been reported by users due to low repeatability. This result is consistent with
other studies on bugs in open-source software [8]–[10].



II. RELATED WORK

Software aging has been repeatedly reported both by sci-
entific literature and by software practitioners [11], and it has
been recognized as a chronic problem in many long-running
software systems. In order to provide context to discuss our
experimental methodology and analysis, we briefly review the
most relevant results and techniques for the empirical analysis
of software aging.

Garg et al. [12] presented an early study on software aging
issues from systems in operation, by monitoring a network
of UNIX workstations over a period of 53 days. This study
adopted SNMP to collect data on resource consumption and
OS activity, including memory, swap space, file, and process
utilization metrics. The analysis found that the 33% of reported
outages were related to resource exhaustion, and in particular
to memory utilization (which exhibited the lowest time-to-
exhaustion among the monitored resources).

Garg et al. [12], and later Grottke et al. [13], adopted statis-
tical hypothesis testing and regression to identify degradation
trends in resource consumption measurements (i.e., if random
fluctuations are excluded, the time series exhibits a gradual
increase or decrease over time). The Mann-Kendall test and
the seasonal Kendall test were adopted to confirm the presence
of trends, respectively without and with periodic cycles, and
the Sen’s procedure and autoregressive models to forecast the
time-to-exhaustion.

Silva et al. [14] and Matias and Filho [15] studied software
aging in SOA and web server environments by performing
stress tests. They showed that aging can lead to gradual perfor-
mance degradation in terms of throughput, latency, and success
rate of web-service requests. A similar effect was observed by
Carrozza et al. [16] on a CORBA-based middleware, in which
the performance degradation of remote object invocations was
attributed to memory leak issues, reducing the performance of
memory allocators and bloating internal data structures.

Subsequent studies found that software aging issues can also
affect the lower layers of the software stack, such as the Sun’s
Java Virtual Machine [17], the Linux kernel [18], and cloud
management software [19]. In particular, the study on the JVM
revealed that performance degradation trends were exacerbated
by the inefficiency of the garbage collector.

Some empirical studies focused on the analysis of bugs
behind software aging issues (aging-related bugs), both in
several open-source software projects for the LAMP stack [9],
[10], [20] and cloud computing [8], and in embedded software
used for space missions [21]. These studies provided insights
on the nature of aging-related bugs: they represent a minor
share of all software defects but are quite subtle to identify
and to fix; most of them affect memory consumption and,
in many cases, application-specific logical resources (such as
thread pools and I/O connections).

Recent research has been focused on monitoring tech-
niques to detect software aging in deployed systems, which
is especially challenging due to varying workload conditions
and configuration. They include machine learning techniques

[22], such as decision trees and robust time series analysis
techniques [23], [24], e.g., the Cox-Stuart test and the Hodrick-
Prescott filter.

Research on software aging in mobile devices is still at an
early stage. Araujo et al. [25] designed a testbed for stress
testing of Android applications.However, their approach was
not meant to study aging issues inside the Android OS, and
their tests did not point out any software aging symptom at the
lower layers of the Android OS. Other studies were focused
on preventing performance degradation of mobile applications
through off-loading of tasks to the cloud and local application
restarts [26], [27], debugging apps for performance bugs [28],
and on forecasting Android device failures with time series
analysis techniques [29]. Finally, studies on reliability of
mobile devices were focused on field failure data analysis
[2] and robustness testing [3] of mobile devices but did not
consider software aging issues. Our work differs from these
studies since it focuses on the empirical analysis software
aging issues inside the Android OS and provides a systematic
methodology to identify these issues.

III. METHODOLOGY FOR SOFTWARE AGING ANALYSIS

Our methodology leverages stress tests to identify software
aging issues. In general, stress tests exercise a system with
an intense workload, in terms of volume of user requests
per unit of time, for a long period: as showed by previous
studies [13]–[16], an intense workload significantly increases
the likelihood to bring out software aging effects, for example
by triggering memory leaks and bloat. Stress testing requires to
find a balance: on the one hand, it needs to perform diversified
tests under several conditions in order to explore as much
aging-prone scenarios as possible; on the other hand, the
number of stress tests should be kept at a minimum, since
each test may take a significant amount of time until the onset
of noticeable aging effects. For these reasons, we adopt the
Design of Experiments (DoE) approach [30] to achieve a trade-
off between thoroughness and duration of stress tests. DoE is
aimed at creating a minimal set of test scenarios (namely, a test
plan) able to explain most of the output variability with few
treatments, by separating out the impact of variables of interest
from the (usually negligible) impact of multiple variables
together. This way, depending on how many treatments can
be done, the tester can systematically decide to ignore the less
important variables.

In the following, we define factors and response variables
tailored for applying DoE in the context of a mobile OS. The
response variables represent the outcome of an experiment,
i.e., metrics that quantify the aging effects. We consider
both user-perceived response metrics (subsection III-A), which
reflect software aging as directly perceived by the user, and
system-related response metrics (subsection III-B), which re-
flect the amount of stress imposed on resources and sub-
systems, and indirectly the possible causes of user-perceived
aging. Appendix A lists the metrics adopted in our analysis.
The factors (subsection III-C) are the parameters of a test,
which can potentially affect the response variable; their value
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Fig. 1. Overview of the methodology for software aging analysis.

is chosen among a set of possible levels. Finally, experimental
data are analyzed to identify software aging effects. Figure 1
provides an overview of the methodology for data analysis,
which is further commented in the following subsections. This
methodology is generic and not constrained to any specific
Android device or vendor.

A. User-Perceived Response Variable

To evaluate the impact of software aging perceived by
the user, we consider that one of the main design goals of
Android is to achieve a good responsiveness. For example,
one of the early requirements was to be able to cold-start a
basic application, up to a responsive GUI, within 200 ms at
most [31], [32]. For this reason, we measure user-perceived
aging in terms of Launch Time (LT) of Android Activities
(i.e., an application component that generates and manages a
GUI screen). The LT is the period between the request for
an Activity, and the display of the contents of the Activity,
including both background and foreground initialization.

This metric is computed from the logs generated by the
Activity Manager, which is a service inside the Android
OS that instantiates and switches among Android Activities,
saving and restoring their state when necessary. These logs
are generated the first time that an Activity is created: they
are denoted by the “ActivityManager” tag and the keyword
“Displayed”, and can be collected using the logcat Android
tool. To regularly collect LT samples through the whole
duration of an experiment, we periodically terminate (at a
low frequency, every 60 seconds) workload applications, and
let them restart once they are exercised again by a workload
generator. The periodical termination avoids the caching of
Activities by the Android OS, which would prevent us from
measuring the responsiveness at instantiating new Activities;
moreover, periodical termination prevents the accumulation of

errors (such as memory leaks) inside user applications, since
our focus is on software aging inside the Android OS. The
following line is a log message that shows the “MainActivity”
Activity from the application “com.example.myapp”, which
took 100 ms to complete its initialization:

I / A c t i v i t y M a n a g e r ( 1 0 9 7 ) : D i s p l a y e d com . example . myapp
/ . M a i n A c t i v i t y : +100ms

The LT is analyzed to point out a possible degradation
of device responsiveness. Ideally, if no software aging were
present, the average LT should be stable thorough the whole
experiment, given that the workload and test conditions are
kept fixed during the experiment. Instead, in case of software
aging, we expect that the device will experience performance
degradation, manifesting as a gradual degradation of LT.

To analyze Launch Times (Figure 1), we compute the me-
dian LT among all activities during every 30-seconds period,
and check the presence of a trend in this time series, by means
of the non-parametric Mann-Kendall (MK) test [12]. It tests
the null hypothesis that there is no monotonic trend in the time
series and provides a level of significance (p-value) indicating
the likelihood of the null hypothesis according to the samples.
If the p-value is lower than α, we reject the null hypothesis
with 1 − α confidence, and we conclude that an aging trend
occurred. In our study, we require a confidence higher than
90% (α = 0.1). If the LT series exhibits a trend, the slope
is computed by a non-parametric procedure known as Sen’s
procedure, providing a coefficient denoting the rate at which
the data values increase following a linear model.

B. System-Related Response Variables

To examine in depth software aging issues, we also collect
metrics on resource utilization and on events occurring inside
the Android OS. System-related metrics include basic re-
sources, such as memory and storage, and fundamental system
operations, such as garbage collection and task management.
We relate these metrics to the Launch Time, in order to point
out the areas of the Android system that can be affected by
aging. Moreover, these metrics can provide a valuable basis for
developing software rejuvenation solutions since they can be
monitored easily, with low intrusiveness and in a portable way
across Android devices, by using standard interfaces provided
by the Android framework and the Linux kernel. Thus, we
investigate whether software aging effects can be detected by
looking for deviations and trends in these metrics.

1) Memory: The physical memory is a critical resource
for achieving good performance, but several studies showed
that this resource is often affected by software aging and
exhibits the lowest time-to-exhaustion [10], [12]–[16]. The
efficiency of memory usage in Android can be influenced
by several factors. The Android OS provides sophisticated
mechanisms for memory management, both at the kernel-
level and at the Android framework-level, including auto-
mated app lifecycle management, application process caching,
and memory reclaim through the out-of-memory killer [31].
Moreover, the Android OS provides many complex services,



such as Activity Manager and Package Manager, that may be
inefficient and cause software aging in the long term (e.g., due
to poor management of complex data structures, which may
grow indefinitely over time). Therefore, we include metrics for
analyzing memory usage in our experiments (Table VI in the
appendix).

The proc file system of the Linux kernel is the primary
source of information about memory usage. In particular,
the virtual file /proc/meminfo provides information on mem-
ory consumption. Furthermore, the Android utility dumpsys
provides additional information about memory usage of the
Android framework, such as the amount of cached Android
apps and of Android kernel extensions, such as the Kernel
Samepage Merging (KSM) and virtual memory compression
(zram). Finally, memory consumption is also tracked for each
individual process of the Android OS, by measuring the
Proportional Set Size (PSS), which is the amount of physical
RAM consumed by the process, where each page is weighted
by the amount of processes that share that page (for example:
if a 4kB page is shared by two process, each process is only
accounted 2kB for that page in the PSS metric). All these
metrics are periodically sampled every 30 seconds.

As showed in Figure 1, we check whether LT degradation
is related to memory usage, by looking for trends in memory
usage metrics and by checking whether these trends are
correlated to LT degradation trends. For each memory usage
metric, we perform the following two steps: (i) we test the
presence of a trend (and compute its slope) in the time series
of the metric (MK and Sen’s procedure); (ii) we compute a
correlation measure between the slopes of the metric and the
slopes of the median LT trend, across all experiments, using
the non-parametric Spearman’s rank correlation coefficient,
since it is robust to outliers and does not make restrictive
assumptions on data, contrarily to the parametric counterparts.
The correlation points out whether a trend of the metric is
accompanied by a degradation trend of the LT in the same
experiment. For example, given a memory usage metric, say
Total Free, we compute correlation between the pairs of trends
observed for the Total Free metric and for the median LT
in each experiment. We conduct this analysis both on global
memory consumption metrics and on individual per-process
PSS metrics. This latter analysis also points out processes that
are more critical from the aging point of view.

2) Storage: Storage management involves many compo-
nents both at kernel-level and at Android framework level,
such as the filesystem, the block I/O management, drivers,
and storage frameworks such as SQLite. As a matter of fact,
studies on filesystems showed that performance may degrade
over time due to software aging problems [18], [33]. In turn,
a delay on storage access is perceived by the users as poor
responsiveness. Storage metrics analyzed in our experiments
are listed in Table VII in the appendix.

The proc file system of the Linux kernel is the primary
source of information about storage usage. In particular,
the virtual file /proc/diskstats provides information for each
storage partition in terms of throughput and latency of I/O

transfers. Many performance monitoring tools, such as iostat,
gather information from this virtual file. Storage metrics are
periodically collected every 30 seconds. Storage metrics are
analyzed in the same way as memory usage metrics (Figure 1),
by computing trends using the Mann-Kendall test and the
Sen’s procedure, and by evaluating the correlation between
the trends of the metric and the trends of LT across all
experiments, using the Spearman’s correlation coefficient.

3) Garbage Collection: Garbage collection (GC) is a
fundamental activity of the Android Runtime (ART), which
is the execution environment of Android applications. The
garbage collector relieves programmers from heap memory
management, which is a cumbersome and error-prone task,
by automatically reclaiming unused memory. However, GC
can still be a cause of performance degradation in the case
of memory fragmentation under intense workloads and of
poor object lifetime management by programmers [6], [16],
[17]. Thus, many GC algorithms are supported by the ART,
and their efficiency influences the perceived performance of
Android devices: if GC takes too long, the application may
experience slowdowns and may even be temporarily paused
during GC. However, it is tricky to assure the efficiency of GC
under every possible scenario, and the ART may be affected
by memory fragmentation in the long term. For these reasons,
we analyze metrics on the performance of GC (Table VIII in
the appendix).

The main source of information on GC are the Android logs
denoted by the “art” tag, as in the following example:
I / a r t : E x p l i c i t c o n c u r r e n t mark sweep GC f r e e d

104710(7MB) A l l o c S p a c e o b j e c t s , 21(416KB)
LOS o b j e c t s , 33% f r e e , 25MB/ 3 8MB, paused
1 .230 ms t o t a l 67 .216 ms

A log line records a GC occurrence, along with other
information[34] The ART produces a GC log when the GC
Pause Time exceeds 5 ms, or the GC Duration exceeds 100
ms. These cases of slow garbage collections are especially
important for our analysis: we are interested in collections
that are performed when the system is under memory pressure
(which is the case of our aging stress tests) and that may
result in performance degradation and resource exhaustion. We
collect GC log records continuously during the experiments.

Similarly to memory and storage metrics, the GC metrics
are analyzed for each individual process, by computing trends
using the Mann-Kendall test and the Sen’s procedure (Fig-
ure 1). We count the number of cases in which the process
exhibited a increase of GC occurrences, which reveals a
possible relationship between software aging (in particular,
loss of responsiveness) and memory bloat or fragmentation.

4) Tasks: In Linux, a task is the basic scheduling unit of
the kernel. If a set of tasks shares OS resources (such as the
virtual address space), they form a multi-threaded process.
Multi-threading is extensively used in the Android OS to
run several Android services, where each service manages a
specific hardware resource (e.g., sensors, audio, and camera)
or serves a specific Android framework API. In order to get
fine-grained information about the effects of software aging,



we analyze CPU and memory utilization metrics for individual
tasks (Table IX in the appendix). These metrics can point out
the tasks that caused most stress on the Android system during
the experiments, and that may have triggered aging issues and
should be considered for software rejuvenation.

The main source of task-level metrics is the proc filesystem.
In particular, for each task, the kernel exposes the virtual
files /proc/TASK PID/schedstat and /proc/TASK PID/stat to
provide information on scheduling and memory usage of that
task. Task-level metrics include minor and major page fault
counts, and execution time spent in user-space and kernel-
space (which denote higher CPU and I/O activity). Task-level
metrics are periodically collected every 30 seconds.

To identify critical tasks (as in Figure 1), we compute trends
for each metric and for each task using the Mann-Kendall test
and the Sen’s procedure. Then, we count the number of cases
in which a metric exhibited a statistically-significant trend for
the task, at a confidence level of 90%. The higher the count,
the higher the likelihood that the metric evolves with software
aging effects, thus revealing a potential relationship between
a task and software aging of the device.

C. Factors and Levels

To extensively stress the Android OS and to trigger latent
software aging issues, we run tests under several different
configurations and workload applications, which represent the
factors of the experimental plan. We consider 5 factors, and
derive the test plan by varying the combinations of levels of
these factors according to DoE.

1) Application Set (APP): Experiments use different sets
of applications as workload to stimulate the system, aiming
to reflect common usage scenarios. These sets should include
popular Android applications, that need to be installed on all
Android devices used in the experiments.

2) Device (DEV): Experiments may run on different An-
droid physical devices, with its own hardware and software
configuration, and its own Android version. Every available
Android device in the experimental setup establishes a level
for the DEV factor.

3) Workload Launch&Kill Frequency (L&K): During ex-
periments, applications are terminated and re-launched con-
tinuously with frequency based on two levels: HIGH, every
5 seconds leading the system to a high stress; and LOW,
every 60 seconds just to collect Launch Time samples (see
subsection III-A).

4) Workload Events Configuration (EVENTS): A set of
“events” is used by the workload generator (the monkey
tool) to interact with the Android device. These include:
application switch, touch, motion, trackball, and navigation
events. EVENTS varies on three levels: SWITCHES, where the
experiments allows only application switch events; MIXED,
where the application allows all events (uniformly distributed);
NONE, where the application does not allow any of these
events (in this case, the L&K factor is forced to HIGH).

5) Storage Space Usage (STO): Experiments may run with
or without storage availability (in terms of free space), which

may impact on the performance of the storage subsystem.
It varies on two levels: FULL, where 90% of the storage is
occupied by filling it with multimedia files (such as videos and
images); and NORMAL, where the default amount of storage
space is used (i.e., the storage is occupied only by system files
and application packages).

We check whether the 5 factors contribute to the sever-
ity of LT degradation, in order to provide context about
which conditions lead to Android OS aging. We apply the
one-way Analysis of Variance (ANOVA) technique to assess
which factors impact the response variable in a statistically-
significant way. In order to use a non-parametric ANOVA
and be robust to potential non-normal distribution of errors,
we use the Kruskal-Wallis/Wilcoxon hypothesis test. The null
hypothesis, in this case, is that the factor does not impact
the response variable. We conclude that a factor impacts the
response variable if the level of confidence is higher than 90%,
i.e., the p-value is less than 0.1.

IV. EXPERIMENTAL PLAN

We applied the general methodology from Section III to
conduct an empirical case study on software aging phenomena
in Android devices, focusing on the Android OS version
5.0. We conducted experiments on two Android smartphones,
respectively a high-end device and a low-end device from
Huawei, in the context of a joint R&D project with this
Android vendor. The devices belong to the same product
line, and differ with respect to the hardware equipment; the
most notable differences are with respect to the type and
amount of CPUs, RAM, and storage. Thus, we have two
levels for the DEV factor labeled as HIGH-END and LOW-
END. Devices are equipped both with stock applications
provided by the vendor, and with third-party applications.
We organized applications in three sets, which represent the
three levels of the APP factor. They are: STOCK-1, including
mainly stock applications by Android and Google; STOCK-2,
including mainly stock applications by Huawei; and 3PARTY,
including popular third-party applications downloaded from
the Google Play app store. Factors and levels are summarized
in Table I, with a full list of the application packages used
for the APP levels. Devices are controlled and monitored
using the adb (Android Debug Bridge) utility (which is a
non-intrusive, dedicated channel through the USB port for
debugging purposes), and user inputs are provided with the
monkey tool.

The duration of a single experiment is given by the number
of events injected with the monkey tool. We opted for 150,000
events with a throttle (i.e., time between events) of 500 ms,
thus obtaining an expected duration of about 20 hours, in
accordance with previous studies in which 20 hours of stress
testing were sufficient to make software aging to surface [16],
[35]. In most cases, our experiments lasted even less than 20
hours since the high-stressing load and the subsequent aging
phenomena lead to system failures and poor responsiveness.

We defined an experimental plan (i.e, a set of experiments)
by considering different combination of levels of the factors



TABLE I
FACTORS AND LEVELS

FACTOR LEVEL DESCRIPTION

DEV HIGH-END Android 5 high-end device
LOW-END Android 5 low-end device

APP
STOCK-1

com.google.android.videos,
com.huawei.camera,
com.android.browser,

com.huawei.phoneservice,
com.android.email,

com.android.contacts,
com.google.android.apps.maps,

com.google.android.marvin.talkback,
com.android.chrome,

com.google.android.play.games,
com.android.calendar,

com.google.android.music,
com.google.android.youtube

STOCK-2

com.android.systemui,
com.huawei.powergenie,

com.android.browser,
com.huawei.vassistant,
com.android.contacts,
com.android.gallery3d,
com.huawei.appmarket,
com.huawei.gamebox,

com.android.phone,
com.android.settings,

com.huawei.android.totemweather

3PARTY

com.tencent.mm, com.sina.weibo,
com.qiyi.video, com.youku.phone,

com.taobao.taobao,
com.tencent.mobileqq,
com.baidu.searchbox,
com.baidu.BaiduMap,

com.UCMobile,
com.moji.mjweather

L&K HIGH kill and re-launch applications every
5 seconds

LOW kill and re-launch applications every
60 seconds

EVENTS
SWITCHES monkey tool allows only for switch

events

MIXED
monkey tool allows for switch,
touch, motion, trackball, and

navigation events

NONE monkey tool is not used (this level
forces L&K to HIGH)

STO FULL 90% of storage space usage
NORMAL default storage space usage

presented in subsection III-C. A full factorial design, using
every possible combination at all levels of all factors, is
typically impractical because of many experiments (72 in our
case, i.e., approximately 60 days of experiments) with little
gain in terms of explanation of the response variability3.

A two-stage fractional factorial plan is adopted. Specifically,
we first considered the minimum number of experiments to
analyze only the main effects of each factor on the launch
time without accounting for the experimental error (i.e., a
“saturated” design). The plan created is a customized design

3Full designs allow assessing the impact of the main factors and of contem-
porary variation (i.e., of the interaction) of all factors together on the response
(i.e., in our case, of two-, three-, four-, and five-way interactions), with a
very high degree of redundancy: usually, just the main factors and, possibly,
some two-way interactions contribute to explain the response variability, while
three-way (and higher order) interactions are negligible [30].

TABLE II
EXPERIMENTAL PLAN OF THE CASE STUDY

ID DEV APP L&K EVENTS STO

EXP1 HIGH-END STOCK-1 HIGH NONE NORMAL
EXP2 LOW-END STOCK-2 HIGH SWITCHES FULL
EXP3 HIGH-END STOCK-1 LOW SWITCHES NORMAL
EXP4 LOW-END STOCK-2 HIGH SWITCHES NORMAL
EXP5 LOW-END STOCK-2 LOW MIXED FULL
EXP6 LOW-END 3PARTY HIGH NONE FULL
EXP7 HIGH-END 3PARTY LOW MIXED NORMAL
EXP8 HIGH-END 3PARTY LOW MIXED FULL

EXP9 HIGH-END STOCK-1 LOW MIXED NORMAL
EXP10 HIGH-END STOCK-1 HIGH MIXED NORMAL
EXP11 HIGH-END STOCK-1 HIGH MIXED NORMAL
EXP12 HIGH-END STOCK-1 HIGH MIXED NORMAL
EXP13 HIGH-END STOCK-1 HIGH NONE NORMAL
EXP14 LOW-END STOCK-2 HIGH MIXED NORMAL
EXP15 LOW-END STOCK-2 HIGH MIXED FULL
EXP16 LOW-END STOCK-2 HIGH SWITCHES FULL
EXP17 LOW-END STOCK-2 LOW SWITCHES FULL
EXP18 LOW-END 3PARTY HIGH SWITCHES FULL
EXP19 LOW-END 3PARTY LOW SWITCHES FULL
EXP20 LOW-END 3PARTY LOW MIXED FULL
EXP21 LOW-END 3PARTY HIGH MIXED FULL
EXP22 LOW-END 3PARTY LOW MIXED NORMAL
EXP23 LOW-END 3PARTY HIGH MIXED NORMAL
EXP24 LOW-END 3PARTY HIGH NONE NORMAL
EXP25 HIGH-END STOCK-1 LOW SWITCHES NORMAL
EXP26 HIGH-END 3PARTY HIGH MIXED NORMAL
EXP27 HIGH-END 3PARTY HIGH MIXED FULL
EXP28 HIGH-END 3PARTY HIGH MIXED FULL
EXP29 LOW-END 3PARTY HIGH MIXED FULL

of 8 experiments. We performed an initial ANOVA on these
experiments, and identified factors and levels with the highest
influence on software aging trends. In the second stage, based
on the feedback of the first stage, we added experiments with
the aim of accounting also for the experimental error (having at
least two observations for each level), and biasing the design
in favor of the high-impact factors, through an unbalanced
design. The final plan of 29 experiments is in Table II. In the
end, unbalancing allowed us highlighting more severe aging
trends, while keeping the ability of comparing different factors
and two-way interactions with a confidence of 95%. As a
matter of fact, the ANOVA test to verify the model confidence,
computed after the experiments execution, yielded a p–value
of 0.0225, i.e., a confidence of (1− 0.0225)% = 97.75%.

V. EXPERIMENTAL RESULTS

After executing the experimental plan of Section IV, we
analyzed software aging phenomena using the metrics and the
techniques presented in Section III.

A. Analysis of Launch Time

The Launch Time of Android activities provides a direct
indicator of software aging as experienced by the user. The
analysis showed that, in all the experiments that we executed,
there is a statistically-significant positive trend in the LT series.
On average, the LT trend across all the experiments has been
9.15E-03 ms/s (with an estimated degradation of 659ms, on
average, of the launch time after 20 hours of testing), with
a maximum of 6.39E-02 ms/s in the worst case (estimated
degradation of 4.6 seconds after 20 hours). Indeed, at the end



(a) Browser (b) Calendar (c) Music

Fig. 2. Examples of Launch Time trends in EXP10.

Fig. 3. Median Launch Time trends distribution for each factor.

of the experiments, we found the device in an unusable state,
in which the switch between apps required seconds to provide
feedback. Figure 2 provides examples of LT trends from
EXP10 in basic applications, namely the Android Browser,
Calendar, and Music applications.

We performed the one-way ANOVA after the first stage
of experiments, to assess whether the differences between the
samples is statistically significant, and thus the factors that im-
pact the observed Launch Time trend. According to ANOVA,
the only factor that determines statistically-significant dif-
ferences in the Launch Time is APP, with a confidence
of 99%, where the experiments with 3PARTY level yielded
trends higher than the experiments under the other levels. This
result suggests that software aging in Android depends on the
workload, which can stress different services and subsystems
of the Android OS depending on user applications.

Figure 3 shows the distribution of Launch Time trends from
both the first and the second stage of experiments, by dividing
the samples with respect to different levels of each factor of
the experimental plan. The distributions do now show relevant
differences of Launch Time trends for the DEV and L&K
factors. While the EVENTS and STO factors do not have a
statistically-significant impact, their distributions show a weak
influence of these factors on the launch time.

B. Analysis of Memory Usage

While launch time gives an indication of software aging
directly perceived by users, memory usage represents a poten-

tial underlying cause of this issue, since it often suffers from
leaks, fragmentation, and thrashing [6]. Thus, our approach
looks for a correlation between memory usage metrics and the
LT, both to provide more information on aging, and to suggest
metrics to use for detection of software aging at run-time and
to support rejuvenation actions.

The correlation analysis of global memory metrics com-
putes the Spearman’s rank correlation between the series of
memory usage trends (at system level) across experiments, and
the series of trends for the median LT across experiments. The
resulting correlation coefficients for each metric are shown in
Table III. Positive or negative correlation means that high LT
trends occur along with high trends of the metric. Considering
a significance level of 90%, only the Free Cached PSS and
the KSM Saved indicators are correlated to LT trends in a
statistically-significant way, with moderate correlation degrees
slightly greater than 0.4 in absolute value. These metrics
are indicator of software aging, as process app caching and
same-page merging often exhibit a trend when the device is
aging. This behavior can provide indication at run-time that
the responsiveness of the device is degrading. However, this
correlation does not allow to accurately identify the root cause
or to estimate the magnitude of the LT trend, since these
metrics are coarse-grained and they are an indirect effect of
the aging behavior of the device.

Therefore, to obtain more insights, we analyzed individual
processes. In particular, the correlation analysis of per-process
memory usage focuses on the PSS metric collected for each



TABLE III
SPEARMAN CORRELATION COEFFICIENTS BETWEEN LAUNCH TIME

TRENDS AND GLOBAL MEMORY USAGE TRENDS.

MEMORY INDICATOR SPEARMAN
COEFFICIENT P-VALUE

Free Cached PSS -0.4084 0.0278
KSM Saved 0.4389 0.0890
Total Used -0.2820 0.1383
Total Free 0.2344 0.2210
Lost Ram 0.2138 0.2653

KSM Volatile 0.2726 0.3070
ZRAM In SWAP 0.1874 0.3302

Used PSS -0.1712 0.3747
Used Buffers -0.1686 0.3819
Free Cached 0.1247 0.5192

ZRAM Physical Used 0.1082 0.5764
KSM Unshared 0.1357 0.6163

KSM Shared 0.0649 0.8113
Used Shared Memory -0.0111 0.9543

Used Slab 0.0002 0.9990

process of the Android OS. Since most of the Android pro-
cesses (about 60 out of 80) have a very small memory footprint
that can be considered negligible, the analysis focused on
processes whose PSS exceeded 20 MB during an experiment.

The results point out that three processes have a statistically-
significant, high correlation (in absolute value) with the LT
trend: they are the System Server, System UI, and Surface
Flinger. Figure 4 provides an example, which shows the trend
of the PSS of the System Server process in EXP10. These
processes play an important role in the Android OS:

• The System Server is the first Java process that starts at
Android OS boot, which initializes the whole Android
Framework. It hosts the majority of system services,
such as the Activity Manager, which manages the life
cycle of applications and their activities, and the Package
Manager, which manages installed packages and security
permissions. This process also regulates the access to
system resources.

• The System UI is the process that composes the screen
areas to display notifications, communication of device
status, and device navigation buttons using system bars.

• The Surface Flinger process receives window layers
(surfaces) from multiple sources (System UI included),
combines them, and displays them on the screen.

The correlation measures for the PSS of these processes are
reported in Table IV. Experiments showed that these processes
experience a significant increase of the PSS, respectively up
to +60%, +486% and +222% compared to the initial PSS,
reaching 114MB, 409MB, and 296MB. Thus, these processes
are further analyzed in the following of this section.

C. Analysis of Garbage Collection

We further analyze Android processes from the point of
view of memory management, by considering the time spent
for garbage collections, namely the GC Pause Time and
GC Duration. We performed a trend analysis on these GC
metrics for each process. The results were grouped by different

Fig. 4. System Server PSS trend in EXP10.

TABLE IV
SPEARMAN CORRELATION COEFFICIENTS BETWEEN LAUNCH TIME

TRENDS AND PSS TRENDS OF ANDROID SYSTEM PROCESSES.

PROCESS SPEARMAN
COEFFICIENT P-VALUE

system (System Server) 0.5323 0.003

surfaceflinger (Surface
Flinger) 0.4828 0.008

com.android.systemui
(System UI) -0.3967 0.0331

collection types [34]: in particular, in our experiments only
two GC types produced more than 100 samples and exhibited
a trend with confidence higher than 90%, namely:

• Concurrent GC, in which threads are not suspended
and not prevented from making more allocations, but a
separate thread performs GC concurrently in background;

• Explicit GC, where a thread makes an explicit request for
GC and it is blocked during this operation.

To investigate how much these processes are affected by a
degeneration of GC activity, we analyzed how often a trend
occurs in the GC times of each process. Then, we rank the
processes according to the number of experiments in which
the process exhibited a trend. Figure 5 reports these ranks,
focusing on the topmost 5 processes.

This analysis highlights that the System Server, the
com.huawei.systemmanager, and the System UI are the pro-
cesses that most frequently showed a GC times trend. In
particular, the System Server experienced trends in almost all
experiments. We can also notice that trends in Explicit col-
lections are much more frequent than Concurrent collections.
This can be explained by observing that system processes in
the Android OS often explicitly invoke GC to take advantage
of the opportunities to reduce the memory footprint. In the
Android AOSP version 5, we found respectively 54 and 26
explicit invocations in the framework and in the libcore sub-
trees of the source code.
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Fig. 5. Android processes that most often exhibited a statistically-significant
trend of the time spent for garbage collection (GC Pause Time and GC
Duration, for both Explicit and Concurrent collection).

These results suggest that these processes heavily use heap
memory, and that they are exposed to performance degra-
dation due to the inflation and fragmentation of the heap,
increasing the overhead of garbage collections and slowing
down or suspending the threads. Moreover, monitoring the GC
times of these processes is another useful indicator to detect
performance degradation.

D. Analysis of Storage

The metrics about storage usage provide information on the
volume and duration of read/write operations, and can provide
hints on degradation of the I/O throughput in the long term.
Moreover, these metrics provide another opportunity for run-
time monitoring and detection of software aging in Android.
Similarly to the analysis of memory metrics, we analyze the
correlation between storage metrics and the LT trends.

Table V shows the Spearman’s rank correlation coefficient
between the trends of each metric, and the trends of the
median LT. However, none of the metrics exhibit a statistically-
significant correlation (i.e., p-value is always greater than 0.1).
Thus, the storage usage does not seem to be related to the
performance degradation caused by software aging.

This result can be explained observing that storage I/O activ-
ity by both the applications and by the Android framework is
small and sporadic. Thus, software aging trends in the storage
stack are more rare and smaller than trends in memory usage,
and would become noticeable only after a longer period of
time, or under a different workload that stresses the storage.

It is worth noting that in the analysis of factors with
ANOVA (subsection V-A) we found that storage utilization
has a weak influence on user-perceived aging. This can be

TABLE V
SPEARMAN CORRELATION COEFFICIENTS BETWEEN STORAGE

INDICATORS TRENDS AND MEDIAN LT TRENDS

STORAGE INDICATOR SPEARMAN
COEFFICIENT P-VALUE

Reads Completed -3.13E-02 0.8768
Reads Merged -2.30E-01 0.2447
Sectors Read 9.49E-03 0.9626
Reading Time -7.58E-02 0.7072

Writes Completed 1.30E-01 0.5030
Writes Merged -7.09E-02 0.7247
Sectors Written -6.80E-02 0.7356
Writing Time 4.97E-02 0.8053

Read Completion Time 9.72E-02 0.6291
Write Completion Time 9.74E-02 0.6290

I/O Time 1.18E-01 0.5500
Weighted I/O Time -8.39E-03 0.9669

explained considering that the Android framework scans the
storage for indexing media files. The involved process, namely
android.process.media, is busy when the amount of data to
scan is high, which has an influence on the performance degra-
dation. The higher activity of the android.process.media is
confirmed by the trend analysis of GC times (subsection V-C,
Figure 5): this process exhibited a statistically-significant trend
in 11 out of 14 cases in which the STO factor was set to HIGH.

E. Analysis of Tasks

In the previous subsections, we identified three relevant
Android processes that showed effects of software aging, i.e.,
System Server, System UI, and Surface Flinger. We performed
a more detailed, task-level analysis by separately considering
threads of these three processes, with the goal of identifying
aging-related components inside them, which are potential
candidates for monitoring and rejuvenation actions.

The analysis of task-related metrics showed us that some
specific tasks present statistically-significant trends across the
experiments (see [31] for more information on the internal
Android tasks). They are:

• Binder * tasks: the thread pool used for managing inter-
component communication on the Android Binder.

• GCDaemon and Heap thread pool* tasks: the threads in
charge of executing the garbage collection by the Android
Runtime.

• ActivityManager: a thread of the System Server for
executing the Activity Manager service, which handles
requests for managing the lifecycle of Android activities.

• PowerManager: a thread of the System Server for execut-
ing the Power Manager service, which exposes API for
managing the power state of the device (e.g., to wake-up
the device from power saving).

Figure 6 shows the first 5 tasks for each of the three
processes, ordered by the number of experiments (showed on
top of the bars) in which the task experienced a trend in at
least one task-level metric. In particular, the tasks inside the
System Server experienced trends in the highest number of
cases. These data point out that the CPU and virtual memory
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Fig. 6. First 5 tasks of System Server, of Surface Flinger, and of System UI
processes with the highest number of significant trends.

demand (in terms of CPU ticks and minor/major page faults)
of these threads increases over time as an effect of software
aging. In turn, this suggests to focus software rejuvenation
actions on the Android services that are most stressed and
exhibit behavioral deviations, such as the Activity Manager
and the Power Manager.

VI. KEY FINDINGS AND CONCLUSION

In this paper, we proposed an experimental methodology to
analyze software aging issues in the Android OS. We applied
this methodology on recent Android devices, which provided
the following findings about software aging.

The experiments actually triggered software aging effects in
the Android devices, which manifested as an increasing trend
of the launch time of Android apps. Therefore, it would be
useful for Android vendors to adopt software rejuvenation to
prevent this performance degradation, since it is perceived by
the users as an indicator of poor responsiveness and low overall
quality of the device.

To better understand this behavior, we considered several
types of workload applications in our stress tests, both stock
and third-party ones. We found that third-party applications
accelerate the software aging trend, that is, the performance
degradation is quicker compared to stock applications. More-
over, the type of application events (e.g., navigation, switch)
also influences software aging trends. These results imply
that the occurrence of software aging, and its magnitude,
depends on the type of workload running on the Android
device. Therefore, the software rejuvenation solution should be
adaptive with respect to the workload. When the workload is
more stressful, the software rejuvenation of the device should
be anticipated.

To relate software aging with resource usage, we first
analyzed memory and storage utilization metrics, both globally
and for individual processes. We observed that among the
global metrics, the Free Cached PSS, which denotes the mem-
ory footprint of processes recently executed on the Android
device, showed consistent trends across the experiments. By
looking at per-process memory consumption, we found that
specific processes of the Android OS are affected by a

significant increase of memory consumption over time, cor-
related with the degradation of the launch time (i.e., both
the launch time and the memory consumption degrade at the
same time). The processes most affected by this behavior are:
System Server, Surface Flinger, and System UI. Monitoring
the memory consumption of these processes can support the
detection of the onset of software aging in the device, and
guide the triggering of software rejuvenation.

We further analyzed garbage collection and task-level met-
rics, to obtain fine-grained information about software aging
effects. We found that the garbage collection time is corre-
lated with the degradation of the launch time (i.e., the time
spent by the Android Runtime to reclaim unused heap memory
from Android processes): the higher the garbage collection
time, the higher the degradation of the launch time. Moreover,
the task-level analysis pointed out that specific components
in the Android OS (such the ActivityManager) often exhibit
a trend in terms of CPU and virtual memory usage, which
denotes behavioral deviations of these components in the
presence of software aging. Thus, garbage collection and task-
level metrics from selected components can provide further
support for the detection of software aging.

According to the experimental results, we recommend
that Android software rejuvenation should adopt a
measurement-based approach to adapt to the workload
conditions, which have a strong influence on software aging
trends. The software rejuvenation solution should be triggered
when measurements exhibit suspicious trends, including both
resource usage and garbage collection activity. Moreover, the
analysis identified processes and components that represent
potential candidates for software rejuvenation actions.

As for the generality of the findings, it is important to
note that software aging issues affected Android processes that
belong to the Android AOSP codebase, which is mostly shared
among different devices and vendors. As discussed in previous
work on Android vulnerabilities [4], vendor customizations
focus on device drivers and apps, while only moderate changes
are introduced to the basic AOSP processes. Thus, it is likely
that similar aging issues affect devices of several vendors. Of
course, it is also possible that vendor customizations may in-
troduce more aging issues. Our analysis of Garbage Collection
times pointed out the com.huawei.* processes, although their
memory consumption is less inflated than the mentioned AOSP
processes.

We believe that benchmarking the software aging of dif-
ferent Android products is an important research area. We
have defined a general methodology that could be applicable
to several Android devices, and in the future we plan to extend
our analysis, and to include software rejuvenation solutions.
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APPENDIX A
COLLECTED METRICS

Tables VI, VII, VIII, IX list all the metrics collected during
the experiments as response variables.

TABLE VI
MEMORY METRICS

METRIC UNIT DESCRIPTION
Total Free kB Amount of physical RAM left unused

Free Cached kB Amount of physical RAM used as
cache memory

Free Cached
PSS kB

Amount of physical RAM used by the
PSS of cached processes (i.e. not in

use)
Total Used kB Amount of physical RAM in use

Used PSS kB Amount of physical RAM used by the
PSS of non cached processes

Used Buffers kB Amount of physical RAM used for file
buffers

Used Shared
Memory kB Amount of physical RAM used by

shared memory

Used Slab kB
Amount of physical RAM used by the
kernel to cache data structures for its

own use

Lost RAM kB Amount of physical RAM not
accounted as free or as used

ZRAM
Physically

Used
kB Amount of physical RAM used by

compressed in memory swap

ZRAM In
Swap kB Amount of uncompressed memory that

has been transferred to ZRAM

KSM Saved kB Amount of physical RAM pages saved
by memory de-duplication

KSM Shared kB Amount of physical RAM pages
shared by memory de-duplication

KSM Unshared kB Amount of physical RAM pages not
shared by memory de-duplication

KSM Volatile kB Amount of physical RAM pages
changing too quickly to be merged
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