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ABSTRACT 
This paper proposes an approach to software faults diagnosis in complex fault tolerant systems, 
encompassing the phases of error detection, fault location, and system recovery. Errors are 
detected in the first phase, exploiting the operating system support. Faults are identified during 
the location phase, adopting on a machine learning approach; this phase then triggers the proper 
recovery action for the occurred fault - actuated in the third phase. Feedback actions are also 
adopted in the location phase to improve detection quality over time. A real world application 
from the Air Traffic Control field has been used as case study for evaluating the proposed 
approach. Experimental results, achieved by means of fault injection, show that the diagnosis 
engine is able to diagnose faults with high accuracy and at a low overhead.  
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INTRODUCTION 
 
Hardware and software technologies are progressing fast, dramatically increasing the complexity 
of modern computer systems. Even in the context of critical scenarios, we are witnessing a 
paradigm shift from stand-alone and centralized systems toward large-scale and distributed 
infrastructures; simple monolithic programs are being superseded by modular software 
architectures, typically based on Off-The-Shelf (OTS) software items. This allows organizations 
to be competitive by reducing development costs and the time to market. Testing and verification 
activities along with fault tolerance techniques are massively used to satisfy dependability 
requirements. The key for achieving fault tolerance is the ability to accurately detect, diagnose, 
and recover from faults during system operation. 
 
The great research effort striven in fault tolerant systems has provided good results with respect 
to hardware-related errors. Recent examples are (Serafini, Bondavalli, & Suri, 2007) (Daidone, 
Di Giandomenico, Chiaradonna, & Bondavalli, 2006) (Bondavalli, Chiaradonna, Cotroneo, & 
Romano, 2004). However, it is well known that many systems outages are due to software faults 
(Gray, 1985). These are bugs lying into the code, hence they are permanent in nature. This means 
that, if a program contains a bug, any circumstances that cause it to fail once will always cause it 
to fail. This is the reason for which software failures are often referred to as “systematic failures” 



(Littlewood & Strigini, 2000). However, the failure process, i.e., the way the bugs are activated, 
is not deterministic since (i) the sequence of inputs cannot be predicted, hence it is not possible 
to establish which are the program's faults (and failures), and (ii) software failures can be due to 
environmental conditions (e.g., timing and load profile) which activate a given fault rather than 
another one. For this reason, it is said that software faults can manifest transiently. By failure we 
intend the software modules/components failure in which the fault has been activated. This can 
be viewed as fault from the whole system point of view (Joshi, Hiltunen, Sanders, & Schlichting, 
2005). Activating conditions which cause a software fault to surface into a failure have been 
recognized to be crucial in (Chillarege, et al., 1992), where they are defined as “triggers” and 
where software bugs are grouped into orthogonal, non overlapping, defect types (Orthogonal 
Defect Classification, ODC). Software faults which manifest permanently, also known as 
Bohrbugs, are likely to be fixed and discovered during the pre-operational phases of system life 
cycle (e.g., structured design, design review, quality assurance, unit, component and integration 
testing, alpha/beta test), as well as by means of traditional debugging techniques. Conversely, 
software faults which manifest transiently, also known as Heisenbugs, cannot be reproduced 
systematically (Huang, Jalote, & Kintala, 1994), and they have been demonstrated to be the 
major cause of failures in software systems, especially during the system operational phase 
(Oppenheimer & Patterson, 2002) (Sullivan & Chillarege, 1991) (Chillarege, Biyani, & 
Rosenthal, Measurement of Failure Rate in Widely Distributed Software, 1995) (Xu, Kalbarczyc, 
& Iyer, 1999). 
 
Focus in this work is on recovery oriented software fault diagnosis in complex fault tolerant 
systems. Little attention has been paid so far to this problem, which plays a key role in 
maintaining system health and in preserving fault tolerance capabilities. Previous studies on 
software diagnosis aimed to identify software defects from their manifestations through off-line 
and/or on-site analysis (Tucek, Lu, Huang, Xanthos, & Zhou, 2007). They aim to discover bugs 
in the code, by using static/dynamic code screening, in order to perform more effective 
maintenance operations. Thus, they are not able to catch Heisenbugs, in that environmental 
factors which caused them are not easy to be localized into the code. 
 
In this work, the aim of diagnosis is twofold. First, starting from outward symptoms we are 
interested in identifying what are the execution misbehaviors which caused failure occurrence, 
and where these misbehaviors come from, in order to trigger proper recovery actions. This is 
crucial in complex, modular and distributed systems, for which the overall failure can be avoided 
by confining, and masking, the individual failures of the parts (nodes, components, processes). 
Second, we aim to provide information about manifested symptoms which are useful for off-line 
maintenance activities. 
 
The massive presence of OTS items, whose well-known dependability pitfalls do not hold 
industries back from their usage in critical systems, further exacerbates the diagnosis problem. In 
fact, faults can propagate in several ways and among several components, depending on a 
complex combination of their internal state and of the execution environment.  Actually, the 
failures which result from unexpected faults, known as production run failures or field failures 
(e.g., crashes, hangs and incorrect results), are the major contributors to system downtime and 
dependability pitfalls (Tucek, Lu, Huang, Xanthos, & Zhou, 2007). They cause the system 
failure modes to be not known at design time, and to evolve over time. To face this problem, we 



believe that the detection has to be included into the diagnosis process, differently from most 
existing approaches. As it has been demonstrated in (Vaidya & Pradham, 1994) with respect to 
distributed systems recovery from a large number of faults, by combing detection and location 
adaptively, the number of diagnosed faults increases over time at a low additional cost. 
 
Addressed issues 
 
This work defines a recovery-oriented diagnosis approach, to (i) locate the cause of a system's 
component failure at run time, and (ii), trigger proper recovery actions, based on an estimate of 
the fault nature, in the form of fault tolerance via fault masking techniques. 
 
Several issues arise when designing this approach, which have not been addressed before. First, 
the presence of software faults hampers the definition of a simple, and accurate, mathematical 
model able to describe systems failure modes (hence, pure model based techniques become 
inadequate). Second, due to the presence of OTS components, low intrusiveness in terms of 
source code modifications is desirable. Third, diagnosis has to be performed on-line, i.e., a fault 
has to be located as soon as possible during system execution and with lack of human guidance.  
The reason for this is twofold. On the one hand, it is to fulfill strict time requirements, for system 
recovery and reconfiguration, in the case of a fault. On the other hand, it is to face system 
complexity with respect to ordinary system management and maintenance operations, whose 
manual execution would result in strenuous human efforts and long completion times. 
 
Paper’s contributions 
 
This paper proposes a novel approach for on-line software fault diagnosis in complex and OTS 
based critical systems. To the best of authors’ knowledge, this is the first proposal which 
addresses on-line software diagnosis issues of complex and fault tolerant systems, and evaluates 
in the context of a real world industrial application. Indeed, differently from most of the previous 
work which proposed off-line/on-site diagnosis approaches aiming to locate bugs in the source 
code, and sometimes the environmental conditions, we address the diagnosis problem during the 
system operational phase. Thus, two are the key aspects: 
 

• low intrusiveness: since we are addressing OTS-based systems, it is required that target 
applications is not instrumented at all 

• holistic diagnostic approach: Detection (D), Location (L), and Recovery (R) have been 
integrated into one diagnosis process.  

 
More specifically, the approach features: 
 

• A detection strategy in charge of detecting application errors by exploiting OS support, 
exhibiting high accuracy and low overhead. To face the partial ignorance about the 
failure modes, the detection strategy is pessimistic and relies on the anomaly detection 
paradigm. To the best of authors’ knowledge, this paradigm has not been applied yet for 
fault/error detection in critical systems. Experimental results reveal that this approach is 
promising. 



• A novel fault location strategy in charge of (i) locating the cause of system 
components/modules failures, and (ii) of triggering the most effective recovery action on 
the basis of the detection output.  More important, it is also in charge of solving detection 
falls and of improving detection quality over time by means of feedback actions. 

• The design of a recovery dictionary in charge of associating automatically the most 
effective recovery mean to the occurred fault. This is also the main objective of (Joshi, 
Hiltunen, Sanders, & Schlichting, 2005). Even if it is close in spirit to our work, that 
work aims to optimize the sequence of recovery actions to be applied, whereas we apply 
only the best one, by using monitors we implemented by our own. 

 
SYSTEM MODEL AND ASSUMPTIONS 
 
The target systems are assumed to be complex software systems, deployed on several nodes and 
communicating through a network infrastructure. Each node is organized in software layers and 
it is made up of several Diagnosable Units (DUs), representing atomic software entities, at it is 
shown in Figure 1. 
 

 
 
Figure 1: System’s node model 
 
In most of the cases, the layered structure of each node encompasses the Operating System (OS), 
the Middleware and the User Application levels. Since the focus is on software faults, such a 
structure has been adopted, thus excluding the underlying hardware equipment. Such an 
assumption sounds reasonable since modern systems are equipped with redundant and highly 
reliable hardware platforms which are developed and extensively tested in house, especially in 
the case of mission and safety critical systems. This means that hardware related faults will be 
not diagnosed by the proposed DLR framework. 
 



DUs are assumed to be processes. This means that a process is the smallest entity which can be 
affected by a fault and for which it is possible to diagnose faults, as well as to perform 
recoveries. Of course, the bug which caused the process to fail can be located within an OTS 
library or module which is being executed in the context of the process; additionally, 
propagations can occur among different nodes and layers. Look at Figure 2, where the process P1 
experiences a failure due to the component C. However, the failure is actually located into the D 
library, which is running in the context of a different process, P2 and the bug propagates to C 
through y, e.g., due to an erroneous input from D to y. According to a recovery-oriented 
perspective, addressing the process as the atomic entity of the system, it is enough to identify the 
cause which induced the failure of the process, within the context of the process itself. In other 
words, if a recovery action exists in charge of recovering the failed process by only acting on it, 
it is unnecessary to go back through the propagation chain out of the context of the process. With 
respect Figure 2, the failure of P1 will be attributed to y, which is the last link in the propagation 
within the P1 context. 
 

 
 
Figure 2: Diagnosis at process level. 
 
Once the root cause has been identified the proper recovery action has to be selected. Hence, the 
final output of diagnosis consists of a couple of vectors (D, R). The former associates the failed 
node, by means of the IP address, to the failed process which is identified by the Process ID 
(PID). The latter, instead, associates the experienced failure (f) to the recovery action to be 
initiated (r). Schematically  
 

D = (IPfailednode, PIDfailedprocess) 
 R = (Failuref, Recoveryr) 
 
The diagnosis output provides information about the failed process, rather than about the 
component which caused the failure. This information would not be interesting for the final 
users. However, it could be helpful for bug fixing and fault removal. 



 
Failure modes 
 
Crash, hangs and workload failures are encompassed by the proposed approach. A process crash 
is the unexpected interruption of its execution due either to an external or an internal error. A 
process hang, instead, can be defined as a stall of the process. Hangs can be due to several 
causes, such as deadlock, livelock or waiting conditions on busy shared resources. As for 
workload failures, they depend on the running application. Workload failures can be both value 
(e.g., erroneous output provided by a function) or timing failures. 
 
Since the target systems are distributed on several nodes, and since faults can propagate, the set 
of the failures to be encompassed is given by FM=FxDUs, i.e., by the product set of the failure 
types and of all the DUs (i.e., the processes). 
 
Recovery actions 
 

Since the focus of this paper is on diagnosis, we assume that some basic Fault Tolerant 
services are provided by the middleware layer. For instance, in our industrial case study the used 
middleware implements the standard Fault Tolerant OMG CORBA service (OMG, 2001). Thus, 
the middleware is able to manage server replication, including issues related to state transfer 
which usually follow system reconfiguration procedures. The proposed DLR framework 
encompasses two classes of recovery actions: 

 
• System Level Recovery, i.e., actions which aim to repair a failed process by acting at 

system level. These actions are intended for dealing with crashes and hangs, and they can 
be more or less costly depending on the size of the system, as well as on the number of 
processes involved into the failure. Encompassed actions are system reboot, application 
restart and process kill. Once one of these actions has been performed, the FT middleware 
service will be able to restore the application. 

• Workload Level Recovery, i.e., action which aim to repair application failures. These 
actions are intended for dealing with workload failures, hence a knowledge of the 
application semantic is required.  

 
THE OVERALL APPROACH 
 
Figure 3 gives an overall picture of the proposed approach, representing how it works from the 
fault occurrence till system recovery. 

 



 

 
Figure 3: A time snapshot of the overall DLR approach. 
 
During the operational phase of the system, a monitoring system performs continuous 

detection on each DU, exploiting Operating System (OS) support. Once a failure (F) occurs, an 
alarm is triggered. This initiates the Location phase, aiming to identify the root cause of the 
failure. Once the Location has been completed, the Recovery phase is started in order to recover 
the failed process(es) and to resume normal activities. The task of detection consists of the alarm 
triggering when a given process fails. Since if a process fails it is not assured that the system will 
fail as well, a process failure is conceived as an error for the overall system. For this reason, the 
task of detection is in fact error detection in the context of this work. 

 
The overall approach is based on the machine learning paradigm, as in many previous papers 

focusing on diagnosis (Yuan, et al., 2006) (Zheng, Lloyd, & Brewer, 2004) (Brun & Ernst, 
2004). The main reason for this is the presence of field failures, which cannot be known at 
design/development time. Indeed, such a paradigm makes the DLR engine, and all of its 
components, able to learn over time. Thus, field failures influence the design of the entire engine, 
from detection to recovery. 

As for detection, an error is defined as a corruption in the state of a DU, which can impact in 
turn on the state of the system. An alarm is triggered each time an anomaly is encountered in 
system behavior; this is achieved by means of anomaly detection, i.e., all the conditions which 
deviate from normal behaviors are labeled as errors. This is quite a pessimistic detection 
strategy. In fact, not all the anomalies correspond to actual errors, i.e., this way errors can be 
signaled even when the system is behaving correctly but that working condition has not been 
recognized as normal. On the one hand, such a pessimistic strategy leads to a non negligible 
amount of false positives, in that alarms are likely to be triggered which do not correspond to 
actual errors. On the other hand, it allows to minimize the number of anomalous conditions 
which are misinterpreted as normal behaviors, thus going unnoticed. This is crucial in the context 
of critical systems in that unsignaled errors are in fact false negatives which may have 



catastrophic effects. It is worth noting that reducing false positives, i.e., improving detection 
accuracy, at design time has been the primary requirement of traditional detection system. 

Once an alarm has been triggered, the Location phase is initiated to identify its root cause. 
Along with the aim of pinpointing the actual fault, this phase has also to remedy detection 
accuracy falls. More precisely, during this phase the presence of an actual fault has to be 
established, since false positives are likely to be triggered by the detector.  This means that the 
location module behaves ``distrustfully'' to compensate the pessimistic detection. This is 
achieved via the machine learning paradigm, which underlies this phase in the form of 
classification. We separate faults into smaller classes, and give criteria for determining whether 
an occurred fault is in a particular class or not. 

Each fault class is represented as a set of features, i.e., a set of measurable properties (which 
are inferred from OS and produced logs) of the observed DU. We adopt a pattern recognition 
module which gathers observed features during system operation to be classified. Features are 
determined experimentally; the relation between features and faults is therefore learned (or 
trained) experimentally as well, and then stored to form an explicit knowledge base. Faults can 
be identified by comparing the observed values of the features with the nominal ones. 

Starting from manifestations (i.e., the errors), the location module has to infer the presence of 
a fault and to associate it to a class. To design the fault classes properly, three circumstances has 
to be considered: 

1.  SUSPECTED ERROR (SE): the triggered alarm was not the manifestation of an actual 
fault, i.e., the detection module triggered a false positive. In this case, there is no need 
neither for location nor for system recovery; 

2. ERROR: a fault actually occurred that the location module is able to identify. In this case, 
recovery actions have to be associated to the fault and initiated as soon as possible; 

3. UNKNOWN FAULT: the triggered alarm was actually due to a fault which cannot be 
identified during the location. This is the tricky case of a fault which is unknown, i.e., a 
fault which never occurred before. In this case, the system has to be put in a safe state, and 
further investigations are needed which can potentially require human intervention. 

 
The location capability of uncovering false positives allows to improve the detection accuracy. 
Actually, this is the aim of the feedback branch, namely “retraining”, depicted in Figure 3: once 
an alarm has been labeled as a SE, the detection module is upgraded consequently. This allows a 
reduction of the number of false positives over time, as it will be shown in the following 
sections. 

Recovery actions to be initiated in the case of an ERROR have been associated to the fault 
classes. This is to perform recovery actions which are tailored for the particular fault that 
occurred. Since the approach is intended for operational systems, two main phases are 
encompassed. During the first phase, the DLR engine is trained in order to build a starting 
knowledge. This is leveraged during the second phase, which is in fact the system operational 
phase. 

 



 

 
Figure 4: Training of the DLR engine 
 

Figure 4 depicts the training process. In order to train the detection module, which performs 
anomaly detection, faulty free executions (i.e., correct executions) of the system have to be run 
in order to model its normal behavior (1). Conversely, fault injection (2) is required in order to 
allow (i) the definition of the fault classes (3.a) and (ii), the collection and analysis of fault 
related data to model system behavior in faulty conditions (3.b). DUs running into the system, 
which are depicted as little triangles in the figure, are the injection target. Once faults have been 
injected, the supervised training of the location classifier is performed (4), as detailed in section 
location. At the end of the training phase, both the detection and the location classifiers can rely 
on a starting knowledge about the target system. On the one hand this can be exploited during the 
operational phase. On the other hand, the base knowledge has to be improved during the system 
lifetime adaptively in order to take fields failures into account. 
 
DETECTION 
 
Good detection systems have to exhibit low overhead, i.e., they do not have to compromise 
system resources, as well as low rates of missing and wrong detections. This is in order to reduce 
the effects of a not handled fault, and the number of false alarms as well. These requirements 
represent the most challenging issues when dealing with detection in several fields. As for 
example, for intrusions detection within networked systems, performance overhead increases 
with the traffic volume, and users behavior is difficult to characterize (i.e., licit users can behave 
in unexpected manner thus being misinterpreted as attackers). Anomaly detection is the most 
common and effective way to detect attacks (Becraft & Lee, 1993) (Forrest, Hofmeyr, Somayaji, 
& Longstaff, 1996). However, to the best of authors’ knowledge it has not been used yet for error 
detection in critical, dependable, systems. 
 



In this work we use anomaly detection for error detection. Simply, if the monitored application 
deviates from the normal behavior (i.e., faulty free executions), it is likely to be faulty. Normal 
behavior is modeled in two steps. First, the identification of representative and synthetic 
parameters; second, a training phase during which these are traced and characterized. Since it is 
influenced by several factors, such as the hardware configuration and usage application profile, 
the training phase should be repeated (manually or automatically) to take into account their 
significant variations. Once the normal behavior has been modeled, the application is let run on 
the field and it is continuously monitored. When deviations are encountered, i.e., when 
parameters values differ from the modeled ones, the location phase is initiated aiming at 
pinpointing the root cause of the error, as well as at uncovering and fixing detection falls, as 
explained in the previous section. 
 
In fact, DUs are the finest grain for detection, i.e., the above described detection process is 
applied to all the application DUs. Although the detection process can be applied to several kinds 
of DUs in principle, the way the detection is actually performed depends on their nature. As 
stated in section II, in this work DUs are assumed to be OS processes, also seen as “collection” 
of several threads. This is a very common abstraction used by computer systems. The behavior 
of a process can be effectively described through its interactions with the OS resources, and with 
all the other running processes as well. For this reason, we decided to trace these interactions by 
means of several monitors. Since target systems are OTS based, monitors require neither any 
internal knowledge of DUs nor their source code availability, i.e., DUs are considered as black 
boxes. 
 
Parameters and detection criteria 
 
The following OS data, which can be to collected and analyzed with a low computational 
overhead, are monitored to describe DUs behavior: 
 

1. SIGNALS, i.e., notifications produced by the OS when providing services to the 
application (e.g., numeric return codes returned by system calls, UNIX signals). 
Erroneous OS notifications are logged (e.g., return codes different than zero, which 
represent exceptional conditions and are relatively rare); 

2. TIME EVENTS, i.e., the timestamp of interesting events for the application execution 
(e.g., when a given resource becomes available, such as a semaphore). A log entry is 
produced each time these events do not occur within a given interval, i.e., timeouts are 
exceeded; 

3. THROUGHPUT, i.e., the amount of data exchanged by OS processes through I/O 
facilities (e.g., the throughput of network and disk devices). Upper and lower bounds are 
associated with the I/O throughput; throughput is periodically sampled, and a log entry is 
produced when bounds are exceeded. 

 
Architecture and strategy 
 
The architecture of the detection subsystem implemented in this work is depicted in Figure 5. It 
is a modular system made up of several, simple, monitors which are combined to provide a 



detection alarm. This is in order to get the most from each of them, in that monitors exhibit 
different performances in terms of coverage (i.e., the ability to detect an actual fault) and 
accuracy (e.g., the ability to avoid false alarms). Additionally, by combining monitors' responses 
the total number of false positives (e.g., a timeout can be exceeded due to a particular overload 
condition which is not an actual fault), can be minimized. 
 
Being P the number of processes within the monitored application, monitors are associated to 
each thread tj of the P processes. Hence  they account for a total of P x tjk ∀ k=1..n, where n is 
the number of monitored parameters. Monitors evaluate a triggering condition periodically ($T$ 
is the period). An alarm generator (αi) collects the output of all the monitors related to a given 
parameter p for the i-th process. A counter n is incremented by αi if the monitored thread verifies 
the triggering condition. The normal behavior of a process (and of a thread as well), is modeled 
by associating a range of licit values to each alarm generator, specifically ri = [ri

-,r_i
+]. 

 

 
 
Figure 5: Detection architecture. 
 
In practice, if the monitored value n for a given parameter p does fall outside ri within a temporal 
window T, an alarm is triggered. Hence, the output of each αi is a binary variable defined as: 
 

€ 

Fi =
1 if n∉ rin  in T
0 otherwise
⎧ 
⎨ 
⎩ 

 

 
The range ri is tuned during the preliminary training phase. The number of events is periodically 
sampled: the minimum and the maximum values which are experienced during faulty-free runs 
constitute the limits of the range. 
The Bayes' rule has been chose as the combination rule, hence the probability of a fault is 
achieved by: 
 

€ 

P(F | a) =
P(a |F)P(F)

P(a |F)P(F) + P(a |¬F)(1− P(F))
 

 
 



An alarm is triggered, if the estimated a posteriori probability exceeds a given threshold. In the 
previous equation, F represents the event “faulty DU”, and a is a vector containing the output of 
the alarm generators αi: if Fi = 1 for L consecutive periods T, then ai = L, in order to take into 
account the alarm duration and to filter out “transient” false alarms (i.e., alarms triggered for 
only a short amount of time). Note that we assume that monitors do not fail (i.e., produce false 
alarms) at the same time. The joint probability distributions P(a | F) and P(a | ¬F), i.e., the 
probability of detection and the probability of false alarms respectively (Cardenas, Baras, & 
Seamon, 2006), have to be estimated during the training phase. The former can be estimated 
using fault injection, by evaluating the number of occurrences of the a vector under faults, over 
the total number of vectors collected during fault injection. Similarly, the latter can be estimated 
by counting the number of occurrences of a during faulty-free executions. Finally, the a priori 
fault probability P(F) has to be known. If field data are available about past fault occurrences, 
P(F) can be estimated using the ratio T / MTTF (MTTF stands for Mean Time To Failure), i.e., 
on the average, the DU becomes faulty once every MTTF / T detection periods. Otherwise, P(F) 
can only be gathered by literature, e.g., by using typical fault rates of complex software systems. 
 
This detection approach reveals to be less intrusive that traditional techniques, such as those 
based on heartbeat, which also require extra code to be written at application level and can fail in 
the case of multithreaded applications. Additionally, the proposed approach is able to exploit OS 
information which would be not available if remote detection were performed: as for example, it 
allows to discern the nature of a process stuck (e.g., deadlock or I/O waiting).  
 
Monitors 
 
The detection system has been implemented to be compliant with a POSIX operating system. In 
particular, we developed it under the Linux OS, and the following monitors have been 
implemented for controlling the detection parameters: 
 
Time-related monitors: 
 

• Waiting time on semaphores. The delay between time in which a task \footnote{A thread 
in the Linux jargon} requests for a semaphore and the time the semaphore is actually 
acquired is measured, for each semaphore and task. An exceeded timeout can be 
symptom of a deadlock between the threads in a process, or between several processes on 
the same node. 

• Holding time on semaphores. The delay between the time in which the task has acquired 
a semaphore and the time the semaphore is released is measured for each semaphore and 
task. An exceeded timeout can be due to a process blocked within a critical section. 

• Task schedulation timeout. The delay between the preemption of a task (e.g., when its 
time slice is exhausted and the CPU is granted to another task), and the next schedulation 
of the same task is measured for each task. This way, blocked tasks due to indefinite wait 
can be detected. For example, the block can be due to a fault within the task, or to the 
stall of the overall application (hence not only to deadlocks).  

• Send/receive timeout on a socket. The delay between two consecutive packets sent on a 
given socket (both from and to the monitored task) is measured, for each task and socket. 
This allows to detect stop and omission error of a given task. 



 
Signals related monitors: 
 

• UNIX system calls, UNIX signals. Applications use system calls to forward requests to 
the OS (e.g., access to hardware devices, process communication, etc.). In UNIX 
systems, each system call can return a given set of codes which reflect exceptions when 
the system call exits prematurely. Error codes may be both due to hardware faults and to 
application misbehaviors (e.g., unavailable file or socket is accessed). Similarly, signals 
are used by the OS to notify exceptional events which are not related to a system call 
(e.g., memory denied memory access). 

• Task lifecycle. The allocation and the termination of a task and its descendants are 
monitored. In fact, when a task terminates, either voluntarily or forcedly, it is deallocated 
by the OS, and an error code is returned to the parent process; a common rule is to return 
a non null code in if there is an error. 

 
Throughput monitor: 
 

• I/O throughput. This monitor takes into account performance failures which may affect 
the application. In fact, when the application is running in degraded mode (e.g., due to 
resource exhaustion or overloading), it can be observed an anomalous amount of data 
(either too low or too high) produced or consumed by the running tasks. In order to keep 
the overhead low, we considered a simple detection algorithm based on upper and lower 
bounds for the I/O transfer rate. Bytes read from and written to disks, as well as bytes to 
and from the network devices were taken into account. Disk and network operations 
(both in input and output) within the kernel were probed, and the amount of bytes 
transferred within a second is sampled periodically (we refer to a sample as X(t)). The 
bounds applied to each metric have to be chosen conservatively (i.e., out-of-bound 
samples are infrequent during normal operation), in order to reduce the amount of false 
positives. A reasonable way to choose the bounds is to profile the task for a long time 
period, and to establish the bounds on first-order statistics (i.e., mean and standard 
deviation) of I/O samples. In this case, the detection algorithm can be described as 
follows: 
 

€ 

y =

1 if X(t) > mX  and X(t) −mX > k +σX

1 if X(t) < mX  and X(t) −mX < k −σX

0 otherwise 

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

 

 
were mX and σX are the mean and the standard deviation of the profiled samples during 
the training phase, k+ and k- are constants preliminarily set by the user (greater constants 
will lead to more conservative bounds). In order to take into account bursty and idle 
periods, a threshold C is chosen such that an error log entry is produced only if C 
consecutive out-of-bound samples occurs; C can be set to the maximum length of bursty 
or idle periods occurred during the training phase. 

 



Monitors, which are summarized in table 1, have been implemented by means of dynamic 
probing: the execution flow of the OS is interrupted when specific instructions are executed 
(similarly to breakpoints in debuggers), and ad-hoc routines are invoked to collect data about the 
execution (i.e., to analyze OS resource usage by monitored applications). Note that dynamic 
probing was only used for measurement and detection purposes, and no attempt is made to 
modify kernel and processes execution. 
 
Table 1: Monitors running on the Linux Operating System for fault detection. 
 

Monitor Triggering condition Parameters Domain 
UNIX system calls An error code is returned Window length Syscalls × ErrCodes 

UNIX signals A signal is received by the task Window length Signals 
Task schedulation 

timeout 
Timeout exceeded (since the 

task is preempted) 
Timeout value [0, ∞] 

Waiting time on 
semaphores 

Timeout exceeded (since the 
task begins to wait) 

Timeout value [0, ∞] 

Holding time in 
critical sections 

Timeout exceeded (since the 
task acquires a lock) 

Timeout value [0, ∞] 

Task lifecycle Task allocation or termination Window length Lifecycle event 
I/O throughput Bound exceeded for C 

consecutive samples 
Threshold C [0, ∞] 

Send/receive 
timeout on a socket 

Timeout exceeded (since a 
packet is sent over a socket) 

Timeout value [0, ∞] 

 
Detection features for location 
 
Monitored data have been translated into a vector of real numbers (features) in order to be 
exploited by the location classifier. OS features are provided to the location classifier in order to 
provide it with insights into the alarms triggered by the detection. This is to allow the 
discrimination between false positives (i.e., SE) and actual faults. Features can be both binary 
(e.g., they represent the occurrence of an event, like an error of a system call) and real values 
(e.g., statistics about timeouts within the system, like tasks schedulation times within a DU). 
Selected features are summarized in table 2. 
 
Table 2: Features gathered by OS monitors. 
 

Monitor Number of features Description 
UNIX system calls 1141 For each pair (syscall, error code), there is a binary 

feature (it is 1 if the pair occurred, 0 otherwise) 
UNIX signals 32 For each signal, there is a binary feature (it is 1 if 

the signal occurred, 0 otherwise) 
Task schedulation 

timeout 
4 The mean, the standard deviation, the minimum, 

and the maximum waiting time for schedulation of 
DU’s tasks 

Waiting time on 4 The mean, the standard deviation, the minimum, 



semaphores and the maximum waiting time for a semaphore of 
DU’s tasks 

Holding time in 
critical sections 

4 The mean, the standard deviation, the minimum, 
and the maximum holding time for a semaphore of 

DU’s tasks 
Task lifecycle 2 Binary features representing the occurrence of tasks 

newly allocated or deallocated, respectively 
I/O throughput 1 Binary feature (it is 1 if the throughput exceeded a 

bound, 0 otherwise) 
Send/receive 

timeout on a socket 
2*4*number of 

nodes 
For each node in the system, the mean, the standard 

deviation, the minimum, and the maximum time 
since last packet sent over sockets to that node, 

both in input and in output 
 
 
LOCATION AND RECOVERY 
 
The machine learning paradigm underlies the location phase in the form of classification. This 
approach has been used in several works trying to solve different problems, e.g., works focusing 
on document classification (Manevitz & Yousef, 2002) (Jagadeesh, Bose, & Srinivasan, 2005) or 
aiming to find latent errors in software programs (Brun & Ernst, 2004). The location classifier 
has been trained in a supervised way, by the means of the pseudo-algorithm in figure 6. 
 

 
 
Figure 6: Supervised training of the location classifier. 
 
The basic idea is to associate recovery actions to each experienced fault, thus keeping the 
classifier aware of the most suitable recovery action to start in the case of actual faults. In fact, 



for each DU in the system, injected faults are added to the training set, if unknown. This way, a 
base knowledge is built by exploiting human insights. 
 
Support Vector Machines (SVM) have been used for performing classification. The high-
performance algorithm they rely on has been commonly used across a wide range of text 
classification problems, and they demonstrate to perform effectively for handling large datasets 
(Joachims, 1998). 
 
SVM classifiers have been mainly introduced to the aim of solving binary problems, where the 
class label can take only two different values, and which can be solved by discriminating the 
decision boundary between the two classes. However, real world problems often require to take 
more complex decisions, i.e., to discriminate among more than two classes, hence SVM have 
been extended for handling multi-class problems.  Multi-Class SVMs (MCSVMs), can be 
achieved in two ways: (i) by combining several standard, one-class, SVM classifiers, and (ii) by 
formulating a single optimization criteria for the whole set of available data. The basic idea 
underlying the SVM classification is to find the maximum margin hyperplane which provides the 
maximum margin among the classes. For non-linearly separable problems, the original data are 
projected into a certain high dimensional Euclidean space by means of a kernel function (K). 
Classification results depend on the proper choice of the kernel function; the (gaussian) Radial 
Basis Function is a commonly used kernel function. Furthermore, in their original formulation, 
they do not provide any estimation of their classification confidence, hence they do not allow to 
leverage any a-priori information which, if available, can be crucial to integrate into the 
classification process to yield reliable results. A probabilistic SVM variant has been developed to 
face this issue, even for multi-class problems (MPSVM). It is able to provide a probability value 
indicating at what extent a given sample belongs to a class; hence, its output is in fact a vector of 
probabilities whose length equals the number of classes. A formal and thorough discussion about 
SVM mathematical basis is beyond the scope of this paper. The interested reader can exploit a 
substantial literature (Joachims, 1998) or (Vapnik, 1995) can be pursued for an in-depth 
description. 
 
In this work we use MPSVM variant and we leverage output probabilities to properly diagnose 
Unknown Faults  (see section III), as well as to unmask detection of false positives (i.e., 
SUSPECTED ERRORS in section III). More precisely, we introduce a notion of confidence, C, 
which is in fact the maximum element of the output probability vector provided by the classifier. 
A fault is claimed unknown if C is less than a given threshold, t. As for suspected errors, a 
special class of faults, “No Fault”, has been introduced: if the classifier is confident that a given 
fault belongs to this class,  (i.e., C ≥ t), a suspected error is stated. The monitor which triggered 
the alarm is retrained in this case, by modifying the joint probability distributions in the Bayes’ 
rule. Additionally, no recovery action has to be initiated. Of course, the choice of t impacts on 
the diagnosis quality, hence we performed a sensitivity analysis, as it will be detailed in the next 
section. Figure 7 shows diagnosis response with respect to the location output. 
 



 
 
Figure 7: Diagnosis response with respect to location output. 
 
EXPERIMENTAL FRAMEWORK AND RESULTS 
 
Case study introduction 
 
We evaluate the proposed DLR approach on a real case study from the Air Traffic Control (ATC) 
domain, within the framework of an industrial partnership with Finmeccanica group (COSMIC 
project, http://www.cosmiclab.it). The case study consists of a complex distributed application 
for Flight Data Processing. It is in charge of processing aircrafts data produced by Radar Track 
Generators, by updating the contents of Flight Data Plans (FDPs), and distributing them to flight 
controllers. The overall (simplified) architecture is depicted in figure 8; it is based on 
CARDAMOM (http://cardamom.objectweb.org (Corsaro, 2005)), i.e., an open-source 
CORBA middleware, for mission and safety critical applications which is compliant with OMG 
FT CORBA specifications (OMG, 2001). Furthermore, it makes use of OTS software items, such 
as the Data Distribution Service (DDS) implementation provided by RTI (http://www.rti.com) 
for publish-subscribe communication among components, and the ACE orb 
(http://www.theaceorb.com) on which CARDAMOM relies. The architecture is made up of 
several components: 
 



 

 
Figure 8: Case study architecture. 
 

• Facade component, i.e., the interface between the clients (e.g., the flight controller 
console) and the rest of the system (conforming to the Facade GoF design pattern); it 
provides a remote object API for the atomic addition, removal, and update of FDPs. The 
Facade is replicated according to the warm-passive replication schema. It stores the FDPs 
along with a lock table for FDPs access serialization. 

• Processing Server : it is in charge of processing FDPs on demand, by taking into account 
information from the Correlation Component and the FDPs published on the internal 
DDS. This component is replicated three times on different nodes, and FDP operations 
are balanced among servers with a round-robin policy. 

• Correlation component, which collects flight tracks generated by radars, and associates 
them to FDPs, by means of Correlation Managers (CORLM in the figure 8). 

 
The workload generates requests to the Facade component, both for flight tracks and FDP 
updates, in a random way and at a predefined average rate. 
 
Objectives 
 



Conducted experiments aim to demonstrate that: 
 

• The detection approach is able to exploit several low-overhead and inaccurate monitors, 
by keeping low the false positive rate and the detection latency as well. 

• The proposed location and recovery modules are able to correctly locate the root cause of 
a known fault within the system, and to trigger the proper recovery action in an on-line 
manner. 

• The implemented DLR framework is able to partially discover unknown faults within the 
system. This is useful to trigger off-line maintenance (e.g., by alerting a human operator). 

 
Evaluation metrics 
 
According to (Cardenas, Baras, & Seamon, 2006), the following quality metrics have been used 
to evaluate detection approaches: 

• Coverage: the conditional probability that, if there is a fault, it will detected. It is 
estimated by the ratio between the number of detected faults and the number of injected 
faults. 

• False positive rate: the conditional probability that, if there is not a fault, an alarm will be 
issued. It is estimated by the ratio between the number of false alarms and the number of 
normal events monitored. 

• Latency: the time between the execution of the fault-injected code, and the time of 
detection; it is an upper bound of the time between fault activation and the time of 
detection. 

• Overhead: we consider the average execution time of remote methods implemented in the 
Facade remote object; in particular, we focus on the less and the most costly methods, in 
terms of execution time (respectively, update_callback, and request_return). 

 
According to (Sebastiani, 2002) (Kim, Whitethead, & Zhang, 2008), the following metrics have 
been used to evaluate the location engine: 
 

• Accuracy: the percentage of faults which are classified correctly, with respect to all 
activated faults. Letting A and B be two classes, it can be expressed as: 

€ 

A =
TPA +TPB

TPA + FPA +TPB + FPB

 

• Precision: this metric is referred to individual classes; it represents the conditional 
probability that, if a fault is classified as belonging to class A, the decision is correct. It 
can be expressed as: 

€ 

P =
TPA

TPA + FPA

 

• Recall: this metric is referred to individual classes; it represents the conditional 
probability that, if a fault belongs to class A, the classifier decides for A. 

€ 

R =
TPA

TPA + FNA

 



In the previous equations, the quantities TPA, FPA and FNA represent, respectively, the number 
of True Positives (i.e., the samples of A are classified as A), False Positives (i.e., the samples not 
of A are classified as A), and False Negatives (i.e., the samples of A are not classified as A). 
 
Faultload 
 
In order to evaluate the proposed fault detection and location techniques, we designed a realistic 
faultload based on the field data study conducted by (Duraes & Madeira, 2006). Faults have been 
injected in the source code of application-level components (i.e., the Facade and the processing 
servers), using the most common fault operators. Injected faults are detailed in table 3. 
 
Table 3: Source-code faults injected in the case study application. 
 
ODC DEFECT 
TYPE 

FAULT 
NATURE 

FAULT TYPE # 

8 
5 

MISSING MVIV - Missing Variable Initialization using a Value 
MVAV - Missing Variable Assignment using a Value 
MVAE - Missing Variable Assignment using an 
Expression 

5 

WRONG MVAV - Wrong Value Assigned to Variable 26 

Assignment 
(63.89%) 

EXTRANEOUS EVAV - Extraneous Variable Assignment using 
another Variable 

2 

MISSING MIA - Missing IF construct Around statement 2 Checking 
(6.94%) WRONG WLEC - Wrong logical expression used as branch 

condition 
3 

MISSING MLPA - Missing small and Localized Part of the 
Algorithm 

2 Interface 
(4.17%) 

WRONG WPFV - Wrong variable used in Parameter of 
Function Call 

1 

13 
1 

Algorithm 
(20.83%) 

MISSING MFC - Missing Function Call 
MIEB - Missing IF construct plus statement plus 
ELSE Before statement 
MIFS - Missing IF construct plus statement 

1 

MISSING MFCT - Missing Functionality 2 Function 
(4.17%) WRONG WALL - Wrong Algorithm (Large modifications) 1 
Total   72 
 
Fault types listed in the table are representative of the most common mistakes made by 
programmers. In particular, according to the Orthogonal Defect Classification, faults can be 
characterized by the change in the code that is necessary to correct it. Therefore, in order to 
emulate a software fault, we have to choose an adequate source code location, which is similar to 
ones containing faults from the field. Faults operators in  (Duraes & Madeira, 2006) describe the 
rules to locate representative fault locations within source code. The operators were applied to 
components according to software complexity metrics, in order to choice the source locations 
containing the most of residual faults (Moraes, Duraes, Barbosa, Martins, & Madeira, 2007). The 



most complex target components, in term of Lines Of Code (LOCs) and cyclomatic complexity, 
turned out to be the C++ classes implementing the Facade and Processing Server remote objects; 
we have injected, respectively, 56 and 16 source-code faults in them. 
 
Before each fault injection campaign, source-code faults are randomly divided in two distinct 
sets, namely training set and test set. These are characterized by the same size, and the same 
number of source-code faults. Training sets are used to setup the detection and location 
techniques, and test sets are used to evaluate their effectiveness. Each fault injection experiment 
encompasses only one source-code fault at a time. 
 
Adopted testbed 
 
We used a cluster machine made up of 128 nodes. The system deployment consists of 9 
machines (two Facade replicas, one for the CARDAMOM FT service, one for Load Balancing 
Service, three for the FDP processing servers, and 2 nodes are allocated to the Client and to 
CORLM component, respectively) wired by Gigabit LAN. In order to have more reliable results, 
and not be biased by hardware errors, we partitioned the cluster in 10 LANs. Thus, each 
experiment was lunched on the 10 partions, simultaneously. Results are then filtered and 
averaged. The hardware configuration of testing machines is made up of 2 Xeon Hyper-Threaded 
2.8GHz CPUs, 3.6GB of physical memory, and a Gigabit Ethernet interface; machines are 
interconnected by a 56 Gbps switch, and they are equipped with the Linux OS with kernel 
v.2.6.25. 
 
DLR in the case study 
 
The DLR approach was applied to the considered case study, by defining the features and the 
classes used for fault diagnosis. In particular, the binaries and the libraries of both the application 
and OTS libraries (e.g., CARDAMOM, TAO) were inspected to extract potential error messages 
produced by them (using the strings UNIX utility). Several error messages were collected, and a 
dictionary of words was build on them. The total amount of features from all the monitored DUs 
and logs was 17171 (see table 4). 
 
Table 4: Features used for diagnosis in the case study application. 
 

Number of log file types 8 
Number of monitored log files 16 

Number of OTS libraries 87 
Number of potential log messages 7691 

Number of unique tokens within log messages 6043 
Number of application keywords 33 
Monitored processes by the OS Façade, 3 Servers 

Number of OS features (per process) 1250 
Total amount of features 17171 



 
The location classifier was trained using fault injection, and fault classes were identified using 
the proposed approach (see table 5). For each class, the root cause is represented by the 
component in which the fault was injected during the training phase. A proper recovery mean has 
been associated to each fault class. 
 
Table 5: Diagnosis fault classes. 
 
 FAULT TYPE FAULT LOCATION RECOVERY 
Class 0 No fault None The system is correctly working. 
Class 1 Crash Façade Activate the backup replica; a new backup 

replica is activated. 
Class 2 Passive hang Façade Free all resources locked by semaphores, 

and kill the preempted transaction. The 
correctness of this recovery is due to the 
specific application properties (e.g., the 
FDP will be correctly updated by the next 
update operation); another recovery mean 
would be to kill the hung Façade and treat it 
as a crashed Façade. 

Class 3 Crash Server Reboot the server process; add it to the load 
balanced group. 

Class 4 Passive hang 
(at start time) 

Façade Reboot the whole application. The 
application start may fail because of 
transient faults, then the reboot may succeed 
on the second try. If the application still 
does not start, human intervention is 
requested. 

 
Measurements 
 
Detection: 
 
As a basis for comparison, we first evaluated the performance of individual monitors. For each 
monitor, a sensitivity analysis has been made, letting parameter's value of each monitor vary 
within the range [1s, 4s] (see table 1). The best values for all detectors, with respect to the 
Facade and Server DUs respectively, are shown in tables 6 and 7. Different monitors achieve 
different performances in terms of coverage, since they are suited for different failure modes; 
actually, monitors are unable to achieve full coverage, except for the SOCKET monitor. 
Furthermore, performances vary with respect to the considered DU. As for example, in the case 
of the processing server, only crashes (i.e., class 3 in table 5) have been observed, hence no faults 



have been identified by monitors controlling blocking conditions (e.g., wait for a semaphore). 
The reason for which all the monitors experience the same mean latency value, is that they have 
been triggered all together after the abortion of the processing server DU. 
 
Table 6: Coverage, false positive rate, and latency provided by the individual detectors for the 
Façade DU. 
 
Detector Parameter Coverage False positive rate Mean Latency (ms) 
UNIX semaphores hold 
timeout 

4 s 64.5% 36.08% 1965.65 

UNIX semaphores wait 
timeout 

2 s 67.7% 1.7% 521.18 

Pthread mutexes hold 
timeout 

4 s  64.5% 4.01% 469.51 

Pthread mutexes wait 
timeout 

- 0% 0% - 

Schedulation threshold 4 s 74.1% 3.25% 1912.22 
Syscall error codes 1 s 45.1% 0.6% 768.97 
Process exit 1 s 45.1% 0% 830.64 
Signals 1 s 45.1% 0% 816.57 
Task lifecycle 1 s 35.4% 0.05% 375.7 
I/O throughput network 
input 

3 s  77.3% 0.4% 4476.67 

I/O throughput network 
output 

3 s 77.3% 0.2% 2986.4 

I/O throughput disk reads 3 s 70.9% 0.4% 4930 
I/O throughput disk writes 2 s 67.6% 0.05% 6168.57 
Sockets 4 s 100% 3.47% 469.58 
 
Detector Parameter Coverage False positive rate Mean Latency (ms) 
UNIX semaphores hold 
timeout 

2 s 0% 3.61% - 

UNIX semaphores wait 
timeout 

2 s 0% 2.28% - 

Pthread mutexes hold 
timeout 

2 s  0% 4.44% - 

Pthread mutexes wait 
timeout 

- 0% 0% - 

Schedulation threshold 1 s 0% 3.25% - 



Syscall error codes 1 s 100% 0.98% 522.5 
Process exit 1 s 100% 0.005% 522.5 
Signals 1 s 100% 0.005% 522.5 
Task lifecycle 1 s 100% 0.22% 522.5 
I/O throughput network 
input 

3 s  100% 0.49% 522.5 

I/O throughput network 
output 

3 s 100% 87.35% 522.5 

I/O throughput disk reads 3 s 100% 79.31% 522.5 
I/O throughput disk writes 3 s 100% 77.77% 522.5 
Sockets 2 s 100% 3.14% 522.5 
 
Several monitors provided a small number of false positives, even if there were monitors which 
provided an unacceptably high false alarm rate. For this reason, it is important to filter false 
positives in order to include those monitors within the system (this is useful to increase the 
amount of covered faults, and to deliver more information to the location phase). 
 
Table 8 shows the performances achieved by the joint detection algorithm. It can be seen that the 
joint detector is able to achieve the full coverage of all injected faults, while keeping low the 
false positive rate (it is comparable to the best rates in tables 6 and 7). Another benefit given by 
the joint detection is the much lower latency: in fact, when one of the individual monitors 
produce an anomalous value, the other detectors are immediately inspected for anomalies, 
providing a lower mean detection time. 
 
Table 8: Coverage, accuracy, and latency provided by the joint detection approach. 
 

 Façade Server 
Coverage 100% 100% 

False positive rate 4.85% 6.86% 
Mean Latency 100.26±135.76 ms 165.67±122.43 ms 

 
Finally, the overhead of continuous monitoring DUs at the O.S. level has been measured, by 
varying the request rate from the client; figures 9 and 10 show the execution time observed with 
and without monitors. It should be noted that the overhead was lower that 10% in every case, 
even during most intensive workload periods. 
 



 

 
Figure 9: Overhead imposed to the execution of Façade's “update_callback” method. 
 

 

 
Figure 10: Overhead imposed to the execution of Façade's “request_return” method. 
 
Location: 
 
We evaluated the performance of the location phase with respect to both known faults (i.e., faults 
similar to ones observed during the training phase) and unknown faults (i.e., faults completely 
different than all known ones). First, we excluded faults belonging to class 4 from the training 
set, and evaluated location capability with respect to the remaining (known) classes, using a low 
confidence level (C = 0.9); in all the cases, the location was able to identify the correct fault 
class. Moreover, the location was able to identify all false positives produced by detection during 
faulty-free execution. 
 
Next, faults belonging to class 4 were used for testing location; results are shown in table 9. It is 
shown that, although all known faults are correctly classified for $C = 0.9$, only a small amount 
of unknown faults were identified (represented by the Recall measure for unknown faults); in the 
most of cases, the locator wrongly classified an unknown fault as a known one. Therefore, we 
made a sensitivity analysis on the confidence level $C$, in order to discover the confidence level 
needed for the correct identification of unknown faults. It should be noted that an increase in the 
required confidence level for location, reduces the amount of known faults correctly identified; 
therefore, human intervention could be required even for known (but not trustfully classified) 



faults. Nevertheless, it can be noted that, by increasing the confidence level, a better trade-off 
between identification of known and unknown faults can be achieved: a confidence level $C = 
0.99$ or $C = 0.995$ still provides fully correct known fault classification, with a higher amount 
of unknown faults identified. 
 
Table 9: Classification diagnosis evaluation, when deliberately excluding class 4 from the 
training (UNKNOWN). When a fault was classified as KNOWN, in all cases it was also correctly 
classified with respect to table 5. 
 
Confidence ACCURACY P(KNOWN) R(KNOWN) P(UNKNOWN) R(UNKNOWN) 

0.9 60% 59.09% 100% 100% 5.26% 
0.99 75.56% 70.27% 100% 100% 42.11% 
0.995 77.78% 73.52% 96.15% 90.91% 52.63% 
0.999 75.56% 80% 76.92% 70% 73.68% 
0.9999 42.22% n.a. 0% 42.22% 100% 

 
After that, we included in the training set half the samples of class 4, becoming a known fault. 
Results with the respect to the confidence level are shown in table 10; known fault classification 
is still very high for more demanding confidence levels (i.e., C = 0.9, C = 0.99). 
 
Table 10: Classification diagnosis evaluation, when including all 5 classes in the training. When 
a fault was classified as KNOWN, in all cases it was also correctly classified with respect to 
table 5. 
 
Confidence ACCURACY 

0.9 100% 
0.99 94.29% 
0.995 94.29% 
0.999 71.43% 
0.9999 25.71% 

 
In table 11, the mean time for detection data collection and classification are shown. It can been 
seen than the total amount of time required to diagnose a fault (the sum of mean detection, 
collection, and location times on the average) is about 1.2 seconds, which is reasonable for a 
large class of critical COTS-based systems. 
 
Table 11: Time measurements for the location phase. 
 
Mean time for data collection 84.4 ± 115.11 ms 

Mean time for location 917.14 ± 23.63 ms 
 
Finally, figure 11 shows the (cumulative) amount of false positives produced by joint detection 
during a long period of time. The location has been configured to retrain the detector which 
erroneously triggered the location, by updating the joint probability distribution P(a | ¬ F). This 
produced a dramatic decrease of the false positives rate after less than an hour of execution, by 
filtering most common false positive patterns occurring during the detection phase. 



 

 
 
Figure 11: Cumulative number of false positives during time, using the location output to retrain 
detection joint probabilities. 
 
RELATED WORK 
 
The issue of diagnosis is being faced since a long time, maybe since computers came. The first 
attempt to formalize the problem is due to (Preparata, Metze, & Chien, 1967) which introduced 
system level diagnosis. The model they proposed in 1967 (also known as the PMC model) 
assumed the system to be made up of several units which test one another, and test results are 
leveraged to diagnose faulty units. Several extensions to this model have been proposed, even 
recently (e.g., (Vaidya & Pradham, 1994) where the safe system level diagnosis has been 
proposed). 
 
In the last decade or so, there has being an increasing work focusing on diagnosis in order to face 
the problem by several perspectives and by using quite different techniques. For this reason, we 
tried to leverage existing solutions to similar problems, as well as to use approaches close to the 
ours which have been rather used to face different issues. 

Similar approaches to similar problems (SASP) 
 
The goal of identifying automatically the root cause of a failure is pursued in (Yuan, et al., 
2006). Authors propose a trace-based problem diagnosis methodology, which relies on the trace 
of low level system behaviors to deduce problems of computer systems. Transient events 
occurring in the system (e.g., system calls, I/O requests, call stacks, context switches) are traced 
in order to (i) identify the correlations between system behaviors and known problems and (ii), 
use the learned knowledge to solve new (i.e., not known) problems. These goals are achieved by 
means of statistical learning techniques, based on SVMs, similarly to our work. The ultimate aim 



that authors want to pursue is to make the problem identification fully automatic, thus 
eliminating human involvement. We have a different goal, in that we also aim to trigger recovery 
actions. Furthermore, the symptom of the problem needs to be reproduced before the root cause 
detection. 
 
A decision tree based approach is presented in (Zheng, Lloyd, & Brewer, 2004) to diagnose 
problems in Large Internet Services. Similarly to what we do in this work, runtime properties of 
the system (they record clients requests) are monitored; automated machine learning  
and data mining techniques are used to identify the causes of failures. The proposed approach is 
evaluated by measuring precision and recall, similarly to what we do for evaluating diagnosis 
quality. However, our work differs from this one for what concerns with detection. In fact, 
detection is not encompassed in (Zheng, Lloyd, & Brewer, 2004): authors assume problems to 
have been already detected and they only concentrate on identifying the root cause, in order to 
trigger a fast recovery. 
 
Similar approaches to different problems (SADP) 
 
(Podgurski, et al., 2003) proposes an automated support for classifying reported software failures 
in order to facilitate the diagnosing of their root causes. The authors use a classification strategy 
which makes us of supervised and unsupervised pattern classification, as we do for location and 
detection respectively. Additionally, they also concentrate on the importance of features 
selection and extraction, as we do. However, the classification performed in this work aims to 
group failures which are due to the same cause and it is conceived as a mean for helping actual 
diagnosis. Conversely, we actually perform diagnosis by means of classification. 
 
A very recent work which uses a machine learning approach based on SVM classification is 
(Kim, Whitethead, & Zhang, 2008). Its main goal is to predict the presence of latent software 
bugs in software changes (change classification). In particular, a machine learning SVM 
classifier is used to determine whether a new software change is more similar to prior buggy 
changes or clean changes. In this manner, change classification predicts the existence of bugs in 
software changes. We have in common with this work the classification problem, its formulation 
and the process of feature extraction. 
 
Machine learning approach has also been used in (Brun & Ernst, 2004) for identifying program 
properties that indicate errors. The technique generates machine learning models of program 
properties known to result from errors, and applies these models to program properties 
of user-written code to classify the properties that may lead the user to errors. SVMs and 
decision trees are used for classification. The effectiveness of the proposed approach has been 
demonstrated with respect to C, C++, and Java programs. However it requires human labor to 
find the bugs, and the process is not fully automatic. 
 
(Aguilera, Mogul, Wiener, Reynolds, & Muthitacharoen, 2003) address the problem of locating 
performance bottlenecks in a distributed system with only internode 
communication traces. They infer the causal paths through multi-tier distributed applications 
from message level traces, in order to detect the node causing extraordinary delay. They share 
with us the great attention which is paid to the presence of OTS items, as well as the fact that the 



approach requires no modifications to applications and middleware. The major differences with 
our work are (i) the fact that they pay more attention to performance rather than on faults and 
(ii), the fact that they perform off-line diagnosis of the problem. 
 
As for Bayesian estimation, a worth noting work to be referred is (Chang, Lander, Lu, & Wells, 
1993) which addresses system diagnosis problems. It refers to comparison-based system analysis 
to deal with incomplete test coverage, unknown numbers of faulty units, and non-permanent 
faults. However, only one type of monitor is used in that work and also recovery is not 
encompassed. 
 
Different approaches to similar problems (DASP) 
 
Closely related to our work in goals is (Joshi, Hiltunen, Sanders, & Schlichting, 2005), which 
cares about automatic model driven recovery in distributed systems. Similarly to what we do, 
authors exploit a set of a limited coverage monitors whose output are combined in a certain way 
prior to trigger recovery actions. Additionally they also have a Bayesian Faults Diagnosis engine 
in charge of locating the problem, as well as to pilot a recovery controller that can choose 
recovery actions based on several optimization criteria. Similarly to the approach we propose, 
the approach proposed in (Joshi, Hiltunen, Sanders, & Schlichting, 2005) is able to detect 
whether a problem is beyond its diagnosis and recovery capabilities, and thus to determine when 
a human operator needs to be alerted. Despite of these common purposes, we take an opposite 
perspective in that we do not follow a model based approach since modeling the complex 
software systems we are addressing could be too difficult and inaccurate. Additionally, our work 
is different in several points. First, they propose incremental recovery actions whereas we 
directly start the best one action able to repair the system. Second, we always use the entire set of 
``always-on'' monitors to detect errors instead of invoking additional monitors when needed. 
Third, we use fault injection to experimentally prove the effectiveness of the approach rather 
than for making a comparison with a theoretical optimum. 
 
(Khanna, Laguna, Arshad, & Bagchi, 2007) face the problem of diagnosis in networked 
environments made up of black-box entities. This goal is achieved by (i) tracing messages to 
build a causal dependency structure between the components (ii), by tracing back the causal 
structure when a failure is detected and (iii), by testing components using diagnostic tests. 
Runtime observations are used to estimate the parameters that bear on the possibility of error 
propagation, such as unreliability of links and error masking capabilities. The work aims to 
provide diagnosis of the faulty entities at runtime in a non-intrusive manner to the application. 
Differently from this work, we do not build causal structure of the system since we do not make 
any assumption on the structure of the system itself. The main point in common is the fact that 
we pursue on-line diagnosis as well. 
 
(Brown, Kar, & Keller, 2001) defines a methodology for identifying and characterizing dynamic 
dependencies between system components in distributed application environments, which relies 
on active perturbation of the system. This is in order to identify dependencies, as well as to 
compute dependency strengths. Even if discovering system dependencies automatically could be 
a good way for root cause analysis, it is assumed a deep knowledge of system internals. In 
particular, authors assume to completely know end-users interaction with the system (they use a 



well known TPC benchmark). We take the opposite position in that we do not require such a 
knowledge. Furthermore, the Active Dependency Discovery approach which is defined in that 
work, reveals to be strongly intrusive and workload dependent. 
 
A further worth referring work is (Chen, Kiciman, Fratkin, Fox, & Brewer, 2002), where the 
Pinpoint framework is defined. It employs statistical learning techniques to diagnose failures in a 
Web farm environment. After the traces with respect to different client requests are collected, 
data mining algorithms are used to identify the components most relevant to a failure. We share 
with that work the “learning from system behavior” philosophy. However, there is a difference in 
goals, since we want to detect and diagnose faults in order to determine the cause of the failure 
and trigger recovery action. Conversely, Pinpoint aims to recognize which component in a 
distributed system is more likely to be faulty. Fault injection is used also in (Chen, Kiciman, 
Fratkin, Fox, & Brewer, 2002) to prove the effectiveness of the approach. The major limitation 
of this approach are that (i) it is suitable only for small scale software programs, and (ii) it 
exhibit a significant logging. We differ from that work in two main points: (i) the Pinpoint 
framework is designed to work off-line and (ii), it is not a recovery-oriented approach. 
 
Finally, on-site failure diagnosis is faced in (Tucek, Lu, Huang, Xanthos, & Zhou, 2007). The 
work aims to capture the failure point and conduct just-in-time failure diagnosis with checkpoint-
reexecution system support. Lightweight checkpoints are taken during execution and rolls back 
are performed to recent checkpoints for diagnosis after a failure has occurred. Delta generation 
and delta analysis are exploited to speculatively modify the inputs and execution environment to 
create many similar but successful and failing replays to identify failure-triggering conditions. 
We discard a similar approach since Heisenbugs can be unreproducible this way: in fact, their 
conditions of activation are hard to identify (Grottke & Trivedi, 2007). Furthermore, long time is 
required (almost five minutes) to complete the process: this can be not tolerable for safety critical 
systems. Table 12 summarizes the related work. 
 
CONCLUSION 
 
In the context of leveraging the dependability of complex and fault tolerant software systems, the 
paper advocated the need of recovery oriented software fault diagnosis approach, which 
integrated detection, location, and recovery in one holistic diagnostic framework. This is 
different from most of the previous work which has been conducted on software failure diagnosis 
in the last few years in that target systems, in which we also conducted experiments, are very 
complex. Thus existing approaches, which require human involvement to discover the bug, are 
not suitable for field failures for a number of reasons. First of all, it is difficult to reproduce the 
failure-triggering conditions in house for diagnosis. Second, off-line failure diagnosis cannot 
provide timely guidance to select the best recovery action, i.e., a recovery action which is 
tailored for the particular fault that occurred. 
 
The experimental campaign has been conducted in the context of a real-world Air Traffic 
Control system. Results demonstrated that: 
 

• The detection approach is able to exploit several low-overhead and inaccurate monitors at 
the OS level, by keeping low the false positive rate and the detection latency as well; 



• The proposed location and recovery strategies are able to correctly locate the root cause 
of a known fault within the system, and to trigger the proper recovery action in an on-line 
manner. 

• The implemented DLR framework is able to partially discover unknown faults within the 
system. This is useful to trigger off-line maintenance (e.g., by alerting a human operator). 
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