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Abstract—The injection of software faults (i.e., bugs) by
mutating the binary executable code of a program enables the
experimental dependability evaluation of systems for which
the source code is not available. This approach requires that
programming constructs used in the source code should be
identified by looking only at the binary code, since the injection
is performed at this level. Unfortunately, it is a difficult task
to inject faults in the binary code that correctly emulate
software defects in the source code. The accuracy of binary-
level software fault injection techniques is therefore a major
concern for their adoption in real-world scenarios. In this work,
we propose a method for assessing the accuracy of binary-
level fault injection, and provide an extensive experimental
evaluation of a binary-level technique, G-SWFIT, in order to
assess its limitations in a real-world complex software system.
We injected more than 12 thousand binary-level faults in the
OS and application code of the system, and we compared
them with faults injected in the source code by using the
same fault types of G-SWFIT. The method was effective at
highlighting the pitfalls that can occur in the implementation
of G-SWFIT. Our analysis shows that G-SWFIT can achieve
an improved degree of accuracy if these pitfalls are avoided.

Keywords-Software Fault Injection, G-SWFIT, Experimental
Dependability Assessment, Off-The-Shelf Software

I. INTRODUCTION

The injection of software faults (Software Fault Injection,
SFI) for the assessment of fault-tolerant software is relatively
new if compared to decades of research on fault injection being
focused on hardware-induced faults. Existing fault injection
techniques can emulate hardware faults using simple bit-flip
or stuck-at fault models [1]-[5], and modern fault injection
tools can inject this kind of faults through software (Software
Implemented Fault Injection, SWIFI [6], [7]). Software Fault
Injection, instead, aims at the realistic emulation of software
faults (i.e., bugs') in a software component to assess the impact
of these faults on the system behavior. SFI is assuming an
increasing relevance since software faults have been recognized
as one of the major causes of system failures [10], [11]. It is
used for the experimental validation and improvement of fault

n this work, we follow the notion that a software fault is a development
fault originated during the coding phase [8], [9].
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tolerance mechanisms and algorithms [12], [13]; it makes pos-
sible to analyze worst-case scenarios and the effects of faulty
components [14], [15]; it is used in conjunction with depend-
ability forecasting techniques, in order to populate dependabil-
ity models with measures obtained from experiments [16]-[18];
and to benchmark alternative systems or design choices [19].
The realistic emulation of software faults is a key objective
to achieve accurate dependability measures and to investigate
faulty scenarios that the system could face during operation.

One of the most popular SFI technique is G-SWFIT
(Generic Software Fault Injection Technique), proposed by
Durdes and Madeira [9]. G-SWFIT injects software faults
by mutating the binary executable code of a program. This
technique is attractive for practitioners, since it allows to
perform Software Fault Injection when the source code is not
available, which is often the case when third-party software
is adopted. G-SWFIT defines which types of software defects
have to be introduced in order to realistically emulate a faulty
software, based on recent field data studies that characterized
residual software faults in complex systems [9], [20], [21].

An important issue concerning the injection of software
faults at binary level is the accuracy of the injection campaign,
that is, the degree of confidence that a fault injected in the
binary code correctly emulates a software defect in the source
code. For instance, if we aim to emulate the absence of a
variable assignment in the source code, we could remove a
"move" instruction at binary level. But, if we consider the
emulation of a bug in a C preprocessor macro (i.e., a piece
of source code that is replicated several times in the binary
code), the problem cannot be resolved by simply looking
at the binary code. Therefore, it is important to assess the
accuracy of binary-level SFI in order to be effectively adopted
in real-world scenarios. Unfortunately, only a few studies
evaluated the accuracy of binary-level SFI, which were limited
to small programs or to a small number of faults [9], [22], [23],
and no previous work analyzed this problem comprehensively.

In this work, we propose a method for assessing the
accuracy of binary-level fault injection in complex software,
and perform an extensive experimental campaign in order
to assess the accuracy of G-SWFIT. To this aim, two fault



injection campaigns are conducted respectively on binary
code and source code, where the latter is used as a term of
comparison. During these campaigns we keep track of code
locations targeted by fault injection. We then compare for each
fault type the locations affected by source-level injection with
the ones affected by binary-level injection. In this way, we are
able to identify: (i) binary-level faults which correctly emulate
software faults (this happens when we experience the same fault
type in the same location both from binary-level injection and
from source-level injection); (ii) binary-level faults that do not
emulate any software fault (this happens when a binary-level
fault is injected in a location in which the fault could not exist
in the source code); and (iii) binary-level faults that have not
been injected in a location where they could have been injected.

Experiments consist of the injection of about 30 thousand
faults, 12 thousand binary-level faults and 18 thousand source-
level faults, in a real world system from the space domain, i.e., a
satellite data handling system. The proposed method was effec-
tive at highlighting the pitfalls that can occur in the implemen-
tation of G-SWFIT and affect the accuracy of fault injection. In
particular, issues were found in the identification of code blocks
and control structures, and in enforcing fault constraints. More-
over, our analysis shows that if identified pitfalls are avoided,
the accuracy of G-SWFIT can be significantly improved.

The following section describes the state of the art on
Software Fault Injection and provides more details about
G-SWFIT. Section III describes the proposed method. Section
V discusses the obtained results by applying the method on
a complex system described in Section IV. Conclusions are
summarized in Section VI.

1I. BACKGROUND AND RELATED WORK
A. Software Fault Injection Techniques and Tools

In order to emulate software faults in fault injection
experiments, a model of software faults that can realistically
occur in the system under test is required. This property,
which is referred to as representativeness, is desirable when
dependability measures have to be quantitatively assessed,
such as coverage factors of fault-tolerant systems [16], [17],
which depend on the probability distribution of faults and
workloads [18]. Fault representativeness is also important to
stimulate the complex failure modes that can be exhibited
by a software system or component, which are potentially
more subtle than simple process hangs or crashes and are
not necessarily known a priori [13], [14].

Field data studies analyzed software faults in complex
software systems, and can be used to define software fault
models. Sullivan and Chillarege [20] analyzed a large set
of software-related failure reports collected from the MVS
OS, and proposed a classification scheme for software
faults, which are described in a level of detail close to the
programming level. That work was later extended in [24]
where the Orthogonal Defect Classification (ODC) and the
notion of defect type are introduced. This notion points to a

high-level classification of faults including Function, Checking,
Assignment, Algorithm and Interface faults. ODC was aimed
at providing feedback during development; the work presented
in [9] extends this level of description and proposes a
classification scheme that was precise enough for automated
fault emulation (e.g., for the "assignment" class of faults,
it specifies if the assignment is an initialization, and if an
expression or constant is involved). It also presents a field data
study where it is pointed out that most of the software faults
found in the field belong to the set of fault types shown in
Table I, and that they tend to follow a generic fault distribution.

Table 1
FAULT OPERATORS (SEE ALSO [9]).

Fault Type Description

MFC Missing function call

MVIV Missing variable initialization using a value
MVAV Missing variable assignment using a value
MVAE Missing variable assignment with an expression

MIA Missing IF construct around statements

MIFS Missing IF construct + statements

MIEB Missing IF construct + statements + ELSE construct
MLAC Missing AND in expression used as branch condition
MLOC Missing OR in expression used as branch condition
MLPA Missing small and localized part of the algorithm
WVAV Wrong value assigned to variable

WPFV Wrong variable used in parameter of function call
WAEP Wrong arithmetic expression in function call parameter

Another aspect affecting the effectiveness of Software Fault
Injection is represented by the method adopted to introduce soft-
ware faults into a system. In fact, SFI requires more complex
modifications of the program code/state than simply a bit-
flip/stuck-at: the comparison between real software faults and
faults injected by SWIFI tools [6], [7] revealed that hardware
fault models cannot accurately emulate software faults. The
emulation of software faults requires that what it is injected
reproduces the intended fault model (we refer to this property as
accuracy), in order to correctly evaluate the effects of software
faults on the system. Several methods have been devised for
emulating software faults, most of them based on rather indirect
approaches (i.e., emulating the possible effects of software
faults instead of injecting actual faults in the software code).

Past work on software fault injection can be divided in three
categories, according to what is actually injected: data errors,
interface errors, and code changes (summarized in Table II).
We include tools and approaches that were adopted in past work
in the context of dependability assessment of fault-tolerant
systems, and do not consider tools for mutation testing (where
faults are used to define test cases and not for dependability
assessment) since they are out of the scope of this paper.

Data errors. This approach consists of injecting errors
in the data of the target program (i.e., a deviation from the
correct system state [8]). This is an indirect form of fault
injection, as what is being injected is not the fault itself but
only a possible effect of the fault. The representativeness of



this type of injection is difficult to assert, as the relationship
between data corruption and its possible root-cause (i.e.,
faults) is difficult to establish. However, data errors are an
useful and practical means for inducing software failures and
debugging of fault-tolerance mechanisms [14].

Interface errors. This approach is in fact another form
of error injection where the error is specifically injected at
the interface between modules (e.g., system components, or
functional units within a program). This usually translates to
parameter corruption in functions and API, and it is considered
a form of robustness testing. The errors injected can take many
forms: from simple data corruption to syntactically valid but
semantically incorrect information. As with data errors, the
representativeness of the errors injected at the interfaces is not
clear and there is some empirical evidence that supports the
idea that injecting interface errors and changing the target code
produces different effects in the target [25]. This approach is
complementary to the injection of actual software faults, and
it has proven to be useful to find interface weaknesses [26].

Code changes. Changing the code of the target component
to introduce a fault is naturally the closest thing to having
the fault there in the first place. However, this is not easily
achieved as it requires to know exactly where in the target code
one might apply such change, and what instructions should be
placed in the target code. Several works followed this notion,
although with some limitations: Ng and Chen [13] and the
FINE [17] and DEFINE [27] tools use code changes (e.g.,
changing the destination address of an assignment), although
their fault model is very simple and its representativeness
is not assured. Madeira et al. [7] showed that SWIFI can
be used to inject simple code changes in running processes
but cannot emulate more complex software faults. The G-
SWFIT technique [9] was developed to address software fault
representativeness, by injecting software faults according to the
set of most common fault types (Table I) observed in field data.

Table 11
CLASSIFICATION OF FAULT INJECTION TOOLS.

Tools

FIAT [1], FERRARI [2], PSN [14], csXception [5],
NFTAPE [3], GOOFI [4]

BALLISTA [26], RIDDLE [28], MAFALDA [29],
Jaca [30], csXception [19]

Ng and Chen [13], FINE [17], DEFINE [27],
G-SWFIT [9]

Category

Data errors

Interface errors

Code changes

B. G-SWFIT

G-SWFIT injects code changes at the executable (binary)
level (Figure la). It consists of a set of fault operators that de-
fine code patterns (i.e., a sequence of opcodes) in which faults
can be injected (e.g., an MIA fault can be injected wherever an
IF construct is found), and code changes to be introduced (e.g.,

the removal of instructions related to an IF construct) to emulate
software faults>. The proposed fault operators inject valid
faults in terms of programming language (i.e., mutated code is
syntactically correct) and provide a set of constraints to exclude
fault locations that are not realistic (e.g., to inject an MIA fault,
the IF construct must not be associated to an ELSE construct,
and it must not include more than five statements or loops). The
description of a fault operator is provided in Table III. As dis-
cussed in the rest of this paper, it is not trivial to assure the ac-
curacy of software fault injection at the binary level, due to the
gap between software faults at source code level (e.g., defects in
a program) and their conversion to binary level (i.e., translation
of the faulty code in machine code). The implementation of G-
SWFIT and the definition of fault operators are dependent on
the hardware architecture, the compiler of the target application,
and compiler optimizations, since the binary translation of a
programming construct (e.g., an IF construct) varies with the
compiler and the hardware platform in which the software can
be executed. G-SWFIT was originally implemented and applied
on the 1386 hardware architecture and the Microsoft Windows
environment [31]. The technique has then been ported to inject
faults in the bytecode of Java programs [32]. In this work,
we analyze G-SWFIT for the C language with respect to the
PowerPC hardware architecture and the GCC compiler, which
has been implemented in a R&D tool by Critical Software.

Table III
DESCRIPTION OF THE OMFC FAULT OPERATOR.

Example function(...);

CALL target-address

Example with faults

Code pattern

Code change CALL instruction removed

Return value of the function must not be used
(CO1)

Call must not be the only statement in the
block (C02)

Contraints

An alternative approach to change the code of a program
consists in mutating its source code, and then to compile
the faulty source code to obtain a faulty version (Figure 1b).
This approach has been implemented in a fault injection tool
developed by our research group, namely SAFE?. The tool
adopts the same fault types of G-SWFIT (Table I), including
code patterns and constraints, although faults are introduced
in the source code instead of the binary code. This tool has
different objectives than G-SWFIT, since it cannot perform
fault injection when the source code is not available; it is
considered in this work as a support to evaluate the accuracy
of G-SWFIT. In order to use the SAFE tool, a C preprocessor
translates C macros in a source code file (e.g., inclusion of

2Each fault operator is related to a specific fault type and is denoted with
the "O" prefix (e.g., the OMIA fault operator is related to the MIA fault type).
3SoftwAre Fault Emulation tool: http://www.mobilab.unina.it/SFLhtm



header files) to produce a self-contained compilation unit.

A C/C++ front-end then processes the compilation unit, in
order to produce an internal representation of the program
(Abstract Syntax Tree, AST). The tool searches for suitable
fault locations in the AST and applies a fault operator if all
constraints are met, e.g., to inject a MIFS fault, an IF construct
should not contain more than 5 statements. The tool produces
a set of faulty source code files, each containing a different
software fault. The faulty version is obtained by replacing a

source code file with a faulty file and recompiling the program.

Target application
(executable code)

Binary level
mutated versions

01001101
11101010
01110000
01011101

0100XXXX

Code Code 11101010
patterns changes 01110000

analysis 01011101

Binary level
fault operator library

(a) G-SWFIT.

01001101
1110XXXX
01110000
01011101

01001101
XXXX1010
01110000
01011101

Source code level
mutated versions

Target application
(source code)

if(a && b) if(a—=s& b) | |if(a &5b)

{ Source code Program { {
e=1; analysis rewriting e=1; e=1;

} } }

@ a if(a && b)
{
Source code level c=2;
fault operator library ¥

(b) SAFE.

Figure 1. Software Fault Injection techniques.
Compared to the binary level approach followed by the
original G-SWFIT, the source code level approach assures
the accurate emulation of fault types, since full information
about programming constructs and variables is available (this
information is missing and has to be reconstructed when
injecting faults at the binary level). Moreover, injection in
the source code is portable among all platforms in which
the target program can be compiled, without any additional
efforts to adapt the fault injection tool to different hardware
or compilers. The drawbacks of this approach are that it
increases experiment time, since the program needs to be
compiled after the injection of a fault, and that the approach
cannot be adopted when the source code is missing.

III. PROPOSED METHOD

As previously discussed, the evaluation is motivated by the
fact that the accuracy of binary-level fault injection is limited
by the impossibility to correctly recognize some programming
constructs in a binary program. The evaluation of binary-level
fault injection in a real-world system contributes to understand
the limitations and the accuracy of the results that can be
obtained by a fault injection campaign.

An example of a wrongly injected fault is represented by a
C program containing a SWITCH construct with two branches;

in some architectures and compilers (this is the case of GNU
GCC compiler for PowerPC architectures), the SWITCH may
be translated in binary code using the same opcode sequence
of an IF-ELSE construct, since they both consist of a logical
condition (which is translated using an opcode that compares
two values) and two branches (which are translated using
branch opcodes). Therefore, a MIEB (see Table I) fault could
erroneously be injected in a code location in which there is not
an [F-ELSE construct. It may also happen that a code location
suitable for fault injection cannot be recognized in the binary
code. For instance, a compiler may translate a function call as
inline code (i.e., the function call is replaced with the body of
the called function); in this case, a fault injection tool would not
be able to recognize the function call, thus omitting to inject
an MFC fault in that location. The experimental validation in
this work aims to assess the relative occurrence of this kind of
problems in real-world complex software, in order to evaluate
whether G-SWFIT can achieve an acceptable degree of accu-
racy even in the presence of these problems. Although some
of these problems are already known, their extent in large and
complex software has not been investigated in previous studies.

This work also aims to point out issues that may arise
when implementing G-SWFIT, by highlighting cases in which
faults are not correctly injected. Binary-level fault injection
tools are difficult to implement, since they have to encompass
all potential ways in which programming constructs are
translated. This problem is further exacerbated if we consider
the complexity of modern CPUs, programming languages and
compilers (whose inner working is usually unknown). Thus
it is likely that developers may neglect some code patterns,
thus leading to design errors in the fault injection tool.

The proposed method evaluates the accuracy of G-SWFIT
by comparing the faults it generates with the ones injected in
the source code. Indeed, since a software fault is a defect in
the code of a program, it is clear that fault injection at source
code level is more accurate. Based on this consideration, we
compare the faults injected by the two techniques and we
classify faults in the following three categories:

1) Correctly Injected faults: correct faults generated by
both techniques. The larger is the set of common faults,
the higher is the accuracy of G-SWFIT.

2) Omitted faults: faults injected only at source-code level.
They correspond to programming constructs in which
a fault could exist, but which have not been identified
in the binary code.

3) Spurious faults: faults injected only by G-SWFIT at
binary level that do not match any fault at source-
code level. Therefore, they are not considered as
representative software faults.

It is important to note that source-level faults can be used
as a term of comparison for binary-level faults because (i) the
same fault types are adopted for both binary- and source-level
fault injection (shown in Table I), and (ii) binary- and source-



level faults are injected in every potential location (i.e., fault
injection campaigns are exhaustive). The method (depicted in
Figure 2) consists of two phases, namely (i) automatic matching
of binary-level and source-level faults (Section III-A), in order
to identify Correctly Injected faults, and (ii) fault sampling
and manual analysis (Section III-B), in order to identify which
issues affect the accuracy of G-SWFIT. As a real-world case
study, we consider CDMS (Command and Data Management
System), a real-time embedded system developed by Critical
Software for the space domain (Section IV).

Source-
Fault |:> level faults |:> Fault |:> Fault
Injection %1 Binary- Matching Sampling

level faults

1) Repeat until all source-level faults are fixed

2) Increase sample until significance level is 1)
reached
Figure 2. Overview of the method adopted for the evaluation of G-SWFIT.

A. Fault Matching

Fault Matching is based on the assumption that if both tech-
niques inject the same fault type in the same location (e.g., an
assignment or function call is removed both in the source code
and in the corresponding location in the machine code), then
they are injecting the same fault. It is reasonable to make this as-
sumption since if a fault location is identified both at the binary
and source levels, then that fault location is valid and correctly
handled. In order to be sure that this assumption holds (and
therefore the results are valid), we manually analyzed a sample
of Correctly Injected faults using the Fault Sampling procedure
(explained in the next subsection). Following this observation,
binary-level and source-level faults are compared with respect
to their fault types and their locations in the source code (i.e.,
the source file, the function and the line of code in which a fault
is injected). A binary-level fault matches a source-level fault if
they have the same fault type and they are injected in the same
code location (compared using debug symbols in binary code).

The procedure shown in Figure 3 has been adopted to
identify Correctly Injected faults. If a binary-level fault
matches a source-level fault, and only one binary-level
fault and only source-level fault exist for the code location
under analysis, then the binary-level fault is considered as
Correctly Injected. In some cases (e.g., when there are more
than one statement in the same line of code), more than
one binary-level fault (/V), or more than one source-level
fault (M) may occur in the same code location. If there are
more binary-level faults than source-level faults in the same
location (/N > M), then there are M Correctly Injected faults,
and N — M Spurious faults. Similarly, if source-level faults
are more than binary level faults (M > N), then there are
M — N Onmitted faults. It follows that if a binary-level fault
does not match any source-level fault, then it is considered a

Spurious fault, and that if a source-level fault does not match
any binary-level fault, then it is considered an Omitted fault.
In the examples of Figure 3, the proposed procedure identifies
one Correctly Injected fault (location A-10), one Spurious
fault (location A-20), and one Omitted fault (location B-5).

Source Binary
code code
Source-level Binary-level
fault injection fault injection

File | Lineno. | #faults File | Lineno. | #faults

<aCorrectly Injected
<{aSpurious
<2Omitted

fault
operators

for each fault operator
for each fault location

M = Source-level Faults

N = Binary-level Faults

if M<N then
Correctly Injected Faults += M
Spurious Faults += N-M

if M>N then
Correctly Injected Faults += N
Omitted Faults += M-N

if M==N then
Correctly Injected Faults += M

Figure 3. Fault matching procedure.

B. Fault Sampling

After the Fault Matching procedure, we perform a detailed
analysis of faults in order to investigate the causes of Spurious
and Omitted faults, and to verify that Correctly Injected faults
are actually correct. Moreover, we aim to understand whether
Omitted and Spurious faults are due to inherent limitations
of G-SWFIT or not. Indeed, these faults may occur due
to design issues in G-SWFIT as previously discussed; the
identification of these issues is useful to provide guidelines
for improving G-SWFIT, and to obtain a more precise figure
of merit of the G-SWFIT technique. For these reasons, we
manually analyze a random sample of Omitted and Spurious
faults, and classify them into the following categories:

1) C preprocessor macros. When the G-SWFIT technique
was proposed, preprocessor macros have been recognized
as a frequent cause of Omitted and Spurious faults [9].
A preprocessor macro consists of a piece of code that is
replicated for each time the macro is referred within the
program. Therefore, when a preprocessor macro has a
software fault, the faulty code is replicated several times
in the binary code. Since the binary code lacks infor-
mation about macros, G-SWFIT cannot recognize that
macro code is replicated elsewhere within the program:
therefore, a Spurious fault is injected for each replica of



the macro, and source-level faults that could be injected
into macro represent Omitted faults since G-SWFIT
cannot correctly injected them (see also Figure 4).

2) Inline functions. In a similar way to preprocessor
macros, inline functions are replicated each time the
function is called within the program. Since G-SWFIT
does not recognize inline functions within binary code,
they lead to Spurious and Omitted faults as well.

3) Various causes. In this category, we include all the
other causes of Spurious and Omitted faults that are
not related to macros or inline functions.

4) Issues in the SAFE tool. Even if source-level fault
injection can be considered accurate, we did not exclude
this possibility that the source-level fault injection tool
we adopt could inject faults incorrectly. Therefore,
during the manual analysis, we also look for issues in
the SAFE tool that caused faults to erroneously appear
as Spurious or Omitted faults. Since we need to assure
that source-level faults are correctly injected, we fix
the SAFE tool when an issue is found and repeat the
whole analysis (including both Fault Matching and
Fault Sampling) until this category becomes empty.

Omitted
Fault
#define MACRO(x) ((x)+=I) #define MACRO(x) ((x)+=1)
Spurious Fault #1
MACRO(a); MACRO ( &
st - ; Spurious Fault #2
MACRO(b) ; MACRO (b4;

Source-level Fault Injection Binary-level Fault Injection

Figure 4. Examples of Spurious and Omitted faults due to the occurrence
of a C preprocessor macro within a program.

Because of the high number of the generated faults, the
manual analysis is conducted on a sample of faults and then
conclusions are drawn about the whole set of faults. In order
to generalize the results from the sample, we have to address
the problem of choosing a sample of appropriate size, such
that it could be considered representative of a population
with more than two categories (i.e., a multinomial distribution,
where we define m; as the proportion of the ith category).
The sample should be large enough to assure that all of
the estimated proportions m; are within a given confidence
interval with significance level 1 — a.

Assuming that the population and the sample are large
enough to use the normal approximation, the probability a;
that the proportion 7; lies outside an interval of width 2d;
is given by (see [33] for more details about sampling)

ai:Pr{|Zi| Zdi\/ﬁ/\/m(lfm)} (1)

where 1 < ¢ < k and Z; is a standard normal random
variable. By Bonferroni’s inequality [33], the probability that

one or more of the k estimates will fall outside its interval
will be less than or equal to Zf «;. Equation (1) allows to
assess if the sample size is large enough to achieve accurate
results. If Zf o; > a, then a larger sample size is required,
otherwise the estimated proportions are considered accurate.
This method was applied to the populations of Omitted and
Spurious faults by considering & = 4 categories (C preproces-
sor macros, inline functions, various causes, issues in the SAFE
tool), assuming a confidence interval of half-width d; = 0.05
and a significance level 1 — o = 0.9. This method was also
applied to the population of Correctly Injected faults, in order to
analyze whether they are truly correct or not (k = 2 categories
are considered). For each population, we extract a sample of 5%
of faults and then we manually analyze each fault in order to
obtain an initial estimate of the proportions; the sample size is
gradually increased and analyzed until the required significance
level is reached. The results are described in the Section V.

IV. CASE STUDY

The case study considered in this work is a satellite data
handling system named Command and Data Management
System (CDMS). A satellite data handling system is responsible
for managing all data transactions (both scientific and satellite
control) between ground system and a spacecraft (Figure 5),
based on the ECSS-E-70-41A standard [34] adopted by the
European Space Agency. In this system, a space telescope
is being controlled and the data collected is sent to a ground
system. As shown in the Figure, the CDMS, which executes
on the spacecraft (on-board system), is composed by several
subsystems: the TC Manager receives a series of commands
from the ground control requesting telemetry information;
the TM Manager sends back telemetry information for each
command sent; the other modules (PC, PL, OBS, RM, DHS)
perform tasks for the data management and the telescope
handling. The importance of the accuracy of SFI in mission-
critical systems like CDMS has been demonstrated in [15], in
which two OSs (RTLinux and RTEMS) were compared with
respect to the risk of failures of the CDMS due to OS faults,
in order to select the most reliable OS for this scenario.

The CDMS application was developed in C and runs on
top of an open-source, real-time operating system, namely
RTEMS*. The CDMS makes use of the RTEMS API for task
management, communication and synchronization, and for
time management. This software system is compiled to run
on a PowerPC hardware board by using the GCC compiler
and disabling compiler optimization settings, which is the
setup currently supported by the G-SWFIT tool.

In this work, we analyze faults injected in both the OS
(i.e., RTEMS) and application (i.e., CDMS) code. We only
consider the code which is actually compiled and linked in
the executable running on the on-board system. A small part
of the code (1.90%), which is written in assembly language

“http://www.rtems.org
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Figure 5.

Architecture of the case study.

to provide board-specific support, is not targeted by our
source-level fault injection tool, but its influence on the results
can be considered negligible.

V. RESULTS

In this section, software faults injected at the binary and
source-level in a complex case study are analyzed using the
method proposed in Section III. Faults at the binary level
were generated with the G-SWFIT technique, by using a

R&D prototype tool provided by Critical Software company.

Faults at the source code level were generated using the
SAFE fault injection tool (described in Section II-B). In total,
18,183 source-level faults and 12,380 binary-level faults were
generated, respectively. Their distribution across fault types
is shown in Figure 6. The two distributions exhibit noticeable
differences: more source-level faults are injected with respect
to some fault operators (such as OMLPA, OWVAYV, OWPFV,
and OWAEP), whereas in other cases more binary-level faults
are injected (such as OMIEB and OMVA, where the latter

groups together the OMVAV, OMVIV, and OMVAE operators).

The Fault Matching procedure (Section III-A) identified
the subset of Correctly Injected faults (i.e., common to both
techniques) that we further analyzed in order to assure the
correctness of our method. Correctly Injected faults have been
sampled (see Section III-B), and then compared by looking
at i) the faulty binary-code generated by G-SWFIT, and ii)
the one produced by faults injected in the corresponding
source-code locations. This analysis revealed that the
binary-level faults match the source-level faults for each fault

types and for each sampled faults, except the OWPFV operator.

We found that 40.69% of OWPFV faults at the binary level do
not match OWPFV faults at the source-code level even if they
affect the same locations, since there are several functions
parameters and possible replacements for a given location. In
order to take into account this aspect, results shown in Figure

7 have been updated by reducing the number of Correctly
Injected faults for the OWPFV operator and increasing the
number of Omitted and Spurious faults by the same amount.
Correctly Injected faults turned out to be 5,927 (Figure
7). They represent 47.88% of faults injected by G-SWFIT.
The remaining faults injected by G-SWFIT (52.12%) in
the binary code do not match to a software fault in the
source code, therefore most of G-SWFIT faults are Spurious.
Correctly injected faults represent 32.60% of faults injected
in the source code, so the remaining faults at the source level
(67.40%) are not emulated by G-SWFIT and they result as
Omitted faults. The experimental campaign confirms that the
accurate injection at the binary level is a challenging task,
at least when a complex software system is considered.
The distribution of the causes of inaccuracies (for both
Omitted and Spurious faults) are presented in Figure 8. These
distributions have been obtained by applying the sampling
procedure described in Section III-B. Most of spurious
faults (Figure 8b) are caused by C macros (56%) and inline
functions (17%). In these cases, every time that a macro
or inline function has been replicated in the binary code,
G-SWFIT generated an individual binary-level fault; this led
to a large number of Spurious faults (i.e., Spurious faults are
repeated for each replica of a macro or inline function). In a
similar way, macros and inline functions are a noticeable part
of Omitted faults (27% and 1%, respectively); this percentage
is low when compared to Spurious faults, since one Omitted
fault in a macro or inline function leads to several Spurious
faults, one for each replica of the code (see also Figure 4).
In order to gain more insights into the results, we separately
analyzed the faults injected in the OS and application code,
respectively. Figures 9 and 10 show from a different perspective
the data of Figures 7 and 8, by dividing the results between
faults in RTEMS (i.e., OS code) and in CDMS (i.e., application
code). It can be noted that faults follow a similar trend in OS
and application code, since in both cases the number of spurious
faults is close to the number of correctly injected faults, and the
number of omitted faults is predominant. Nevertheless, omitted
faults seem to be much more in the case of CDMS (Figure 9b).
Figure 10 shows that omitted and spurious faults due to
various causes (i.e., not related to macro or inline functions)
are more frequent in CDMS than in RTEMS. The constructs
not correctly recognized at the binary level (e.g., see the
examples in Figures 12 and 13 discussed later in this section)
likely occur more often in application code due to higher
complexity of that code, thus causing an higher number of
omitted faults. Moreover, macros and inline functions are
more frequent for RTEMS; this is due to the fact that several
RTEMS functions are exported as macros and inline functions
in order to be used by external code (i.e., user and library
code that is compiled and linked with RTEMS code).
Software complexity metrics collected from the case study
code (see Table IV) confirm that functions in the application
code tend to be more complex than those in the OS code (in
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Figure 8. Causes of incorrect fault injection in the case study.

term of size, cyclomatic complexity and input/output dependen-
cies). This is a common trend in embedded systems, in which
the OS is kept as simple as possible in order to reduce the
overhead and the number of potential defects [36]. Moreover,
the number of preprocessor statements per function confirms
that RTEMS makes a more extensive use of macros that CDMS.
Therefore, we conclude that it is even more important to fix
the implementation issues mentioned above if a fault injection
tool is intended to be used with complex software.

Table 1V
COMPARISON OF AVERAGE SOFTWARE COMPLEXITY METRICS OF
FUNCTIONS IN RTEMS AND CDMS CODE.

Metric RTEMS CDMS
Lines of Code 17.30 30.71
Preprocessor Statements 0.64 0.15
Cyclomatic number 5.63 6.61
Number of inputs 5.50 7.38
Number of outputs 4.12 6.84

The "various causes" behind spurious and omitted faults
are numerous and specific to each fault operator. We cannot
provide a precise estimate of the relative percentage of
each cause, since it would require to manually analyze an
extremely large sample of injected faults. Instead, we tried
to identify which part of incorrectly injected faults are due
to unavoidable limitations of G-SWEFIT, and which of them
can be avoided by improving the G-SWFIT fault injection
tool. We do so by excluding from the sample those faults
not related to macros or inline functions, and by diagnosing
(with the support of Critical Software developers) the reasons
why omitted faults were not injected, and why spurious faults
were erroneously injected. We found that 26.02% of omitted
and spurious faults were due to causes that are impossible
to avoid when injecting at the binary code level, including:

o Low-level translation of C operators. Some C expressions
(like sizeof and array and struct accesses using -> and
[]) are translated by introducing arithmetic operations
and constants in the binary code; these operations are
recognized as arithmetic expressions by fault operators
such as OMVA, OWVAY, and OWAEP.

o Switch and goto constructs. These constructs are
translated in a similar way to IF constructs using
branches in the binary code; therefore, IF constructs
are not always correctly identified by operators such as
OMIA, OMIEB, and OMIFS.

o Forced function inlining. Some functions (e.g., memcpy,
memset) are compiled as inline functions, although they
are not declared as inline.

Since the binary code lacks information about high-level
constructs, the causes mentioned above cannot be avoided. In
practice, these inaccuracies have to be accepted as limitations of
fault injection at binary level, and should be taken into account
when conclusions are drawn from fault injection experiments.

Nevertheless, during the manual analysis we observed
several Omitted and Spurious faults not related to intrinsic
limitations of fault injection at binary level, but were due
to limitations of the fault injection tool; they represent the
73.98% of the sample that we analyzed. These inaccuracies
occurred since some checks have not been implemented
yet in the tool, and some fault operators diverge in some
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cases from the fault types encompassed by G-SWFIT due
to choices that simplify the implementation. Therefore, part
of the Omitted and Spurious faults could be avoided by
improving the implementation of binary-level fault injection.
An example of Spurious fault is provided in Figure 11,
which shows a fault location in the source code (monospace
font) along with its machine code translation (italic font). It
is a spurious MFC fault in CDMS that has been injected in a
wrong location. In this example, the function call should not be
removed since it is the only statement within a block of code,
and a fault in that location would not be realistic. The OMFC
operator imposes a constraint (Table III) to avoid fault injection }
in this kind of location [9]. Instead, the fault has been injected
by the tool since the block containing the function call is not
recognized (i.e., the constraint is not enforced by the tool).

Figure 12 and Figure 13 provide two examples of

static void HousekeepingAction(TmPacket *STm) {

stwu r1,-24(r1)
mfir r0

stw r31,20(r1)
stw r0,28(r1)
mr r31,r1

stw r3,8(r31)

SendTmMsg (pbtBuffer,
TmGetPacketTotalLength(STm)); < MFC fault location
Iwz r3,8(r31) (to be avoided)
bl 00006184 <TmGetPacketTotalLength>
mrr0,r3
lis r9,7
addi r3,r9,-21944
mr r4,r0
bl 0000a3b4 <SendTmMsg>

Iwz r11,0(r1)
Iwz r0,4(r11)
mtlr r0

Iwz r31,-4(r11)
mrri,rit

blr

Omitted faults that were caused by limitations in G-SWFIT
implementation. In Figure 12, a function call which could
be removed by the OMFC fault operator is not identified. As

Figure 11. Spurious MFC fault in CDMS.

confirmed by Critical Software developers, the TcMakePacket
function is not recognized as returning a value that is stored
and used later in the program. Therefore, a fault is not injected
due to a constraint of the OMFC operator requiring that the
return value of a function should not be in use (Table III).

In Figure 13, the fault location has been omitted for an
even more subtle reason. In this example, the refurn statement
within the IF construct is translated with a branch to the
end of function, and the tool incorrectly believes that the

< MFC fault location
(not identified)

TcMakePacket (pbtBuffer, &STc);
addi ro,r31,24
lis r9,9
addi r3,r9,-21492

mr r4,r0
bl 000056b8 <TcMakePacket>

bOk = CheckAppIdTypeSubtype(&STc);
addi ro,r31,24
mr r3,r0
bl 00011a10 <CheckAppldTypeSubtype>
mr r0,r3
stw r0,20(r31)

IF construct includes all the statements until the end of the
current function. A fault is not injected since the IF construct

Figure 12. Omitted MFC fault in CDMS.



should not contain more than 5 statements [9]. Although the
tool is provided with checks to avoid these mistakes, a check
to avoid this specific case was not implemented. This kind
of issue seems to be more relevant for Omitted faults than
for spurious faults given the high number of omitted faults
due to various causes, as depicted in Figures 7 and 8.

rtems_status_code sc;
n32Size = TcGetAppData(STc, &pbtData);
Iwz r3,120(r31)
lis r9,7
addi r4,r9,-23004
bl 00005934 <TcGetAppData>
mr r0,r3
lisr9,7
stw r0,-22992(r9)

sc = rtems_semaphore_obtain ( rtems_mon_Mutex,

RTEMS_WAIT,
RTEMS_NO_TIMEOUT ) )

lis r9,7

Iwz r0,-22948(r9)

mr r3,r0

li r4,0

li r5,0

bl 0003d504 <rtems_semaphore_obtain>

mrr0,r3

stw r0,64(r31)

< MIA fault location
(not identified)

if (sc != RTEMS_SUCCESSFUL)
Iwz r0,64(r31)
cmpwi cr7,r0,0
bne- ¢r7,0000c69¢ <AddMonitoringAction+0x97c>

return,;

if ( n32size >= 10 ) {
lisr9,7
Iwz r0,-22992(r9)
cmplwi cr7,r0,9
ble- ¢r7,0000c680 <AddMonitoringAction+0x960>

Figure 13. Omitted MIA fault in CDMS.

Other incorrect behaviors were also found in the prototype
tool, which were due to the incomplete implementation of
contraints or the identification of code blocks and control
structures. In Figure 14, we provide an evaluation of the results
that can be obtained by improving the mentioned aspects.
The improvements prevent the occurrence of several Omitted
and Spurious faults: Correctly Injected faults represent the
majority of faults potentially injectable in the source code (i.e.,
only a minor part of faults is omitted), and they also represent
the majority of faults actually injected by G-SWFIT (i.e.,
only a minor part of faults is spurious). We conclude that the
evaluation of a binary-level fault injection tool on real-world
complex software is useful to identify implementation issues,
and should be adopted to assure that a tool does not omit
valid fault locations, and that spurious faults are not generated.

VI. LESSONS LEARNED AND FUTURE WORK

In this paper, we evaluated the accuracy of a software fault
injection technique (G-SWFIT) that injects faults in the binary
code of a program. The accuracy of faults injected at binary
level has been assessed by comparing the faults injected in
the source code by using the same fault injection rules. The
analysis pointed out improvements to both tools involved in
the comparison. Results can be summarized as follows:
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Figure 14. Number of faults (correctly injected, spurious, and omitted)
when fixing implementation issues of the G-SWFIT tool.

o The accurate injection of software faults in the binary
code is challenging in complex software systems. A large
number of omitted and spurious faults was observed in
the first analysis: for each injected fault there is about 1
omitted fault that has not been injected, and about half of
the injected faults were spurious. Moreover, the problem
is more significant where the code complexity is greater,
as in the case of application-level code in the case study.

o Several omitted and spurious faults are due to the
lack of high-level information in the binary code, and
most of them are due to macros and inline functions.
These inaccuracies have to be accepted as limitations
of fault injection at binary level, and should be taken
into account when conclusions are drawn from fault
injection experiments. In some cases, such limitations can
be considered acceptable: for instance, when the aim of
fault injection is a coarse-grained analysis of failure modes
(e.g., the relative percentage of crashes or stalls of the
system), the results can be adequately estimated even in
the presence of inaccurate injected faults [9], [23]. Instead,
fault injection at the source level is advisable when the
source code is available and a more fine-grained analysis
of the effects of injected faults on the system is needed.

o Several omitted and spurious faults are not related to
limitations of fault injection at binary level, but they
are due to the incomplete or simplified implementation
of G-SWFIT. In particular, issues are related to the
implementation of fault type constraints and to the
identification of code blocks and control structures. These
issues are not due to the G-SWFIT technique, and they
can be avoided if an experimental evaluation of the fault
injection tool is performed to improve the implementation.
If these aspects are improved, then omitted and spurious
faults represent the minority of cases. A future research
work consists in extending the proposed method in order
to support the development of SFI tools at binary level,
since such tools need to be re-engineered or developed
from scratch when fault injection is performed in a new
hardware architecture or in a system adopting a different
compiler. In this context, faults injected at the source
code level can be potentially exploited to understand
how software faults are translated in binary code and
how fault operators can be implemented.
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