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Abstract—We propose a fault injection framework to assess
hang detection facilities within the Linux Operating System
(OS). The novelty of the framework consists in the adoption of
a more representative faultload than existing ones, and in the
effectiveness in terms of number of hang failures produced;
representativeness is supported by a field data study on the
Linux OS. Using the proposed fault injection framework,
along with realistic workloads, we find that the Linux OS
is unable to detect hangs in several cases. We experience a
relative coverage of 75%. To improve detection facilities, we
propose a simple yet effective hang detector, which periodically
tests OS liveness, as perceived by applications, by means of
I/0 system calls; it is shown that this approach can improve
relative coverage up to 94%. The hang detector can be
deployed on any Linux system, with an acceptable overhead.

I. INTRODUCTION

Operating Systems (OSs) act as the core of a wide range
of computer systems, enabling the development of complex
and distributed services. Commodity OSs are being used
even in critical scenarios, since they allow a reduction of
development time and costs. However, they suffer the well-
known dependability pitfalls that characterize Off-the-Shelf
(OTS) software modules [1]. A failure in the OS may com-
promise the correct execution and application performance,
as well as the mission of the overall system [2]. Hence,
characterizing the dependability of OSs is a major concern.

It has been demonstrated that software faults (i.e., bugs)
are a major cause of system failures [3]-[5]. As they can
manifest transiently, depending on environmental conditions
(e.g., hardware and software configuration, workload, and
timing events), they often elude testing efforts, thus resulting
in failures on the field; this is especially true for OSs, which
are very complex and often made up of millions of lines of
code, often written by third-party developers (e.g., device
drivers). Several research studies have been conducted on
fault tolerance issues within commodity OSs, such as repli-
cation, checkpointing, driver restarting, and microreboots
[6]-[10]. All these mechanisms rely on the OS capability
of decting the occurrence of a failure. Failure detection
capabilities are a fundamental requirement for enabling
fault tolerance strategies, and to achieve self-management
in complex and distributed systems [11]. However, there are
failures that may occur without being explicitly notified by
the system, for which a recovery action cannot be started.
As shown by several studies on field failures [4], [12]-[14],
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detection mechanisms within OSs can fail, and they may
lead to missing, misleading, or false detections. This is the
case of hang failures, which are caused by a significant
part of software faults in OS code [15]; they cause the OS
to get partially or completely stalled, and to not provide
any response to user-space applications. It is difficult to
detect hang failures, because they hamper the execution
of the OS, and, unlike other types of failures (e.g., illegal
memory access), they are not notified by the hardware.
Focus of this paper is on the assessment and the
improvement of hang detection mechanisms in commodity
OSs. The problem of hang detection has been faced in
past research studies (see §II). However, they assume
knowledge about workload or availability of special
hardware, thus hampering their adoption in commodity
OSs. Our driving idea is to propose a fault injection
framework to assess hang detection facilities, and to
guide their improvement. To the best of our knowledge,
there are not fault injection techniques tailored for the
assessment of hang detection mechanisms. Fault injection
is a valuable approach for experimental evaluation of
fault tolerance mechanisms, as it provides the means for
studying of complex interactions between faults, errors,
failures and fault tolerance mechanisms [16], and it can be
used to complement and increase the confidence of other
validation approaches [17]. However, existing fault injection
techniques and tools, based on bit-flips (e.g., NFTAPE) and
generic software faults (e.g., G-SWFIT), are able to induce
a hang only in a small minority of cases [18], [19], and no
previous work discusses fault representativeness with respect
to hang scenarios. In this paper, we propose a fault injection
framework for experimental evaluation of OS hang detection
mechanisms. The contribution of this paper is twofold:
1) The design of a representative and effective fault injection
framework, which is made up of the following phases:
Collection and analysis of software fault reports. Our
study on the Linux OS confirms that concurrency
issues are a major cause of hang failures, as observed
from previous field data studies [5], [15];
Definition of a set of faults based on the collected
software fault reports;
Identification of fault locations by system profiling.
It is worth noting that although several model checking
approaches [20] have been proposed, the fault injection
framework is complementary to them, since it is difficult
to comprehensively model software systems.
It proposes a hang detection mechanism that overcomes
limitations of hang detectors in the Linux OS. The
proposed mechanism tests OS liveness, as perceived
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by applications, by means of periodic system call

invocations, in order to stimulate most important OS

subsystems (e.g., memory management, file system,
device drivers); failure detection is performed by
monitoring of kernel I/O throughput.

An experimental campaign is conducted on Linux OS,
using the proposed framework and workloads representative
of long-running applications in real-world systems.
Experiments show that, in 75% of cases, the kernel is
able to detect a hang (see §IV). The proposed detection
mechanism has been able to detect 94% of hangs, thus
improving detection relative coverage of 19%, with respect
to the considered faultload and workloads (see §VI). The
detector exhibits low overhead and no false positives, and
it does not require in-depth knowledge of system internals.

The remainder of the paper is organized as follows:
§II discusses the state of the art in the field of OS hang
detection; §III describes the proposed fault injection frame-
work for OS hang detection assessment; §IV describes the
experimental analysis we conduct on Linux; §V proposes a
mechanism for improving hang detection, which is analyzed
in §VI; §VII ends up with conclusions and future work.

II. BACKGROUND AND RELATED RESEARCH
A. Related Work on Hang Detection

Debugging techniques. They use static and dynamic
source code analysis to identify hang root causes. In [21],
the disk I/O subsystem is modeled analytically; the model is
then compared to execution traces, to identify workload con-
ditions under which performance is suspiciously low, and to
fix anomalies (e.g., by improving disk I/O scheduling heuris-
tics). In [22], the focus is on soft hang bugs (i.e., bugs caus-
ing system unresponsiveness); runtime traces are exploited to
search for potential hang points within source code, to avoid
unnecessary end-user waits. In [23], developers’ knowledge
about the system is exploited to formulate assertions, and
to check the source code for violations. Assertions enforced
on the Linux kernel concern memory management errors,
temporal ordering of operations, and deadlocks. Debugging
techniques are useful to avoid the occurrence of those hangs
whose root cause can be easily pinpointed into the source
code. However, they are not able to detect bugs that are
triggered under complex conditions and that escape code
analysis, thus requiring fault tolerance mechanisms.

Hardware monitoring techniques. They use special
hardware such as watchdog timers. The timer is periodically
reset by the OS in failure free conditions; otherwise, a
Non-Maskerable Interrupt (NMI) is triggered to signal that
the timer has expired [24]. This mechanism can fail since
the kernel is preemptible, hence timers can be reset even
during a hang. In [19], [25], hardware instruction counters
are exploited to detect whether the processes or the OS
are stalled; the number of instructions executed between
context switches, or executed in kernel mode, is compared
to a threshold to perform detection. In [26], hardware
instrumentation is used to remotely inspect the main memory
of a node; software counters are used to profile the execution
of OS code that should be executed frequently (e.g., context
switching, interrupt handling): if the OS is stalled, counters
are not updated. Hardware monitoring techniques are
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characterized by minimal overhead and cannot be affected
by software faults. However, hardware support may be not
available, and they are not able to detect failures in which
the OS is stalled but the monitored events still occur. More
flexible software-implemented techniques are needed to cope
with these failures. In this paper we consider hang detection
mechanisms that do not rely on hardware instrumentation.

Workload modeling techniques. They provide a synthetic
model of system performance, in order to detect anomalies
due to both applications and OS faults [27]-[29]. OS level
metrics are considered (e.g., CPU utilization, paging, I/O
operations, and free memory), which are modeled by means
of time series analysis and machine learning (e.g., PCA,
decision trees). They are particularly effective when the
operational profile is known a priori. Regression techniques
have been proposed in [30] to reduce false detections due
to changes in the operational profile; nevertheless, workload
modeling approaches are not immune to false positives.
Moreover, workload modeling cannot distinguish between
OS faults and application faults, therefore it is difficult to
correctly apply OS fault tolerance mechanisms.

B. Technical Background

Kernel data collection tools. Several monitoring facilities
are provided by the Linux kernel, which have been exploited
in this work. In particular, we use KProbes', which inserts
breakpoints in arbitrary binary code locations in charge of
triggering user-defined handler functions. Handlers can be
used to collect information about internal kernel variables;
subsequently, kernel execution is restored. Kdump® is a
tool for failure data collection based on the execution
of a secondary kernel, namely capture kernel, which is
preliminarily loaded into a reserved memory region. When
the primary kernel fails, the capture kernel is executed; then,
it can collect failure data by reading the main memory state.

Built-in hang detection mechanisms. Several hang
detection mechanisms are available in the Linux OS, which
can be enabled by recompiling the kernel. In particular, the
following facilities can be used for hang detection:

o Soft lockup detection, i.e., the kernel detects whether a
“canary” task is not scheduled within a timeout;

o Hard lockup detection, i.e., if any CPU in the system does
not handles local timer interrupt for longer than a timeout;

« Sleep-inside-spinlock checking, i.e., assertions that verify
whether there are spinlocks that have been acquired
before calling a “sleeping” function (i.e., a function
during which the current thread may block and be
preempted by the scheduler);

e Checks on lock API usage, that is: missing lock
initialization, release of an already freed lock, release of
a lock by a thread or CPU different from the lock holder,
lock data structure corruption.

IITI. FAULT INJECTION FRAMEWORK

In this section, we design a fault injection framework
focused on hang failures. First, we identify requirements of
the framework. We then describe a field data study, on which
we base a fault library representative of hang-related faults.

YKProbes is included in the main-line Linux kernel since v.2.6.10
Zhttp://se.sourceforge.net/kdump/
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A. Requirements

Past studies on fault injection evidenced that hang failures
are difficult to reproduce in a representative and effective
way. For instance, in [19], errors at OS and application
layers are injected by means of bit-flips; this approach
was able to exhibit a small number of hang failures
(for Linux and Windows OSs, and Apache Web Server,
hangs were observed in the 9.0%, 1.7%, and 0.4% of
cases, respectively). Moreover, there are no guarantees that
bit-flips actually represent real faults responsible for hang
failures. Similar observations can be made for the G-SWFIT
technique [18]; in that work, only 18% of experiments cause
a hang failure; moreover, the field data study, which is used
to define generic fault operators, did not take into account
the type of failure that faults being studied may cause.

In this work, representativeness and effectiveness are
considered fundamental requirements, in order to focus on
hang failures and to overcome limitations of past works.
This means that the injected faults have to be representative
of real software faults that surface as hang failures.

B. Field data study

We adopt a field data based approach in order to
inject representative software faults. We collected data
from discussion groups available on Internet. We focused
on discussions dealing with kernel hangs experienced
by Linux developers; in particular, 20 discussions were
detailed enough to diagnose the fault and related triggering
conditions. In many cases, patches have been proposed to fix
the bug, which helped us to pinpoint the fault at source code
level. The analysis shows that kernel hangs are mainly due
to wrong usage of synchronization primitives, in particular
those related to spinlocks (i.e., locks in which a CPU actively
waits). In particular, the main causes of hang failures are:
Threads attempting to acquire a lock that 1s already held.
For example, when page swap code is called to release
physical memory, a deadlock may occur if there is not
enough memory for buffer allocation’;

Interrupt handling code, e.g., interrupts are masked when
the kernel is waiting for a device-driven event®3;

Wrong handling of a set of locks, e.g., locks related to
page tables and memory descriptors should be acquired in
a given order before memory management operations®:’;
Wrong assumptions about locks held when executing
a piece of code, e.g., a function should not be called

without releasing a specific lock®.
In order to gain further insights about hang-related faults,

we analyze comments within Linux source code. Comments
are often used by developers to describe a fix they made,
therefore they are useful to spot hang-related bugfixes not
described in discussions. Moreover, developers use com-
ments to describe under which assumptions their code works
correctly; because the Linux source code is very large and
complex, and several developers work simultaneously on it,

3http:/lwn.net/Articles/261271
“http://thread.gmane.org/gmane.linux.kernel/286491
Shttp://lwn.net/Articles/138165
Shttp://article.gmane.org/gmane.linux. kernel.mm/16003
http://lwn.net/Articles/130160
8http://lwn.net/Articles/274292
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they need to know how to use the code developed by others,
by means of comments and documentation. If a developer
disregards these assumptions, a fault will likely occur; there-
fore, comments provide information on the faults that can af-
fect the kernel. We extract comments from the Linux source
by searching for keywords related to hang failures (e.g.,
“hang”, “freeze”, “stall”, “deadlock™); 2565 source code
comments were found and individually analyzed; from them,
147 comments were related to hangs due to software faults;
we classify them in the following hang failure causes’:

1) A lock is acquired by a thread that already holds it (35
comments). This may happen in the case of recursive
functions, and in the case of two functions calling each
other, which use the same lock.

A set of two or more locks is improperly managed
(20 comments). In these cases, comments describe in
what order locks should be acquired, in order to avoid
deadlocks (namely, A-B-B-A deadlocks).

A thread should possess the correct set of locks before
calling a function (59 comments). For example, before
calling a function that may “sleep”, it should release all
held spinlocks, which have to be acquired again when the
function wakes up. Because a programmer may not know
all sleeping functions, comments are used to avoid faults.
Wrong handling of interrupt state (39 comments). For ex-
ample, there are spinlock primitives that have to be used
when the CPU state (e.g., interrupt masking on a CPU)
has to be preserved before entering a critical section;
the state can be restored when releasing a lock. Interrupt
masking may cause the stall of a thread on that CPU.

2)

3)

4)

C. Fault injection design

Injection technique. From the analysis of hang failure
causes, we formulate a set of faults able to reproduce
them. Because there exist several approaches for emulating
software faults, we discuss our design choices and existing
fault injection approaches with respect to three fundamental
aspects [31] (i) type of faults to inject (what), (ii) fault
location within the OS (where), and (iii) time at which to
inject faults (when).

There are two fundamental approaches that can be
adopted. The first approach, namely Software Mutation
(SM), emulates software faults by injecting bugs into the
source or binary code of the target system. The second
approach, namely Software-Implemented Fault Injection
(SWIFI), corrupts the internal state of a running program to
emulate errors, with no mapping to a software fault (e.g.,
bit-flip injection [32]). In this work, SM is preferred to
SWIFI (what to inject), since it provides the most accurate
emulation of software faults [16]. Moreover, SM implies
that faults should be injected within the OS code (where
to inject), and that a fault should be present for the whole
duration of an experiment (when to inject); since software
faults are permanent, injection of representative faults can
not be made at an arbitrary time [16].

Fault library. We introduce a set of source mutations,
in charge of reproducing all hang failure causes previously
identified (§III-B). The fault library is composed by four
mutations (one for each failure cause):

96 comments were classified under two causes.
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F1 Missing release of a spinlock that has been acquired;
F2 Locking of a set of two or more spinlocks in wrong order;
F3 Missing unlock/lock pair on the same spinlock;

F4 Omission of interrupts state restoring.

Faults from the library consist in modifying or removing
existing kernel code that uses synchronization primitives;
this emulates missing and wrong constructs, which have been
demonstrated to account for the majority of real faults from
the field (respectively 64.2% and 33.1% of faults collected
in [18]). In practice, it is unlikely that programmers insert
extra faulty code into a program. Differently from G-SWFIT,
which uses generic fault operators, we focus on code that
uses synchronization primitives and can cause hang failures.

Fault locations. The number of potential fault locations
in a complex OS can be very large; among them, there
are several source locations rarely executed or with low
probability of fault activation. We inject faults into source
locations that provide a high probability of fault activation,
with respect to the considered workloads. In this way, we
increase the effectiveness of injection campaigns.

To choose a proper subset of fault locations, we
preliminarily profile their invocations, by instrumenting the
kernel. In particular, we measure the number of times each
spinlock has been acquired, as well as the number of times
it has been contended by two or more threads. Then, we
inject faults in locations for which a spinlock:

o has been acquired more than N times; this increases the
probability that fault locations will be executed.

« has been contended by other threads more than M times;
faults will more likely be activated and surface as a hang.

Figure 1 summarizes the steps to be followed to inject

hang-related faults in the kernel. Based on the results of our

field data study, the fault library can be used to inject fault

extensively, wherever there are invocations of spinlock API.

Workload
05 Workload
) Fault locations
Preliminary —— Faulty O.S.
spinlock usage Y
profiling F1...F4 Fault injection

experiment

Source code file
modification

Fault library

Figure 1. Fault injection phases.

IV. ASSESSMENT OF LINUX DETECTION MECHANISMS
A. Workload

We evaluate hang detection mechanisms with respect to
a set of realistic workloads, which are representative of
long-running applications. To this aim, we use FileBench!”,
an open source framework for measuring filesystems
performance. FileBench provides predefined workload
profiles; we consider the following workloads:

1) Varmail (W1), which emulates a Network File System
(NFS) mail server. The workload consists of a multi-
threaded set of open/read/close, open/append/close and
delete in a single directory.

10http://www.solarisinternals.com/wiki/index.php/FileBench
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2) Fileserver (W2), which performs a sequence of
create, delete, append, read, write, and attribute change
operations on the filesystem; the workload uses a big
set of files and nested directories.

01tp (W3), which is a database emulator. This workload
reproduces an I/O model similar to DBMSs. It tests the
performance of small random reads and writes, which are
the typical access pattern of OLTP databases. It exten-
sively uses OS Inter Process Communication (IPC) facil-
ities to synchronize readers, writers, and DB processes.

Since  workloads are multithreaded, concurrency
mechanisms are stimulated significantly. This is helpful to
reproduce environmental conditions in which hangs occur.

We modify default FileBench profiles by introducing
two workload states, to evaluate detection mechanisms with
respect to more realistic scenarios. In the first state (CPU-
I/O bound), the standard FileBench profile is executed,
which emulates periods of busy workload; in the second
state (CPU bound), the workload is composed only by CPU
bound processes, which emulate periods of I/O inactivity.
The workload resides in a given state for a random time; in
both states, the residence time is a Normal random variable,
with g = 5 min and o = 1/10. The total duration of each
workload amounts to 1 hour.

We performed experiments on a computer equipped with
2 Xeon 2.8GHz CPUs with Hyper-Threading (4 CPUs
are seen by the OS), 5GB of RAM, and a 36 GB SCSI
hard disk. Kernel version 2.6.25 has been considered,
and workloads have been generated by FileBench version
1.64. Fault injection and lock profiling have been made
by instrumenting spinlock primitives at source code level;
it should be noted that the fault injection framework
does not require source code availability, since binary
instrumentation techniques can be also used [18].

B. Faultload

Workloads are profiled to identify fault locations (§11I-C);
we assume N = 1000, M = 100. Table I summarizes fault
locations identified. The last column of the table shows the
percentage of faults leading to kernel hangs; the overall
percentage of activated faults (52.07%) is greater than the
percentage of hang failures reported in past works (see
§III-A). We conclude that fault injection campaigns can
actually benefit from the proposed framework, which can
improve the effectiveness of experiments.

Table 1
FAULT LOCATIONS.

3)

Fault type | W1~ W2 W3 All |  Activated
F1 37 38 33 108 42 38.89%
F2 4 4 4 12 6 50%
F3 3 4 3 10 8 80%
F4 13 13 13 39 32 82.05%

All faults ‘ 57 59 53 169 ‘ 88 52.07%

Table II shows the distribution of injected faults across OS
subsystems; these subsystems account for the most of code
executed by the OS, therefore the fault injection campaign
will cover failures of the most important subsystems, which
are actually used by the workloads.
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Table II
INJECTED FAULTS DISTRIBUTION.

OS subsystem \ F1 F2 F3 F4
Block I/O Layer 3.28% 0%  3.28% 0%
Disk Driver 3.28% 0%  3.28% 0%
VFS Layer 13.11%  8.20% 1.64% 0%
EXT3 Filesystem 19.67% 1.64% 0%  4.92%
Process Management 14.75% 0%  6.56% 1.64%
Memory Management 8.20% 0% 6.56% 0%

C. Results

In order to evaluate hang detection mechanisms, we use
well-known metrics [33]: mistake rate (I') and detection time
(A). T is defined as the mean number of false alarms per
second, and it is estimated by counting the number of false
alarms during faulty-free executions. A is defined as the
interval between the occurrence of a failure and the first
failure notification. Moreover, since failures may not be de-
tected, we evaluate the coverage (), i.e., the probability of
detecting a failure given that it has occurred. ¥ is estimated
by the ratio between the number of detected failures and the
number of failures actually occurred during fault injection.

Results in table III evidence that Linux mechanisms
failed to detect hangs to a significant extent. About the
25% of injected faults resulted in hangs that have not been
detected by the kernel; this holds with respect to individual
workloads and to the whole set of experiments.

Table III

COVERAGE OF LINUX DETECTION MECHANISMS.
Fault type | w1 w2 w3 All
F1 92.86%  100.00%  100.00% 97.62%

F2 100.0% 100.00% 100.00% 100.00%

F3 33.33% 33.33% 50.00% 37.50%

F4 50.00% 36.36% 44.44% 43.75%

All faults \ 70.97% 77.42% 76.92% 75.00%

The best results have been obtained with respect to classes
F1 and F2. They are related to the repeated acquisition of
a lock, hence they are eventually detected by means of a
check into the spinlock primitive that acquires that lock.

The analysis of fault types shows that Linux detection
mechanisms are able to detect fault types F3 and F4 only in
a subset of cases. This fact implies that the location in which
faults are injected affects ¥. By means of in-depth analysis,
we discovered that faults F3 and F4 are detected when
a thread encounters an assertion before hanging. Figure 2
shows an example of assertion; before invoking a sleeping
function (line 9), the function checks (line 3) that interrupts
are not masked on the current CPU, and that no spinlocks
are held, i.e., thread preemption is safe. Therefore, when the
kernel makes a wrong use of spinlock primitives, the asser-
tion will notice an error state, producing a warning message.

When assertions in kernel code are inserted, developers
need to foresee potential error propagation paths; however,
there can be hang failures escaping these assertions. For
example, in Figure 3, the prepare_to_wait() function is
used within the kernel to put the current thread in a queue
to wait for a condition to be true. When fault F4 is injected
in this function (lines 10-11), interrupts are not re-enabled
after a thread executes it. Unless other threads on that
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void writeback_inodes(struct writeback_control sxwbc) {

struct super_block xsb;

might_sleep(); // ASSERTION

spin_lock(&sb_lock);

/1! . OMISSIS

if (down_read_trylock(&sb—>s_umount)) {
if (sb—>s_root) {

spin_lock(&inode_lock);
sync_sb_inodes(sb, wbc);
spin_unlock(&inode_lock);

NeloCIN No WU IR SR USE S I

// SLEEPS

}
up_read(&sb—>s_umount );

}
/1 ... OMISSIS

Figure 2. writeback_inodes() (fs/fs-writeback.c:510)

CPU re-enable interrupts, or incur in a might_sleep()
assertion, they will hang with no error signal.

void prepare_to_wait(wait_queue_head_t x*q,
wait_queue_t *wait, int state) {

unsigned long flags;

wait—>flags &= ~WQ_FLAG_EXCLUSIVE;

spin_lock_irgsave(&g—>lock, flags);

if (list_empty(&wait—>task_list))
__add_wait_queue(q, wait);

if (is_sync_wait(wait))

set_current_state(state);

1
2
3
4
5
6
7
8

9
10
11
12|}

spin__unloc_k(&qf>1ock Y. // F,AULTY

Figure 3. prepare_to_wait() (kernel/wait.c:66)

Frequency (%)

107-3 102 1071 1070 1071 1072
Detection Time (seconds)
Figure 4. Detection Time of Linux detection mechanisms.

As for A, Figure 4 shows the distribution of detection
delays for detected hangs. We observe that the most of hangs
has been detected within 1 ms once the faulty code has been
executed. However, there is a percentage of failures that have
been detected in a much longer time (more than 1 s). This is
due to the fact that much time can pass before a kernel thread
incurs in an assertion. Therefore, under worst-case scenarios,
the system can be unavailable for a long period of time.

V. THE PROPOSED HANG DETECTOR

The experimental results (§IV) show that there are hang
scenarios in which the Linux OS is unable to detect the
failure. In fact, these scenarios occur when an injected fault
violates assumptions made by developers, and there are not
internal checks able to detect such violations.

It is difficult to foresee all underlying assumptions made
by programmers, because of the great complexity of OS
source code. Therefore, it is useful to augment internal
checks with global detection mechanisms, to detect when the
OS is in a hang state regardless of the location in which the
hang occurs. The proposed approach is a global detection
mechanism, which tests OS liveness by applications’ point
of view. In fact, if a hang occurs within the OS, it will
impact on the availability of one or more OS services
provided to applications. Therefore, by testing if an OS
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service is actually provided, we can detect the occurrence
of a hang; the test is made by monitoring OS performance.
In this work, we consider I/O throughput as reference
performance metric. This metric is important because, in
fact, several critical and long-running applications (e.g.,
DBMSs, Web Servers) are I/O bound or mixed CPU-I/O
bound. Moreover, I/O services are tied to several OS
subsystems (e.g., memory management, filesystem, device
drivers) accounting for the most of OS code. In this context,
I/O throughput measurements can be used to detect several
hang scenarios. Instead, this approach can fail if a hang
occurs within OS code not related to I/O (e.g., the IPC
subsystem); however, if the workload makes extensive use
of such code, other performance metrics can be adopted.
I/O throughput is obtained by measuring the amount
of data transferred by device drivers (e.g., blocks read
from a hard disk). The OS is seen as a two-states system,
respectively idle and active; the system is idle if I/O
throughput is null, active otherwise (Figure 5). Formally,

%ifault

Active periods

Sy —
Idle periods OS hang inactivity
time time
Figure 5. 1/O activity during faulty-free and faulty runs.

we can represent I/O throughput as a random process X (),
where y(¢t) = 1 if X(¢) > 0 (active state), and y(¢) = 0
otherwise (idle state). A hang failure is detected at time t,
when the I/O driver has been in idle state for more than C
consecutive time units (time units have been assumed equal
to 1 s); this can be expressed as y(t—j) = 0,forj =0...C.

Although I/O bound workloads frequently invoke I/O
services, there can be periods of idle workload (e.g.,
web traffic changes) in which no I/O requests are issued.
Moreover, workload failures, such as a stall due to a fault
in user-space applications, may cause a device driver to
be in idle state even if a kernel hang is not occurred.
To discern between OS hangs and workload idleness or
failures, we include in the workload a background process
(namely, heartbeat process) that periodically tests I/O
services, with a period H equal to or less than the detection
timeout, by means of filesystem calls (e.g., read, write,
open, seek) on private files. The heartbeat process is simple
and well-tested, in order to guarantee that it is fault-free.

The detector is implemented as a Linux kernel module
periodically scheduled by a timer. The detector monitors
the interface between drivers and the kernel, since the
most of commodity OSs provide well-defined programming
interfaces that can be used by third-party extensions, along
with profiling tools for monitoring them (such as KProbes,
DebugView'' for Windows, and DTrace'> for Solaris).
Therefore, the approach can be also adopted on other
commodity OSs. The proposed detector does not require
hardware instrumentation, and does not rely on assumptions
about the workload; therefore, it can be easily deployed on
systems running the Linux OS.

http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx
Zhttp://www.sun.com/bigadmin/content/dtrace/
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VI. ASSESSMENT OF THE PROPOSED DETECTOR

In this section, we evaluate the proposed hang detector,
with respect to the same workloads and faultload of §IV. We
assume C' = 5 seconds for the detection module, and H = 5
seconds for the heartbeat process. Table IV shows W for the
hang detector; for all tested workloads, it is greater than the
W of Linux detection mechanisms (table III), with an overall
improvement of 19.32%. This improvement is due to the fact
that the proposed hang detector does not rely on the source
location in which a failure manifests, thus overcoming
limitations highlighted by injection of faults F3 and F4.

Table IV
COVERAGE OF THE PROPOSED DETECTOR.

W1 w2 w3 ALL

All faults  90.32%  96.77%  96.15%  94.32%

However, there is still a small part of failures not detected
by the proposed hang detector. In these hang scenarios,
interrupts are disabled on all CPUs, thus hampering
execution of the hang detector. To isolate the hang detection
module from OS failures, hardware support can be exploited
whereas available (e.g., the hang detector can be triggered
by means of periodic NMIs instead of timer interrupts).

Moreover, the proposed hang detector provides an
upper bound for A (unlike existing detection mechanisms,
Figure 4), since hangs are eventually detected by the
timeout mechanism after C' time units. We actually observe
a bounded A for all the injected faults; therefore, we
conclude that A solely depends on C.

The timeout C' also impacts on I'. Indeed, the greater
its value, the better is I' (i.e., the lower mistake rate). It
is worth noting that C' has no impact on ¥ (i.e., if the
failure can be detected by the proposed approach, it will be
eventually detected for any timeout choice). Therefore, we
evaluate " with respect to C, for each workload (Figure 6);
again, we assume H = 5 seconds. For short values of
C, we observe a high I', due to idle periods occurring in
mixed CPU-I/O bound workloads. I' sharply decreases for
C =H =5,and I' = 0 for C > H; hence, increasing C'
over H + 1 does not improve I'. A similar behavior has
been also observed for other values of H.
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0 - ; ; ‘\_‘%—:'ﬁﬁnﬁ

1 2 3 4 5 6 7
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Mistake Rate (false alarms/se

Figure 6. Mistake Rate of the proposed detector.

We also evaluate the overhead of the proposed detector;
table V compares workload performance without and with
the hang detector, for H = 1 s. We analyzed FileBench re-
sults, namely number of I/O operations and transferred MBs
per second, and mean duration of I/O operations. It is shown
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that the performance penalty is less than 5%, even for a low
value of H. We also made a hypothesis test, namely T-test,
to verify if differences between performance are statistically
significant; in all cases, there is not a significant difference
between mean values, with a confidence of 99% (the
p-value in the table is always greater than 0.01). Therefore,
the proposed detector can be applied for OS monitoring,
and the heartbeat period can be set reasonably low.

Table V
OVERHEAD OF THE PROPOSED DETECTOR.
ops/s MBs/s latency
Workload % diff.  p-value % diff.  p-value % diff.  p-value
W1 1.83% 0.1137 1.43% 0.0617 1.69% 0.0890
w2 0.09% 0.8913 0.13% 0.8367 4.01% 0.0614
w3 3.27% 0.1371 1.91% 0.4313 4.16% 0.0958

VII. CONCLUSIONS

In this work, we faced the problem of assessing and
improving hang detection in commodity OSs. In particular,
we proposed a fault injection framework to evaluate hang
detection mechanisms systematically. Focus was on Linux
OS, which is widely used even in critical application
contexts. The injection framework, based on a field data
study, is specifically focused on hang failures, and it
provides greater representativeness and effectiveness than
existing fault injection approaches.

The injection framework highlighted limitations in exist-
ing detection mechanisms of Linux OS, which were taken
into account to design a hang failure detector; it increased
the relative coverage from 75% to 94%, with respect to
realistic workloads. It also exhibits low overhead and avoids
false positives, thus it can be deployed on any Linux distri-
bution. Moreover, we believe that it can be adopted on other
commodity OSs, as it does not require in-depth knowledge
of OS internals. Future work encompasses the development
of more robust OS hang detection mechanisms, with respect
to faults in the OS, based on virtualization techniques.
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