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Faultprog: Testing the Accuracy of
Binary-Level Software Fault Injection

Domenico Cotroneo, Anna Lanzaro, and Roberto Natella

Abstract—Off-The-Shelf (OTS) software components are the cornerstone of modern systems, including safety-critical ones.
However, the dependability of OTS components is uncertain due to the lack of source code, design artifacts and test cases,
since only their binary code is supplied. Fault injection in components’ binary code is a solution to understand the risks posed by
buggy OTS components.
In this paper, we consider the problem of the accurate mutation of binary code for fault injection purposes. Fault injection emulates
bugs in high-level programming constructs (assignments, expressions, function calls, ...) by mutating their translation in binary
code. However, the semantic gap between the source code and its binary translation often leads to inaccurate mutations.
We propose Faultprog, a systematic approach for testing the accuracy of binary mutation tools. Faultprog automatically generates
synthetic programs using a stochastic grammar, and mutates both their binary code with the tool under test, and their source
code as reference for comparisons. Moreover, we present a case study on a commercial binary mutation tool, where Faultprog
was adopted to identify code patterns and compiler optimizations that affect its mutation accuracy.

Index Terms—Off-The-Shelf software; Dependability Benchmarking; Fault Injection; Software Mutation; Random Testing.
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1 INTRODUCTION

The need for lowering development costs and the
time-to-market leads companies to develop their sys-
tems by integrating Off-The-Shelf (OTS) software
components from third parties. Nowadays, this ap-
proach is also adopted for safety-critical systems such
as avionic, automotive and medical ones, where the
dependability of OTS software becomes a major con-
cern [1], [2], [3]. When an OTS component is reused
in a new context, the system may use parts of the
component that were not previously used and/or
that were only lightly tested. Furthermore, the OTS
component may interact with the new environment in
unforeseen ways, thus exposing residual software faults
(“bugs”) that had not been discovered in previous use.
The issue of OTS software is exacerbated by the lack
of source code, design artifacts and test cases, since
only its executable binary code is usually available.

Fault injection is a widely-used approach for miti-
gating the risks posed by faulty OTS components in a
critical system [4], [5], [6]. It consists in the deliberate
injection of faults into a component, by means of
binary mutation (BM). Mutations mimic software
faults by inserting small “faulty” changes into the
binary code of the OTS component; then, the system
is executed, in order to analyze its ability to tolerate
faults in the OTS component, as demonstrated in a
variety of work [7], [8], [9], [10]. Another emerging
application of BM is to increase the efficiency of
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mutation testing (which uses mutants to select test
cases), by avoiding the cost of recompiling a high
number of source-code mutants [11], [12].

However, making accurate changes to binary code
is a technically-challenging problem [13], [14], [15],
[16], [17]. A BM tool works in two steps: (i) it first
looks for code patterns in the binary code that represent
high-level programming constructs, according to a
fault model to inject [18], [19], [14]; (ii) the code pattern
is mutated by replacing its machine instructions. Fig. 1
shows an example: To emulate a “missing variable
assignment” fault (a frequent type of software fault,
as discussed later), a BM tool should identify, and
remove, the machine instructions that result from the
translation of an assignment in the source code. The
removal of these instructions from the binary code
emulates a programmer’s omission in the source code.

Source code!
!
int a, b, c;!
a = 3;!
b = 5;!
c = 7;!

Binary code!
!
mov    %rsi,-0x20(%rbp)!
movl   $0x3,-0xc(%rbp)!
movl   $0x5,-0x8(%rbp)!
movl   $0x7,-0x4(%rbp)!

Compilation!
Binary!

mutation!

Source!
mutation!

Faultprog: Is binary mutation!
an accurate alternative to!

source mutation?!

Mutated binary!
!
mov    %rsi,-0x20(%rbp)!
movl   $0x3,-0xc(%rbp)!
!
movl   $0x7,-0x4(%rbp)!
nopl    0x0(%rax)!

Mutated source!
!
int a, b, c;!
a = 3;!
!
c = 7;!
b = 5;!

Fig. 1. Example of fault injection at binary level.

The main challenge for a BM tool is to assure the ac-
curacy of binary mutations, that is: binary mutations
should emulate the software faults as they would
be injected into source code and then compiled into
binary code [13], [14], [17]. Accuracy is a necessary
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condition for the rigorous and unbiased evaluation
of fault tolerance properties [8], [7], [9], [10], since
injecting inaccurate mutants would lead to misleading
conclusions (which can be very dangerous in the
context of critical systems). However, the accuracy
of binary mutation is hampered by the semantic
gap between source code (consisting of high-level
programming constructs wrote by developers) and
its translation into binary code (consisting of low-
level machine instructions). The gap is widened by
the complexity of programming languages, compil-
ers, and CPUs, and makes difficult to identify high-
level programming constructs by only looking at their
translation in binary code. This gap negatively affects
the accuracy of BM tools, as showed in previous work
[15] (see § 2 for a more detailed discussion), and leads
to an incorrect assessment of fault tolerance.

In this work, we propose an approach, namely
Faultprog, for testing the accuracy of BM tools. Fault-
prog is based on the automatic generation of synthetic
programs, which are submitted as inputs to a BM tool,
in order to evaluate its accuracy at performing binary
mutations. First, several synthetic programs are gen-
erated by encompassing different programming con-
structs (e.g., expressions, function calls, assignments)
in different contexts (e.g., nested loops, control flow
constructs and function calls). Then, the BM tool is ap-
plied on the binary code of these synthetic programs.
The binary mutants produced by the BM tool are
compared against the mutants produced by source-
code mutation and compilation. In this process, the
analysis of source code serves as a reference, as it does
not suffer the limitations of binary-level mutation.
Faultprog assesses the accuracy of the BM tool at
correctly recognizing and mutating programming
constructs at the binary level, revealing its issues and
limitations. In other words, the synthetic programs act
as a “test suite” for assessing the quality of binary
mutations. Given the increasing use of fault injection
techniques in industry, which are nowadays recom-
mended by several safety standards [20], we believe
that giving an approach to practitioners to evaluate
the accuracy of fault injection tools is very important.

This paper evaluates the feasibility and the use-
fulness of putting the Faultprog approach into prac-
tice in the context of a BM tool from a commercial
fault injection suite. We use Faultprog to test a tool
currently under development by CRITICAL Software
S.A., a leading company in the field of independent
V&V of safety-critical systems. We focus on the in-
depth analysis of this BM tool, and present the lessons
learned and the generality and limitations of the find-
ings. Overall, the use of random program generation
in Faultprog proved to be useful at exposing the BM
tool to complex program expressions, and to uncover
corner cases that cause inaccurate mutations. While
the BM tool produced correct mutations in many
cases, we found that some code patterns in the fault

model (“constraints”) are not correctly handled, and
that additional code patterns are needed to identify
all injectable faults. Finally, we found that only few
compiler optimizations have a significant impact on
the accuracy of the BM tool, and developers’ efforts
should be focused on improving the tool with respect
to these optimizations.

The paper is structured as follows: § 2 discusses the
problem of BM accuracy with a motivating example;
§ 3 describes Faultprog; § 4 presents the experimental
results obtained in the context of a BM tool; § 5
discusses related work; § 6 closes the paper.

2 THE PROBLEM OF ACCURACY

As a motivating example for the rest of the paper, we
summarize the findings of our preliminary work on
the accuracy of BM [15]. In that work, we analyzed a
BM tool that adopts the Generic Software Fault Injection
Technique (G-SWFIT) [14], a well-known technique for
injecting realistic software faults in binary code. The
peculiarity of G-SWFIT is that its fault model reflects
the types of software faults that most frequently cause fail-
ures, according to field data about failures experienced
by users [18], [19], [14]. The definition of these fault
types is based on the well-known Orthogonal Defect
Classification [21], which classifies software faults as
Assignment, Algorithm, Checking, and Interface faults.

For each fault type (listed in TABLE 1), G-SWFIT
defines: a code pattern where the fault type should
be injected (for instance, assignment faults should
be injected in move instructions, and control flow
faults should be injected in branch instructions), and
a code change to be injected for emulating that fault
type (e.g., replacing move or branch instructions with
nops). Code patterns reflect the typical translation of
high-level programming constructs of the fault model
into sequences of machine instructions. The defini-
tion of code patterns is the most tricky aspect of G-
SWFIT, since the binary translation of programming
constructs is influenced by several factors, including
the programming language, the compiler and its op-
timizations, and the hardware architecture.

In addition to the code patterns, G-SWFIT’s fault
types also include a set of rules (constraints) that define
the “context” in which faults can be injected. The
constraints serve to avoid code locations where the
change would not emulate a realistic fault [14]. These
constraints, listed in TABLE 1 and in TABLE 2, are
based on the analysis of field data (see [22] for details).
Constraints may apply to more than one fault type.

For example, the MFC fault type has a constraint
(C01) imposing that a function call should be removed
only if it does not return any value or the return value
is discarded by the caller. In fact, field data (and also
intuition) point out that if a programmer uses the
return value from a function call, then it is unlikely to
forget that function call in the program, and removing
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TABLE 1
Fault types of G-SWFIT [14], [22].

Class Acronym Description Constraints

A
ss

ig
nm

en
t

MVIV Missing variable initialization
using a value

C02, C03, C04,
C05, C06

MVAV Missing variable assignment
using a value

C02, C03, C06,
C07

MVAE Missing variable assignment
with an expression

C02, C03, C06,
C07

WVAV Wrong value assigned to vari-
able

C03, C06, C07

A
lg

or
ith

m

MFC Missing function call C01, C02

MIFS Missing IF construct + state-
ments

C02, C08, C09

MIEB Missing IF construct + state-
ments + ELSE construct

C08, C09

MLPA Missing small and localized
part of the algorithm

C02, C10

C
he

ck
in

g

MIA Missing IF construct around
statements

C08, C09

MLAC Missing AND in expression
used as branch condition

MLOC Missing OR in expression used
as branch condition

In
te

rf
ac

e WPFV Wrong variable used in param-
eter of function call

C03, C11

WAEP Wrong arithmetic expression in
function call parameter

the function call would not be representative of real
software faults made by programmers. Another ex-
ample is the MLPA fault type, which has a constraint
(C10) that imposes to remove at least two, and at most
five, consecutive statements that are neither control
nor loop statements. All these constraints are impor-
tant for emulating software faults in a representative
way, which in turn is a requirement for a correct and
unbiased evaluation of fault tolerance [23].

In our previous experiment [15], we evaluated
the accuracy of a G-SWFIT fault injection tool on
a complex software system for the space domain.
In that experiment, we injected faults in both OS
and application binary code, and compared binary
mutations with mutations performed on the source
code, following the rules of G-SWFIT in both cases.
We found that: (i) for each fault injected by the BM
tool, there were two more injectable faults that were
omitted by the tool, and (ii) among the faults injected
by the BM tool, about half of them were invalid.
These incorrect injections were due to two reasons:
(i) intrinsic limitations of G-SWFIT, and of BM in
general, that are very difficult to avoid (e.g., inline
C functions, which mislead a BM tool to inject one
separate fault for each call site of the function); (ii)
incorrect injections due to the incomplete or simplified
implementation of the BM tool. Many incorrect injec-

TABLE 2
Constraints of fault types in G-SWFIT [14], [22].

Id Description

C01 Return value of the function must not being used

C02 The construct must not be the only statement in the block

C03 Variable must be local

C04 Must be the first assignment for that variable in the
module

C05 Assignment must not be inside a loop

C06 Assignment must not be part of a FOR construct

C07 Must not be the first assignment for that variable in the
module

C08 The IF construct must not be associated to an ELSE
construct

C09 The block must not include more than five statements
and not include loops

C10 Statements are in the same block, do not include more
than 5 statements nor loops

C11 There must be at least two variables in this module

tions were due to the second cause, and in particular
were related to the implementation of fault constraints
and to the identification of code blocks and control
structures. For instance, spurious faults were in some
cases incorrectly injected when the target instruction
was the only statement within a block, and some
faults were omitted when an if construct included a
return statement. These incorrect injections were not
due to intrinsic problems of BM, and could be avoided
by conducting a rigorous testing of the BM tool.

These results motivated us to develop a system-
atic approach for testing BM tools. The experimental
methodology of our previous study [15] cannot be
easily adopted by developers of BM tools, since it
was based on the injection of a large number of faults
(tens of thousands in our experiment), but analyzing
even a sample of these faults required considerable
efforts. Moreover, the analysis is focused on a specific
software under study, and incurs a significant number
of incorrect injections not due to issues in the BM tool
(which are of interest for developers of BM tools), but
to intrinsic or known limitations of BM. Therefore, in
this paper we propose a novel approach that evaluates
injection accuracy on synthetic programs, which are
generated in a controlled and automated way in order
to make the analysis more efficient.

3 THE FAULTPROG APPROACH

Faultprog automates the evaluation of BM tools at
accurately injecting faults in binary code. The ap-
proach uses synthetic programs, i.e., programs (in a
high-level language, such as C) that are automatically
and randomly generated with the sole purpose to
evaluate the ability of the BM tool to inject faults



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

into them. These synthetic programs are compiled into
binary code, and fed to the BM tool. Then, we analyze
the mutations obtained from the BM tool.

The idea of this approach is to generate several
synthetic programs, in such a way to expose the BM
tool to code patterns that could point out its inaccura-
cies. Synthetic programs (Fig. 2) contain a target fault
location in their code, where the BM tool is expected to
inject a fault. The target fault location is generated to
comply with the fault types and constraints for which
the BM tool is designed. For instance, to evaluate
the “missing assignment using value” (MVAV) fault
type of G-SWFIT (Table 1), we generate a target
fault location containing an assignment statement.
To comply with the constraints of fault types of G-
SWFIT (Table 2), the target fault location consists of an
assignment made to a local variable (constraint C03),
and this assignment is not the only instruction of its
block (constraint C02). If the tool is not able to inject
a fault in the target fault location, then the synthetic
program exposes an issue of the fault injector, i.e., it
exhibits an omitted injection.

Moreover, we also generate synthetic programs in
which the fault constraints are deliberately not satis-
fied, and in which the fault injector should avoid to
inject faults. If the fault injector fails to recognize that
the target fault location is not compliant to the fault
model, it will erroneously inject a fault in the target
fault location. In such a case, the synthetic program
exposes an issue of the BM tool. This situation repre-
sents a spurious injection.

Finally, it is possible that the BM tool correctly
identifies the target fault location, but it does not
inject the intended fault. For instance, the BM tool
may mutate both the target fault location, and other
statements that surround the target but that should
not be mutated. In such cases, executing the mutated
program will produce different results than the same
program mutated at the source code level. This situ-
ation represents an incorrect injection.

To complete the synthetic programs, and to eval-
uate the accuracy of the BM tool in the presence
of complex code patterns, the target fault location
is surrounded, preceded and followed by additional
randomly-generated programming constructs, that
represent respectively the context, the preamble and the
postamble of the target fault location (Fig. 2).

Fig. 3 summarizes the workflow and the tools in-
volved in the Faultprog approach. A program generator
produces synthetic programs based on the structure
of Fig. 2, by using a grammar of the source lan-
guage to generate syntactically-valid statements, and
a fault model to generate different flavors of the target
fault location. The program is fed both to the BM
tool that we are testing (Tool Under Test) and to a
source mutation tool (Oracle Tool) that injects faults
in source code, rather than binary. The Oracle Tool
serves as a reference for evaluating the accuracy of

void	
  func()	
  {	
  
	
  	
  stmt1;	
  
	
  	
  …	
  
	
  	
  stmtn;	
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  Target	
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}	
  
...	
  
void	
  main()	
  {	
  
	
  	
  entry_func();	
  
	
  	
  checksum();	
  
}	
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  target	
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Fig. 2. General structure of a synthetic program.
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Mutated source 
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tcbin
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Mutated binary
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obin

Mutated binary
execution

Compiler

Compiler

C
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pa
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C
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on

mtcbin

mtcsrc

Binary
Mutation Tool

(tool under test)

Fig. 3. The Faultprog approach.

the Tool Under Test: it follows the same fault model
(e.g., G-SWFIT), but works on source code, thus it
avoids the accuracy issues encountered by the BM
tool. The mutated programs are statically and dynam-
ically compared. Program generation, mutation and
comparison are automatically repeated, by leveraging
a compiler and a build system.

Test-suite generation (§ 3.1): We automatically gen-
erate a set of synthetic programs, which are test-cases
for the BM tool, and form a test-suite. Programs are
generated according to the fault types and constraints
that we are testing, where the target statement is sur-
rounded by a context, i.e., iteration (a loop construct)
or selection (a conditional construct) statements. The
test-suite is obtained by generating different combi-
nations of these parameters, while also controlling
the nesting level and type of expressions (e.g., con-
stants, variables, arithmetic operations). The test-suite
(TSsrc) contains both valid test-cases (i.e., test-cases
that satisfy all the constraints for a fault type, and
where the tool is expected to inject), and invalid test-
cases (i.e., test-cases that do not satisfy one of the
constraints, and that the tool should not mutate). Test-
cases are compiled into binary code (TSbin).

Test-suite mutation (§ 3.2): The Tool Under Test
takes binary test cases from TSbin as input, and pro-
duces faulty versions of these programs (mutated test
suite, MTSbin) by changing their binary code. At the
same time, the test-suite TSsrc in source-code form is
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fed to the Oracle Tool. For each test-case tcbin in TSbin,
we collect the mutants MTSbin generated by the Tool
Under Test, and the output obin resulting from the
execution of mtcbin. The same process is performed on
the source-code test-suite TSsrc using the Oracle Tool,
producing the mutants tcsrc and the outputs osrc.

Comparison of mutants (§ 3.3): The mutants pro-
duced by the tools (mtcsrci and mtcbini ) are compared,
in terms of mutated instructions, and outputs from
their execution (osrci and obini ). The comparisons deter-
mine whether the BM tool did spurious (i.e., mutations
injected in the binary code, but not in the source code),
omitted (i.e., mutations injected in the source code,
but not in the binary code) or incorrect injections (i.e.,
mutations that lead to different outputs).

3.1 Test-suite generation

The proposed approach is based on the random gener-
ation of synthetic programs. We extend the use of ran-
dom programs, that were adopted in past studies for
testing compilers, interpreters, and program analyzers
[24], [25], [26], [27], to test the accuracy of binary
mutation tools. Random program generators produce
programs as a sequence of statements, including
global and local variables declarations, functions, as-
signment, expressions, selection and iteration state-
ments. The inputs of these programs are constants
produced during the random generation process. The
output of these programs is a checksum of the global
variables of the program, which is computed just
before the termination of the program.

A synthetic program is a sequence of randomly gen-
erated statements. A statement can be an expression,
an assignment, a function call, a selection or an it-
eration statement. The random generator bases the
program generation on a stochastic grammar of the
language [28]. A stochastic grammar associates prob-
abilities to each grammar rule of the language. Each
rule consists of a left side and a right side, where the
left side is a non-terminal symbol, and the right side
contains one or more sequences of symbols (either
terminal and non-terminal). A statement is generated
by concatenating terminal (e.g., operators like “+” and
“->”, or keywords like “for”) and non-terminal symbols
in the sequence. Beginning from a “start” rule, the
program generator replaces each non-terminal sym-
bol, by recursively applying the rules in the grammar,
until there are no more non-terminal symbols. When
the right side contains more than one sequence, the
stochastic grammar associates a probability to each se-
quence, and the program generator randomly selects
a sequence on the basis of its probability.

In the Faultprog approach, we modify this random
program generation process to follow the structure
showed in Fig. 2. The random program should contain
a statement, named target, that is the location for
injecting faults according to the fault model. The

target statement is generated randomly, according to
the following parameters (TABLE 3):

• Fault type that has to be tested. For instance,
when testing the MVAE fault type of G-SWFIT,
the target fault location consists of a local vari-
able assignment with an expression, such as an
arithmetic expression.

• Fault constraint to be violated (if any). For in-
stance, when testing the MFC fault type in G-
SWFIT, we can generate valid programs that com-
ply to both constraints C01 and C02, and invalid
programs that violate one of these two constraints
(e.g., the target statement is a function call whose
return value is used in the rest of the program).

• Context in which the target statement has to be
inserted. It can be a selection (e.g., if-then-else
construct) or an iteration statement (e.g., while-
or for-loop construct).

• Nesting depth of the context, such as the number
of nested loops in which the target statement
should be contained.

• Type of basic operand (BO) to use in expressions
of the target statement. They can be constants,
global or local variables, or function calls.

• Structure of expressions in the target statement.
According to this parameter, the target statement
contains expressions that are obtained by differ-
ent combinations of one or more BOs, random
sub-expressions and random operators.

To obtain test-suites, we generate several random
programs using the Faultprog automated program
generator. We generate test cases to cover all the fault
types in the fault model. Moreover, we consider all
combinations of parameters of Table 3 that apply for
each fault type. For instance, given the MFC fault
type, we generate three sets of test cases: (i) both
constraints C01 and C02 are satistified; (ii) C01 is not
satisfied; (iii) C02 is not satisfied.

Fig. 4 shows an example of a random (valid) pro-
gram, in which (i) the MFC fault type is selected,
(ii) all constraints are satisfied, (iii) a function call is
nested in two loops, and (iv) the expression in the
target statement (in this case, the parameter of the
function call) is the sum of two local variables.

void target_func(int a, int b) {!
    ...!
    while(...) {!
        while(...) {!
            statement;!
            statement;!
            another_func(a+b);!
            statement;!
        }!
    }!
    ...!
}!

Fault type: missing function call!
Constraint: all satisfied!
Context: while loop!
Nesting: 2!
Operand type: local variable!
Expression: two basic operands!

Synthetic program!

Faultprog parameters!

Faultprog!

Target fault 
location!

Fig. 4. An example of synthetic program for testing the
MFC ("Missing Function Call") fault type.

In this study, we tailored the Faultprog random
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TABLE 3
Parameters of the Faultprog program generator.

Parameter Description Options

Fault type Type of target
statement,
according to the
fault model.

• MFC
• MIFS
• MIEB
. . .

Fault
constraint

Constraint to be vi-
olated (if any).

• all satisfied
• C01 not satisfied
. . .

Context The statements
surrounding the
target statement.

• none
• while loop
• for loop
• if -target
• if -target-then-else
• if -then-else-target

Nesting The nesting depth
of the context
statements.

• 0
• 1
• 2

Basic
operand
(BO) type

The type of
operands involved
in the target
statement.

• constant
• local variable
• global variable
• function call

Expression
structure

The expression in-
volved in the tar-
get statement.1

• single basic operand (BO)
• expression with two BOs
• expression with three BOs
• expression with a BO and a
random sub-expression
• expression with a BO and
two random sub-expressions

1 Expressions are obtained by a random combination of one or
more basic operands, sub-expressions and operators.

program generator for the C language, since this
language is predominant in safety-critical control sys-
tems and systems software. However, the general
approach behind Faultprog can easily be ported to
other programming languages, such as C++, by in-
cluding additional programming constructs in the
program generation (e.g., by including pointers as
basic operands in the target statement). In fact, this
approach has been adopted for many languages, such
as SQL [29], Java [30], and x86 machine code [31].
Sirer and Bershad [30] showed how grammars can
be customized using a domain specific language. We
implemented Faultprog by enhancing the open-source
Randprog tool (that was originally aimed for testing C
compilers [32]), to support the evaluation of BM tools.

3.2 Test-suite mutation
After generating test-suites (both in source-code form,
TSsrc, and in binary-code form, TSbin), we apply the
Oracle Tool and the Tool Under Test on them. For each
synthetic program, we store mutants produced by the
tools, i.e., the sets MTSsrc and MTSbin.

For each binary test case tcbin, we focus the analysis
on mutations injected in the binary instructions that
correspond to the target fault location of the synthetic
program tcsrc. Mutations in other parts the program

that do not belong to the target fault location, such as
the preamble, the postamble and the context (Fig. 2),
are not considered in the analysis, since they are only
meant to introduce complex code patterns around the
target fault location, and are aimed at evaluating the
ability of the BM tool at recognizing the target fault
location among other binary instructions.

The location of target statement in the source code
is recorded by the program generator (Fig. 3) when
a synthetic program tcsrc is created. The synthetic
program is then compiled into a binary program
tcbin. To identify the binary instructions in tcbin that
correspond to the target fault location, we leverage
debugging information in the binary program, that is,
auxiliary information inserted by the compiler in the
program to track the correspondence between pro-
gram elements (such as statements) and their binary
translation [33]. Even if this information is not avail-
able in OTS software components, we still insert it
when compiling the synthetic program, in order to
provide a “ground truth” for evaluating the BM tool
(as discussed in § 3.3). We remark that debugging
information does not interfere with the binary code
of synthetic programs: compilers insert debugging
information in a distinct section of an executable file,
which is separated from the binary code. Therefore,
the binary instructions are the same that would be
generated when debugging information is disabled.

After applying the Oracle Tool and the Tool Under
Test, we obtain for each synthetic program one or
more mutants of the source code, and one or more
mutants of its binary code. It is possible that more
than one mutant is generated when the target fault
location is a complex statement, and more than one
fault could be potentially injected in that location
(e.g., the “missing arithmetic expression in function
parameter”, when the function call contains several
parameters). These synthetic programs are handled as
a set of several distinct test cases.

3.3 Comparison of mutants

The mutants from both the Oracle Tool and the Tool
Under Test are compared to identify omitted, spurious
and incorrect injections by the Tool Under Test. Ide-
ally, these tools should inject the same mutation at
the binary- and at the source-level. First, we check
whether the binary instructions mutated by the Tool
Under Test are the ones corresponding to the target
fault location (denoted by debugging information,
§ 3.2). Then, we run the mutants generated by both
tools, and compare their behavior. The Tool Under
Test injects correctly in two cases:

1) In the case of valid synthetic programs (i.e.,
the target statement satisfies all the constraints
imposed by the fault type being tested): the
BM tool identifies and mutates all the binary
instructions of the target fault location, and the
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resulting mutant produces the same outputs of
the corresponding source mutant.

2) In the case of invalid synthetic programs (i.e.,
the target statement does not satisfy one of
the constraints imposed by the fault type being
tested): both tools identify the target statement
as an invalid location where not to inject a fault,
and thus do not produce mutants.

On the contrary, the Tool Under Test fails when:

1) In the case of valid synthetic programs: the Ora-
cle Tool mutates the target fault location, while
the Tool Under Test does not mutate the cor-
responding binary instructions (denoted by the
debugging information). The test case detects an
omission of the Tool Under Test.

2) In the case of invalid synthetic programs: the Or-
acle Tool does not mutate the target fault location,
but the Tool Under Test mutates the binary in-
structions of the target location (denoted by the
debugging information). The test case detects a
spurious injection of the Tool Under Test.

3) In the case of valid synthetic programs: the BM
tool injects a fault in the target binary instruc-
tions, but the execution results differs from the
mutant by the Oracle Tool. The test case detects
an incorrect injection of the Tool Under Test.

In order to achieve sufficient confidence that a
synthetic program is accurately mutated, we execute
it under several random inputs. The inputs exercise
the mutated statement, and lead it to "infect" the state
of the program (in the sense of the PIE model by Voas
[34]). This approach (and any other approach) cannot
prove that two mutants behave in the same way for
all possible inputs, since this problem is undecidable: it
is the same problem of detecting equivalent mutants in
mutation testing [35], [36], [37]. However, as discussed
in recent work on mutation testing [38], random in-
puts can estimate the amount of equivalent mutants,
with a high degree of statistical confidence.

Given that the two tools should inject the same
faults, we expect that binary-level and source-level
injections have the same effects on the target program,
in terms of impact on the control flow of the execution
and on the state of the program. We detect differences
in the two executions by computing a checksum of
global variables, and by comparing these two check-
sums. We deliberately generate programs that make
frequent use of global variables and of the variables
in the target statement, in order to let the effects of the
fault to surface quickly. For example, assuming that
the target statement is an if construct, and that the
fault removes its else branch or changes the logical
condition of the if, then the program state will be
immediately influenced by the lack of the accesses
to global variables made within the else branch. It is
important to note that our objectives do not require
us to fully cover the code of the randomly-generated

programs, since they are not intended to make any
meaningful computation, and thus we are not inter-
ested in testing their correctness.

When we run the program with random inputs, we
check whether the target statement is covered. If the
target statement is not covered because of an infinite
loop, or because of a control-flow construct that con-
tains the target statement, we make a small change in
the preamble and context of the synthetic program, in
order to steer the execution towards the target state-
ment. The change retains the features of the Faultprog
test: we keep unchanged the target statement, and
the program structure around the target statement;
we only make minimal changes to expressions in the
control condition of loop and control-flow constructs,
to guide the execution on the desired path.

First, we enforce a maximum number of iterations
for loops that do not terminate in a reasonable amount
of time. This guarantees that the program does not get
stuck in infinite loops, and that function calls return in
a limited amount of time. Second, we change the con-
ditional expression of control-flow constructs that are
in the path of the target statement, but that hinder its
execution. When the target statement is not covered,
we identify the covered control-flow construct closest
to the target statement. Then, its control condition is
negated both in the source mutant and in the binary
mutant, and execute them again. These steps are
repeated for each conditional expression in the path
before the target statement, until the target statement
is covered. This approach guarantees convergence in
a limited number of iterations: in the worst case,
we need to iterate for all the conditional expressions
within the function that contains the target statement.

After performing the comparisons of the mutants,
we analyze the results to identify the causes of inaccu-
racies in the BM tool. To give feedback to developers,
we analyze the distributions of failed test-cases with
respect to Faultprog’s parameters, to identify which
parameter leads to the highest number of failures.
When pinpointing inaccuracies, it is useful to know
which fault types, constraints, or contexts caused a
significant number of omitted, spurious or incorrect
injections. This information enables developers to di-
agnose problems, by looking at specific areas of the
BM tool. Moreover, after fixing the tool, developers
can apply again the test-cases to validate the fix (i.e.,
whether it reduces inaccurate injections).

4 CASE STUDY
We applied the Faultprog approach to a BM tool based
on G-SWFIT (Tool Under Test) from the Xception
suite. As reference, we use the SAFE tool for source
code mutation (Oracle Tool).

4.1 The Xception fault injection tool
Xception is a fault injection tool suite, developed by
CRITICAL Software S.A. (under the brand csXcep-
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tion), for supporting V&V of safety- and mission-
critical systems. Xception was originally developed
as a Software-Implemented Fault Injection (SWIFI) tool,
jointly with the University of Coimbra in Portugal.
The original Xception, and SWIFI in general, in-
jected hardware faults (such as electromagnetic in-
terferences, and circuit wear-out) by emulating the
effects of such faults in software, through random bit-
flipping of memory and CPU registers. In particular,
Xception was designed to exploit the debugging and
performance monitoring features of modern CPUs, in
order to inject faults with minimal intrusiveness [39].

Xception is today a professional environment for
performing fault injection tests. It adopts a modular
architecture to support several forms of fault injection
including, but not limited to, SWIFI. In particular,
Xception is currently being extended with a plug-
in to support the G-SWFIT fault injection technique
(previously discussed in § 2), for the injection of
software faults through binary mutation.

The Experiment Management Environment (EME)
is the core of Xception, and is responsible for con-
trolling, monitoring, and storing the results of the
experiments. The EME interacts with a plug-in that
actually injects faults into the target system. In turn,
the G-SWFIT plug-in (Fig. 5a) performs binary mu-
tations on behalf of Xception. The G-SWFIT plug-in
disassembles the binary code of the target program,
and looks for code patterns (i.e., sequences of machine
instructions) that match to the target programming
constructs (function calls, assignments, ...), according
to the fault types and constraints presented in Sec-
tion 2. Once code patterns are recognized, they are
mutated by replacing machine instructions with nop
instructions (to emulate a statement omission), or by
modifying opcodes and the operands (to emulate an
incorrect statement). This plug-in currently supports
the PowerPC hardware architecture and the GCC compiler
toolchain, on which we focus our analysis.

4.2 The SAFE fault injection tool

To point out inaccuracies of binary mutation, we
also inject source-code mutations in the synthetic
programs, which serve as a reference for binary mu-
tations. We adopt the SAFE fault injection tool [23],
which implements the same fault types of the original
G-SWFIT, but injects these faults in the source code
instead of binary code (Fig. 5b). A source code file is
first processed by a C/C++ front-end, which builds an
Abstract Syntax Tree representation. It then identifies
locations where a fault type can be introduced in a
syntactically-correct manner, and that comply with
fault constraints (§ 2). The source code is then mu-
tated, compiled, and compared to binary mutations as
previously discussed. The SAFE tool has extensively
been used in several fault injection studies and indus-
trial projects [23], [20], [40], [41], [42], including our
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Fig. 5. Fault Injection Tools analyzed in this study.

preliminary study on BM accuracy in [15], and it has
been applied on several software systems (including
the Linux kernel, the RTEMS real-time OS, and several
open-source projects). Based on this experience, the
quality of source code mutations produced by SAFE
has steadily improved over the years, and it has
matured to be a reliable implementation of G-SWFIT.

4.3 Test suite for Xception G-SWFIT

We use Faultprog to generate a test-suite for evalu-
ating the Xception G-SWFIT plug-in. For each fault
type, Faultprog generates a set of valid programs (i.e.,
programs containing a valid target fault location), and
a set of invalid programs (i.e., programs containing a
target fault location that violates one of the constraints
of the fault type, according to TABLEs 1 and 2).

Several programs are generated for each fault type.
Test cases cover all possible combinations in the
Faultprog parameter space (see § 3.1 and TABLE 3).
These parameters determine the content of a random
program, by influencing which type of expression
should be generated in the target fault location, and
which statements should surround it. The number
of generated random programs varies across ODC
classes, since they depend on the number and on the
type of constraints, and on the number of meaningful
combinations of parameters for each fault type. We
only exclude combinations with conflicts between pa-
rameters. For example, the MVAV fault type (“missing
variable assignment using a value”) imposes that the
parameter “expression structure” must be a single
operand, and that the “basic operand type” can only
be a constant. The number of resulting combinations
is showed in TABLE 4. For each combination, we
generated 5 random programs for each combination,
which allowed to achieve a reasonable code coverage
of the BM tool, and to point out important issues.
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TABLE 4
Test-suites generated by Faultprog

ODC Class # of valid
programs

# of invalid
programs

statement
coverage (%)

Assignment 416 365 35%

Algorithm 960 1,745 34%

Checking 624 480 41%

Interface 224 42 29%

Total 2,224 2,632 72%

4.4 Experimental measures
In our experiments, we evaluate the accuracy of BM
by measuring the percentage of test cases that lead
to spurious and omitted injections, i.e., test cases in
which the BM tool injects an incorrect number of
faults (§ 3.3). More precisely, the percentage of omitted
injections of the BM tool is defined as:

omitted% =

# source-level injections
not matching binary-level injections

# source-level injections
(1)

which is the ratio between (on the denominator)
the number of all source-injected test cases (i.e., the
injections that the BM tool is ideally expected to inject
at the binary-level), and (on the numerator) which
have been mutated as source code by the Oracle Tool,
but were not mutated as binary code by the Tool
Under Test (i.e., omitted injections). In a similar way,
the percentage of spurious injections of the BM tool is:

spurious% =

# binary-level injections not
matching source-level injections

# binary-level injections
(2)

The percentage is computed from the ratio between
(on the denominator) the number of all binary-
injected test cases (including both correct and spuri-
ous injections), and (on the numerator) the number of
test cases which have been mutated as binary code by
the Tool Under Test, but were not mutated as source
code by the Oracle Tool (i.e., spurious injections).

Finally, the percentage of incorrect injections is
given by the ratio between (on the denominator)
the number of test cases that were mutated both at
binary- and at source-level, and (on the numerator)
the number of such test cases whose binary and
source mutants produced different outputs:

incorrect% =

# non-omitted, non-spurious injections where
source and binary mutations give different outputs

# non-omitted, non-spurious injections
(3)

4.5 Experimental results
We here analyze omitted, spurious, and incorrect in-
jections (§ 4.4) for the Xception BM tool. First, we

consider the most typical scenario, where the Fault-
prog test-suite is compiled under the default compiler
configuration. We then evaluate whether compiler opti-
mizations impact on the accuracy of the BM tool, by
compiling the test-suite with optimizations enabled,
and applying it again on the BM tool. The experimen-
tal setup included an Intel x86-64 PC running Ubuntu
Linux 14.04, the Faultprog program generator, the
fault injection tools, and GCC version 4.1.1, which we
configured to cross-compile for the powerpc-eabi target.
We executed the mutated programs on an Apple
iBook G4 running Debian Linux 6.0 for PowerPC.

4.5.1 Spurious injections
According to eq. 2, we evaluated the percentage of
test cases, grouped by ODC class, in which the BM
tool produced spurious faults, showed in the bar plots
of Fig. 6. The bar plots show the same percentages,
but the bars are splitted with respect to different
perspectives (TABLE 3): the percentages are divided
respectively by (i) constraint violated by the test
case (Fig. 6a), (ii) context of the target fault location
(Fig. 6b), (iii) level of nesting (Fig. 6c), (iv) type of
operand (Fig. 6d), and (v) structure of the expression
in the target fault location (Fig. 6e).

The highest percentage (49.58%) occurred for the
Algorithm class, and in particular the MIEB, MFC, and
MLPA fault types. In Fig. 6a, constraints C02 and C09
account for most of the spurious injections (respec-
tively, 19.37% and 10.05% of all test cases). This means
that there was a high number of incorrect injections
even if the target statement was the only statement
in its block (but a fault should not be injected, since
the test case violates constraint C02) or the if construct
included more than five statements (a fault should not
be injected, since constraint C09 is violated).

An example of spurious injection for the MFC fault
type is showed in Fig. 7. The function call func_7() is
the only instruction in a while block, and it is not a
valid location according to constraint C02: thus, faults
should not be injected there. However, a spurious in-
jection was made there by the BM tool: the parameters
of this function call were erroneously interpreted as
distinct statements instead of an individual statement,
due to the complexity of the expressions in input to
func_7(). The BM tool handles the binary instructions
for computing the function inputs (e.g., the calls to
func_5() and func_13(), lines 1-16) separately from the
instructions that invoke the function (i.e., the register
moves and the branch to func_7() in lines 17-19, in dark
gray). A spurious fault is injected only in instructions
17-19, leaving the “useless” computation of function
inputs in the loop, which is far from a realistic soft-
ware fault that programmers would make.

To avoid such spurious injections, the fault injector
should take into account data dependencies between
the instructions of the function call and the instruc-
tions that compute its inputs, and recognize all of
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Fig. 6. Spurious injections.
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Fig. 7. Example of synthetic program causing a spuri-
ous injection (MFC fault type).

them as inter-dependent expressions. In the example
of Fig. 7, the tool should avoid to inject a fault, since
all the instructions in the while body block are all

involved in the same function call, since the results
of the expressions are all input parameters of the
function call. It must be noted that, even if data-
flow analysis is extensively used in compiler opti-
mizations [43], to the best of our knowledge these
techniques have still not been applied for accurate
binary fault injection–we are currently investigating
novel approaches based on the analysis of data depen-
dencies [44]. We remark that having only a function
call within a block is a corner-case issue, which can
only be found with a systematic testing approach
such as Faultprog. We found similar problems for the
MIEB and MLPA fault type, since the tool does not
correctly computes the number of statements within
an if block, leading to spurious injections when an if
block contains a loop or more than 5 statements.

4.5.2 Omitted injections
Fig. 8 shows the distribution of omitted injections,
again by splitting the bars with respect to Faultprog
parameters (except for the lack of “constraint viola-
tions”, that do not apply for “valid” test cases). The
percentage of omitted injections is very high, for all
ODC classes. However, these omitted injections can-
not be attributed to a problem of a specific fault type
or Faultprog parameter, since omitted injections oc-
curred for every fault type, context, nesting, operand
type, and expression structure (the bands in bars of
Fig. 8a to 8d have about the same height in all cases).

From a closer analysis of omitted injections, we
found that the root cause was the inaccurate iden-
tification of statement boundaries in the target fault
location. As in the example of Fig. 7, the problem
manifested for test cases with statements containing
complex expressions, which were handled by csX-
ception as a sequence of several small statements
(instead of a unique, large statement). For this reason,
csXception overestimated the number of statements in
the blocks of the program, and (mistakenly) believed
that constraints C02 or C09 were violated, leading
to omitted injections. This problem also affected the
Interface and Checking faults, even if these fault types
do not require the C02 and C09 constraints: for these
classes of faults, csXception did not recognize large
statements that included several sub-expressions (e.g.,
for WPFV and WAEP, function calls with several
sub-expressions in its parameters; for MLAC and
MLOC, branch conditions with several boolean sub-
expressions), since it did not parse these statements
in their entirety, thus omitting to inject in them.

4.5.3 Incorrect injections
After identifying the test cases that did not cause
omitted or spurious injections, we executed both their
binary-mutated and source-mutated versions, and
compared their execution. We then identified incorrect
injections, i.e., test cases where a binary-mutant pro-
duced different results than the corresponding source-
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Fig. 8. Omitted injections.

mutant. The percentage of incorrect injections was
high across all fault classes, accounting for 60% of
non-spurious, non-omitted injections. These incorrect
injections were caused by another form of the state-
ment boundary problem: the tool mutated only a sub-
set of the binary instructions of the target statement.

For example, Fig. 9 shows an example for the MIA
fault type. The BM tool was supposed to inject an
MIA fault, by replacing the binary instructions of
the if construct with nops (i.e., the instructions for
evaluating the boolean expression in the if and the
branch to the block after the if, highlighted in light
gray in Fig. 9). To identify the target fault location, the
BM tool first identifies the branch instruction related to
the if (beq-, line 20 in the figure). Then, to identify the
beginning of the if construct, it inspects backwards the
binary instructions that precede the branch, by looking
for either an assignment or a function call that denote
the boundary with another statement. However, this
technique did not work correctly for this program,
as the binary instructions identified by the BM tool
(dark gray in the figure) are only a subset of the
target fault location. The BM tool stops the backward
inspection in the middle of the if construct (line 10,
at the end of the func_12() function call) rather than
at the boundary of the statement (at line 4), thus not
injecting the intended mutation in its entirety.

This incomplete mutation exhibits a different be-

!
!
!
!
!
!
!
!

Source code
!
uint32_t l_128 = 0x39CDCE66L;!
!
if ((func_12(l_24, l_126) * func_13(l_13, l_5)))!
{!
...!
}!

Binary translation of source code!

Binary instructions actually 
injected by the BM tool!

Binary code
!
lis r0,14797!
ori r0,r0,52838!
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!
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extsb r0,r0!
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mr r4,r0!
bl 10000e04 <func_12>!
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mr r4,r0!
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Fig. 9. Example of synthetic program causing an
incorrect injection (MIA fault type).

havior than the corresponding source mutant: while
the branch is removed from the program, the func-
tion call to func_12() is not removed, and affects its
execution (e.g., through side effects). As discussed
before, the BM tool should take into account the de-
pendencies between binary instructions (in this case,
the dependency is at the mullw instruction at line
18, which uses the results of the function calls) to
accurately identify the boundaries of a fault location.

4.5.4 Impact of optimizations
Finally, we consider the impact of compiler optimiza-
tions on the accuracy of Xception G-SWFIT. GCC
provides three sets of optimizations (“levels”), which
developers can selectively enable to reduce code size
or to minimize compilation or execution time:

• Basic optimizations, which generate binary code
with reduced size and improved performance,
but without increasing the compilation time. This
option is useful for many large server/database
applications where memory paging due to larger
code size is an issue.

• Speed optimizations, which include the opti-
mizations of the previous level, and add global
transformations that create faster, small code, but
significantly increase the compilation time.

• Speed-over-size optimizations, which include
the optimizations of the previous levels, and fur-
ther improve performance but increase the size
of binary code, such as loop unrolling, function
inlining, and vectorization. They are used for ap-
plications with many floating point calculations
or that process large data sets.

We apply again the Faultprog test-suite, by com-
piling test cases using these optimizations. However,
we do not enable all optimizations at the same time
(according to levels), since this approach would not
easily allow to pinpoint the specific optimizations
that interfere with injection accuracy. We hypothesize
that most of the optimizations do not affect the code
patterns involved in the fault model: therefore, we
compile each test case several times and, at each
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compilation, we enable only one optimization option,
and keep disabled the remaining ones. This approach
allows to easily identify specific optimization options
that cause inaccuracies. In total, we consider 48 opti-
mization options provided by the GCC compiler (doc-
umented in [45]), with the exception of loop unrolling
and function inlining, which we already showed to be
problematic in our previous work [15].

To analyze the impact of optimizations, we focus
on test cases that were previously injected in a cor-
rect way. Test-cases are compiled with optimizations
enabled, and are provided in input to the BM tool.
The outcome is compared to the non-optimized test-
case, to test whether the tool still injects correctly even
when the binary code has been optimized. Compiler
optimizations often merge the binary instructions of
a group of source code statements: thus, debugging
information now provides the binary-source mapping
for the whole group of source code statements, instead
of the mapping for individual statements. Therefore,
we apply the BM tool on the whole group (both in
the optimized and non-optimized versions), to check
whether the number of injected faults is the same and,
if so, whether all the execution results match.

Fig. 10 shows, for each optimization option, the
percentage of test-cases that are still correctly-injected
under that optimization option, where 100% means
that the optimization had no impact on accuracy. We
found that almost all optimizations have a negligi-
ble impact on accuracy, as the percentage of correct
injections is about 97% for most of them (for read-
ability, we do not show all of these optimizations
with high accuracy in Fig. 10). However, there are
three optimizations that decrease accuracy, namely
omit-frame-pointer, schedule-insns, and schedule-insns2:
they respectively change the convention for calling
and returning from functions (by not using the frame
pointer register), and reorder instructions (if they do
not have dependencies) to avoid stalls that occur in
pipelined CPUs. The former optimization hampers
the identification of functions within the binary code
(by changing the beginning and the ending of the
binary translation of each function), thus it totally
misleads the BM tool. In the other two optimizations,
the compiler varies the order of binary instructions,
thus leading to unexpected code patterns that were
not considered during the development of the BM
tool, and thus are not included in the implementation
of the fault operators. Overall, the results of this
impact analysis are encouraging for the adoption of
binary mutation: (i) most of the optimizations do not
interfere with the code patterns that are targeted by
fault injection; and (ii) only few optimizations have
to be dealt with, by extending the implementation of
fault operators to cover their specific code patterns.

5 RELATED WORK

The injection of software faults has extensively been
used for the evaluation of dependable systems. It
worth to mention the use of fault injection to assess
the likelihood of high-severity failures modes, such as:
(i) data losses in a crash-tolerant file cache [8]; (ii) fail-
stop violations in a transactional DBMS [7]; (iii) error
propagation across components in a microkernel OS [9].
Another example is dependability benchmarking (e.g.,
OTS OSes, web servers, DBMSs) [10], which requires
accurate injections to give a fair comparison.

Several binary-level fault injection techniques for
OTS software have been proposed. Early SWIFI tools,
such as FERRARI [46], NFTAPE [47], and Xception
[39], adopted debug supports to introduce faults at
run-time, by (i) inserting a breakpoint that triggers a
handler when a target instruction is executed, and (ii)
corrupting memory and CPU registers in the handler,
by following a simple bit-flip fault model.

To better emulate software faults, researchers inves-
tigated more complex fault models. The FINE tool [48]
proposed simple binary code mutations, by replacing
machine instructions with nops and changing their
destination operand. Subsequent studies, including
Ng and Chen’s [8], G-SWFIT [14], and LFI [49] refined
the code patterns of binary mutations to reproduce
more complex patterns, as discussed in § 2.

More recent studies leveraged virtualization and
compiler technology to mutate binary code in a
portable and easy-to-use way. XEMU [50] introduces
binary mutations in the QEMU emulator, by extend-
ing its dynamic binary code translator. The program
running in QEMU is first translated into an inter-
mediate representation (IR), i.e., platform-independent
instructions, and then translated again into native
host instructions, using Just-In-Time compilation to
keep low the translation overhead. In the middle of
this process, XEMU injects mutations in selected IR
code patterns (e.g., loads/stores, comparisons, assign-
ments). In a similar way, ESI [51], LLFI [52], and
EDFI [53] insert fault injection code at compile-time,
by leveraging the LLVM compiler framework [54] to
instrument the IR. If the source code of the target is
available, these approaches can preserve the mapping
between source code and IR code, and can thus
achieve a high degree of accuracy. However, when
only the binary code is available (as for OTS software),
this solution cannot preserve the mapping with the
source code, and the IR code has to be reversed from
binary code [55], thus suffering from inaccuracies.

Several studies experimentally investigated the
problem of the accuracy of binary-level fault injection,
both for software faults [13], [14], [15] and hardware
faults [16], [17]. Madeira et al. [13] analyzed how
software faults translate into binary code, and how
to emulate them through SWIFI with bit-flipping.
They found that code patterns are in most cases too



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

!!"#

!!$"#

!!%"#

!!&"#

!!'"#

!!(""#

)*+,-+
ï,./012.,1

)3.).,ï+-+

)0)ï*-45.,10-4

)6
.,/.
ï*-4127421

)2,..
ï1,7

)2,..
ï2.,

)8402ï72ï7
ï206
.

)-6
02ï),76

.
ï+-042.,

9
.,
*.
4
27
/
.!
-
)!
*-
,,
.*
2!
04
:.
*2
0-
4
1

;+2060<720-4

....

other 

optimizations 

with high 

accuracy

...

(a) Basic (-O1).

!!"#

!!$"#

!!%"#

!!&"#

!!'"#

!!(""#

)*+,-.
ï/01

23

)*+,-.
ï+*45+3

)6576856ï4+79:3

)96733/01
2,.-

);<65*8
ï/01

23

);655
ï265

);655
ï=62

)39<580+5
ï,.3.3$

)39<580+5
ï,.3.3

>
56
95
.
;*
-
5!
7
)!
97
66
59
;!
,.
/5
9;
,7
.
3

?2;,1,@*;,7.

....

other 

optimizations 

with high 

accuracy

...

(b) Speed (-O2).

!!"#

!!$"#

!!%"#

!!&"#

!!'"#

!!(""#

)*+,-
ï.)/-0ï0-12.3

)40-35+/56-
ï+27

7
2858*

)/0--
ï6-+/2059-

:
-0
+-
8
/.
*
-!
2
)!
+2
00
-+
/!
58
;-
+/
52
8
,

<4/5759./528

(c) Speed-over-size (-O3).

Fig. 10. Impact of compiler optimizations.

complex for SWIFI techniques due to the semantic
gap, and that inaccurate injections significantly im-
pact on fault injection results. Other empirical studies
analyzed the impact of the gap between the IR and
machine code on SWIFI [17] and on fault activation
[56]. However, these studies did not focus on the
systematic testing of BM tools as in the present paper.

6 CONCLUSION

This paper presented the Faultprog approach for test-
ing the accuracy of binary mutation tools, and a case
study on a commercial tool. In this section, we discuss
the limitations and the lessons learned of the study.

6.1 Limitations
To implement the Faultprog approach, we focused on
the fault model of G-SWFIT, and made some design
trade-offs for the Faultprog parameters (TABLE 3).
The fault model and parameters restrict the syn-
thetic programs that can be generated by our current
implementation of Faultprog. We here discuss these
restrictions, and suggest opportunities for extensions.

We focused the selection of basic operand types
on local and global variables, constants, and function
calls. In addition, basic operand types can be extended
to include pointer variables, in order to test pointer-
related fault types. In this paper, we did not consider
pointer variables since this kind of operands are a
known limitation of the BM tool that was identified in
our previous study [15], and since G-SWFIT does not
include specific fault types for pointers. Function calls
could be extended to interact with the environment
and have side effects that cannot be reverted, such
as I/O interactions with the user. In this case, when
comparing the executions of the binary-mutated and
source-mutated programs, we should also compare
the interactions with the environment (e.g., by tracing
messages shown to the user) and use deterministic
execution techniques [40] to make traces comparable.

We limited the “context” parameter by not mixing
control-flow and loop constructs in the same test, and
by only inserting the target statement in the body

of control-flow constructs, but not in the controlling
expression. These choices helped to avoid a significant
increase of the number of test cases. Moreover, using
the target statement as controlling expression would
often lead to syntactically-invalid programs (e.g., an
if cannot be within a controlling expression; injecting
an MVIV could lead to an empty controlling con-
dition). However, for specific fault types, Faultprog
generates, through the “fault constraints” parameter,
target statements within a controlling expression. For
example, in order to test the fault constraint C06 for
“missing assignment” faults, we negate the constraint
and generate programs where the target statement (an
assignment) is the controlling expression.

6.2 Lessons learned and generalization
The case study pointed out some challenging aspects
for binary mutation. Besides the specific technical
problems of a real BM tool, this experience points
out the importance of systematic testing of BM
tools. In fact, BM tools implement sophisticated fault
models, such as G-SWFIT, and present an elaborated
“input domain”, i.e., binary programs generated by
modern compilers. Thus, it is not sufficient anymore
to test BM tools using few small programs [14], [57].
Instead, we need large test suites driven by coverage
criteria and oracles, in order to identify specific areas
of the input domain that need to be improved. In
our case study, many inaccuracies were related to
specific “fault constraints”, that is, conditions that
a program location has to satisfy to be eligible for
fault injection. To test fault constraints, we generated
synthetic programs that violated them, and uncovered
problematic corner cases such as blocks with only one
statement or with more statements than allowed.

Moreover, the most relevant issues are a conse-
quence of the more general problem of the “semantic
gap” between binary and source code, such as the
heuristics for the identification of statement bound-
aries in binary code, which were based on simplified
code patterns. The influence of the semantic gap
depends on factors such as the source-level program-
ming language, the reference hardware architecture,
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and the fault model; however, similar issues will in-
deed affect other BM tools. This experience shows that
the semantic gap is a challenge for injection accuracy
and require robust techniques for binary analysis (e.g.,
using more complete code patterns to scan binary
code, and looking at data dependencies).

Finally, we found that many compiler optimiza-
tions have a negligible influence on BM accuracy.
For instance, changing the layout of data structures to
increase the cache hit ratio will likely not affect the BM
tool, since the code patterns that are typically targeted
by fault models (such as assignments, control flow
constructs, loops) will still hold even in the presence
of optimizations. This result implies that BM is rela-
tively insensitive to optimizations, and encourages its
adoption in OTS software. However, our experiments
also show that there are few optimizations that can
impact on BM accuracy, such as those influencing
function calls and instruction scheduling. Therefore,
we suggest that BM tool developers should test each
individual optimization, and that the BM tool should
check the presence of problematic optimizations in a
binary program (e.g., using reverse engineering tech-
niques [58]) and to explicitly address these optimiza-
tions (e.g., by supporting alternative code patterns).

The case study aimed to show the feasibility and the
usefulness of the Faultprog approach in a specific con-
text, focusing on a specific architecture (PowerPC) and
compiler toolchain (GCC). Thus, care must be taken
to generalize the findings to other scenarios. However,
the problems due to the semantic gap are not specific
to this case study. Moreover, the case study targeted a
widespread hardware architecture in embedded sys-
tems and representative of RISC architectures (such
as ARM), and a popular, industrial-strength compiler
toolchain, based on compiler techniques also adopted
by other modern compilers [43]. Thus, similar issues
and findings are likely to apply to other configura-
tions. The possible differences with respect to different
compiler versions or families are: (i) the use of dif-
ferent binary code patterns to translate programming
constructs (such as loops, assignments, etc.) in the
fault model, and (ii) a different set of optimizations.
In these cases, developers should design the BM tool
to address code patterns and optimizations of the
target compiler that intersect with the fault model,
and mutate them accordingly.
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