
A Recovery-Oriented Approach for Software
Faults Diagnosis in Complex Critical Systems
	

Gabriella Carrozza
SESM S.c.ar.l., Finmeccanica company, Italy

Roberto Natella

Università degli Studi di Napoli Federico II, Italy
	
	
	
ABSTRACT
This paper proposes an approach to software faults diagnosis in complex fault tolerant systems,
encompassing the phases of error detection, fault location, and system recovery. Errors are
detected in the first phase, exploiting the operating system support. Faults are identified during
the location phase, adopting on a machine learning approach; this phase then triggers the proper
recovery action for the occurred fault - actuated in the third phase. Feedback actions are also
adopted in the location phase to improve detection quality over time. A real world application
from the Air Traffic Control field has been used as case study for evaluating the proposed
approach. Experimental results, achieved by means of fault injection, show that the diagnosis
engine is able to diagnose faults with high accuracy and at a low overhead.

Keywords: Fault Diagnosis, Machine Learning, Software Dependability

INTRODUCTION

Hardware and software technologies are progressing fast, dramatically increasing the complexity
of modern computer systems. Even in the context of critical scenarios, we are witnessing a
paradigm shift from stand-alone and centralized systems toward large-scale and distributed
infrastructures; simple monolithic programs are being superseded by modular software
architectures, typically based on Off-The-Shelf (OTS) software items. This allows organizations
to be competitive by reducing development costs and the time to market. Testing and verification
activities along with fault tolerance techniques are massively used to satisfy dependability
requirements. The key for achieving fault tolerance is the ability to accurately detect, diagnose,
and recover from faults during system operation.

The great research effort striven in fault tolerant systems has provided good results with respect
to hardware-related errors. Recent examples are (Serafini, Bondavalli, & Suri, 2007) (Daidone,
Di Giandomenico, Chiaradonna, & Bondavalli, 2006) (Bondavalli, Chiaradonna, Cotroneo, &
Romano, 2004). However, it is well known that many systems outages are due to software faults
(Gray, 1985). These are bugs lying into the code, hence they are permanent in nature. This means
that, if a program contains a bug, any circumstances that cause it to fail once will always cause it
to fail. This is the reason for which software failures are often referred to as “systematic failures”

(Littlewood & Strigini, 2000). However, the failure process, i.e., the way the bugs are activated,
is not deterministic since (i) the sequence of inputs cannot be predicted, hence it is not possible
to establish which are the program's faults (and failures), and (ii) software failures can be due to
environmental conditions (e.g., timing and load profile) which activate a given fault rather than
another one. For this reason, it is said that software faults can manifest transiently. By failure we
intend the software modules/components failure in which the fault has been activated. This can
be viewed as fault from the whole system point of view (Joshi, Hiltunen, Sanders, & Schlichting,
2005). Activating conditions which cause a software fault to surface into a failure have been
recognized to be crucial in (Chillarege, et al., 1992), where they are defined as “triggers” and
where software bugs are grouped into orthogonal, non overlapping, defect types (Orthogonal
Defect Classification, ODC). Software faults which manifest permanently, also known as
Bohrbugs, are likely to be fixed and discovered during the pre-operational phases of system life
cycle (e.g., structured design, design review, quality assurance, unit, component and integration
testing, alpha/beta test), as well as by means of traditional debugging techniques. Conversely,
software faults which manifest transiently, also known as Heisenbugs, cannot be reproduced
systematically (Huang, Jalote, & Kintala, 1994), and they have been demonstrated to be the
major cause of failures in software systems, especially during the system operational phase
(Oppenheimer & Patterson, 2002) (Sullivan & Chillarege, 1991) (Chillarege, Biyani, &
Rosenthal, Measurement of Failure Rate in Widely Distributed Software, 1995) (Xu, Kalbarczyc,
& Iyer, 1999).

Focus in this work is on recovery oriented software fault diagnosis in complex fault tolerant
systems. Little attention has been paid so far to this problem, which plays a key role in
maintaining system health and in preserving fault tolerance capabilities. Previous studies on
software diagnosis aimed to identify software defects from their manifestations through off-line
and/or on-site analysis (Tucek, Lu, Huang, Xanthos, & Zhou, 2007). They aim to discover bugs
in the code, by using static/dynamic code screening, in order to perform more effective
maintenance operations. Thus, they are not able to catch Heisenbugs, in that environmental
factors which caused them are not easy to be localized into the code.

In this work, the aim of diagnosis is twofold. First, starting from outward symptoms we are
interested in identifying what are the execution misbehaviors which caused failure occurrence,
and where these misbehaviors come from, in order to trigger proper recovery actions. This is
crucial in complex, modular and distributed systems, for which the overall failure can be avoided
by confining, and masking, the individual failures of the parts (nodes, components, processes).
Second, we aim to provide information about manifested symptoms which are useful for off-line
maintenance activities.

The massive presence of OTS items, whose well-known dependability pitfalls do not hold
industries back from their usage in critical systems, further exacerbates the diagnosis problem. In
fact, faults can propagate in several ways and among several components, depending on a
complex combination of their internal state and of the execution environment. Actually, the
failures which result from unexpected faults, known as production run failures or field failures
(e.g., crashes, hangs and incorrect results), are the major contributors to system downtime and
dependability pitfalls (Tucek, Lu, Huang, Xanthos, & Zhou, 2007). They cause the system
failure modes to be not known at design time, and to evolve over time. To face this problem, we

believe that the detection has to be included into the diagnosis process, differently from most
existing approaches. As it has been demonstrated in (Vaidya & Pradham, 1994) with respect to
distributed systems recovery from a large number of faults, by combing detection and location
adaptively, the number of diagnosed faults increases over time at a low additional cost.

Addressed issues

This work defines a recovery-oriented diagnosis approach, to (i) locate the cause of a system's
component failure at run time, and (ii), trigger proper recovery actions, based on an estimate of
the fault nature, in the form of fault tolerance via fault masking techniques.

Several issues arise when designing this approach, which have not been addressed before. First,
the presence of software faults hampers the definition of a simple, and accurate, mathematical
model able to describe systems failure modes (hence, pure model based techniques become
inadequate). Second, due to the presence of OTS components, low intrusiveness in terms of
source code modifications is desirable. Third, diagnosis has to be performed on-line, i.e., a fault
has to be located as soon as possible during system execution and with lack of human guidance.
The reason for this is twofold. On the one hand, it is to fulfill strict time requirements, for system
recovery and reconfiguration, in the case of a fault. On the other hand, it is to face system
complexity with respect to ordinary system management and maintenance operations, whose
manual execution would result in strenuous human efforts and long completion times.

Paper’s contributions

This paper proposes a novel approach for on-line software fault diagnosis in complex and OTS
based critical systems. To the best of authors’ knowledge, this is the first proposal which
addresses on-line software diagnosis issues of complex and fault tolerant systems, and evaluates
in the context of a real world industrial application. Indeed, differently from most of the previous
work which proposed off-line/on-site diagnosis approaches aiming to locate bugs in the source
code, and sometimes the environmental conditions, we address the diagnosis problem during the
system operational phase. Thus, two are the key aspects:

• low intrusiveness: since we are addressing OTS-based systems, it is required that target
applications is not instrumented at all

• holistic diagnostic approach: Detection (D), Location (L), and Recovery (R) have been
integrated into one diagnosis process.

More specifically, the approach features:

• A detection strategy in charge of detecting application errors by exploiting OS support,
exhibiting high accuracy and low overhead. To face the partial ignorance about the
failure modes, the detection strategy is pessimistic and relies on the anomaly detection
paradigm. To the best of authors’ knowledge, this paradigm has not been applied yet for
fault/error detection in critical systems. Experimental results reveal that this approach is
promising.

• A novel fault location strategy in charge of (i) locating the cause of system
components/modules failures, and (ii) of triggering the most effective recovery action on
the basis of the detection output. More important, it is also in charge of solving detection
falls and of improving detection quality over time by means of feedback actions.

• The design of a recovery dictionary in charge of associating automatically the most
effective recovery mean to the occurred fault. This is also the main objective of (Joshi,
Hiltunen, Sanders, & Schlichting, 2005). Even if it is close in spirit to our work, that
work aims to optimize the sequence of recovery actions to be applied, whereas we apply
only the best one, by using monitors we implemented by our own.

SYSTEM MODEL AND ASSUMPTIONS

The target systems are assumed to be complex software systems, deployed on several nodes and
communicating through a network infrastructure. Each node is organized in software layers and
it is made up of several Diagnosable Units (DUs), representing atomic software entities, at it is
shown in Figure 1.

Figure 1: System’s node model

In most of the cases, the layered structure of each node encompasses the Operating System (OS),
the Middleware and the User Application levels. Since the focus is on software faults, such a
structure has been adopted, thus excluding the underlying hardware equipment. Such an
assumption sounds reasonable since modern systems are equipped with redundant and highly
reliable hardware platforms which are developed and extensively tested in house, especially in
the case of mission and safety critical systems. This means that hardware related faults will be
not diagnosed by the proposed DLR framework.

DUs are assumed to be processes. This means that a process is the smallest entity which can be
affected by a fault and for which it is possible to diagnose faults, as well as to perform
recoveries. Of course, the bug which caused the process to fail can be located within an OTS
library or module which is being executed in the context of the process; additionally,
propagations can occur among different nodes and layers. Look at Figure 2, where the process P1
experiences a failure due to the component C. However, the failure is actually located into the D
library, which is running in the context of a different process, P2 and the bug propagates to C
through y, e.g., due to an erroneous input from D to y. According to a recovery-oriented
perspective, addressing the process as the atomic entity of the system, it is enough to identify the
cause which induced the failure of the process, within the context of the process itself. In other
words, if a recovery action exists in charge of recovering the failed process by only acting on it,
it is unnecessary to go back through the propagation chain out of the context of the process. With
respect Figure 2, the failure of P1 will be attributed to y, which is the last link in the propagation
within the P1 context.

Figure 2: Diagnosis at process level.

Once the root cause has been identified the proper recovery action has to be selected. Hence, the
final output of diagnosis consists of a couple of vectors (D, R). The former associates the failed
node, by means of the IP address, to the failed process which is identified by the Process ID
(PID). The latter, instead, associates the experienced failure (f) to the recovery action to be
initiated (r). Schematically

D = (IPfailednode, PIDfailedprocess)
 R = (Failuref, Recoveryr)

The diagnosis output provides information about the failed process, rather than about the
component which caused the failure. This information would not be interesting for the final
users. However, it could be helpful for bug fixing and fault removal.

Failure modes

Crash, hangs and workload failures are encompassed by the proposed approach. A process crash
is the unexpected interruption of its execution due either to an external or an internal error. A
process hang, instead, can be defined as a stall of the process. Hangs can be due to several
causes, such as deadlock, livelock or waiting conditions on busy shared resources. As for
workload failures, they depend on the running application. Workload failures can be both value
(e.g., erroneous output provided by a function) or timing failures.

Since the target systems are distributed on several nodes, and since faults can propagate, the set
of the failures to be encompassed is given by FM=FxDUs, i.e., by the product set of the failure
types and of all the DUs (i.e., the processes).

Recovery actions

Since the focus of this paper is on diagnosis, we assume that some basic Fault Tolerant
services are provided by the middleware layer. For instance, in our industrial case study the used
middleware implements the standard Fault Tolerant OMG CORBA service (OMG, 2001). Thus,
the middleware is able to manage server replication, including issues related to state transfer
which usually follow system reconfiguration procedures. The proposed DLR framework
encompasses two classes of recovery actions:

• System Level Recovery, i.e., actions which aim to repair a failed process by acting at

system level. These actions are intended for dealing with crashes and hangs, and they can
be more or less costly depending on the size of the system, as well as on the number of
processes involved into the failure. Encompassed actions are system reboot, application
restart and process kill. Once one of these actions has been performed, the FT middleware
service will be able to restore the application.

• Workload Level Recovery, i.e., action which aim to repair application failures. These
actions are intended for dealing with workload failures, hence a knowledge of the
application semantic is required.

THE OVERALL APPROACH

Figure 3 gives an overall picture of the proposed approach, representing how it works from the
fault occurrence till system recovery.

Figure 3: A time snapshot of the overall DLR approach.

During the operational phase of the system, a monitoring system performs continuous

detection on each DU, exploiting Operating System (OS) support. Once a failure (F) occurs, an
alarm is triggered. This initiates the Location phase, aiming to identify the root cause of the
failure. Once the Location has been completed, the Recovery phase is started in order to recover
the failed process(es) and to resume normal activities. The task of detection consists of the alarm
triggering when a given process fails. Since if a process fails it is not assured that the system will
fail as well, a process failure is conceived as an error for the overall system. For this reason, the
task of detection is in fact error detection in the context of this work.

The overall approach is based on the machine learning paradigm, as in many previous papers

focusing on diagnosis (Yuan, et al., 2006) (Zheng, Lloyd, & Brewer, 2004) (Brun & Ernst,
2004). The main reason for this is the presence of field failures, which cannot be known at
design/development time. Indeed, such a paradigm makes the DLR engine, and all of its
components, able to learn over time. Thus, field failures influence the design of the entire engine,
from detection to recovery.

As for detection, an error is defined as a corruption in the state of a DU, which can impact in
turn on the state of the system. An alarm is triggered each time an anomaly is encountered in
system behavior; this is achieved by means of anomaly detection, i.e., all the conditions which
deviate from normal behaviors are labeled as errors. This is quite a pessimistic detection
strategy. In fact, not all the anomalies correspond to actual errors, i.e., this way errors can be
signaled even when the system is behaving correctly but that working condition has not been
recognized as normal. On the one hand, such a pessimistic strategy leads to a non negligible
amount of false positives, in that alarms are likely to be triggered which do not correspond to
actual errors. On the other hand, it allows to minimize the number of anomalous conditions
which are misinterpreted as normal behaviors, thus going unnoticed. This is crucial in the context
of critical systems in that unsignaled errors are in fact false negatives which may have

catastrophic effects. It is worth noting that reducing false positives, i.e., improving detection
accuracy, at design time has been the primary requirement of traditional detection system.

Once an alarm has been triggered, the Location phase is initiated to identify its root cause.
Along with the aim of pinpointing the actual fault, this phase has also to remedy detection
accuracy falls. More precisely, during this phase the presence of an actual fault has to be
established, since false positives are likely to be triggered by the detector. This means that the
location module behaves ``distrustfully'' to compensate the pessimistic detection. This is
achieved via the machine learning paradigm, which underlies this phase in the form of
classification. We separate faults into smaller classes, and give criteria for determining whether
an occurred fault is in a particular class or not.

Each fault class is represented as a set of features, i.e., a set of measurable properties (which
are inferred from OS and produced logs) of the observed DU. We adopt a pattern recognition
module which gathers observed features during system operation to be classified. Features are
determined experimentally; the relation between features and faults is therefore learned (or
trained) experimentally as well, and then stored to form an explicit knowledge base. Faults can
be identified by comparing the observed values of the features with the nominal ones.

Starting from manifestations (i.e., the errors), the location module has to infer the presence of
a fault and to associate it to a class. To design the fault classes properly, three circumstances has
to be considered:

1. SUSPECTED ERROR (SE): the triggered alarm was not the manifestation of an actual
fault, i.e., the detection module triggered a false positive. In this case, there is no need
neither for location nor for system recovery;

2. ERROR: a fault actually occurred that the location module is able to identify. In this case,
recovery actions have to be associated to the fault and initiated as soon as possible;

3. UNKNOWN FAULT: the triggered alarm was actually due to a fault which cannot be
identified during the location. This is the tricky case of a fault which is unknown, i.e., a
fault which never occurred before. In this case, the system has to be put in a safe state, and
further investigations are needed which can potentially require human intervention.

The location capability of uncovering false positives allows to improve the detection accuracy.
Actually, this is the aim of the feedback branch, namely “retraining”, depicted in Figure 3: once
an alarm has been labeled as a SE, the detection module is upgraded consequently. This allows a
reduction of the number of false positives over time, as it will be shown in the following
sections.

Recovery actions to be initiated in the case of an ERROR have been associated to the fault
classes. This is to perform recovery actions which are tailored for the particular fault that
occurred. Since the approach is intended for operational systems, two main phases are
encompassed. During the first phase, the DLR engine is trained in order to build a starting
knowledge. This is leveraged during the second phase, which is in fact the system operational
phase.

Figure 4: Training of the DLR engine

Figure 4 depicts the training process. In order to train the detection module, which performs
anomaly detection, faulty free executions (i.e., correct executions) of the system have to be run
in order to model its normal behavior (1). Conversely, fault injection (2) is required in order to
allow (i) the definition of the fault classes (3.a) and (ii), the collection and analysis of fault
related data to model system behavior in faulty conditions (3.b). DUs running into the system,
which are depicted as little triangles in the figure, are the injection target. Once faults have been
injected, the supervised training of the location classifier is performed (4), as detailed in section
location. At the end of the training phase, both the detection and the location classifiers can rely
on a starting knowledge about the target system. On the one hand this can be exploited during the
operational phase. On the other hand, the base knowledge has to be improved during the system
lifetime adaptively in order to take fields failures into account.

DETECTION

Good detection systems have to exhibit low overhead, i.e., they do not have to compromise
system resources, as well as low rates of missing and wrong detections. This is in order to reduce
the effects of a not handled fault, and the number of false alarms as well. These requirements
represent the most challenging issues when dealing with detection in several fields. As for
example, for intrusions detection within networked systems, performance overhead increases
with the traffic volume, and users behavior is difficult to characterize (i.e., licit users can behave
in unexpected manner thus being misinterpreted as attackers). Anomaly detection is the most
common and effective way to detect attacks (Becraft & Lee, 1993) (Forrest, Hofmeyr, Somayaji,
& Longstaff, 1996). However, to the best of authors’ knowledge it has not been used yet for error
detection in critical, dependable, systems.

In this work we use anomaly detection for error detection. Simply, if the monitored application
deviates from the normal behavior (i.e., faulty free executions), it is likely to be faulty. Normal
behavior is modeled in two steps. First, the identification of representative and synthetic
parameters; second, a training phase during which these are traced and characterized. Since it is
influenced by several factors, such as the hardware configuration and usage application profile,
the training phase should be repeated (manually or automatically) to take into account their
significant variations. Once the normal behavior has been modeled, the application is let run on
the field and it is continuously monitored. When deviations are encountered, i.e., when
parameters values differ from the modeled ones, the location phase is initiated aiming at
pinpointing the root cause of the error, as well as at uncovering and fixing detection falls, as
explained in the previous section.

In fact, DUs are the finest grain for detection, i.e., the above described detection process is
applied to all the application DUs. Although the detection process can be applied to several kinds
of DUs in principle, the way the detection is actually performed depends on their nature. As
stated in section II, in this work DUs are assumed to be OS processes, also seen as “collection”
of several threads. This is a very common abstraction used by computer systems. The behavior
of a process can be effectively described through its interactions with the OS resources, and with
all the other running processes as well. For this reason, we decided to trace these interactions by
means of several monitors. Since target systems are OTS based, monitors require neither any
internal knowledge of DUs nor their source code availability, i.e., DUs are considered as black
boxes.

Parameters and detection criteria

The following OS data, which can be to collected and analyzed with a low computational
overhead, are monitored to describe DUs behavior:

1. SIGNALS, i.e., notifications produced by the OS when providing services to the
application (e.g., numeric return codes returned by system calls, UNIX signals).
Erroneous OS notifications are logged (e.g., return codes different than zero, which
represent exceptional conditions and are relatively rare);

2. TIME EVENTS, i.e., the timestamp of interesting events for the application execution
(e.g., when a given resource becomes available, such as a semaphore). A log entry is
produced each time these events do not occur within a given interval, i.e., timeouts are
exceeded;

3. THROUGHPUT, i.e., the amount of data exchanged by OS processes through I/O
facilities (e.g., the throughput of network and disk devices). Upper and lower bounds are
associated with the I/O throughput; throughput is periodically sampled, and a log entry is
produced when bounds are exceeded.

Architecture and strategy

The architecture of the detection subsystem implemented in this work is depicted in Figure 5. It
is a modular system made up of several, simple, monitors which are combined to provide a

detection alarm. This is in order to get the most from each of them, in that monitors exhibit
different performances in terms of coverage (i.e., the ability to detect an actual fault) and
accuracy (e.g., the ability to avoid false alarms). Additionally, by combining monitors' responses
the total number of false positives (e.g., a timeout can be exceeded due to a particular overload
condition which is not an actual fault), can be minimized.

Being P the number of processes within the monitored application, monitors are associated to
each thread tj of the P processes. Hence they account for a total of P x tjk ∀ k=1..n, where n is
the number of monitored parameters. Monitors evaluate a triggering condition periodically (T
is the period). An alarm generator (αi) collects the output of all the monitors related to a given
parameter p for the i-th process. A counter n is incremented by αi if the monitored thread verifies
the triggering condition. The normal behavior of a process (and of a thread as well), is modeled
by associating a range of licit values to each alarm generator, specifically ri = [ri

-,r_i
+].

Figure 5: Detection architecture.

In practice, if the monitored value n for a given parameter p does fall outside ri within a temporal
window T, an alarm is triggered. Hence, the output of each αi is a binary variable defined as:

€

Fi =
1 if n∉ rin in T
0 otherwise
⎧
⎨
⎩

The range ri is tuned during the preliminary training phase. The number of events is periodically
sampled: the minimum and the maximum values which are experienced during faulty-free runs
constitute the limits of the range.
The Bayes' rule has been chose as the combination rule, hence the probability of a fault is
achieved by:

€

P(F | a) =
P(a |F)P(F)

P(a |F)P(F) + P(a |¬F)(1− P(F))

An alarm is triggered, if the estimated a posteriori probability exceeds a given threshold. In the
previous equation, F represents the event “faulty DU”, and a is a vector containing the output of
the alarm generators αi: if Fi = 1 for L consecutive periods T, then ai = L, in order to take into
account the alarm duration and to filter out “transient” false alarms (i.e., alarms triggered for
only a short amount of time). Note that we assume that monitors do not fail (i.e., produce false
alarms) at the same time. The joint probability distributions P(a | F) and P(a | ¬F), i.e., the
probability of detection and the probability of false alarms respectively (Cardenas, Baras, &
Seamon, 2006), have to be estimated during the training phase. The former can be estimated
using fault injection, by evaluating the number of occurrences of the a vector under faults, over
the total number of vectors collected during fault injection. Similarly, the latter can be estimated
by counting the number of occurrences of a during faulty-free executions. Finally, the a priori
fault probability P(F) has to be known. If field data are available about past fault occurrences,
P(F) can be estimated using the ratio T / MTTF (MTTF stands for Mean Time To Failure), i.e.,
on the average, the DU becomes faulty once every MTTF / T detection periods. Otherwise, P(F)
can only be gathered by literature, e.g., by using typical fault rates of complex software systems.

This detection approach reveals to be less intrusive that traditional techniques, such as those
based on heartbeat, which also require extra code to be written at application level and can fail in
the case of multithreaded applications. Additionally, the proposed approach is able to exploit OS
information which would be not available if remote detection were performed: as for example, it
allows to discern the nature of a process stuck (e.g., deadlock or I/O waiting).

Monitors

The detection system has been implemented to be compliant with a POSIX operating system. In
particular, we developed it under the Linux OS, and the following monitors have been
implemented for controlling the detection parameters:

Time-related monitors:

• Waiting time on semaphores. The delay between time in which a task \footnote{A thread
in the Linux jargon} requests for a semaphore and the time the semaphore is actually
acquired is measured, for each semaphore and task. An exceeded timeout can be
symptom of a deadlock between the threads in a process, or between several processes on
the same node.

• Holding time on semaphores. The delay between the time in which the task has acquired
a semaphore and the time the semaphore is released is measured for each semaphore and
task. An exceeded timeout can be due to a process blocked within a critical section.

• Task schedulation timeout. The delay between the preemption of a task (e.g., when its
time slice is exhausted and the CPU is granted to another task), and the next schedulation
of the same task is measured for each task. This way, blocked tasks due to indefinite wait
can be detected. For example, the block can be due to a fault within the task, or to the
stall of the overall application (hence not only to deadlocks).

• Send/receive timeout on a socket. The delay between two consecutive packets sent on a
given socket (both from and to the monitored task) is measured, for each task and socket.
This allows to detect stop and omission error of a given task.

Signals related monitors:

• UNIX system calls, UNIX signals. Applications use system calls to forward requests to
the OS (e.g., access to hardware devices, process communication, etc.). In UNIX
systems, each system call can return a given set of codes which reflect exceptions when
the system call exits prematurely. Error codes may be both due to hardware faults and to
application misbehaviors (e.g., unavailable file or socket is accessed). Similarly, signals
are used by the OS to notify exceptional events which are not related to a system call
(e.g., memory denied memory access).

• Task lifecycle. The allocation and the termination of a task and its descendants are
monitored. In fact, when a task terminates, either voluntarily or forcedly, it is deallocated
by the OS, and an error code is returned to the parent process; a common rule is to return
a non null code in if there is an error.

Throughput monitor:

• I/O throughput. This monitor takes into account performance failures which may affect
the application. In fact, when the application is running in degraded mode (e.g., due to
resource exhaustion or overloading), it can be observed an anomalous amount of data
(either too low or too high) produced or consumed by the running tasks. In order to keep
the overhead low, we considered a simple detection algorithm based on upper and lower
bounds for the I/O transfer rate. Bytes read from and written to disks, as well as bytes to
and from the network devices were taken into account. Disk and network operations
(both in input and output) within the kernel were probed, and the amount of bytes
transferred within a second is sampled periodically (we refer to a sample as X(t)). The
bounds applied to each metric have to be chosen conservatively (i.e., out-of-bound
samples are infrequent during normal operation), in order to reduce the amount of false
positives. A reasonable way to choose the bounds is to profile the task for a long time
period, and to establish the bounds on first-order statistics (i.e., mean and standard
deviation) of I/O samples. In this case, the detection algorithm can be described as
follows:

€

y =

1 if X(t) > mX and X(t) −mX > k +σX

1 if X(t) < mX and X(t) −mX < k −σX

0 otherwise

⎧

⎨
⎪

⎩
⎪

were mX and σX are the mean and the standard deviation of the profiled samples during
the training phase, k+ and k- are constants preliminarily set by the user (greater constants
will lead to more conservative bounds). In order to take into account bursty and idle
periods, a threshold C is chosen such that an error log entry is produced only if C
consecutive out-of-bound samples occurs; C can be set to the maximum length of bursty
or idle periods occurred during the training phase.

Monitors, which are summarized in table 1, have been implemented by means of dynamic
probing: the execution flow of the OS is interrupted when specific instructions are executed
(similarly to breakpoints in debuggers), and ad-hoc routines are invoked to collect data about the
execution (i.e., to analyze OS resource usage by monitored applications). Note that dynamic
probing was only used for measurement and detection purposes, and no attempt is made to
modify kernel and processes execution.

Table 1: Monitors running on the Linux Operating System for fault detection.

Monitor Triggering condition Parameters Domain
UNIX system calls An error code is returned Window length Syscalls × ErrCodes

UNIX signals A signal is received by the task Window length Signals
Task schedulation

timeout
Timeout exceeded (since the

task is preempted)
Timeout value [0, ∞]

Waiting time on
semaphores

Timeout exceeded (since the
task begins to wait)

Timeout value [0, ∞]

Holding time in
critical sections

Timeout exceeded (since the
task acquires a lock)

Timeout value [0, ∞]

Task lifecycle Task allocation or termination Window length Lifecycle event
I/O throughput Bound exceeded for C

consecutive samples
Threshold C [0, ∞]

Send/receive
timeout on a socket

Timeout exceeded (since a
packet is sent over a socket)

Timeout value [0, ∞]

Detection features for location

Monitored data have been translated into a vector of real numbers (features) in order to be
exploited by the location classifier. OS features are provided to the location classifier in order to
provide it with insights into the alarms triggered by the detection. This is to allow the
discrimination between false positives (i.e., SE) and actual faults. Features can be both binary
(e.g., they represent the occurrence of an event, like an error of a system call) and real values
(e.g., statistics about timeouts within the system, like tasks schedulation times within a DU).
Selected features are summarized in table 2.

Table 2: Features gathered by OS monitors.

Monitor Number of features Description
UNIX system calls 1141 For each pair (syscall, error code), there is a binary

feature (it is 1 if the pair occurred, 0 otherwise)
UNIX signals 32 For each signal, there is a binary feature (it is 1 if

the signal occurred, 0 otherwise)
Task schedulation

timeout
4 The mean, the standard deviation, the minimum,

and the maximum waiting time for schedulation of
DU’s tasks

Waiting time on 4 The mean, the standard deviation, the minimum,

semaphores and the maximum waiting time for a semaphore of
DU’s tasks

Holding time in
critical sections

4 The mean, the standard deviation, the minimum,
and the maximum holding time for a semaphore of

DU’s tasks
Task lifecycle 2 Binary features representing the occurrence of tasks

newly allocated or deallocated, respectively
I/O throughput 1 Binary feature (it is 1 if the throughput exceeded a

bound, 0 otherwise)
Send/receive

timeout on a socket
2*4*number of

nodes
For each node in the system, the mean, the standard

deviation, the minimum, and the maximum time
since last packet sent over sockets to that node,

both in input and in output

LOCATION AND RECOVERY

The machine learning paradigm underlies the location phase in the form of classification. This
approach has been used in several works trying to solve different problems, e.g., works focusing
on document classification (Manevitz & Yousef, 2002) (Jagadeesh, Bose, & Srinivasan, 2005) or
aiming to find latent errors in software programs (Brun & Ernst, 2004). The location classifier
has been trained in a supervised way, by the means of the pseudo-algorithm in figure 6.

Figure 6: Supervised training of the location classifier.

The basic idea is to associate recovery actions to each experienced fault, thus keeping the
classifier aware of the most suitable recovery action to start in the case of actual faults. In fact,

for each DU in the system, injected faults are added to the training set, if unknown. This way, a
base knowledge is built by exploiting human insights.

Support Vector Machines (SVM) have been used for performing classification. The high-
performance algorithm they rely on has been commonly used across a wide range of text
classification problems, and they demonstrate to perform effectively for handling large datasets
(Joachims, 1998).

SVM classifiers have been mainly introduced to the aim of solving binary problems, where the
class label can take only two different values, and which can be solved by discriminating the
decision boundary between the two classes. However, real world problems often require to take
more complex decisions, i.e., to discriminate among more than two classes, hence SVM have
been extended for handling multi-class problems. Multi-Class SVMs (MCSVMs), can be
achieved in two ways: (i) by combining several standard, one-class, SVM classifiers, and (ii) by
formulating a single optimization criteria for the whole set of available data. The basic idea
underlying the SVM classification is to find the maximum margin hyperplane which provides the
maximum margin among the classes. For non-linearly separable problems, the original data are
projected into a certain high dimensional Euclidean space by means of a kernel function (K).
Classification results depend on the proper choice of the kernel function; the (gaussian) Radial
Basis Function is a commonly used kernel function. Furthermore, in their original formulation,
they do not provide any estimation of their classification confidence, hence they do not allow to
leverage any a-priori information which, if available, can be crucial to integrate into the
classification process to yield reliable results. A probabilistic SVM variant has been developed to
face this issue, even for multi-class problems (MPSVM). It is able to provide a probability value
indicating at what extent a given sample belongs to a class; hence, its output is in fact a vector of
probabilities whose length equals the number of classes. A formal and thorough discussion about
SVM mathematical basis is beyond the scope of this paper. The interested reader can exploit a
substantial literature (Joachims, 1998) or (Vapnik, 1995) can be pursued for an in-depth
description.

In this work we use MPSVM variant and we leverage output probabilities to properly diagnose
Unknown Faults (see section III), as well as to unmask detection of false positives (i.e.,
SUSPECTED ERRORS in section III). More precisely, we introduce a notion of confidence, C,
which is in fact the maximum element of the output probability vector provided by the classifier.
A fault is claimed unknown if C is less than a given threshold, t. As for suspected errors, a
special class of faults, “No Fault”, has been introduced: if the classifier is confident that a given
fault belongs to this class, (i.e., C ≥ t), a suspected error is stated. The monitor which triggered
the alarm is retrained in this case, by modifying the joint probability distributions in the Bayes’
rule. Additionally, no recovery action has to be initiated. Of course, the choice of t impacts on
the diagnosis quality, hence we performed a sensitivity analysis, as it will be detailed in the next
section. Figure 7 shows diagnosis response with respect to the location output.

Figure 7: Diagnosis response with respect to location output.

EXPERIMENTAL FRAMEWORK AND RESULTS

Case study introduction

We evaluate the proposed DLR approach on a real case study from the Air Traffic Control (ATC)
domain, within the framework of an industrial partnership with Finmeccanica group (COSMIC
project, http://www.cosmiclab.it). The case study consists of a complex distributed application
for Flight Data Processing. It is in charge of processing aircrafts data produced by Radar Track
Generators, by updating the contents of Flight Data Plans (FDPs), and distributing them to flight
controllers. The overall (simplified) architecture is depicted in figure 8; it is based on
CARDAMOM (http://cardamom.objectweb.org (Corsaro, 2005)), i.e., an open-source
CORBA middleware, for mission and safety critical applications which is compliant with OMG
FT CORBA specifications (OMG, 2001). Furthermore, it makes use of OTS software items, such
as the Data Distribution Service (DDS) implementation provided by RTI (http://www.rti.com)
for publish-subscribe communication among components, and the ACE orb
(http://www.theaceorb.com) on which CARDAMOM relies. The architecture is made up of
several components:

Figure 8: Case study architecture.

• Facade component, i.e., the interface between the clients (e.g., the flight controller
console) and the rest of the system (conforming to the Facade GoF design pattern); it
provides a remote object API for the atomic addition, removal, and update of FDPs. The
Facade is replicated according to the warm-passive replication schema. It stores the FDPs
along with a lock table for FDPs access serialization.

• Processing Server : it is in charge of processing FDPs on demand, by taking into account
information from the Correlation Component and the FDPs published on the internal
DDS. This component is replicated three times on different nodes, and FDP operations
are balanced among servers with a round-robin policy.

• Correlation component, which collects flight tracks generated by radars, and associates
them to FDPs, by means of Correlation Managers (CORLM in the figure 8).

The workload generates requests to the Facade component, both for flight tracks and FDP
updates, in a random way and at a predefined average rate.

Objectives

Conducted experiments aim to demonstrate that:

• The detection approach is able to exploit several low-overhead and inaccurate monitors,
by keeping low the false positive rate and the detection latency as well.

• The proposed location and recovery modules are able to correctly locate the root cause of
a known fault within the system, and to trigger the proper recovery action in an on-line
manner.

• The implemented DLR framework is able to partially discover unknown faults within the
system. This is useful to trigger off-line maintenance (e.g., by alerting a human operator).

Evaluation metrics

According to (Cardenas, Baras, & Seamon, 2006), the following quality metrics have been used
to evaluate detection approaches:

• Coverage: the conditional probability that, if there is a fault, it will detected. It is
estimated by the ratio between the number of detected faults and the number of injected
faults.

• False positive rate: the conditional probability that, if there is not a fault, an alarm will be
issued. It is estimated by the ratio between the number of false alarms and the number of
normal events monitored.

• Latency: the time between the execution of the fault-injected code, and the time of
detection; it is an upper bound of the time between fault activation and the time of
detection.

• Overhead: we consider the average execution time of remote methods implemented in the
Facade remote object; in particular, we focus on the less and the most costly methods, in
terms of execution time (respectively, update_callback, and request_return).

According to (Sebastiani, 2002) (Kim, Whitethead, & Zhang, 2008), the following metrics have
been used to evaluate the location engine:

• Accuracy: the percentage of faults which are classified correctly, with respect to all
activated faults. Letting A and B be two classes, it can be expressed as:

€

A =
TPA +TPB

TPA + FPA +TPB + FPB

• Precision: this metric is referred to individual classes; it represents the conditional
probability that, if a fault is classified as belonging to class A, the decision is correct. It
can be expressed as:

€

P =
TPA

TPA + FPA

• Recall: this metric is referred to individual classes; it represents the conditional
probability that, if a fault belongs to class A, the classifier decides for A.

€

R =
TPA

TPA + FNA

In the previous equations, the quantities TPA, FPA and FNA represent, respectively, the number
of True Positives (i.e., the samples of A are classified as A), False Positives (i.e., the samples not
of A are classified as A), and False Negatives (i.e., the samples of A are not classified as A).

Faultload

In order to evaluate the proposed fault detection and location techniques, we designed a realistic
faultload based on the field data study conducted by (Duraes & Madeira, 2006). Faults have been
injected in the source code of application-level components (i.e., the Facade and the processing
servers), using the most common fault operators. Injected faults are detailed in table 3.

Table 3: Source-code faults injected in the case study application.

ODC DEFECT
TYPE

FAULT
NATURE

FAULT TYPE #

8
5

MISSING MVIV - Missing Variable Initialization using a Value
MVAV - Missing Variable Assignment using a Value
MVAE - Missing Variable Assignment using an
Expression

5

WRONG MVAV - Wrong Value Assigned to Variable 26

Assignment
(63.89%)

EXTRANEOUS EVAV - Extraneous Variable Assignment using
another Variable

2

MISSING MIA - Missing IF construct Around statement 2 Checking
(6.94%) WRONG WLEC - Wrong logical expression used as branch

condition
3

MISSING MLPA - Missing small and Localized Part of the
Algorithm

2 Interface
(4.17%)

WRONG WPFV - Wrong variable used in Parameter of
Function Call

1

13
1

Algorithm
(20.83%)

MISSING MFC - Missing Function Call
MIEB - Missing IF construct plus statement plus
ELSE Before statement
MIFS - Missing IF construct plus statement

1

MISSING MFCT - Missing Functionality 2 Function
(4.17%) WRONG WALL - Wrong Algorithm (Large modifications) 1
Total 72

Fault types listed in the table are representative of the most common mistakes made by
programmers. In particular, according to the Orthogonal Defect Classification, faults can be
characterized by the change in the code that is necessary to correct it. Therefore, in order to
emulate a software fault, we have to choose an adequate source code location, which is similar to
ones containing faults from the field. Faults operators in (Duraes & Madeira, 2006) describe the
rules to locate representative fault locations within source code. The operators were applied to
components according to software complexity metrics, in order to choice the source locations
containing the most of residual faults (Moraes, Duraes, Barbosa, Martins, & Madeira, 2007). The

most complex target components, in term of Lines Of Code (LOCs) and cyclomatic complexity,
turned out to be the C++ classes implementing the Facade and Processing Server remote objects;
we have injected, respectively, 56 and 16 source-code faults in them.

Before each fault injection campaign, source-code faults are randomly divided in two distinct
sets, namely training set and test set. These are characterized by the same size, and the same
number of source-code faults. Training sets are used to setup the detection and location
techniques, and test sets are used to evaluate their effectiveness. Each fault injection experiment
encompasses only one source-code fault at a time.

Adopted testbed

We used a cluster machine made up of 128 nodes. The system deployment consists of 9
machines (two Facade replicas, one for the CARDAMOM FT service, one for Load Balancing
Service, three for the FDP processing servers, and 2 nodes are allocated to the Client and to
CORLM component, respectively) wired by Gigabit LAN. In order to have more reliable results,
and not be biased by hardware errors, we partitioned the cluster in 10 LANs. Thus, each
experiment was lunched on the 10 partions, simultaneously. Results are then filtered and
averaged. The hardware configuration of testing machines is made up of 2 Xeon Hyper-Threaded
2.8GHz CPUs, 3.6GB of physical memory, and a Gigabit Ethernet interface; machines are
interconnected by a 56 Gbps switch, and they are equipped with the Linux OS with kernel
v.2.6.25.

DLR in the case study

The DLR approach was applied to the considered case study, by defining the features and the
classes used for fault diagnosis. In particular, the binaries and the libraries of both the application
and OTS libraries (e.g., CARDAMOM, TAO) were inspected to extract potential error messages
produced by them (using the strings UNIX utility). Several error messages were collected, and a
dictionary of words was build on them. The total amount of features from all the monitored DUs
and logs was 17171 (see table 4).

Table 4: Features used for diagnosis in the case study application.

Number of log file types 8
Number of monitored log files 16

Number of OTS libraries 87
Number of potential log messages 7691

Number of unique tokens within log messages 6043
Number of application keywords 33
Monitored processes by the OS Façade, 3 Servers

Number of OS features (per process) 1250
Total amount of features 17171

The location classifier was trained using fault injection, and fault classes were identified using
the proposed approach (see table 5). For each class, the root cause is represented by the
component in which the fault was injected during the training phase. A proper recovery mean has
been associated to each fault class.

Table 5: Diagnosis fault classes.

 FAULT TYPE FAULT LOCATION RECOVERY
Class 0 No fault None The system is correctly working.
Class 1 Crash Façade Activate the backup replica; a new backup

replica is activated.
Class 2 Passive hang Façade Free all resources locked by semaphores,

and kill the preempted transaction. The
correctness of this recovery is due to the
specific application properties (e.g., the
FDP will be correctly updated by the next
update operation); another recovery mean
would be to kill the hung Façade and treat it
as a crashed Façade.

Class 3 Crash Server Reboot the server process; add it to the load
balanced group.

Class 4 Passive hang
(at start time)

Façade Reboot the whole application. The
application start may fail because of
transient faults, then the reboot may succeed
on the second try. If the application still
does not start, human intervention is
requested.

Measurements

Detection:

As a basis for comparison, we first evaluated the performance of individual monitors. For each
monitor, a sensitivity analysis has been made, letting parameter's value of each monitor vary
within the range [1s, 4s] (see table 1). The best values for all detectors, with respect to the
Facade and Server DUs respectively, are shown in tables 6 and 7. Different monitors achieve
different performances in terms of coverage, since they are suited for different failure modes;
actually, monitors are unable to achieve full coverage, except for the SOCKET monitor.
Furthermore, performances vary with respect to the considered DU. As for example, in the case
of the processing server, only crashes (i.e., class 3 in table 5) have been observed, hence no faults

have been identified by monitors controlling blocking conditions (e.g., wait for a semaphore).
The reason for which all the monitors experience the same mean latency value, is that they have
been triggered all together after the abortion of the processing server DU.

Table 6: Coverage, false positive rate, and latency provided by the individual detectors for the
Façade DU.

Detector Parameter Coverage False positive rate Mean Latency (ms)
UNIX semaphores hold
timeout

4 s 64.5% 36.08% 1965.65

UNIX semaphores wait
timeout

2 s 67.7% 1.7% 521.18

Pthread mutexes hold
timeout

4 s 64.5% 4.01% 469.51

Pthread mutexes wait
timeout

- 0% 0% -

Schedulation threshold 4 s 74.1% 3.25% 1912.22
Syscall error codes 1 s 45.1% 0.6% 768.97
Process exit 1 s 45.1% 0% 830.64
Signals 1 s 45.1% 0% 816.57
Task lifecycle 1 s 35.4% 0.05% 375.7
I/O throughput network
input

3 s 77.3% 0.4% 4476.67

I/O throughput network
output

3 s 77.3% 0.2% 2986.4

I/O throughput disk reads 3 s 70.9% 0.4% 4930
I/O throughput disk writes 2 s 67.6% 0.05% 6168.57
Sockets 4 s 100% 3.47% 469.58

Detector Parameter Coverage False positive rate Mean Latency (ms)
UNIX semaphores hold
timeout

2 s 0% 3.61% -

UNIX semaphores wait
timeout

2 s 0% 2.28% -

Pthread mutexes hold
timeout

2 s 0% 4.44% -

Pthread mutexes wait
timeout

- 0% 0% -

Schedulation threshold 1 s 0% 3.25% -

Syscall error codes 1 s 100% 0.98% 522.5
Process exit 1 s 100% 0.005% 522.5
Signals 1 s 100% 0.005% 522.5
Task lifecycle 1 s 100% 0.22% 522.5
I/O throughput network
input

3 s 100% 0.49% 522.5

I/O throughput network
output

3 s 100% 87.35% 522.5

I/O throughput disk reads 3 s 100% 79.31% 522.5
I/O throughput disk writes 3 s 100% 77.77% 522.5
Sockets 2 s 100% 3.14% 522.5

Several monitors provided a small number of false positives, even if there were monitors which
provided an unacceptably high false alarm rate. For this reason, it is important to filter false
positives in order to include those monitors within the system (this is useful to increase the
amount of covered faults, and to deliver more information to the location phase).

Table 8 shows the performances achieved by the joint detection algorithm. It can be seen that the
joint detector is able to achieve the full coverage of all injected faults, while keeping low the
false positive rate (it is comparable to the best rates in tables 6 and 7). Another benefit given by
the joint detection is the much lower latency: in fact, when one of the individual monitors
produce an anomalous value, the other detectors are immediately inspected for anomalies,
providing a lower mean detection time.

Table 8: Coverage, accuracy, and latency provided by the joint detection approach.

 Façade Server
Coverage 100% 100%

False positive rate 4.85% 6.86%
Mean Latency 100.26±135.76 ms 165.67±122.43 ms

Finally, the overhead of continuous monitoring DUs at the O.S. level has been measured, by
varying the request rate from the client; figures 9 and 10 show the execution time observed with
and without monitors. It should be noted that the overhead was lower that 10% in every case,
even during most intensive workload periods.

Figure 9: Overhead imposed to the execution of Façade's “update_callback” method.

Figure 10: Overhead imposed to the execution of Façade's “request_return” method.

Location:

We evaluated the performance of the location phase with respect to both known faults (i.e., faults
similar to ones observed during the training phase) and unknown faults (i.e., faults completely
different than all known ones). First, we excluded faults belonging to class 4 from the training
set, and evaluated location capability with respect to the remaining (known) classes, using a low
confidence level (C = 0.9); in all the cases, the location was able to identify the correct fault
class. Moreover, the location was able to identify all false positives produced by detection during
faulty-free execution.

Next, faults belonging to class 4 were used for testing location; results are shown in table 9. It is
shown that, although all known faults are correctly classified for $C = 0.9$, only a small amount
of unknown faults were identified (represented by the Recall measure for unknown faults); in the
most of cases, the locator wrongly classified an unknown fault as a known one. Therefore, we
made a sensitivity analysis on the confidence level C, in order to discover the confidence level
needed for the correct identification of unknown faults. It should be noted that an increase in the
required confidence level for location, reduces the amount of known faults correctly identified;
therefore, human intervention could be required even for known (but not trustfully classified)

faults. Nevertheless, it can be noted that, by increasing the confidence level, a better trade-off
between identification of known and unknown faults can be achieved: a confidence level $C =
0.99$ or $C = 0.995$ still provides fully correct known fault classification, with a higher amount
of unknown faults identified.

Table 9: Classification diagnosis evaluation, when deliberately excluding class 4 from the
training (UNKNOWN). When a fault was classified as KNOWN, in all cases it was also correctly
classified with respect to table 5.

Confidence ACCURACY P(KNOWN) R(KNOWN) P(UNKNOWN) R(UNKNOWN)

0.9 60% 59.09% 100% 100% 5.26%
0.99 75.56% 70.27% 100% 100% 42.11%
0.995 77.78% 73.52% 96.15% 90.91% 52.63%
0.999 75.56% 80% 76.92% 70% 73.68%
0.9999 42.22% n.a. 0% 42.22% 100%

After that, we included in the training set half the samples of class 4, becoming a known fault.
Results with the respect to the confidence level are shown in table 10; known fault classification
is still very high for more demanding confidence levels (i.e., C = 0.9, C = 0.99).

Table 10: Classification diagnosis evaluation, when including all 5 classes in the training. When
a fault was classified as KNOWN, in all cases it was also correctly classified with respect to
table 5.

Confidence ACCURACY

0.9 100%
0.99 94.29%
0.995 94.29%
0.999 71.43%
0.9999 25.71%

In table 11, the mean time for detection data collection and classification are shown. It can been
seen than the total amount of time required to diagnose a fault (the sum of mean detection,
collection, and location times on the average) is about 1.2 seconds, which is reasonable for a
large class of critical COTS-based systems.

Table 11: Time measurements for the location phase.

Mean time for data collection 84.4 ± 115.11 ms

Mean time for location 917.14 ± 23.63 ms

Finally, figure 11 shows the (cumulative) amount of false positives produced by joint detection
during a long period of time. The location has been configured to retrain the detector which
erroneously triggered the location, by updating the joint probability distribution P(a | ¬ F). This
produced a dramatic decrease of the false positives rate after less than an hour of execution, by
filtering most common false positive patterns occurring during the detection phase.

Figure 11: Cumulative number of false positives during time, using the location output to retrain
detection joint probabilities.

RELATED WORK

The issue of diagnosis is being faced since a long time, maybe since computers came. The first
attempt to formalize the problem is due to (Preparata, Metze, & Chien, 1967) which introduced
system level diagnosis. The model they proposed in 1967 (also known as the PMC model)
assumed the system to be made up of several units which test one another, and test results are
leveraged to diagnose faulty units. Several extensions to this model have been proposed, even
recently (e.g., (Vaidya & Pradham, 1994) where the safe system level diagnosis has been
proposed).

In the last decade or so, there has being an increasing work focusing on diagnosis in order to face
the problem by several perspectives and by using quite different techniques. For this reason, we
tried to leverage existing solutions to similar problems, as well as to use approaches close to the
ours which have been rather used to face different issues.

Similar approaches to similar problems (SASP)

The goal of identifying automatically the root cause of a failure is pursued in (Yuan, et al.,
2006). Authors propose a trace-based problem diagnosis methodology, which relies on the trace
of low level system behaviors to deduce problems of computer systems. Transient events
occurring in the system (e.g., system calls, I/O requests, call stacks, context switches) are traced
in order to (i) identify the correlations between system behaviors and known problems and (ii),
use the learned knowledge to solve new (i.e., not known) problems. These goals are achieved by
means of statistical learning techniques, based on SVMs, similarly to our work. The ultimate aim

that authors want to pursue is to make the problem identification fully automatic, thus
eliminating human involvement. We have a different goal, in that we also aim to trigger recovery
actions. Furthermore, the symptom of the problem needs to be reproduced before the root cause
detection.

A decision tree based approach is presented in (Zheng, Lloyd, & Brewer, 2004) to diagnose
problems in Large Internet Services. Similarly to what we do in this work, runtime properties of
the system (they record clients requests) are monitored; automated machine learning
and data mining techniques are used to identify the causes of failures. The proposed approach is
evaluated by measuring precision and recall, similarly to what we do for evaluating diagnosis
quality. However, our work differs from this one for what concerns with detection. In fact,
detection is not encompassed in (Zheng, Lloyd, & Brewer, 2004): authors assume problems to
have been already detected and they only concentrate on identifying the root cause, in order to
trigger a fast recovery.

Similar approaches to different problems (SADP)

(Podgurski, et al., 2003) proposes an automated support for classifying reported software failures
in order to facilitate the diagnosing of their root causes. The authors use a classification strategy
which makes us of supervised and unsupervised pattern classification, as we do for location and
detection respectively. Additionally, they also concentrate on the importance of features
selection and extraction, as we do. However, the classification performed in this work aims to
group failures which are due to the same cause and it is conceived as a mean for helping actual
diagnosis. Conversely, we actually perform diagnosis by means of classification.

A very recent work which uses a machine learning approach based on SVM classification is
(Kim, Whitethead, & Zhang, 2008). Its main goal is to predict the presence of latent software
bugs in software changes (change classification). In particular, a machine learning SVM
classifier is used to determine whether a new software change is more similar to prior buggy
changes or clean changes. In this manner, change classification predicts the existence of bugs in
software changes. We have in common with this work the classification problem, its formulation
and the process of feature extraction.

Machine learning approach has also been used in (Brun & Ernst, 2004) for identifying program
properties that indicate errors. The technique generates machine learning models of program
properties known to result from errors, and applies these models to program properties
of user-written code to classify the properties that may lead the user to errors. SVMs and
decision trees are used for classification. The effectiveness of the proposed approach has been
demonstrated with respect to C, C++, and Java programs. However it requires human labor to
find the bugs, and the process is not fully automatic.

(Aguilera, Mogul, Wiener, Reynolds, & Muthitacharoen, 2003) address the problem of locating
performance bottlenecks in a distributed system with only internode
communication traces. They infer the causal paths through multi-tier distributed applications
from message level traces, in order to detect the node causing extraordinary delay. They share
with us the great attention which is paid to the presence of OTS items, as well as the fact that the

approach requires no modifications to applications and middleware. The major differences with
our work are (i) the fact that they pay more attention to performance rather than on faults and
(ii), the fact that they perform off-line diagnosis of the problem.

As for Bayesian estimation, a worth noting work to be referred is (Chang, Lander, Lu, & Wells,
1993) which addresses system diagnosis problems. It refers to comparison-based system analysis
to deal with incomplete test coverage, unknown numbers of faulty units, and non-permanent
faults. However, only one type of monitor is used in that work and also recovery is not
encompassed.

Different approaches to similar problems (DASP)

Closely related to our work in goals is (Joshi, Hiltunen, Sanders, & Schlichting, 2005), which
cares about automatic model driven recovery in distributed systems. Similarly to what we do,
authors exploit a set of a limited coverage monitors whose output are combined in a certain way
prior to trigger recovery actions. Additionally they also have a Bayesian Faults Diagnosis engine
in charge of locating the problem, as well as to pilot a recovery controller that can choose
recovery actions based on several optimization criteria. Similarly to the approach we propose,
the approach proposed in (Joshi, Hiltunen, Sanders, & Schlichting, 2005) is able to detect
whether a problem is beyond its diagnosis and recovery capabilities, and thus to determine when
a human operator needs to be alerted. Despite of these common purposes, we take an opposite
perspective in that we do not follow a model based approach since modeling the complex
software systems we are addressing could be too difficult and inaccurate. Additionally, our work
is different in several points. First, they propose incremental recovery actions whereas we
directly start the best one action able to repair the system. Second, we always use the entire set of
``always-on'' monitors to detect errors instead of invoking additional monitors when needed.
Third, we use fault injection to experimentally prove the effectiveness of the approach rather
than for making a comparison with a theoretical optimum.

(Khanna, Laguna, Arshad, & Bagchi, 2007) face the problem of diagnosis in networked
environments made up of black-box entities. This goal is achieved by (i) tracing messages to
build a causal dependency structure between the components (ii), by tracing back the causal
structure when a failure is detected and (iii), by testing components using diagnostic tests.
Runtime observations are used to estimate the parameters that bear on the possibility of error
propagation, such as unreliability of links and error masking capabilities. The work aims to
provide diagnosis of the faulty entities at runtime in a non-intrusive manner to the application.
Differently from this work, we do not build causal structure of the system since we do not make
any assumption on the structure of the system itself. The main point in common is the fact that
we pursue on-line diagnosis as well.

(Brown, Kar, & Keller, 2001) defines a methodology for identifying and characterizing dynamic
dependencies between system components in distributed application environments, which relies
on active perturbation of the system. This is in order to identify dependencies, as well as to
compute dependency strengths. Even if discovering system dependencies automatically could be
a good way for root cause analysis, it is assumed a deep knowledge of system internals. In
particular, authors assume to completely know end-users interaction with the system (they use a

well known TPC benchmark). We take the opposite position in that we do not require such a
knowledge. Furthermore, the Active Dependency Discovery approach which is defined in that
work, reveals to be strongly intrusive and workload dependent.

A further worth referring work is (Chen, Kiciman, Fratkin, Fox, & Brewer, 2002), where the
Pinpoint framework is defined. It employs statistical learning techniques to diagnose failures in a
Web farm environment. After the traces with respect to different client requests are collected,
data mining algorithms are used to identify the components most relevant to a failure. We share
with that work the “learning from system behavior” philosophy. However, there is a difference in
goals, since we want to detect and diagnose faults in order to determine the cause of the failure
and trigger recovery action. Conversely, Pinpoint aims to recognize which component in a
distributed system is more likely to be faulty. Fault injection is used also in (Chen, Kiciman,
Fratkin, Fox, & Brewer, 2002) to prove the effectiveness of the approach. The major limitation
of this approach are that (i) it is suitable only for small scale software programs, and (ii) it
exhibit a significant logging. We differ from that work in two main points: (i) the Pinpoint
framework is designed to work off-line and (ii), it is not a recovery-oriented approach.

Finally, on-site failure diagnosis is faced in (Tucek, Lu, Huang, Xanthos, & Zhou, 2007). The
work aims to capture the failure point and conduct just-in-time failure diagnosis with checkpoint-
reexecution system support. Lightweight checkpoints are taken during execution and rolls back
are performed to recent checkpoints for diagnosis after a failure has occurred. Delta generation
and delta analysis are exploited to speculatively modify the inputs and execution environment to
create many similar but successful and failing replays to identify failure-triggering conditions.
We discard a similar approach since Heisenbugs can be unreproducible this way: in fact, their
conditions of activation are hard to identify (Grottke & Trivedi, 2007). Furthermore, long time is
required (almost five minutes) to complete the process: this can be not tolerable for safety critical
systems. Table 12 summarizes the related work.

CONCLUSION

In the context of leveraging the dependability of complex and fault tolerant software systems, the
paper advocated the need of recovery oriented software fault diagnosis approach, which
integrated detection, location, and recovery in one holistic diagnostic framework. This is
different from most of the previous work which has been conducted on software failure diagnosis
in the last few years in that target systems, in which we also conducted experiments, are very
complex. Thus existing approaches, which require human involvement to discover the bug, are
not suitable for field failures for a number of reasons. First of all, it is difficult to reproduce the
failure-triggering conditions in house for diagnosis. Second, off-line failure diagnosis cannot
provide timely guidance to select the best recovery action, i.e., a recovery action which is
tailored for the particular fault that occurred.

The experimental campaign has been conducted in the context of a real-world Air Traffic
Control system. Results demonstrated that:

• The detection approach is able to exploit several low-overhead and inaccurate monitors at
the OS level, by keeping low the false positive rate and the detection latency as well;

• The proposed location and recovery strategies are able to correctly locate the root cause
of a known fault within the system, and to trigger the proper recovery action in an on-line
manner.

• The implemented DLR framework is able to partially discover unknown faults within the
system. This is useful to trigger off-line maintenance (e.g., by alerting a human operator).

REFERENCES	
Aguilera,	 M.	 K.,	 Mogul,	 J.	 C.,	 Wiener,	 J.	 L.,	 Reynolds,	 P.,	 &	 Muthitacharoen,	 A.	 (2003).	 Performance	
Debugging	 for	 Distributed	 Systems	 of	 Black	 Boxes.	 19th	 ACM	 Symposium	 on	 Operating	 Systems	
Principles,	 (pp.	 74–89).	

Becraft,	 W.,	 &	 Lee,	 P.	 (1993).	 An	 Integrated	 Neural	 Network/Expert	 System	 Approach	 for	 Fault	

Diagnosis.	 Computers	 and	 Chemical	 Engineering	 ,	 17	 (10),	 1001-‐1014.	

Bondavalli,	 A.,	 Chiaradonna,	 S.,	 Cotroneo,	 D.,	 &	 Romano,	 L.	 (2004).	 Effective	 Fault	 Treatment	 for	
Improving	 the	 Dependability	 of	 COTS	 and	 Legacy-‐Based	 Applications.	 IEEE	 Transactions	 on	 Dependable	
and	 Secure	 Computing	 ,	 1	 (4),	 223-‐237.	

Brown,	 A.,	 Kar,	 G.,	 &	 Keller,	 A.	 (2001).	 An	 Active	 Approach	 to	 Characterizing	 Dynamic	 Dependencies	 for	

Problem	 Determination	 in	 a	 Distributed	 Environment.	 IEEE/IFIP	 Symposium	 on	 Integrated	 Network	
Management,	 (pp.	 377–390).	

Brun,	 Y.,	 &	 Ernst,	 M.	 D.	 (2004).	 Finding	 Latent	 Code	 Errors	 via	 Machine	 Learning	 over	 Program	
Executions.	 26th	 Conference	 on	 Software	 Engineering,	 (pp.	 480–490).	

Cardenas,	 A.	 A.,	 Baras,	 J.	 S.,	 &	 Seamon,	 K.	 (2006).	 A	 Framework	 for	 the	 Evaluation	 of	 Intrusion	 Detection	

Systems.	 IEEE	 Symposium	 on	 Security	 and	 Privacy,	 (pp.	 63–77).	

Chang,	 Y.,	 Lander,	 L.	 C.,	 Lu,	 H.	 S.,	 &	 Wells,	 M.	 T.	 (1993).	 Bayesian	 Analysis	 for	 Fault	 Location	 in	
Homogenous	 Distributed	 Systems.	 12th	 Symposium	 on	 Reliable	 Distributed	 Systems,	 (pp.	 44–53).	

Chen,	 M.	 Y.,	 Kiciman,	 E.,	 Fratkin,	 E.,	 Fox,	 A.,	 &	 Brewer,	 E.	 (2002).	 Pinpoint:	 Problem	 Determination	 in	
Large,	 Dynamic	 Internet	 Services.	 IEEE/IFIP	 Conference	 on	 Dependable	 Systems	 and	 Networks,	 (pp.	 595–

604).	

Chillarege,	 R.,	 Bhandari,	 I.,	 Chaar,	 J.,	 Halliday,	 M.,	 Moebus,	 D.,	 Ray,	 B.,	 et	 al.	 (1992).	 Orthogonal	 Defect	
Classification-‐A	 Concept	 for	 In-‐Process	 Measurements.	 IEEE	 Transactions	 on	 Software	 Engineering	 ,	 18	
(11),	 943-‐956.	

Chillarege,	 R.,	 Biyani,	 S.,	 &	 Rosenthal,	 J.	 (1995).	 Measurement	 of	 Failure	 Rate	 in	 Widely	 Distributed	

Software.	 25th	 Symposium	 on	 Fault-‐Tolerant	 Computing,	 (pp.	 424-‐433).	

Corsaro,	 A.	 (2005).	 CARDAMOM:	 A	 Next	 Generation	 Mission	 and	 Safety	 Critical	 Enterprise	 Middleware.	
Workshop	 on	 Software	 Technologies	 for	 Future	 Embedded	 &	 Ubiquitous	 Systems,	 (pp.	 73–74).	

Daidone,	 A.,	 Di	 Giandomenico,	 F.,	 Chiaradonna,	 S.,	 &	 Bondavalli,	 A.	 (2006).	 Hidden	 Markov	 Models	 as	 a	
Support	 for	 Diagnosis:	 Formalization	 of	 the	 Problem	 and	 Synthesis	 of	 the	 Solution.	 25th	 IEEE	 Symposium	

on	 Reliable	 Distributed	 Systems	 (pp.	 245-‐256).	 IEEE.	

Duraes,	 J.,	 &	 Madeira,	 H.	 (2006).	 Emulation	 of	 Software	 Faults:	 A	 Field	 Data	 Study	 and	 a	 Practical	
Approach.	 IEEE	 Transactions	 on	 Software	 Engineering	 ,	 32	 (11),	 849-‐867.	

Forrest,	 S.,	 Hofmeyr,	 S.	 A.,	 Somayaji,	 A.,	 &	 Longstaff,	 T.	 A.	 (1996).	 A	 sense	 of	 self	 for	 Unix	 processes.	 IEEE	
Symposium	 on	 Security	 and	 Privacy,	 (pp.	 120-‐128).	

Gray,	 J.	 (1985).	 Why	 Do	 Computer	 Stop	 and	 What	 Can	 Be	 Done	 About	 It?	 Tandem	 TR	 85.7.	

Grottke,	 M.,	 &	 Trivedi,	 K.	 S.	 (2007).	 Fighting	 Bugs:	 Remove,	 Retry,	 Replicate,	 and	 Rejuvenate.	 IEEE	

Computer	 ,	 40	 (2),	 107–109.	

Huang,	 Y.,	 Jalote,	 P.,	 &	 Kintala,	 C.	 (1994).	 Two	 Techniques	 for	 Transient	 Software	 Error	 Recovery.	
Workshop	 on	 Hardware	 and	 Software	 Architectures	 for	 Fault	 Tolerance:	 Experiences	 and	 Perspectives,	
(pp.	 159–170).	

Jagadeesh,	 R.	 P.,	 Bose,	 C.,	 &	 Srinivasan,	 S.	 H.	 (2005).	 Data	 Mining	 Approaches	 to	 Software	 Fault	

Diagnosis.	 15th	 IEEE	 Workshop	 on	 Research	 Issues	 in	 Data	 Engineering:	 Stream	 Data	 Mining	 and	
Applications,	 (pp.	 45–52).	

Joachims,	 T.	 (1998).	 Text	 Categorization	 with	 Support	 Vector	 Ma-‐	 chines:	 Learning	 with	 Many	 Relevant	
Features.	 10th	 European	 Conference	 On	 Machine	 Learning,	 (pp.	 137–142).	

Joshi,	 K.	 R.,	 Hiltunen,	 M.	 A.,	 Sanders,	 W.	 H.,	 &	 Schlichting,	 R.	 D.	 (2005).	 Automatic	 Model-‐Driven	

Recovery	 in	 Distributed	 Systems.	 24th	 IEEE	 Symposium	 on	 Reliable	 Distributed	 Systems,	 (pp.	 25-‐36).	

Khanna,	 G.,	 Laguna,	 I.,	 Arshad,	 F.	 A.,	 &	 Bagchi,	 S.	 (2007).	 Distributed	 Diagnosis	 of	 Failures	 in	 a	 Three	 Tier	
E-‐Commerce	 System.	 26th	 IEEE	 Symposium	 on	 Reliable	 Distributed	 Systems,	 (pp.	 185-‐198).	

Kim,	 S.,	 Whitethead,	 E.	 J.,	 &	 Zhang,	 Y.	 (2008).	 Classifying	 Software	 Changes:	 Clean	 or	 Buggy?	 IEEE	

Transactions	 on	 Software	 Engineering	 ,	 34	 (2),	 181-‐196.	

Littlewood,	 B.,	 &	 Strigini,	 L.	 (2000).	 Software	 Reliability	 and	 Dependability:	 A	 Roadmap.	 ACM	 Conference	
on	 The	 Future	 of	 Software	 Engineering,	 (pp.	 175–188).	

Manevitz,	 L.	 M.,	 &	 Yousef,	 M.	 (2002).	 One-‐Class	 SVMs	 for	 Document	 Classification.	 Journal	 of	 Machine	
Learning	 Research	 ,	 2,	 139-‐154.	

Moraes,	 R.,	 Duraes,	 J.,	 Barbosa,	 R.,	 Martins,	 E.,	 &	 Madeira,	 H.	 (2007).	 Experimental	 Risk	 Assessment	 and	

Comparison	 Using	 Software	 Fault	 Injection.	 37th	 IEEE/IFIP	 Conference	 on	 Dependable	 Systems	 and	
Networks,	 (pp.	 512-‐521).	

OMG.	 (2001).	 Fault	 Tolerant	 CORBA	 Standard,	 v2.5.	 	

Oppenheimer,	 D.	 L.,	 &	 Patterson,	 D.	 A.	 (2002).	 Studying	 and	 Using	 Failure	 Data	 from	 Large-‐Scale	 Internet	
Services.	 (pp.	 255–258).	 10th	 ACM	 SIGOPS	 European	 Workshop.	

Podgurski,	 A.,	 Leon,	 D.,	 Francis,	 P.,	 Masri,	 W.,	 Minch,	 M.,	 Sun,	 J.,	 et	 al.	 (2003).	 Automated	 Support	 for	

Classifying	 Software	 Failure	 Reports.	 25th	 Conference	 on	 Software	 Engineering,	 (pp.	 465-‐475).	

Preparata,	 F.	 P.,	 Metze,	 G.,	 &	 Chien,	 R.	 T.	 (1967).	 On	 the	 Connection	 Assignment	 Problem	 of	 Diagnosable	
Systems.	 IEEE	 Transactions	 on	 Electronic	 Computers	 ,	 16	 (6),	 848–854.	

Sebastiani,	 F.	 (2002).	 Machine	 Learning	 in	 Automated	 Text	 Categorization.	 ACM	 Computing	 Surveys	 ,	 34,	
1-‐47.	

Serafini,	 M.,	 Bondavalli,	 A.,	 &	 Suri,	 N.	 (2007).	 On-‐Line	 Diagnosis	 and	 Recovery:	 On	 the	 Choice	 and	 Impact	

of	 Tuning	 Parameters.	 IEEE	 Transactions	 on	 Dependable	 and	 Secure	 Computing	 ,	 4	 (4),	 295-‐312.	

Sullivan,	 M.,	 &	 Chillarege,	 R.	 (1991).	 Software	 Defects	 and	 Their	 Impact	 on	 System	 Availability	 -‐	 A	 Study	
of	 Field	 Failures	 in	 Operating	 Systems.	 21st	 Symposium	 on	 Fault-‐Tolerant	 Computing,	 (pp.	 2-‐9).	

Tucek,	 J.,	 Lu,	 S.,	 Huang,	 C.,	 Xanthos,	 S.,	 &	 Zhou,	 Y.	 (2007).	 Triage:	 Diagnosing	 Production	 Run	 Failures	 at	
the	 User’s	 Site.	 21st	 ACM	 SIGOPS	 Symposium	 on	 Operating	 Systems	 Principles,	 (pp.	 131–144).	

Vaidya,	 N.	 H.,	 &	 Pradham,	 D.	 K.	 (1994).	 Safe	 System	 Level	 Diagnosis.	 IEEE	 Transactions	 on	 Computers	 ,	 43	

(3),	 367–370.	

Vapnik,	 V.	 N.	 (1995).	 The	 Nature	 of	 Statistical	 Learning	 Theory.	 Springer-‐Verlag.	

Xu,	 J.,	 Kalbarczyc,	 Z.,	 &	 Iyer,	 R.	 K.	 (1999).	 Networked	 Windows	 NT	 System	 Field	 Data	 Analysis.	 Pacific	 Rim	
Symposium	 on	 Dependable	 Computing,	 (pp.	 178-‐185).	

Yuan,	 C.,	 Lao,	 N.,	 Wen,	 J.	 R.,	 Li,	 J.,	 Zhang,	 Z.,	 Wang,	 Y.	 M.,	 et	 al.	 (2006).	 Automated	 Known	 Problem	
Diagnosis	 with	 Event	 Traces.	 EuroSys	 ACM	 Conference,	 (pp.	 375–388).	

Zheng,	 A.	 X.,	 Lloyd,	 J.,	 &	 Brewer,	 E.	 (2004).	 Failure	 Diagnosis	 Using	 Decision	 Trees.	 1st	 IEEE	 Conference	 on	

Autonomic	 Computing,	 (pp.	 36-‐43).	

	

