Monitoring of Aging Software Systems affected by Integer Overflows

Domenico Cotroneo and Roberto Natella
Dipartimento di Informatica e Sistemistica
Universita degli Studi di Napoli Federico Il

Via Claudio 21, 80125, Naples, Italy
Email: cotroneo@unina.it, roberto.natella@unina.it

Abstract—Numerical aging-related bugs, which can manifest
themselves as the accumulation of floating-point errors and the
overflow of integers, represent a known but relatively neglected
issue in the field of software aging and rejuvenation. Unfortu-
nately, it is very difficult to avoid and to fix these bugs, since the
rules of computer arithmetic and programming languages are
often misunderstood or disregarded by programmers. Even
though software rejuvenation can potentially mitigate these
problems, its adoption is prevented by the lack of approaches
for forecasting numerical software aging failures: in order to
efficiently plan rejuvenation, the rate of numerical errors has
to be known, or at least estimated. In this paper, we focus
on software aging phenomena related to integer overflows. We
present some examples of integer overflow issues of the MySQL
open-source DBMS, and an approach for identifying symptoms
of potential integer overflows by on-line monitoring.

Keywords-Software aging; Software rejuvenation; Integer
overflows; Numerical errors; Aging-related bugs

I. INTRODUCTION

Software aging, that is, the gradual increase of the failure
rate and performance degradation of long-running systems,
is caused by bugs (namely, aging-related bugs) that manifest
themselves in subtle, and often transient ways [, [2], [3].
Unfortunately, avoiding these bugs through rigorous devel-
opment and testing can be unfeasible. Software rejuvenation
is a cost-effective approach to deal with software aging, by
the proactive rollback of the system in a clean state before
the occurrence of unplanned, and more costly, outages [4],
which has been successfully adopted in many systems [J5].

Among software aging issues analyzed in the literature,
most of previous studies have dealt with the consumption
of memory and other OS resources, and with degradation of
response time [6]. Indeed, these issues are the most frequent
manifestations of aging-related bugs, as showed by empirical
studies [7]. Several strategies have been proposed to detect
resource consumption and performance degradation trends
and to forecast aging-related failures, in order to schedule
software rejuvenation in a cost-effective way [8l, [9l, [10].

However, there is a type of aging-related bugs that
represents a known but relatively neglected issue, namely
numerical aging-related bugs [6]. A well-known example
of numerical aging-related bug is the accident of the Patriot
missile system [[L1]: the system kept time internally as an

integer in a 24-bit register, counting tenths of seconds; when-
ever a target was spotted, this integer value was converted
into a real value with an inaccuracy proportional to the
system runtime, causing the system to miss the target. In
general, numerical bugs are aging-related when they lead to
the accumulation of numerical errors, such as floating-point
rounding errors, or when their manifestation is triggered by
the quantity and type of work performed by the system
and/or by the total system runtime, such as in the case of
some kinds of integer overflows.

Numerical aging-related bugs can represent an issue for
many long-running software applications, such as industrial
control systems and signal processing. Unfortunately, it is
very difficult to avoid and to fix numerical bugs, since the
rules of computer arithmetic and programming languages
are often misunderstood or disregarded by programmers.
Moreover, the analysis of stability and accuracy of numerical
algorithms is a costly and difficult process. If numerical
algorithms are not carefully designed and implemented,
these bugs can lead to an erroneous and failure-prone state of
the software system [12], [13]. Even though software rejuve-
nation can potentially mitigate these problems, its adoption
is prevented by the lack of approaches for forecasting aging
failures due to numerical errors: in order to efficiently plan
rejuvenation, the rate of such errors has to be known, or at
least estimated. Therefore, applying software rejuvenation to
counteract numerical errors represents an open challenge.

In this paper, we focus on software aging phenomena
related to integer overflows. We present some examples of
integer overflow issues that affected the MySQL open-source
DBMS, in order to understand numerical problems in a
real-world system. We then describe an on-line monitoring
approach for identifying symptoms of potential overflows,
by periodic sampling of state variables of a running process.

The paper is organized as follows. In Section [l we
discuss related work on integer overflow bugs. Section
describes some examples of integer overflow bugs in
MySQL, and Section [[V| describes the proposed monitoring
approach. Section |V| concludes the paper.

II. RELATED WORK

Integer-related bugs occur when programmers reason
about infinitely ranged mathematical integers, while im-

plementing their designs with finite-precision data types.
There has been extensive work on tools and libraries for
mitigating integer overflows. Many of these efforts have
been motivated by the fact that integer-related bugs can
introduce security vulnerabilities: this may happen when
an integer value from an untrusted source is used, for
instance, in pointer arithmetic, as the bound of an array, or
as an argument to a memory allocation function [14], [15].
Moreover, in languages such as C and C++, some kinds of
integer overflow (e.g., overflows of unsigned integers) lead
to an undefined behavior, that is, the programming language
does not impose any rule when the operation overflows,
leading to unpredictable results [12]].

The approaches for mitigating integer overflows include
static analysis [[16], [17], dynamic analysis [15], [18], [19],
which instruments a program in order to point out overflows
during tests, and libraries that wrap integer operations and
deal with overflows at run-time, by generating an exception
or by masking the error [14], [20].

Compared to previous work, our perspective is to prevent
the occurrence of integer overflows, by detecting aging
symptoms at run-time and by scheduling rejuvenation, rather
than handling overflows after they have occurred or fixing
the underlying bugs. Thus, our focus is on numerical bugs
that lead to software aging (numerical aging-related bugs)
and on rejuvenation strategies for this specific class of bugs.

III. NUMERICAL AGING-RELATED BUGS

In this section, we analyze and discuss numerical aging-
related bugs in the MySQL DBMS. In our previous work
[21], we analyzed problem reports from the Linux 2.6 and
MySQL 5.1 projects: we queried their publicly-available bug
tracking systems in order to identify aging-related bugs in
a subset of components of these projects, and to relate the
occurrence of aging-related bugs with software complexity
metrics. That study highlighted the occurrence of numerical
aging-related bugs in both projects, where both bugs caused
integer overflows. In this study, we performed an expanded
analysis of bugs in MySQL, by searching for numerical
aging-related bugs in all components of the DBMS server
process and in all releases of MySQL. In order to focus
our analysis on integer overflow issues, we performed a
keyword-based search using the terms “integer overflow”.

Among the results of our search, most of problem reports
were not related to software aging, but were buffer and
stack overflow problems. By analyzing the summary of
problem reports, we identified a sample of numerical aging-
related bugs, that allows us to describe some of the potential
problems caused by integer overflows. It should be noted
that our goal is not to quantitatively estimate the extent
of numerical aging-related bugs, which would require an
extensive and in-depth analysis of problem reports as in [21]],
[22], [23]], but to describe and focus on some of the problems
experienced by users and their possible solutions.

The first kind of numerical aging-related bugs that we
consider is related to the size of database tables. A first
example is bug #31732 [24]], which is triggered when the
number of tuples in a table exceeds 232 — 1, that is, the
highest value for an unsigned 32-bit int variable. In this
case, the result of the count () SQL function overflows
(e.g., if the table has 232 tuples, count () reports that the
table has only one tuple), even if the tuples are actually
stored in the database. This error, in turn, affects the results
of SQL queries based on the count () function, and the
applications performing these queries. In this scenario, an
application would fail because of errors from a third-party
component (the DBMS). The fault may be difficult to
diagnose and to fix, and would require the assistance of
MySQL developers to do so. This issue can be considered
a software aging problem, since the likelihood of an integer
overflow (and, in turn, the failure rate) increases with the
amount of insert operations that have been performed.

An alternative, cost-effective strategy could be to adopt
software rejuvenation, in order to avoid the occurrence of
the error. In this case, however, simply restarting the DBMS
server process would not be sufficient to avoid the overflow,
since the number of tuples would not change after a process
restart. To be effective, software rejuvenation should be
applied on storage data, by performing a database rotation,
that is, to move old tuples to another location (e.g., a data
warehouse or off-line storage) in order to keep in the table
the tuples that are strictly necessary for on-line transaction
processing. This practice is common among system adminis-
trators for managing large log files, by periodically restarting
them so that they do not grow without bounds. In a similar
way, rotation can be applied to database tuples if data can be
moved off-line when they get old. We found that this practice
is adopted in a commercial Security Information and Event
Management (SIEM) product [25], where system log data is
collected in a database that is periodically rotated in order to
keep only “active events” for security surveillance purposes.
However, this operation has to be properly scheduled in
order to avoid unnecessary overhead or outages.

Bug #43203 [26] is another example of numerical aging-
related bug triggered by an excessive growth of tables. In
this case, the DBMS server process crashes (due to the
failure of an assertion) if the value of an integer key field
(with auto-increment of the key at each insert operation)
exceeds the maximum value allowed by its type; instead,
it is expected that the DBMS should gracefully handle this
event by returning an SQL error code when a query causes
the key to overflow. In a similar way to the previous bug,
failures could be prevented by rotating database tables.

It is important to note that even when the overflow of a
field is gracefully handled by the DBMS (e.g., an error code
is returned as expected), it may still cause the failure of the
application that uses the DBMS, since the SQL error may
not be correctly handled by the application (e.g., developers

may overlook the possibility of that SQL error). This kind
of failure can be prevented by avoiding overflows.

Another type of problem due to numerical aging-related
bugs is represented by the bug #42698 [27]. This bug causes
the overflow of status variables in the DBMS server process.
Status variables are adopted in MySQL (and in other DBMS
products) by database administrators to analyze the behavior
of the DBMS over time [28]], [29]]. These variables provide
information about DBMS operations, such as the number
of aborted connections, the amount of transferred data, the
number of running threads, and several others. The value
of some variables increases with the amount of operations
processed by the DBMS, leading to an overflow after some
days (in MySQL up to version 5.0.45, these variables were
stored in 32-bit integer variables). This problem, in turn,
can affect DBMS monitoring tools that are based on these
variables and their users, such as database administrators.
This was the case of users of MONyog, a platform for
tuning and managing MySQL installations, that complained
about wrong statistics provided by this tool [30], [31]. An
indicator affected by this problem is the “percentage of full
table scans”, that is, the percentage of operations that require
to sequentially inspect the tuples of a table [30]. Since
this kind of operation may cause a significant processing
overhead, these statistics are used to optimize SQL queries
and databases, e.g., by introducing indexes. In the MONyog
monitoring tool, this indicator is defined as

Perc. of Full _ Handler_read_rnd_next + Handler_read_rnd

Table Scans ~— (Handler_read_md_next + Handler_read_md)

@

+Handler_read_first + Handler_read_next
+Handler_read_key + Handler_read_prev

where the values with the Handler_ prefix represent integer
status variables collected from a MySQL server about op-
erations on table handlers, and the Handler_read_rnd_next
and Handler_read_rnd variables represent the number of
operations that require a full table scan. In a highly loaded
DBMS, these variables can overflow after few days of
execution, as pointed out by the users. Another indicator
affected by overflow is the “cache hit rate”, which represents
the percentage of requests that read a key block from the
cache and do not generate a physical read from the disk
[31]. This indicator is adopted for tuning the size of the
cache size for index blocks. It is defined as

ki d:
Cache hit rate = 1 — _ freyreads 2)
key_read_requests

where key_reads is the number of physical reads of in-
dex blocks that have been performed by the DBMS, and
key_read_requests is the total number of reads of index
blocks. When an overflow occurs, the result of these for-
mulas may become obviously wrong and therefore unusable
(e.g., a cache hit rate equal to -1804.52%), or may be mis-
leading (e.g., the percentage of full table scans can raise and

then abruptly drop after the overflow). To mitigate this issue,
MySQL programmers adopted 64-bit variables. However,
until the identification of the bug, the solution suggested by
MONyog developers was to periodically reset the values of
variables by executing the flush status command [31]], which
can be seen as a form of software rejuvenation.

In our analysis, we did not analyzed numerical aging-
related bugs that involve floating point arithmetic. As
showed in our earlier analysis [21], floating-point issues
are unlikely in system software (such as operating systems
and DBMSs), since they make little use of floating-point
arithmetic. However, this kind of numerical aging-related
bugs can be a more severe issue for different types of
systems. Therefore, analyzing other types of systems is a
worthy direction for future work.

IV. MONITORING FOR INTEGER OVERFLOWS

Although software rejuvenation can potentially mitigate
integer overflow problems, its adoption is limited by the lack
of an aging indicator, that is, a quantity that can be measured
and that can be related to software aging phenomena of this
kind [3]], [6]. In the case of software aging phenomena that
cause resource consumption or performance degradation, the
amount of free resources or the average system response
time are usually adopted as aging indicators, in order to fore-
cast the occurrence of aging-related failures (e.g., by using
time series and statistical data analysis) and plan software
rejuvenation before the failure [8], [LO]. It would be thus
useful to have an aging indicator for integer overflows, in
order to adopt a similar approach for this kind of problems.

Our idea is to periodically sample the value of long-lived
integer variables, to estimate the expected time-to-overflow
for each monitored variable (e.g., based on trend analysis),
and to trigger rejuvenation according to the estimate. In
particular, we monitor variables located in the heap or in
the global data areas of a process, since their lifetime can
be long enough (e.g., the whole execution of the program in
the case of global variables) that their values can grow with
time and be affected by aging, leading to an overflow. Global
variables are typically allocated in the program address space
at compile- and link-time, and their memory address can
be obtained by analyzing information from compilers and
linkers (e.g., “debug information” that is embedded in a pro-
gram executable). Heap variables are allocated at run-time,
and their address and their lifetime are typically unknown
before executing the program. We consider long-lived heap
variables that are referenced by pointers in the global data
area, and neglect heap variables that are referenced by local
variables, since it is likely that important data lasting for a
long period have a global scope in order to be accessed by
more than one procedure and more than one thread.

The schema of the proposed monitoring approach is
showed in Figure [I] It consists of the following steps:

Program
code
01001 Static analysis Binar
- - y
10011 > | of global data > instrumentation
7 area

|

| A

e e e e e e e e e e e 2 |

Figure 1.

1) We collect informations about global variables of
the program, by performing a static analysis of the
binary code and its debugging information. These
informations include the list of global variables, their
type, and their address. In this way, we can determine
the address (i) global-scoped integer variables, and (ii)
integer variables in the heap that are referenced by a
global data structure.

2) The binary program is instrumented, by adding a pro-
cedure that is executed periodically and that samples
the values of integer variables at each execution.

3) The instrumented program is monitored during its
execution; the sampled values are analyzed in order
to detect aging trends (e.g., using a statistical test [7])
and to forecast the expected time before a variable will
reach a limit value (e.g., the maximum value allowed
by the type of the variable).

We implemented a prototype monitoring tool using the
SystemTap [32], which is a framework for the Linux OS that
can introduce event handlers in both kernel and application
code. Handlers can be triggered by the execution of a given
code location (like a breakpoint of a debugger), or by a
periodic timer; they can be used to collect information
about variables of a process with low overhead and without
modifying the source code of the program.

In the current prototype, we let the user to specify which
variable to monitor, or we monitor all integer variables
reachable from the global data area. However, there can be
a non-negligible overhead if all of these integer variables
are sampled. A potential future extension of the prototype
could be to adopt an adaptive sampling, by sampling less
frequently those variables that seldom change. Moreover,
trend analysis could be performed on a fixed number of
recent samples, in order to keep constant its overhead.
Another limitation of the current prototype is the need
for debug information. To perform instrumentation in the
absence of debug information, the monitoring tool needs to
be combined with approaches for reverse-engineering of data
structures from binary code [33]], [34].

We performed an experiment in which we reproduced
and analyzed the effects of bug #42698. The experiment

Running
(instrumented)

Integer
data
trends

__>Ej

Data collection
& analysis

Monitoring approach for integer overflows.

exercises the MySQL DBMS by executing repeatedly for
7 days the test cases from the MySQL test suite. During
the experiment, we adopted the monitoring approach to
sample the value of status variables, which are located in
global integer variables of the MySQL server process. We
periodically sampled 223 integer variables at the rate of one
sample per minute, and saved the samples in a log file.
After the experiment, we identified a subset of 8 variables
that exceeded 23! at least one time during the experiment,
which are showed in Figure 2] The status variable han-
dler_read _rnd_next is included in this subset. This variable
overflowed for 3 times during the experiment, with a period
of about 2 days. The key_blocks_not_flushed is another
problematic status variable, which overflowed several times
during the experiment. By searching for problem reports
related to this variable, we found that the DBMS assigns
a negative value to the variable due to a bug; the value
is converted in a large unsigned integer, and the variable
then overflows after some operations [35]. The remaining
variables represent the amount of data processed by the
DBMS (e.g., data written by the InnoDB storage engine),
which can often exceed 4Gb in a highly loaded server.

In a second experiment, we monitored the size of tables
using the proposed approach. We set up a database by using
the Memory storage engine for MySQL [28]], which stores
data in memory in order to avoid disk I/O. We considered
this storage engine due to its simple internal structure;
moreover, this storage engine can be exposed to the problem
of over-growing tables, since memory is a relatively scarce
resource. We populated a database with three tables, and
periodically insert a new tuples in each table, respectively
with a period of 5, 10, and 15 seconds.

Figure [3] shows the data structures adopted by this storage
engine for handling tables: the heap_open_list is a pointer
in the global data are, which references the first element of
a linked list; each element in the list, in turn, references a
structure that represents a table (struct st_heap_info), where
the struct st_heap_share contains information about the table
(e.g., the records field provides the number of tuples in the
table) and its actual data (e.g., the block field). Therefore,
the monitoring tool can obtain the number of tuples by

><1(J9 ><109

><1(J9

Bytes_received Bytes_sent Handler_read_rnd_next x 10 Handler_write
4 4 4 4
3.5 3.5 3.5 3.5
3 3 3 3
2.5 25 2.5 25
2 2 2 2
15 1.5 15 1.5
1 1 1 1
0.5 0.5 0.5 0.5
0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Time (days) Time (days) Time (days) Time (days)
X 109 Innodb_data_written X 109 Innodb_os_log_written X 109 Key_blocks_not_flushed x 10 Sort_rows
4 4
25
3.5 3.5
3 3 2
25 25
1.5
2 2
1.5 1.5 1
1 1
0.5
0.5 0.5
0 0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Time (days) Time (days) Time (days) Time (days)
Figure 2. MySQL status variables.
. heap_open_list
following pointers, starting from the heap_open_list pointer (gl’; _ba,I,are_a)
in the global area. In Figure @ we compare the actual ;
number of inserted tuples with the value of the records field Y
periodically sampled for each struct st_heap_share instance struct st_list struct st list| >
; s + pre + pre
in the process. The samples collected by the monitoring tool N ﬁex‘t' N Eex\t’
matched the actual number of tuples that have been inserted +data +data
in the table during the experiment, thus confirming that the
approach is able to correctly sample integer values. This kind
. . . . b i >
of data can be potentially used during operation in order to struct st_heap_info | 12| struct st_heap_share
.. . +
anticipate the occurrence of integer overflow problems. N :’:C’Z': "
+ changed
V. CONCLUSION + deletd

In this paper, we analyzed some examples of numerical
aging-related bugs in the MySQL DBMS, that could lead
to integer overflows and cause subtle failures. Moreover, we
proposed an on-line monitoring approach to identify integer
overflow issues at run-time and to support software rejuve-
nation. Future work include the performance evaluation and
optimization of the approach (e.g., in terms of computational
overhead), to apply the approach to other kind of systems,
and to encompass floating-point errors.

ACKNOWLEDGMENT

This work has been supported by the projects "Embedded
Systems in Critical Domains” (POR Campania FSE 2007-
2013) and “Iniziativa Software CINI-Finmeccanica”.

Figure 3. Data structures for handling tables in the Memory storage engine.

REFERENCES

[1] J. Gray, “Why do computers stop and what can be done about
it?” in Proc. Symp. on Reliability in Distributed Software and
Database Systems, 1986.

L. Bernstein, “Innovative technologies for preventing network
outages,” AT&T Technical Journal, vol. 72, no. 4, pp. 4-10,
1993.

M. Grottke, R. Matias, and K. Trivedi, “The fundamentals
of software aging,” in Proc. First Intl. Workshop on Software
Aging and Rejuvenation, 2008.

(2]

(3]

Number of tuples

[4

—_

(5]
[6

—_

[7

—

[8

—

[9

—

[10]

(11]

(12]

[13]

(14]

(15]

(16]

120 T T T T 4
Table 1 (insert period: 5 s)

Table 2 (insert period: 10 s)
Table 3 (insert period: 15 s)

1001 Sampled integers)

Time (min)

Figure 4. Actual and sampled table size.

Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
rejuvenation: analysis, module and applications,” in Proc.
Int’l. Symp. Fault-Tolerant Computing, 1995, pp. 381-390.
L. Bernstein and C. Kintala, “Software rejuvenation,”
CrossTalk, vol. 17, no. 8, pp. 23-26, 2004.

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Soft-
ware Aging and Rejuvenation: Where We Are and Where We
Are Going,” in Proc. Third Intl. Workshop on Software Aging
and Rejuvenation, 2011.

S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A
methodology for detection and estimation of software aging,”
in Proc. Intl. Symp. on Software Reliability Engineering,
1998, pp. 283-292.

K. Vaidyanathan and K. Trivedi, “A measurement-based
model for estimation of resource exhaustion in operational
software systems,” in Proc. Intl. Symp. on Software Reliability
Engineering, 1999.

A. Avritzer, A. Bondi, M. Grottke, K. Trivedi, and
E. Weyuker, “Performance Assurance via Software Rejuve-
nation: Monitoring, Statistics and Algorithms,” in Proc. Intl.
Conf. on Dependable Systems and Networks, 2006.

J. Alonso, J. Torres, J. Berral, and R. Gavalda, “Adaptive on-
line software aging prediction based on machine learning,” in
Proc. Intl. Conf. on Dependable Systems and Networks, 2010.
E. Marshall, “Fatal error: how patriot overlooked a scud,’
Science, vol. 255, no. 5050, pp. 1347-1347, 1992.

W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding
integer overflow in C/C++,” in Proc. 2012 Intl. Conf. on
Software Engineering, 2012.

W. Kahan, “How futile are mindless assessments of roundoff
in floating-point computation?” 2006. [Online]. Available:
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf]

R. Dannenberg, W. Dormann, D. Keaton, R. Seacord, D. Svo-
boda, A. Volkovitsky, T. Wilson, and T. Plum, “As-If In-
finitely Ranged Integer Model,” in Proc. Intl. Symp. on
Software Reliability Engineering, 2010.

D. Brumley, D. X. Song, T. cker Chiueh, R. Johnson, and
H. Lin, “RICH: Automatically Protecting Against Integer-
Based Vulnerabilities,” in Proc. Network and Distributed
System Security Symp., 2007.

T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Automati-
cally detecting integer overflow vulnerability in x86 binary

[17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

using symbolic execution,” in Proc. Network Distributed
Security Symp., 2009.

X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek,
“Improving Integer Security for Systems with KINT,” in
Proc. USENIX Symp. on Operating Systems Design and
Implementation, 2012.

P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “Brick: A
binary tool for run-time detecting and locating integer-based
vulnerability,” in Proc. Intl. Conf. on Availability, Reliability
and Security, 2009.

D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test
generation to find integer bugs in x86 binary linux programs,”
in Proc. USENIX Security Symp., 2009.

CERT, “Integral Security.” [Online]. Available: http://www.
cert.org/secure-coding/integralsecurity.html

D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting
Aging-Related Bugs using Software Complexity Metrics,”
Performance Evaluation, 2012, in press. [Online]. Available:
http://dx.do1.org/10.1016/j.peva.2012.09.004

M. Grottke, A. Nikora, and K. Trivedi, “An empirical inves-
tigation of fault types in space mission system software,” in
Proc. Intl. Conf. on Dependable Systems and Networks, 2010.
R. Chillarege, “Understanding Bohr-Mandel Bugs through
ODC Triggers and a Case Study with Empirical Estimations
of Their Field Proportion,” in Proc. Third Intl. Workshop on
Software Aging and Rejuvenation, 2011.

Oracle Corp., “Bug #31732: row count(*) overflows after
32-bit integer precision in spite of being bigint”.” [Online].
Available: http://bugs.mysql.com/bug.php?1id=31732
AlienVault Inc., “Tutorial 2: Syslog data mining with
attached mdSsum.” [Online]. Available: |http://labs.alienvault.
com/labs/index.php/2007/

Oracle Corp., “Bug #43203: Overflow from auto incrementing
causes server segv.” [Online]. Available: http://bugs.mysql.
com/bug.php?id=43203

——, “Bug #42698: overflow in status variable.” [Online].
Available: http://bugs.mysql.com/bug.php?id=42698

B. Schwartz, P. Zaitsev, V. Tkachenko, J. Zawodny, A. Lentz,
and D. Balling, High Performance MySQL. O’Reilly Media,
Inc., 2008.

Oracle Corp., “MySQL Reference Manual - Server Status

Variables.” [Online]. Available: http://dev.mysql.com/doc/
refman/5.0/en/server-status- variables.html
Webyog Inc., “Percentage Of Full Table Scans.”

[Online]. Available: |http://www.webyog.com/forums/index.
php?showtopic=6129

——, “Bug - Myisam Key Cache - Cache Hit Rate.”
[Online]. Available: http://www.webyog.com/forums/index.
php?showtopic=4492

B. Jacob, P. Larson, B. Leitao, and S. da Silva, “SystemTap:
instrumenting the Linux kernel for analyzing performance and
functional problems,” IBM Redbook, 2008.

Z. Lin, X. Zhang, and D. Xu, “Automatic Reverse Engi-
neering of Data Structures from Binary Execution,” in Proc.
Network and Distributed System Security Symp., 2010.

A. Slowinska, T. Stancescu, and H. Bos, “DDE: dynamic
data structure excavation,” in Proc. First ACM Asia-Pacific
Workshop on Systems, 2010.

Oracle Corp., “Bug #61130: Key_blocks_not_flushed values
is not correct!” [Online]. Available: http://bugs.mysql.com/
bug.php?id=61130

http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://www.cert.org/secure-coding/integralsecurity.html
http://www.cert.org/secure-coding/integralsecurity.html
http://dx.doi.org/10.1016/j.peva.2012.09.004
http://bugs.mysql.com/bug.php?id=31732
http://labs.alienvault.com/labs/index.php/2007/
http://labs.alienvault.com/labs/index.php/2007/
http://bugs.mysql.com/bug.php?id=43203
http://bugs.mysql.com/bug.php?id=43203
http://bugs.mysql.com/bug.php?id=42698
http://dev.mysql.com/doc/refman/5.0/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.0/en/server-status-variables.html
http://www.webyog.com/forums/index.php?showtopic=6129
http://www.webyog.com/forums/index.php?showtopic=6129
http://www.webyog.com/forums/index.php?showtopic=4492
http://www.webyog.com/forums/index.php?showtopic=4492
http://bugs.mysql.com/bug.php?id=61130
http://bugs.mysql.com/bug.php?id=61130

	Introduction
	Related work
	Numerical aging-related bugs
	Monitoring for integer overflows
	Conclusion
	References

