
Int. J. of Critical Computer-Based Systems

OS-Level Hang Detection in Complex Software
Systems

Antonio Bovenzi
Marcello Cinque
Domenico Cotroneo
Roberto Natella

Dipartimento di Informatica e Sistemistica
Università degli Studi di Napoli Federico II
Via Claudio 21, 80125, Naples, Italy
{antonio.bovenzi,macinque,cotroneo,roberto.natella}@unina.it

Gabriella Carrozza∗

SESM SCARL
Via Circumvallazione Esterna di Napoli, 80014
Giugliano in Campania, Naples, Italy
gcarrozza@sesm.it

∗Corresponding author

Abstract:
Many critical services are nowadays provided by large and complex

software systems. However the increasing complexity introduces several
sources of non-determinism, which may lead to hang failures: the
system appears to be running, but part of its services are perceived
as unresponsive. On-line monitoring is the only way to detect and
to promptly react to such failures. However, when dealing with
Off-The-Shelf based systems, on-line detection can be tricky since
instrumentation and log data collection may not be feasible in practice.

In this paper, a detection framework to cope with software hangs
is proposed. The framework enables the non-intrusive monitoring of
complex systems, based on multiple sources of data gathered at the
Operating System (OS) level. Collected data are then combined to reveal
hang failures. The framework is evaluated through a fault injection
campaign on two complex systems from the Air Traffic Management
(ATM) domain. Results show that the combination of several monitors
at the OS level is effective to detect hang failures in terms of coverage
and false positives and with a negligible impact on performance.

Keywords: Failure Detection, Hang Failures, On-line Monitoring,
Critical Software Systems, Operating Systems

Copyright c© 2009 Inderscience Enterprises Ltd.

2 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

1 Introduction

Software faults represent today a major dependability threat for complex software
systems. Testing and static code analysis are widely adopted techniques to remove
such defects or “bugs” in a system under development. However, as shown by field
data studies (Sahoo et al., 2010; Chillarege et al., 1995; Sullivan and Chillarege,
1991), a large slice of software faults are activated during the operational phase
when transient conditions occur (e.g., overload, timing errors, and race conditions).
Static analysis and testing techniques fail when dealing with this kind of faults, since
their condition of activation cannot be reproduced systematically. This is especially
true in the case of complex concurrent applications, where multi-threading and
shared resources represent a source of non-determinism in the application behavior.

For these reasons, faults have to be treated during the use phase of the system,
by detecting the occurrence of failures due to their activation. To this aim the
execution state of the system has to be continuously monitored in order to reveal
if one or more components are not running correctly.

However, there is a class of failures, namely hang failures, that pose serious
issues to the failure detection. These failures cause the system to be partially or
totally unresponsive, although it appears to be running; they can be due to infinite
loops and indefinite wait conditions.

Existing detection techniques simply poll the health status of system
components (i.e., heartbeat mechanisms), analyze system log files to uncover error
messages and their correlation with failures or control the levels of CPU utilization.
It is clear that the nature of hang failures prevent traditional techniques to be
effective. For instance, a process may still be able to communicate even if the service
is not delivered properly; this might be the case of a multi-threaded process in
which the thread that answers to queries is not the one in which the hang actually
occurred. At the same time, a stuck process may not be able to log events.

These problems are exacerbated when dealing with complex mission and
safety critical software systems. Today these systems are being developed as
the composition of several Off-The-Shelf (OTS) software modules and complex
multi-threaded components. The unavailability of the source code complicates
the detection task, since no extra-code can be added to observe the execution
state. In addition, due to their particular criticality, these systems pose stringent
requirements to failure detection:

• maximize the number of detected failures, in order to avoid catastrophic
consequences;

• minimize the number of false positives, in order to avoid unnecessary (and
costly) recovery actions

• minimize the latency of the detection, in order to timely trigger the proper
countermeasures;

• minimize the overhead of the detection framework limiting the impact on the
performance of the system.

To these ends, this paper proposes a lightweight and non-intrusive failure
detection framework to reveal the occurrence of software hangs. It relies on several

OS-Level Hang Detection in Complex Software Systems 3

simple monitors which exploit the Operating System (OS) support to trigger alarms
when the behavior of the system differs from the nominal one. For instance, we
infer indirectly the state of the system by monitoring different variables such as
the waiting time on semaphores or the holding time into critical sections. Nominal
behavior has been modeled experimentally by means of a training phase. To combine
alarms from detectors we use the Bayes’ rule and a detection event is triggered if
the likelihood that hang failure occurs exceeds a given threshold. Our experimental
results show that this framework increases the overall capacity of detecting hang
failures (it exhibits a 100% coverage of observed failures) while keeping low the
number of false positives (less than 6% in the worst case), the latency (about 0.1
seconds in average) and with a negligible impact on performance (less than 10%
in the worst case). Moreover, it can be used even when OTS modules are used,
because there is no need to modify the source code of the application.

The proposed framework has been implemented for the Linux OS by means of
dynamic probes placed in the kernel code. To show the effectiveness of the approach,
we applied the framework on two complex systems from the ATM domain, which
are based on OTS and legacy components; we performed fault injection experiments
to accelerate the process of data collection.

This paper extends our previous results on OS-level hang detection presented
in Carrozza et al. (2008). In particular, (i) we propose a more sound combination
scheme to trigger detection events, (ii) we introduce additional monitors to collect
events related to network sockets status, and (iii) we perform a more extensive
experimental evaluation. More in detail, in order to generalize the previous results,
we analyze one more case study: the SWIMBOX. The proposed case study is a
complex and OTS based system which has been implemented in the framework of
the SWIM SUIT FP6 European project.

The rest of the paper is organized as follows. Section 2 presents the related work
on hang detection, while the proposed detection approach is described in Section 3.
Implementation details are provided in Section 4, and the results of the experiments
are presented in Section 5. Finally, Section 6 ends the paper with conclusions and
directions for future work.

2 Related work

The problem of hang failures can be mitigated by removing software faults in
advance. Debugging techniques use static and dynamic source code analysis to
identify hang root causes. In Shen et al. (2005), the disk I/O subsystem is modeled
analytically; the model is then compared to execution traces, to identify workload
conditions under which performance is suspiciously low, and to fix anomalies (e.g.,
by improving disk I/O scheduling heuristics). In Wang et al. (2008), runtime traces
are exploited to search for potential hang points within source code, to avoid
unnecessary end-user waits. In Engler et al. (2000), developers’ knowledge about the
system is exploited to formulate coding assertions, and to check the source code for
violations. Assertions enforced on the Linux kernel concern memory management
errors, temporal ordering of operations, and deadlocks. Debugging techniques are
useful to avoid the occurrence of hangs only when the root cause can be easily
pinpointed into the source code. Unfortunately, they are not suitable to identify

4 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

failures occurred during the use phase of the system because of the activation of
complex and transient conditions. On line monitoring and failure detection are thus
the only way to uncover these residual faults.

One approach to hang failure detection is represented by query-based
techniques. They rely on probing the monitored component health status (either
locally or remotely) to discover a failure (Chen et al., 2002). The query can be
performed by periodically sending “heartbeat” request and waiting for “alive” reply
to that message, or a timeout can be enforced to detect anomalous slow responses.
In Herder et al. (2006), a query based technique is adopted to detect stalled OS
processes in the Minix 3 OS, by using heartbeat requests. This approach requires
that the monitored process is a “server” process, i.e., the process performs some
work when it receives a request from Inter-Process Communication (IPC) channels.
Moreover it assumes that, at given time, the process can only serve a request or
respond to the heartbeat. This approach has been extended in Cotroneo et al.
(2010) by adapting the timeout at run-time on the basis of past heartbeat replies.
Unfortunately, this approach has some drawbacks. On one hand, when dealing with
multi-threaded systems, the hang might be localized on a different thread than
the one that replies to the heartbeat. Hence, the component get the heartbeats
correctly, while other components are stuck. On the other hand, the approach is
not suitable for OTS based and legacy systems, because it requires (i) to specify
heartbeat requests in a format that can be managed by the system, and (ii) to
modify the application in order to send replies.

Traditional failure detection approaches include log based techniques. They
perform the on-line analysis of log messages produced by the system to infer the
occurrence of a failure. In particular, they are often adopted to diagnose failures
due to hardware faults, by using statistical analysis and heuristic rules (Iyer et al.,
1990; Lin and Siewiorek, 1990). Data mining and language processing techniques
have also been adopted to automatically analyze log files (Bose and Srinivasan,
2005). These techniques assume the occurrence of some events in the log file to
detect a failure; unfortunately we cannot rely on the availability of log messages
when dealing with hang failures since the system may be unable to execute and
thus to produce log messages (e.g., a stuck component cannot return an error code
or cannot throw an exception).

Hardware monitoring techniques are also used in hang failure detection.
These techniques require special extra hardware such as watchdog timers to detect
software hangs. Timers are periodically reset in failure free conditions; otherwise, an
alarm is triggered (a Non-Maskerable Interrupt) to signal that the timer has expired
David et al. (2007). However, these approaches are not able to detect infinite loops
where the application is not stuck thus not preventing the monitored events to
occur (e.g., resetting the timer). Moreover hardware support may be not available.

Our approach belongs to the class of anomaly based detection techniques.
These techniques rely on (i) the continuous monitoring of the status of system
variables (e.g., CPU consumption) and (ii) on the comparison of these data with
traces of normal and anomalous executions. Anomaly based detection has been
adopted in several contexts, such as intrusion detection (Forrest et al., 1996; Lee and
Stolfo, 1998) and hardware failure detection (Zheng et al., 2007; Pelleg et al., 2008),
by exploiting data collected at the network layer (e.g., about TCP connections) and
at the hardware layer (e.g., CPU, I/O, and memory usage).

OS-Level Hang Detection in Complex Software Systems 5

Monitoring OS level variables is also exploited in Podgurski et al. (2003).
Authors propose to use system behavior information (e.g., system call traces,
I/O requests, call stacks, context switches) and a multi-class classifier to build a
diagnosis tool. However this approach has a not negligible overhead (all system call
parameters are recorded) and is not suited for failures which cannot be reliably
reproduced as hang failures.

The work appeared in Wang et al. (2007) is the closest to ours; it proposed
a detection approach at the OS level using CPU hardware counters. On the one
hand, applications hangs are detected by estimating an upper bound to the number
of instructions executed in each code block of the application. On the other hand,
system hangs are detected counting the number of instruction executed between two
consecutive context switches (if the system is stuck it does not schedule any other
process, and the counter value increases indefinitely). The proposed approach is
effective against livelocks and infinite loops, but it does not allow to detect indefinite
wait conditions. The approach also requires the analysis of the application code (to
identify the code blocks), thus it may be not suitable for OTS based and legacy
systems.

3 The proposed detection approach

3.1 System and Failure Assumptions

The detection framework is designed to address complex and distributed software
systems relying on OTS components. We assume that the system can be
decomposed as a set of Detectable Units (DUs in the following). A DU represents
the atomic software entity that can be monitored to detect failures. In this work
detection is performed at process level, i.e., we consider OS processes, either single-
threaded or multi-threaded, asDUs. OS processes are often adopted for architecting
complex and distributed systems, by allocating a set of functionalities to each
process (e.g., in the client-server paradigm, a server process listens for processing
requests from clients); some examples of complex systems based on OS processes
are represented by the case studies in this work (Section 5.1). DUs can be located
in the same node or in different nodes, as shown in Figure 1.

This work focuses on hang failures, i.e., a DU does not provide its services
anymore or services are delivered unacceptably late. When a process terminates
unexpectedly (e.g., due to run-time exceptions), we assume a crash of the DU .
Detecting such a failure is fairly simple, since OS promptly deallocates the
structures associated to the processes that have crashed. This does not happen
with hang failures, since they do not result in process termination: the DU rather
survives behaving as halted. Hang failures can be further distinguished in active
and passive hangs:

• Active Hang. It occurs when a process is still running but its activity may
be no longer perceived by other processes because one of its threads, if any,
consumes CPU cycles improperly;

6 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

Figure 1 System model.

• Passive Hang. It occurs when a process (or one of its threads) is indefinitely
blocked, e.g., it waits for shared resources that will never be released (i.e., it
encounters a deadlock).

Hangs might be either silent or non-silent. In the former case the hang compromises
the communication capabilities of the process, e.g., it cannot reply to heartbeats.
In the latter case, the process is still able to communicate, e.g., it responds to
heartbeats or it generates log entries, even if the service is not delivered properly.
In complex systems it is hard to tell whether a process (thread) is currently subject
to a passive hang, because it can be deliberately blocked waiting for some work to
be performed (e.g., this happens when pools of threads are used in multi-threaded
server processes). Difficulties are also encountered with active hangs, because a
process (thread) can deliver late heartbeat response, due to stressing workload and
working conditions.

Along with crash and hang failures, systems may suffer value failures as well
Avizienis et al. (2004). These do not cause the system to get halted nor delayed but
the delivered service comes with erratic outputs. Awareness on the application logic
and domain would be required to detect similar failures, as well as user involvement
into the detection process. For this reason, we do not take these failures into account
in our detection framework that is rather committed to be transparent to final
users.

OS-Level Hang Detection in Complex Software Systems 7

3.2 Detection Framework

We propose to leverage the OS support to perform system monitoring and to infer
the health of DUs by observing their behavior and interactions with the external
environment.

As stated in section 1, the proposed detection framework aims to achieve:

• high coverage, i.e., the ability to notify a failure, when the system is actually
affected by a hang;

• low false positive rate, i.e., the ability of avoiding false alarms when the DU
is actually working properly;

• low latency, in order to trigger alarms in due time.

• low overhead, in order to minimize the impact on the mission of the system
as a whole.

To pursue these objectives, we propose to detect failures by leveraging several
sources of information, through monitors placed at the OS level. Monitors concern
resources used by the application and are realized by inserting software probes into
the OS that are in charge of catching events.

Each monitor is in charge of observing a single resource and it is linked to an
alarm generator (αi) which triggers the alarm in case of anomalies in the monitored
resource. Monitors and alarm generators compose the overall detection system,
named detector, depicted in Figure 2.

The final detection of a failure is performed by combining multiple alarms. As
suggested by intuition, combining the alarms coming from multiple sources allows
to detect a higher number of failures, if compared to detectors based on a single
source. For instance, a passive hang does not lead to system call errors, but it can
suspiciously increase the holding time into a critical section. This assumption is
experimentally validated in section 5.

!"#$%"&'('

!"#$%"&')'

!"#$%"&'*'

+'

!
1

!
2

...

!
N

,-.-/.01'

'

'
2345-6' %'

!"#"$%&'(

)*"'#(

F
1

F
2

F
N

Figure 2 Detection architecture.

Let N be the number of monitors in charge of observing the resource usage
for each DU . An alarm generator αi collects the output of the ith monitor. An
alert is produced by this monitor if the value of the observed variable (vi) is out
of a range ri = [r−i , r

+
i]. The variable vi represents an event occurred for an OS

resource (e.g., a thread waited for 10ms before entering a critical section), and the

8 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

range ri models the expected behavior of the DU with respect to the monitored
resource. Moreover, we also take into account the bursty behavior of some events
on OS resources, i.e., the events suddenly occur for a short time period and then
disappear. To model this behavior and to detect anomalies in the burst length, the
alarm generator also checks that vi is out of the range ri for Li consecutive times
in a period Ti. Therefore the output of each αi is a binary variable defined as:

Fi =

{
1 if vi /∈ ri for Li times in the period Ti
0 otherwise

(1)

To combine the outputs of all the monitors, we use the Bayes rule as the global
detection logic (see equation 2). It allows to correlate existing beliefs (a priori
probabilities) in the light of new evidence (a posteriori), i.e., to combine new data
with existing knowledge about the occurrence of a given event.

P (F |a) =
P (a|F)P (F)

P (a|F)P (F) + P (a|¬F)(1− P (F))
(2)

Applied to alarms and failures, equation 2 can be read this way:

• F represents the event “faulty DU”;

• a is a vector containing the output of the alarm generators α, i.e.,
(F1, F2, ..., FN).

The final detection event is triggered when P (F |a) is greater than a given
threshold value. The following probability distributions are estimated during the
training phase:

• P (a|F), represents the probability of detection. It is estimated as the number
of occurrences of the a vector under faulty executions, over the total number
of vectors collected.

• P (a|¬F), represents the probability of false alarms. It is the number of
occurrences of a during fault-free executions.

Finally,

• P (F) is the a priori probability of having a faulty DU . It can be estimated as
T/MTTF (i.e., on the average, the DU becomes faulty once every MTTF/T ,
where T is the detection period and MTTF stands for Mean Time To Failure),
if field data exist. Otherwise, it can be assumed by the literature where typical
failure rates of complex software systems are provided. In our experiments,
we assumed that P (F) = 10−6 (Chillarege et al., 1995).

The parameters ri, Li and Ti are tuned during a preliminary training phase.
The detection framework assumes that the parameters obtained during the training
phase also apply during the operational phase of the system. Therefore, the
parameters have to be gathered after observing the system execution for a time
period long enough, in order to obtain a representative estimates that will apply
also in the operational phase. This is a reasonable assumption with respect to the

OS-Level Hang Detection in Complex Software Systems 9

Time

I/O
 ra

te

Time

I/O
 ra

te

C = 3

mX

k-·σX

k+·σX

a b

Time

I/O
 ra

te

Time

I/O
 ra

te

C = 3

mX

k-·σX

k+·σX

a ba b

Time

I/O
 ra

te

Time

I/O
 ra

te

C = 3

mX

k-·σX

k+·σX

a b

Time

I/O
 ra

te

Time

I/O
 ra

te

C = 3

mX

k-·σX

k+·σX

a ba b

Figure 3 Tuning of parameters.

critical systems we are addressing, since a significant amount of time is devoted
to system validation that could be exploited to derive representative parameter
estimates.

The training of the parameters should account for the variations in the
monitored variables that occur during fault-free runs. The following heuristic
approach has been adopted: the distribution of the vi (i.e., the frequency of values
of vi) is analyzed first, then a range ri that includes the most of the distribution is
selected. For instance, the range can be selected by considering first order statistics
(see Figure 3a), such as the mean (mvi) and the standard deviation (σvi):

ri = [mvi − kσvi ,mvi + kσvi
]. (3)

An alternative approach, which has been adopted in our experiments, is to select
the minimum (min vi) and the maximum (max vi) value in the distribution, namely:

ri = [min vi ,max vi]. (4)

After selecting the range ri, the parameter Li is set by taking into account
the size of the bursts (see Figure 3b). These thresholds have to be set in order to
keep low the number of false positives. For this reason, it is desirable to avoid false
positives when training the monitor, i.e., during normal executions of the workload.
Finally, the parameter Ti is chosen empirically, i.e., by trying several candidate
values and selecting the best one with respect to faulty and fault-free runs during
training (e.g., minimizing false positives or latency, or maximizing coverage).

3.3 Monitors

Bearing in mind the complexity of the target systems, in terms of concurrency
and nodes distribution over a network, we consider the following variables for the
detection process:

1. System call error codes;

2. OS signals;

3. Task scheduling timeouts;

4. Waiting time for critical sections;

10 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

5. Holding time in critical sections;

6. Process and thread exit codes;

7. Network sockets timeouts;

8. I/O throughput.

Hence, we implemented a set of monitors in charge of observing the above
variables for each monitored DU ; outputs are provided in the form of log files,
formatted according to tight rules, and processed by the alarm generators. Although
monitors have been implemented for the Linux OS, we believe that they can be
adapted for other environments, since the monitored variables are not strictly
dependent on the working environment.

3.3.1 System calls monitor

In UNIX environments, system calls are associated to numerical error codes which
are returned if exceptional events occur. Hence, the presence of error codes can be
symptomatic of an anomalous system behavior.

All the occurrences of the cartesian product between system calls ID and error
codes are considered. However, only a subset of these couples is meaningful. Each
time an error code is returned, the monitor records (i) the PID (TID) (Process
(Thread) IDentifier) of the calling process (thread), (ii) the system call id (iii) the
error code.

3.3.2 UNIX signals monitor

Signals are commonly used to notify the occurrence of a given event, both from
processes and the kernel. In the former case, they have coordination purposes,
e.g., a signal could be sent to wake a waiting process, or to notify exceptional
conditions. In the latter case, instead, signals are used either to inform a process
about hardware and/or software exceptions, e.g., an invalid memory access or the
loss of a socket connection, or to signal normal events, e.g., to signal that I/O data
became available. In UNIX environments, for example, signals are able to explicitly
signal the crash (e.g., SIGSEGV) of a process. Additionally, they can be used to
signal application specific conditions (e.g., SIGUSR1 or SIGUSR2) or they could
represent the symptom of a failure, e.g., due to the loss of network connection.
Therefore we believe that monitoring signals could be relevant for hang detection.

When a signal occurs, the monitor logs the following data: (i) PID (TID) of the
sender and the receiver of a signal, and (ii) the type of the signal.

3.3.3 Critical sections waiting times monitor

A long wait for a given mutex to be released can be reasonably considered
a symptom of indefinite waiting. In other words, the mutex is likely to be
never released, hence the waiting process (thread) is intended to remain blocked.
Measuring the waiting time can be useful for the detection of passive hangs. It
represents the time that a process waits before actually entering a critical section.
The critical section is defined as a piece of code that must not be accessed by more

OS-Level Hang Detection in Complex Software Systems 11

than one thread or process, and it is implemented in UNIX using synchronization
primitives (in particular, UNIX semaphores and the PThread library).

When waiting times exceed a given timeout, the monitor records the following
data: (i) PID (TID) of the waiting process (thread), (ii) the waiting time, (iii) the
time from the beginning of waiting interval.

3.3.4 Critical sections holding times monitor

A process holding a critical section for a long time is likely to preclude shared
resources usage to all the processes which are waiting for them. This greedy behavior
can reasonably be considered a potential cause of passive hangs.

For this reason, when holding times exceed a given timeout, the following data
are logged: (i) PID (TID) of the waiting process (thread), (ii) the holding time, (iii)
the entering time in the critical section.

3.3.5 Task scheduling monitor

Another source of information for detecting a hang failure is represented by the last
time when a process or thread is scheduled; a hang can be occurred if too much time
is elapsed since its last execution. In particular, this monitor is helpful for detecting
hang conditions which are not due to deadlock, e.g., a process may be waiting for
messages coming from a sender process which has failed. For this reason, scheduling
timeouts represent a complementary measure with respect to the previous two.

Similarly to the previous monitors, this monitor takes into account time values,
i.e., scheduling delays. When the timeout is exceeded, the monitor logs the following
data: (i) PID (TID) of the delayed process (thread), (ii) scheduling delay, (iii) last
de-scheduling time.

3.3.6 Processes and threads exit codes

For long running application scenarios, unexpected process (thread) exits can be
considered exceptional conditions deviating from system normal behavior. In fact,
these event may be the symptom of crash failures or overloading conditions which
forced the OS to kill the process (thread) unexpectedly. In turn, the exit of a process
may cause an indefinite wait in other processes.

This monitor takes into account all the processes (threads) deallocations event
and it records data each time a process (thread) is deallocated. In particular, the
following data are logged: (i) the PID (TID) of the exiting process (thread), (ii) the
return code.

3.3.7 Network sockets monitor

The delay between two consecutive packets sent on a given TCP/IP socket (both
from and to the monitored task) is measured, for each thread and individual
socket. A timeout is enforced to detect process (thread) suspiciously silent when
communication is not taking place.

The following data are logged when the timeout is exceeded: (i) the PID (TID)
of the process (thread), (ii) the port number of the socket, and (iii) the IP address
of the remote process that communicate with the monitored process.

12 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

3.3.8 I/O throughput monitor

A decrease in the number of I/O operations represents another potential symptom
of hang failures. For instance, the hang of a process may prevent I/O operations
usually performed by the process (e.g., writing to a log file). Therefore, we argue
that monitoring the I/O operations rate may help in the detection of hangs. In
particular, we monitor the aggregate throughput of I/O operations with respect to
reads and writes on files and socket descriptors. The monitor periodically samples
the rate of I/O operations with period T , then the sampled value is compared to
the bounds for this monitor.

This monitor logs the following data when the bound on I/O rate is exceeded:
(i) the value of the I/O sample which caused the triggering, (ii) the I/O operation
(read/write), (iii) the exceeded bound (lower/upper). I/O operations are monitored
with respect to processes, hence the PID is also recorded, without distinguishing
between single threads.

Monitors are schematically summarized in Table 1. The table reports the
triggering condition for each monitor, i.e., the condition which cause the monitor to
log an alert. The entries are then analyzed by alarm generators to produce alarms
if Li alerts are produced within the period Ti.

Table 1 Monitors at the operating system level.

Monitor Triggering condition Domain

UNIX system An error code Syscalls × ErrCodes
calls is returned
UNIX signals A signal is received Signals

by the process
Task scheduling Timeout exceeded [0,∞]

(since the task is preempted)
Waiting time Timeout exceeded [0,∞]
for critical sections (since the task begins to wait)
Holding time Timeout exceeded [0,∞]
in critical sections (since the task acquires a lock)
Process and thread Task allocation or Lifecycle event
exit codes termination
Timeout Timeout exceeded [0,∞]
on a socket (since a packet is sent over a socket)
I/O throughput Bound exceeded [0,∞]

4 Implementation issues

Monitors have been implemented by means of dynamic probing. To this aim, we
used the KProbes framework to place breakpoints (i.e., special CPU instructions
which “break” the execution of kernel code by means of interrupts) into the kernel
code. Breakpoints have been placed in the kernel functions providing the monitored
measures. When a breakpoint is hit, an handler routine is launched and it is

OS-Level Hang Detection in Complex Software Systems 13

executed just before the kernel code in order to “quickly” collect data (e.g., input
parameters or return values of called function). This does not interfere with program
execution, except for a short delay.

The complete detection system has been implemented as a loadable kernel
module. To this aim we exploited the SystemTap tool (http://sourceware.org/
systemtap/). It allows to program breakpoint handlers by means of a high-
level scripting language. SystemTap scripts are then translated into C code,
encompassing also the KProbes framework. Synchronization issues between threads
have been tricky to monitor. Indeed, we were not able to have a complete view
of all the lock/unlock operations on shared resources only by tracing kernel code.
This is because kernel system calls are often not invoked at all during operations
on mutexes when there is no contention between several threads . For this reason
we implemented a shared library to wrap PThread API provided by the standard
glibc library which, in fact, overloads the PThread functions we want to monitor.

5 Experimental results

5.1 Case studies

In this section, we evaluate the proposed framework with respect to two complex
applications from ATM domain.

5.1.1 FDP Case Study

The first case study is a complex distributed application for Flight Data Processing
(FDP). It is in charge of processing aircrafts data produced by Radar Track
Generators, by updating the contents of Flight Data Plans (FDPs), and distributing
them to flight controllers. The overall (simplified) architecture is depicted in
Figure 4; it is based on CARDAMOM , a CORBA middleware for developing
mission and safety critical applications compliant with the OMG Fault-Tolerant
CORBA specification. CARDAMOM is jointly developed by SELEX-SI and
THALES, the two leading industries in the European ATM scenario; in this work
we based on the open source community edition which is available at http:

//cardamom.objectweb.org. CARDAMOM makes use of OTS software items,
such as the Data Distribution Service (DDS) implementation provided by RTI
(http://www.rti.com) for publish-subscribe communication among components,
and the ACE ORB (http://www.theaceorb.com) as Object Request Broker. The
architecture we refer in this paper is made up of several components:

• Facade : the interface between the clients (e.g., the flight controller console)
and the rest of the system (conforming to the Facade GoF design pattern);
it provides a remote object API for the atomic addition, removal, and
update of FDPs. The Facade is replicated according to the warm-passive
replication schema. It stores the FDPs along with a lock table for FDPs access
serialization.

• Processing Server : it is in charge of processing FDPs on demand, by taking
into account information from the Correlation Component and the FDPs

14 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

Figure 4 Architecture of the FDP case study.

published by using DDS. This component is replicated several times on
different nodes, and FDP operations are balanced among servers with a round-
robin policy.

• Correlation component : it collects flight tracks generated by radars, and
associates them to FDPs, by means of Correlation Managers (CORLM in the
Figure 4).

This case study includes a workload generator that sends random requests to
the system, both for flight tracks and FDP updates.

5.1.2 SWIMBOX Case Study

The SWIMBOX case study was developed in the framework of the European-wide
initiatives aiming at pursuing global interoperability in the Air Traffic Management
(ATM) domain. SWIM (System Wide Information Management) is the world
recognized initiative (both in Europe and USA in the context of SESAR and
FAA programmers respectively) aiming to enable several stakeholders, i.e., airports,
airlines, military air defense, Area Control Centers (ACC) and Air Navigation
Service Providers (ANSP), to share information on a really large scale. It is meant to
be the software infrastructure able to provide the one-for-all information model for
data exchange and interoperability, as well as common interfaces to access specific
services, at domain level. To this aim, it is going to define a common dictionary
in terms of data and services, as well to use Commercial Off-The-Shelf (COTS)
hardware and software to support a SOA aiming to facilitate systems dynamic
composition and to increase common situational awareness.

The proposed case study is actually pilot prototype for SWIM, the SWIMBOX,
which has been implemented in the framework of the SWIM SUIT FP6 European
project (http://www.swim-suit.aero/swimsuit/).

The overall system is a grid of SWIM nodes, physically deployed at stakeholders
premises and referred as “legacy” nodes, which are the users of the SWIM common

OS-Level Hang Detection in Complex Software Systems 15

infrastructure and which are allowed to access the SWIM bus through the SWIM-
BOX. Only SWIM-BOX instances can directly exchange data and invoke services
over the net, acting as mediators between legacy nodes and the SWIM bus. The
high-level endpoint perspective is shown in Figure 5, in which the role of Adapters
can be appreciated. These have been implemented to let legacy nodes unaware of
the SWIM semantic till all of them will be aligned to SWIM in a very next future.

Figure 5 End to end communication scenario between SWIM nodes.

The prototype architecture (see Figure 6) is organized in the following layers:

• domain level. It (a) defines a standard data representation embracing well
defined models and collaborative approaches (i.e. FOIPS, ICOG2) and
translates it in a flexible format (XML in the prototype), (b) exposes the
external interfaces which define the domain specific operations on Flight,
Surveillance and Aeronautical Data, e.g. create/update a flight plan, handover
operation and, also, (c) define services to manage this domain specific
components;

• core level. It implements synchronous/asynchronous communication pattern
(i.e. request/reply, publish/subscribe), security services (i.e. encryption,
authentication, access control), data storing (i.e. provides a transparently
distributed and transactional storage mechanism allowing users to access
shared data) and services registry.

It is worth noting that, in order to assure technology transparency,
Publisher/Subscriber component actually provides an abstraction layer able to
easily masking the underlying technology without impacting the uppermost domain
level components. From a technological point of view, data distribution tasks can be
accomplished by means of two different solutions: Data Distriubtion Service (DDS)
and Java Messaging Service (JMS). The former is an OMG standard specification
widely used in large scale networked applications. It is able to allow data transfer
in the respect of QoS policies that can be customized according to the application
needs. Commercial and open source implementations of the DDS standard are
available. The SWIMBOX prototype is based on two different implementation
of DDS: (i) the open source edition of OpenSplice DDS (OSPL) by Prismtech
(http://www.opensplice.com) and (ii) the RTI DDS by Real-Time Innovations
(http://www.rti.com/). Fault injection campaigns have been made for evaluating

16 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

Figure 6 SWIMBOX internals.

the effectiveness of the proposed approach. Due the the crucial role played by
data distribution tasks into the most common SWIMBOX application scenarios,
Publisher/Subscribe communication has been chosen as the injection target in order
to understand how failures in the DDS components may propagate to the rest of the
system. In fact, the communication layer may represent a dependability bottleneck
for the whole system if faults at that layer are not properly coped with.

From the technical point of view, the application case study has been
evaluated exploiting the FDD domain services of the SWIMBOX. The OpenSplice
implementation has been used to accomplish DDS tasks. The application consists
of two legacy entities, named the Contributor and the Manager respectively.
Figure 7 describes an example of the interaction between the legacy systems. The
Contributor acts as the subscriber, waiting for the information on Flight Object
(i.e., a single entity including different information related to a flight) updates to
be published. Also, it periodically reads all the available Flight Object summaries.
Conversely, the Manager is in charge of (i) executing a given number of operations
(e.g., Flight Data Object creation and update) at a fixed rate (20ops/sec), as well as
of (ii) distributing data over the SWIM network exploiting the Pub/Sub middleware
facilities. Once the operations have been completed the Contributor requires to
unsubscribe from the FDD subsystem.

OS-Level Hang Detection in Complex Software Systems 17

Figure 7 Application interaction schema of the SWIMBOX case study.

5.2 Fault injection campaigns

In order to evaluate the detection framework, we conducted fault injection
experiments, i.e., we corrupted application source code in order to emulate software
faults. We refer to the injection framework described in Duraes and Madeira (2006)
to inject software faults. It defines the 17 most representative classes of software
faults; for instance, fault classes frequently occurring in real systems are “missing
function calls” (MFC) and “wrong value assigned to a variable” (WVAV). These
fault classes are defined with respect to Orthogonal Defect Classification schema
(Sullivan and Chillarege, 1991). The distributions of the injected software faults is
provided in Table2.

Injected faults resulted in different failures, which are reported in Figure 8.
“Wrong” means that content type failures occurred which are not considered in
this work. “OK” means instead that the injected fault did not result in a failure.
The analysis of the hang detection framework focused on experiments in which
hang failures, either active ot passive, have been observed. Results reveal that
software faults result in hang failures frequently; in particular, hang account for the
majority of failures in the SWIMBOX case study. Passive hangs have been usually
the effect of message loss or corruption, leading to an “indefinite wait” condition.
Experiments were divided in two sets of equal size, namely training set and test set ;
the former has been adopted to tune the detectors whereas the latter to evaluate
their effectiveness.

18 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

Table 2 Source-code faults injected in the case study application.

ODC type Fault Nature Fault Type
Case study

FDP SBOX

Assignment

MISSING
MVIV - Missing Variable Initialization
using a Value

8 3

MVAV - Missing Variable Assignment
using a Value

5 7

MVAE - Missing Variable Assignment
using a Value

5 7

WRONG MVAV - Wrong Value Assigned to
Variable

26 7

EXTRANEOUS EVAV - Extraneous Variable
Assignment using another Variable

2 -

Checking

MISSING MIA - Missing IF construct Around
statement

2 1

WRONG WLEC - Wrong logical expression used
as branch condition

3 2

Interface

MISSING MLPA - Missing small and Localized
Part of the Algorithm

2 1

WRONG WPFV - Wrong variable used in
Parameter of Function Call

1 1

Algorithm
MISSING

MFC - Missing Function Call 13 5
MIEB - Missing If construct plus
statement plus Else Before statement

1 1

MIFS - Missing IF construct plus
Statement

1 -

Function
MISSING MFCT - Missing Functionality 2 -
WRONG WALL - Wrong Algorithm (Large

modifications)
1 -

Total 72 35

5.3 Results

The goal of a detection system is to uncover as many failure as possible while at
the same time keeping low the false positive rate. In order to evaluate our detection
framework, we adopted the following quality metrics:

• Coverage: the conditional probability that, if there is a failure, it will be
detected. It can be estimated from the ratio of the number of experiments
in which the failure is detected to the number of experiments with a fault
activated;

• False positive rate: the conditional probability that an alarm will be issued
during fault free executions (i.e. application execution where no fault has
been injected). It can be estimated from the ratio of false alarms (i.e. alarms
triggered during correct execution) to the number of normal events collected.

• Latency : time interval between the fault activation (i.e. the time when the
fault-injected code is executed) and detection (i.e. the time when an alarm is
triggered);

• Overhead : the difference in the average execution time of application methods,
by comparing executions with and without monitoring.

OS-Level Hang Detection in Complex Software Systems 19

!"#$

%#$

&'#$

&(#$

!"#$%

)*$

+,-./$

0/-12$

-/-12$

3"#$

"&#$

(!#$

(#$

&'(')*%

)*$

+,-./$

/-12$

4,)12$

3&#$

((#$

"3#$

&#$

#"*+,*+%
)*$

+,-./$

/-12$

4,)12$

Figure 8 Outcomes of the injection experiments.

We first evaluated the performance of individual monitors for both the case
studies, with respect to the metrics mentioned above. For each monitor, a sensitivity
analysis has been made, to tune the Ti parameter. We considered timeouts within
the range [0.1s, 4s]. The best performance and corresponding parameters for all
monitors are shown in Tables 3 and 4.

Different monitors achieve different performance in terms of coverage, since they
focus on failures impacting on different resources (e.g., a process may be indefinitely
waiting for a mutex or for a message). Actually, monitors are unable to achieve full
coverage keeping the False positive rate and Latency low (e.g., Mutex Timeout and
Sockets). Monitors also provide different rate of false positives, which is remarkably
high in some cases (e.g., UNIX semaphores hold timeout in the FDP case study).
For this reason, it is important to filter false positives in order to include those
monitors within the system (this is useful to increase the amount of covered faults).
To take in account this problem the combination rule (explained in section 3.2) has
been adopted to prevent false alarms.

It is worth noting that, even if the detection framework can be applied to any
application (it relies on several simple monitors at O.S. level), the performance
of single monitors varies with the specific case study. For example, in the SWIM-
BOX case study, the monitors on Unix Semaphores seem not to be helpful because
the application does not call Unix semaphore primitives; instead, these monitors
revealed some failures in the FDP case study. Therefore, we cannot claim that there
is an individual monitor able to effectively detect hang failures in all scenarios.
However, the inclusion of several monitors in the framework provides the potential
for detecting hang failures in different scenarios; this goal can be achieved by
tuning the combination rule, which accounts for the effectiveness of the individual
monitors.

20 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

Table 3 Coverage, false positive rate, and latency provided by the individual monitors
in the FDP case study.

Monitor Ti Coverage False positive rate Mean Latency
(ms)

UNIX semaphores
hold timeout

4 s 64.5% 36.08% 1965.65

UNIX semaphores
wait timeout

2 s 67.7% 1.7% 521.18

Pthread mutexes
hold timeout

4 s 64.5% 4.01% 469.51

Pthread mutexes
wait timeout

- 0% 0% -

Scheduling
threshold

4 s 74.1% 3.25% 1912.22

Syscall error codes 1 s 45.1% 0.6% 768.97

Signals 1 s 45.1% 0% 816.57

Process/Thread
exit

1 s 45.1% 0% 830.64

Process/Thread
Creation

1 s 35.4% 0.05% 375.7

I/O throughput 3 s 77.3% 0.4% 4476.67
network input

I/O throughput 3 s 77.3% 0.2% 2986.4
network output
I/O throughput 3 s 70.9% 0.4% 4930
disk reads

I/O throughput 2 s 67.6% 0.05% 6168.57
disk writes

Sockets 4 s 100% 3.47% 469.58

To correlate all the different monitors alarms we adopted the Bayesian
combination rule as explained in section 3.2. The conditional probabilities have
been estimated by counting the frequency of the alarms in faulty and fault free
experiments of the training set. Table 5 shows the performance achieved by the
joint detector in the FDP and SWIMBOX case studies. The results seem to confirm
the benefits of using a combined detector: it is able to achieve full coverage, while
keeping low the false positive rate (it is comparable to the best rates in Tables 3
and 4) and the mean latency.

Finally, the overhead of continuous monitoring DUs at the OS level has been
measured both for FDP and SWIM-BOX applications, by comparing the execution
time with and without monitoring of representative methods provided by the case
studies; moreover, we varied the request rate and the number of operations. Figures
9, 10 and 11 show the execution time observed with and without the detection
framework. It should be noted that the overhead was lower that 10% in every case
(in the SWIM-BOX case it is just over 2%), even during most intensive workload
periods.

OS-Level Hang Detection in Complex Software Systems 21

Table 4 Coverage, false positive rate, and latency provided by the individual monitors
in the SWIMBOX case study.

Monitor Ti Coverage False positive rate Mean Latency
(sec)

UNIX semaphores
hold timeout

- - - -

UNIX semaphores
wait timeout

- - - -

Pthread mutexes
hold timeout

0.1 s 100% 9.7% 0.1

Pthread mutexes
wait timeout

0.1 s 38% 0% 0.1

Scheduling
threshold

2 s 100% 24.1% 2

Syscall error
codes

0.1 s 12.5% 8.2% 15,41

Signals 0.1 s 0% 1,0% 76.65

Process/Thread
exit

0.1 s 50% 2.9% 0.1

Process/Thread
creation

0.1 s 50% 5.4% 0.53

I/O throughput 0.1 s 0% 1.6% 17.9
network input

I/O throughput 0.1 s 75% 0.5% 10.7
network output

I/O throughput 0.1 s 75% 1.2% 3.97
disk reads

I/O throughput 0.1 s 75% 0.5% 7.72
disk writes

Sockets 2 s 100% 23.3% 2

Table 5 Coverage, false positive rate, and latency provided by the joint detector.

FDP SWIMBOX

Coverage 100% 100%

False positive rate 4.85% 5.4%

Mean Latency 100.26±135.76 ms 100±33.33 ms

6 Conclusions

This paper proposed a framework for detecting hang failures in complex systems.
The framework is based on monitors inserted at the OS level, in order to enable
failure detection in the presence of OTS and legacy components. The monitors
collect events related to OS resources (e.g., I/O devices, synchronization primitives),
which are then analyzed by alarm generators using an anomaly detection technique.

22 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

Figure 9 Overhead imposed to the execution of facade’s update callback method.

Figure 10 Overhead imposed to the execution of facade’s request return method.

!"# $!# !#

%&'()*'#+),&')-&,.# /012$!3/144# /452$4"536# /4!26"3"0$#

%&'(#+),&')-&,.# /002"0$3$$1# /012$11//0# /4524606!#

789:-(:;<7# $2!4=# $2/6=# 21=#

"#
$"#
3"#
6"#
0"#

/""#
/$"#
/3"#
/6"#
/0"#
$""#

!
"
!
#$
%
&
'
(%
)
!
*+
!
#,
(

'$)-!.(&/(&0!.1%&'+(

Figure 11 Overhead imposed to the execution of SWIM-BOX’s main method.

The proposed approach was evaluated by an experimental campaign on two
real-world case studies. The non-intrusiveness of the approach allowed to deploy
the detection framework even in the presence of OTS and legacy components. We
noticed that the approach provides the best results when several monitors are
combined. The combination of several monitors proved to be effective with respect
to coverage by detecting all hang failures, thus confirming that monitoring at the

OS-Level Hang Detection in Complex Software Systems 23

OS level is a good strategy for hang failure detection. Moreover, the approach is
able to keep low the number of false positives and the computational overhead
due to on-line monitoring (less than 6% and 10% in the worst case, respectively).
Therefore, we believe that the proposed framework can effectively be deployed in
real-world scenarios, in order to develop recovery strategies to be triggered when a
failure is detected. The development of complex recovery strategies based on failure
detection is thus a future research direction we aim to purse.

References

A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxonomy

of Dependable and Secure Computing. IEEE Trans. on Dependable and Secure

Computing, 1(1):11–33, 2004.

R.P.J.C. Bose and S.H. Srinivasan. Data mining approaches to software fault diagnosis.

In Research Issues in Data Engineering: Stream Data Mining and Applications, 2005.

RIDE-SDMA 2005. 15th International Workshop on, pages 45–52, 2005.

G. Carrozza, M. Cinque, D. Cotroneo, and R. Natella. Operating System Support to

Detect Application Hangs. In International Workshop on Verification and Evaluation

of Computer and Communication Systems, 2008.

W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure detectors.

IEEE Transactions on Computers, 51(1):13–32, 2002.

R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of failure rate in widely

distributed software. In FTCS ’95:Proc. of the Twenty-Fifth International Symposium

on Fault-Tolerant Computing, page 424. IEEE Computer Society, 1995.

D. Cotroneo, D. Di Leo, and R. Natella. Adaptive monitoring in microkernel OSs.

In Dependable Systems and Networks Workshops (DSN-W), 2010 International

Conference on, pages 66–72. IEEE, 2010.

Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell. Exploring recovery from

operating system lockups. In ATC’07: 2007 USENIX Annual Technical Conference

on Proceedings of the USENIX Annual Technical Conference, pages 1–6, Berkeley,

CA, USA, 2007. USENIX Association. ISBN 999-8888-77-6.

J. A. Duraes and H. Madeira. Emulation of software faults: A field data study and a

practical approach. IEEE Transactions on Software Engineering, 32(11):849–867,

2006.

Dawson Engler et al. Checking system rules using system-specific, programmer-written

compiler extensions. In Symp. on Operating Systems Design & Implementation, 2000.

S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff. A sense of self for unix

processes. Security and Privacy, 1996. Proc., 1996 IEEE Symposium on, pages 120–

128, 1996.

J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Construction of a

Highly Dependable Operating System. In Proc. 6th European Dependable Computing

Conference (EDCC-6), pages 3–12. IEEE Computer Society, October 2006.

R.K. Iyer, L.T. Young, and P.V.K. Iyer. Automatic Recognition of Intermittent Failures:

An Experimental Study of Field Data. IEEE Transactions on Computers, pages

525–537, 1990.

W. Lee and S. Stolfo. Data mining approaches for intrusion detection. In Proceedings of

the 7th USENIX Security Symposium, San Antonio, TX, 1998.

24 A. Bovenzi, G. Carrozza, D. Cotroneo, M. Cinque, R. Natella

T.T.Y. Lin and D.P. Siewiorek. Error Log Analysis: Statistical Modeling and Heuristic
Trend Analysis. Reliability, IEEE Transactions on, 39(4):419–432, 1990.

Dan Pelleg et al. Vigilant: Out-of-Band Detection of Failures in Virtual Machines.
Operating Systems Review, 42(1), 2008.

Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang Sun,
and Bin Wang. Automated support for classifying software failure reports. In ICSE
’03: Proceedings of the 25th International Conference on Software Engineering, pages
465–475, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-X.

Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical study of reported
bugs in server software with implications for automated bug diagnosis. In ICSE
’10: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, pages 485–494, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
719-6. doi: http://doi.acm.org/10.1145/1806799.1806870.

Kai Shen, Ming Zhong, and Chuanpeng Li. I/O System Performance Debugging Using
Model-driven Anomaly Characterization. In Proc. USENIX Conf. on File and Storage
Technologies, 2005.

M. Sullivan and R. Chillarege. Software defects and their impact on system availability
- a study of field failures in operating systems. 21st Int. Symp. on Fault-Tolerant
Computing (FTCS-21), pages 2–9, 1991.

L. Wang, Z. Kalbarczyk, Weining Gu, and R.K. Iyer. Reliability microkernel: Providing
application-aware reliability in the os. Reliability, IEEE Transactions on, 56(4):597–
614, 2007.

X. Wang et al. Hang analysis: fighting responsiveness bugs. In Proc. EuroSys Conf. ACM,
2008.

Ziming Zheng, Yawei Li, and Zhiling Lan. Anomaly Localization in Large-Scale Clusters.
Proc. IEEE Intl. Conf. on Cluster Computing, 2007.

