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Abstract

Memory leaks are recognized to be one of the major causes of memory exhaustion problems
in complex software systems. This paper proposes a practical approach to detect aging
phenomena caused by memory leaks in distributed objects Off-The-Shelf middleware, which
are commonly used to develop critical applications. The approach, which is validated on a
real-world case study from the Air Traffic Control domain, defines algorithms and ad-hoc
support tools to perform data filtering and to find the best trade off between experimentation
time and statistical accuracy of aging trend estimates. Experiments show that fixing memory
leaks is not always the key to solve memory exhaustion problems.
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1. Introduction

The adoption of Off-The-Shelf (OTS) software items is becoming a rule to develop com-
plex applications and systems. This is mainly due to the benefits they provide in terms of
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development time and cost reduction, as they come as ready-to-use modules, which can be
integrated, possibly customized, and put together to develop modular solutions. In spite
of their well-known dependability pitfalls, they are commonly used in critical scenarios like
avionics, air traffic control, and monitoring systems, where long-running and complex appli-
cations are required to provide stringent reliability, availability, and performance guarantees
[1].

Dependability evaluation and improvement for OTS items, as well as for OTS-based
complex applications, is still an open research issue. It is well-known that complex and
OTS-based software systems may exhibit software failures, which go undetected during pre-
operational testing activities [2, 3]. These failures are due to latent software defects, also
known as bugs, i.e., faults activated by complex and sometimes unpredictable triggering
conditions. As OTS modules are generally delivered as executable items (e.g., linkable
binary objects for C/C++ programs), without their source code or internal documentation,
bugs are difficult to locate and to treat.

Software aging phenomena occur due to the activation of aging-related bugs, which cause,
for example, accumulation of round-off errors, memory bloating and leaking, unreleased file
locks, data corruption, and storage space fragmentation. These errors accumulate over time
and they are likely to degrade system performance and to increase the failure rate [4]. Due
to its cumulative property, software aging occurs more intensively in long-running systems,
such as web servers or daemon processes. It has been demonstrated that aging-related
bugs represent a serious threat to mission-critical software systems, for the following reasons
[5]. First, detecting and estimating the effects of these bugs requires complex experimental
campaigns with unpredictable durations. It is hard to tune experimental campaigns in order
to achieve accurate results. Second, it has been demonstrated that software aging strongly
depends on workloads imposed on the system. Thus, each experimental campaign aiming to
study aging phenomena must take into account relevant workload parameters to be imposed
on the system.

In this paper, focus is on memory management bugs that underlie most of the software
aging phenomena in complex systems [6, 7]. Our contribution is the definition of a sys-
tematic approach to locate memory leak sources and to detect aging trends due to memory
leaks in CORBA OTS-based software systems. By using consolidated and already known
methods and techniques, the approach goes beyond the state of the art in that it is prac-
tically applicable to a wide class of systems. During the approach definition we took into
account fundamental milestones in software aging research studies, as well as some exist-
ing techniques for aging trend detection and estimation, such as Design-of-Experiments,
Mann-Kendall test and Sen’s Procedure. The novelty of the approach lies in the definition
of novel algorithms and ad-hoc support tools able to perform data filtering, as well as to
find the shortest time needed to obtain accurate results from experimental campaigns. The
approach is evaluated on a real-world middleware, named CARDAMOM1, for developing
mission-critical applications in the field of Air Traffic Control. Experiments are conducted

1An open-source Community Edition (CE) version of this platform is available at http://forge.
objectweb.org/projects/cardamom
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by using a CARDAMOM version (Development Version, DV) developed in the framework
of the COSMIC2 Italian research project.

The rest of the paper is organized as follows. Section 2 discusses the related research
and provides a brief background about CARDAMOM. The proposed analysis approach is
described in Section 3, whereas Section 4 shows where and how to gather data related to
memory usage within a running system. In Section 5 it is shown how the proposed approach,
and the implemented support tools, can be used to detect and locate memory leaks. Key
findings are discussed in Section 6, which closes the work.

2. Background and Related Work

2.1. Related work

Software aging has been widely addressed by researchers in the field of complex and
distributed software systems. It has been shown—mainly by means of measurement-based
approaches on operational systems—that aging-related bugs cause performance degradation
and, even worse, hang or crash failures [8]. In fact, these approaches are the most effective
way to deal with such failures that generally manifest during system execution in the field
rather than during the testing phase.

A methodology for aging trend estimation was proposed in [6], aiming to compare ag-
ing effects on system resources. Through experiments on operational systems, the authors
showed that free memory exhibits the shortest Time to Exhaustion (TTE) if compared to
other system resources (e.g., processes or file table size). This was also confirmed by [7] in
which resource usage in a web server subject to an artificial workload is studied. Kalyanakr-
ishnam et al. [9] showed that Windows NT systems run out of virtual memory due to memory
leaks in most of the cases. Cherem et al. [10] described a reachability problem to detect
leaks in C programs, while Java leaks were faced in [11], which propose a container-based
tracking technique to detect pending object references.

Application workload effects on aging were investigated by several research studies. In
[12, 13], measurement-based models were proposed to estimate resource exhaustion rate
as a function of time and system workload state. Workload is characterized by several
parameters (e.g., context switches, system calls). A cluster analysis is subsequently used to
identify workload states. Aging trends are extracted by analyzing sample data on resource
usage (e.g., real free memory, service rate) for each workload state. Trends are finally used
to populate models, e.g., reward rates attached to states in semi-Markov processes, and to
obtain a more accurate TTE estimation.

A methodology for selecting workload parameters impacting on software aging, and for
quantifying their effects in Java Virtual Machine (JVM) subsystems, was presented in [14].
The number and the time of Just In Time (JIT) compilations, the object allocation rate
and mean size, and the duration of garbage collection are just a few of the identified system
variables. Linear regression analysis on throughput loss and memory depletion shows that

2http://www.cosmiclab.it
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software aging is mainly due to variables related to the operating system abstraction layer
and to the JIT compiler. Matias and Filho [15] evaluated the software aging effects on a Web
server as well as the effectiveness of rejuvenation techniques. The main contribution of this
work was the experimental identification of the factors that contribute to software aging in
the Web server. The Design-of-Experiments technique (DOE) is the means to characterize
the aging phenomenon and to identify the parameters related to memory consumption (i.e.,
page type and page size).

As the above discussed research studies share the conclusion that memory management
related defects (e.g., memory leaks) represent the most serious cause of aging and that much
work still remains to be done, this work focuses on the characterization of memory usage
for estimating aging trends and gathering insights for aging prevention.

2.2. CARDAMOM overview

The CARDAMOM middleware, compliant to the OMG standard specifications for dis-
tributed objects middleware, has been chosen as the target platform in the context of this
work. It is a CORBA-based platform supporting both the object and the component pro-
gramming models, which are used to develop mission-critical applications in the field of Air
Traffic Control.
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Figure 1: CARDAMOM overview.

Figure 1 shows a high-level view of the middleware. It is organized as a collection of core
services, plus a set of pluggable services. Core services are needed to run a CARDAMOM
system; the adoption of pluggable services depends on user needs. Support tools (e.g., for
code generation) are also provided to simplify application development. CARDAMOM is
based on OTS modules, from the Linux operating system to a third-party Object Request
Broker (ORB) named TAO3, along with other facilities (e.g., an XML parser, a thread

3http://www.theaceorb.com
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programming library). In particular, aging investigation in this work reveals interesting
findings about the TAO ORB.

3. Proposed Approach

The proposed approach aims to characterize software aging and its impact on the perfor-
mance of CORBA-based mission-critical middleware. These provide services through remote
methods invocation, i.e., a client invokes methods implemented by a remote server, which
can be time and memory consuming. Performance can be characterized by the method
invocation time (i.e., the Round Trip Time, RTT), and by the amount of memory required
for executing operations (Memory Consumption, MC). Response time and system resource
usage are widely recognized to be relevant metrics for performance analysis in computer
systems [16], thus we focus on RTT and MC for performance characterization.

Due to the workload influence on system performance, workload parameters which are
likely to affect RTT and MC have to be identified. To this aim, we consider the invocation
period, T, as well as the amount of data exchanged during the method invocation, L. We
ignore data type, since the Common Data Representation (CDR) format is adopted by the
middleware to transfer both primitive and structured data as a vector of byte-size elements.

The ultimate aim of the proposed approach is to understand whether and how the selected
workload parameters can impact on aging trends. This understanding can be helpful for:

• Designers and maintainers, who want to use estimated trends to populate analyti-
cal models for computing the best rejuvenation schedule, as aging trends depend on
workload states [12, 13].

• Developers, who want to find software components responsible for aging [14].

A key aspect to take into account when dealing with aging is the experimentation time,
which can actually impact on trend estimates. We investigate how to optimize the scheduling
of experimental campaigns in order to achieve (a) high quality results in terms of statistical
accuracy of trend estimates and, (b) the shortest experimentation time. Obviously, these are
conflicting metrics, in that the shorter the observation time the less accurate the memory
consumption analysis, and the trend estimate as well. To find a good trade-off between time
and accuracy we propose a multi-step approach, sketched in Figure 2.

Step 1 - Experiments setup. For each workload parameter we choose a set of can-
didate values. Let T ∈ OT = {t1, t2, . . . , tn} with t1 > t2 > . . . > tn and L ∈ OL =
{l1, l2, . . . , lm} with l1 < l2 < . . . < lm be these sets. Along with them, let us introduce
Tmax and thc. The former is the maximum time allowed for preliminary experiments (see
Step 2) and it is upper bounded by the system mission time, TM . The latter, instead, is
the maximum allowed RTT variation. Experiments can be designed once the sets OT and
OL have been established. In order to discard meaningless combinations, or to reduce the
size of the combination set F = OT × OL, system analysts can start a selection process
as suggested in [17, 15], where the Design-of-Experiments technique has been proposed to
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Figure 2: Approach overview.

identify the set of combinations expressing significant parameter interactions. Let S ⊆ F
be this set.

Step 2 - Preliminary experiments. Stress testing is a widely used practice for
aging analysis of complex applications, since software aging is more likely to manifest itself
in stressful conditions [7, 15, 14]. In our case, stressful workload means high resource
consumption (e.g., CPU usage, memory), hence, a greater probability of leaks. For this
reason, we find it reasonable to assume that the less stressing the workload, the lower the
trend. This is confirmed by previous results. In [18], memory pressure and aging trends
increase with the number of clients, while in [7] the connection rate limit of a web server was
deliberately exceeded to accelerate software aging. However, in our approach the analyst
has to complete experiments prior to claim that the selected parameters actually have an
impact on aging, and at what extent.

Let LS (Least Stressful) and MS (Most Stressful) be the combinations of parameter values
that generate the least and the most stressing tests, respectively. They can be expressed as
pLS =< t1, l1 > and pMS =< tn, lm >.

First of all, we have to understand whether the system is actually affected by aging.
This is the aim of the MS test that we run at the beginning of the experimental campaign.
Among the performance indicators previously mentioned, we focus on RTT, since it is the
most relevant metric in critical scenarios with performance requirements, which we consider
in this work [1]. During the test we periodically sample RTT and we estimate the average
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RTT variations over time. More in detail,

1. RTT average value hi is computed each H hours;

2. If hi is thc times greater than h1, aging is detected and the test is stopped; otherwise,
sub-steps 1 and 2 are repeated;

3. Test is stopped when t = Tmax.

If sub-step 3 is performed, i.e., aging did not manifest during the test, investigation
stops as performance is not compromised during the system mission time. Conversely, the
following steps take place if aging was observed within Tmax.

The LS test is used to establish how long a test should be in order to get the evidence of
aging trends. Hence, we look for a test duration D that allows to reveal the presence of aging
trends, with a good accuracy, for all the tests that are going to be launched. Similar to the
MS test, aging detection is based on RTT sampling and analysis. More precisely, LS aims to
discard those parameter combinations which do not cause aging trends, and to rearrange OT

and OL. If pLS =< ti, li > does not cause aging, ti and li are removed from OT and OL, and
the test< ti+1, li+1 > is executed. This procedure is repeated until an aging trend is detected.
If n 6= m, it may occur that LS experiments < ti, li >, i = 1 . . . q, q = min{n,m}, do not
exhibit aging. In this case, the parameter with the lowest number, namely q, of candidate
values most probably has no influence, since there is no aging for test < tq, lq >. Therefore,
subsequent LS experiments are performed by varying only the remaining parameter (for
i = q + 1 . . .max{n,m}).

Response time and memory consumption measurements are taken during the LS test
and will be used in the next step.

Step 3 - Estimation of the minimum experiment duration. In order to minimize
the time needed for completing experiments, it is desirable to minimize the duration of tests.
We aim to determine the minimum time, D, that allows a statistically accurate aging trend
estimate for all the tests and for both RTT and MC. To this aim, we apply Algorithms 1 and
2 (detailed in Section 5) on each data set (samples of performance and memory consumption
that were collected during the LS test, respectively). Let us denote by ε the error margin,
which is set by system analysts. To be conservative, we set D = max(DRTT, Dmemory) where
DRTT and Dmemory are the estimated durations related to RTT and MC, respectively.

Step 4 - Experimental campaign. The experimental campaign consists of as many
stress tests as the number of elements in S (see Step 1). Each test lasts for D time units,
hence aging trends can be estimated with a known margin of error for all the tests. During
tests, RTT and MC measurements are taken for further analysis.

In order to quantify the actual time reduction we get by using the procedure described
above (let us call ρ this reduction), we compare the actual experiments time to the time
which would have been required if all the test were executed for Tmax time units (dcomparison =
|S| · Tmax). The total duration of the experimental campaign (dtotal) can be expressed as:

7



dtotal = dMS +
k∑

i=1

dLSi
+ (|Sk| − 1) ·D (1)

in which dMS is the duration of the MS experiment, dLSi
(for i = 1 . . . k) is the duration

of an LS experiment, and k represents the number of LS experiments that did not reveal
aging trends. Note that MS is performed just once, as opening test. We also exclude all the
experiments from S in which the workload do not affect software aging (i.e., all parameter
combinations that contain values removed from OT and OL during the LS experiments, as
explained in Step 2). Let Sk be the set of remaining experiments, with |Sk| ≤ |S|.

Let us observe that the following statements hold in the worst case:

1. MS and LS experiments last for Tmax;

2. |Sk| = |S| − k, when only the LS experiments are removed from S.

This means that dtotal is upper bounded by:

dtotal ≤ Tmax + k · Tmax + (|S| − k − 1) ·D (2)

= (k + 1) · Tmax + (|S| − (k + 1)) ·D (3)

≤ (k + 1) · Tmax + (|S| − (k + 1)) · Tmax (4)

= |S| · Tmax = dcomparison (5)

Hence, ρ = dcomparison − dtotal depends on the number |S| − |Sk| of tests in which software
aging is negligible, as well as on the difference Tmax −D. Since we expect Tmax � D in the
presence of software aging, ρ is expected to be significant.

Step 5 - Analysis. Collected samples are processed to perform statistical analyses.
As previously mentioned, our main focus is to understand how the aging trend varies with
respect to the workload parameters. However, during this phase, we also perform addi-
tional investigations. Memory consumption due to memory leaks is studied by means of
the MELANY support tool (see next Section), to identify software items responsible for the
leaks. Existing statistical techniques for data analysis (e.g., ANOVA) are also used to gain
further insights.

4. Characterization of Memory Usage

4.1. MELANY overview

Memory consumption in complex systems is not an easy process to monitor and to under-
stand. To have a complete view of how memory is getting used, data coming from different
levels have to be merged, thus complicating the data collection and analysis process. The
presence of heterogeneous data, differing in format and information content, induced us to
develop a support tool, named MELANY, to perform analysis of memory consumption for
complex C++ applications in Linux environments. The tool is able to manage data coming
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from (i) the Operating System (OS) and, (ii) Valgrind, i.e., an open source binary instru-
mentation tool4. Data coming from Valgrind, concerning runtime memory leaks, are hard
to manage and difficult to read due to the unfriendly text report format. More important,
as they only concern memory leaks, they do not allow characterizing memory consumption
exhaustively. To overcome these limitations, MELANY integrates Valgrind reports with OS
logs and provides a user friendly GUI for data management.

Memory consumption is not only due to memory leaks. Indeed, it also arises from those
memory regions that are intentionally and properly used by running programs (e.g., memory
regions referenced by valid C/C++ pointers). Hence, we say that Total Memory Consump-
tion (TMC) is the sum of Memory Definitely Lost (MDL), i.e., unreferenced regions due to
memory leaks, plus Intentional Memory Consumption (IMC). The OS provides information
about TMC, while MDL data come from Valgrind. The main contribution of the tool is to
isolate different contributions to TMC and to provide an aggregated value at the same time.

The MELANY data processing approach is summarized in Figure 3. MELANY processes
data collected during experiments (see Section 3). These are stored into the MELANY
database, and then used to produce statistics and reports about application memory usage.

MELANY 
functional 

blocks 

Data collection from  
operational system 

MELANY 

Off-line analysis 
with Melany 

data parser 
and filter 

MELANY 
DB 

data analyzer 
and coalescer 

read write 

MELANY 
REPORT 

OS data, 
Valgrind report 

Figure 3: Data collection and analysis.

4.2. Information sources

Modern OSs use advanced memory management mechanisms, which complicate the anal-
ysis of memory consumption data; in particular:

1. Demand paging : in demand paging systems, the OS actually reserves physical memory
when a page is referenced by processes. Hence, memory allocated by a process and
physical memory actually used by it can differ in size.

4http://valgrind.org
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2. Shared memory : several processes can share physical memory regions. Sharing can
be either explicit (e.g., through Inter Process Communication mechanisms such as
UNIX shared memory), or implicit (e.g., the OS automatically configures page tables
of processes to share program text area and shared libraries).

3. Virtual memory : the memory at disposal of processes is the physical memory plus
swap space.

The actual memory footprint of a process is the sum of physically allocated memory
(Resident Set Size, RSS) plus swapped out memory. This equals RSS if there is no swap
space. Additionally, the presence of shared memory regions makes the overall memory
occupation less than the sum of processes memory footprints.

For this reason, we calculate memory consumption by considering free memory instead—
which is easy to determine (e.g., by means of free UNIX utility)—as the reference metric:
the lower the available memory, the greater the memory consumption. Note that OSs use
free physical memory for filesystem caching purposes. However, it can be considered as
available memory since it is a resource that processes can preempt.

The size of a virtual address space, which depends on the CPU and on the running OS,
also impacts on user-space process allocation. In a standard Linux OS running on 32-bit
x86 architecture5 no more than 3 GBs are available for each process6. Memory that can be
allocated by a process is, at most:

M = min(address space size, virtual memory available) (6)

Memory exhaustion occurs when either address space size is exceeded or there is no more
virtual memory for the running process, which is then killed (assuming that the OS does
not kill any other process to free virtual memory).

Valgrind output data are formatted as XML reports. We enable memory-usage monitor-
ing (by using the memcheck tool) in order to find errors in syscall parameters, e.g., a not
addressable memory buffer, as well as memory leaks. These can be further classified in:

• definitely lost bytes : the application is causing a leak and it has to be fixed;

• possibly lost bytes : it is very likely that the application is going to cause a leak since
it is making complex use of pointers.

4.3. MELANY output

Once data have been collected, MELANY performs the following tasks (Figure 3):

1. data parsing;

2. data filtering, to discard redundant or meaningless data;

3. data storing on the MELANY database:

5The case addressed in this work.
6The fourth gigabyte is reserved by the Linux OS for kernel-level virtual memory mappings [19].
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• Valgrind logs provide the error type, corrupted memory and error source, which
are stored for each memory error.

• OS logs give information about TMC and free memory.

MELANY uses data coalescence to build aggregated results from individual memory leak
entries. For instance, leaks are grouped by source library, in order to evaluate its contribution
with respect to the total leaked memory.

Type: Leak Possibly Lost

Description: 20 bytes in 1 blocks are possibly lost in loss

record 465 of 3,280

Cause: operator new(unsigned)

Sources:

1) Method: main; Library: client.cpp; Line 85

2) Method: Cdmw::OrbSupport::OrbSupport::ORB_init

3) Method: Cdmw::OrbSupport::OrbTaoImpl::ORB_init

4) Method: Cdmw::OrbSupport::AceTaoLogger

5) Method: std::string::string

6) Method: unknown; Library: /usr/lib/libstdc++.so

7) Method: std::string::_Rep::_S_create

(a) Leak stack trace.

Library: /tools/exec/TAO141_2_06_0913/src/TAO/tao/libTAO.so.1.4.1

Error occurrences: 12

Root Source ’client.cpp’: 91%

Root Source ’/lib/tls/libc-2.3.4.so’ 8%

(b) Source report entry.

Process name: demo_client

Process PID: 5859

Initial sample: 1

Final sample: 36

Period: 5 min

Initial TMC: 68,184 KB

Final TMC: 229,268 KB

Initial MDL: 0,000 KB

Final MDL: 72,633 KB

Initial IMC: 68,184 KB

Final IMC: 156,635 KB

(c) Integrated report.

Figure 4: Examples of MELANY reports.

As for reports, MELANY provides the following types of report:

1. BASE REPORT, providing basic process information (e.g., the total amount of allo-
cated memory), and the complete error list;

2. DETAILED REPORT, providing additional information, such as the invocation stack
for each reported error. An example is shown in Figure 4a.

3. SOURCE REPORT, providing the number of errors, the root causes of errors, and
the percentage of each root cause on the errors amount, for each library that caused
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a leak. Figure 4b shows a single entry of this report; it shows the case of an error
located in libTAO.so.1.4.1, which occurred 12 times.

4. INTEGRATED REPORT, to isolate the IMC and MDL contributions to TMC (see
Figure 4c).

Reports provide information at different levels of detail. For example, for each occurred
memory leak, invocation stack and the responsible source object are reported. Again, reports
can be generated to identify how many leaks have been caused by the same object or
function. Reports bring benefits to both developers and system analysts. The former ones
are supported in detecting the locations of memory management bugs in the source code.
The latter ones are helped in estimating TTE, which is crucial for an easier and more effective
rejuvenation planning. This is especially helpful when leaks are due to bugs in OTS items,
e.g., software libraries or other runtime supports, for which source code fixing is precluded,
making rejuvenation strategies the only way to prevent aging.

5. Case Study

We apply the described approach to a CARDAMOM case study application. First we
describe the application along with its components, and then we present the results of each
step of the approach.

The test application, running on Linux OS, uses both basic and pluggable services (see
Figure 1), since we aim to detect memory leaks introduced by the middleware. It has a
client-server structure, and it makes extended use of CARDAMOM services in the form of
shared libraries (see Section 4 for details about process monitoring). The client forwards
requests to two load-balanced server processes; requests are processed according to a round-
robin policy (Figure 5). Requests consist of remote method invocations to the server. In
order to easily control L during the campaign, we make the server replies to be returned
as strings. Both the client and the servers are deployed on the same machine, in order to
minimize the effects of network fluctuations on application performance, and they interact
only through standard BSD sockets. Furthermore, application code was accurately analyzed
to make it free from memory management bugs.

Experiments have been executed on testing machines equipped with 2 Xeon Hyper-
Threaded 2.8 GHz CPUs, 5 GB of physical memory, and without swap space7. The Linux
kernel version 2.6.25 has been used.

5.1. Experiments setup (step 1)

We assume as ranges for the two workload parameters T ∈ OT = {300, 400, 600, 800, 1000}ms
and L ∈ OL = {1, 10, 100, 1000} bytes, respectively. The parameters of preliminary experi-
ments are Tmax = 100 hours and thc = 1%. These values take into account real world traces
of the Air Traffic Control domain where CARDAMOM is used as support middleware8.

7This is in order to simplify memory footprint measurements.
8Traces have been provided by industrial partners involved in the COSMIC project.
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Figure 5: Testing application.

5.2. Preliminary experiments (step 2)

Parameters driving preliminary experiments are shown in Table 1. The MS experiment
highlights (i) performance decrease and, (ii) the crash of the Client process after 65 hours.
A post-mortem analysis of application and OS logs revealed that the process used up the
all available virtual memory, and that it was killed by the OS. Further details about process
killing are provided in Sections 4 and 5.5.2. Since the application code is very simple and
it was accurately analyzed to make it fault-free, memory consumption within the process
should be due to memory management bugs in external libraries. This finding allows us to
run the LS experiment.

Table 1: Parameters used in the case study.

pLS pMS H

< 1000 ms, 1 byte > < 300 ms, 1000 bytes > 15 hours

Figure 6 shows how the estimated RTT varies during the LS experiment. It reveals
the presence of a software aging trend after 75 hours of execution. We used a windowing
approach for computational and storage purposes. In particular, RTT samples within a 5
minutes time window are coalesced to their mean RTT value. This time window has been
used by several studies in this field, such as [7, 6]. Additionally, we experience that choosing
a time window of 5 minutes does not affect the accuracy of the results.

Trend detection has been performed by means of the Mann-Kendall test [20]. The Mann-
Kendall test computes the value of a numerical index W, namely a test statistic, over a set of
samples. The conditional probability that the test statistic takes values equal to or greater
than the computed value, given that the null hypothesis of no trend is correct, is compared
to a type I error level provided by the analyst. If the probability is lower than this type I
error level, then the null hypothesis is considered unlikely and it is rejected (i.e., a trend has
been detected).
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Figure 6: RTT samples and Sen’s regression.

Once the trend has been detected with high confidence (we will assume 95% confidence
in the following), it is estimated by means of the non-parametric Sen’s procedure [21], which
computes the median slope of all pairs of data points. We use this procedure because it is
robust, i.e., it does not assume normally distributed measurement errors, and resistant, i.e.,
it is not sensitive to outliers. We achieved a slope equal to 0.1292 µs/min in the interval of
values [0.1136, 0.1449] µs/min with a 95% confidence interval.

During the LS experiment we also investigated how both the client and the servers man-
aged memory, i.e., we monitored their RSS during the execution (see Section 4.2). We
periodically sampled RSS every 5 minutes. About 900 samples have been collected for each
process. Figure 7 shows the RSS with respect to the execution time. Total increase in mem-
ory consumption amounts to ∆ = 501, 092 = 569, 276− 68, 184 KB, even if the application
did not allocate memory explicitly. Since memory consumption grows almost linearly, we
hypothesize the existence of memory management defects that constantly increase memory
consumption at each method invocation, and that should be pinpointed by means of precise
memory usage analysis. We found the slope of the memory consumption trend to be 105.417
KB/min, within the [105.416, 105.418] KB/min range, at client side (with a 95% confidence
limit). A similar finding has been achieved at server side.

Memory consumption is so significant that heap increases and fragments. This requires
more frequent and slower operations by memory allocation procedures, resulting in a perfor-
mance decrease of application processes. The relationship between the amount of allocated
memory and performance has been demonstrated by past works [22, 23]. We exclude other
aging sources (e.g., file tables, unreleased sockets and locks) since we observed that their
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usage is not significant in our case study. As a result, it is reasonable to claim that the
experienced performance loss is caused by the memory depletion trend.

Figure 7: RSS samples and Sen’s regression on client side.

The above-described experiment lasted more than three days, and then we were able
to point out the existence of a trend for both RTT and RSS. However, such a long time
is unacceptable when performing a large number of tests. For this reason, we improve the
effectiveness of the experimental campaign by estimating the bare minimum execution time
needed to provide an accurate trend estimate.

5.3. Estimation of the minimum experiment duration (step 3)

Collected data reveal that during the starting phase of each experiment the estimated
trend is greater than expected. This has also been observed by some previous works, showing
that software processes can exhibit high memory consumption at the application start-up,
which is prone to be misinterpreted as software aging [15, 24]. For example, a complex long-
running application could pre-allocate memory for key data structures that will be used
during the execution (e.g., pools of connections and threads, shared libraries, caching and
data prefetching from filesystems). This phenomenon is a transitory phase that could bias
trend estimate if taken into account. Hence, it is crucial to discard samples collected during
this phase. This is especially true when the execution time is short, i.e., the steady state does
not last long enough to absorb transient effects. Since we want to reduce experimentation
time, transient samples (i.e., samples collected during the transitory phase) have to be
filtered out before estimating the bare minimum time for a single test. To this aim, we
formalize a two-step procedure:
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- Step 3.1: Estimation of the transitory phase duration, and removal of transient
samples;

- Step 3.2: Estimation of the bare minimum time needed to achieve an accurate trend
estimate, once the transitory phase has ended.

Step 3.1. In the literature, there are several algorithms for transient detection, de-
veloped in the context of queueing systems simulation. For instance, algorithms discussed
in [25, 26] aim to estimate steady-state mean values ; in [27], the same algorithms are used
for estimating steady-state quantiles. To the best of our knowledge, transient-detection al-
gorithms have never been studied for estimation of trends in data series. In fact, existing
algorithms cannot be used for transient detection when estimating a trend, because they
assume a stationary probability distribution of samples (which is not the case for aging
measurements). To this aim, we implemented Algorithm 1 for transient detection. We
take advantage of existing trend estimation algorithms (e.g., Sen’s procedure) for transient
detection in aging measurements, which has never been made in past works.

Let samples(x1 . . . xlast) be the collected samples (in the following, we will refer to the
index of the ith sampled value as xi, and to the sampled value as samples(xi)). For each
xi in {x1 . . . xlast} the algorithm splits collected samples in 2 sets, samples(x1 . . . xi) and
samples(xi . . . xlast), respectively (these expressions represent sets of samples between two
indexes). Trend estimation is performed for each set. If a statistically significant trend
exists for both sets, trends are compared. The xi where the trends difference is the highest
is assumed to be the end of the transitory phase. Since all the samples before xi exhibit a
trend significantly different from subsequent ones, they are affected by transient effects and
should be filtered out. Figure 8 depicts such a circumstance. The arrow indicates the break-
point, i.e., the point where the greatest difference between line slopes has been measured.
The Mann-Kendall test is used to check if a trend actually exists before and after xt. If the
algorithm does not find any suitable xt (i.e., ¬S1 or ¬S2), then we assume that there were
no significant aging effects during the experiment.

Algorithm 1 works also in the case that trends do not increase monotonically, or that the
most significant difference exists in several points. If trends do not increase monotonically,
but fluctuate over time (e.g., the trend decreases for a short period, then it increases again),
the algorithm will stop only when the most significant difference between trends is found,
thus neglecting trend fluctuations. If the most significant difference exists in several points,
the first point is considered as the end of the transient period; further trend fluctuations
may not be due to transient phenomena, therefore they are not considered to be part of the
transient phase.

Step 3.2. Algorithm 2 has been designed to estimate the shortest interval [xt+1 . . . xd],
for which (i) there exists a significant trend, and (ii) the estimated slope is close enough
to the reference slope, i.e., the one estimated over the whole LS experiment (75 hours in
our case study). Algorithm 2 can be applied with any choice of the period of the reference
slope. In the algorithm, the ε parameter represents the estimation error tolerated by the
user. There is a trade-off between test duration and estimation accuracy. The algorithm
stops when the slope does not fall within the range Tref ± ε · Tref . Algorithm 2 detects if
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Data: samples(x1 . . . xlast)
Result: Transient phase end xt

S1: There exists a statistically significant trend between x1 and xi

S2: There exists a statistically significant trend between xi and xlast

max diff ← 0
xt ← 0
for xi ∈ {x1 . . . xlast} do

if S1 ∧ S2 then
T1 ← TrendEstimation(samples(x1 . . . xi))
T2 ← TrendEstimation(samples(xi . . . xlast))
if |T1 − T2| > max diff then

max diff ← |T1 − T2|
xt ← xi

end

end

end

Algorithm 1: Algorithm for estimation of the initial transient period (step 3.1).
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Figure 8: Estimated slopes for RTT during and after the transient phase.
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Data: samples(x1 . . . xlast); xt

Result: Test duration xd

S1: There exists a statistically significant trend between xt and xi

Tref ← TrendEstimation(samples(xt . . . xlast))
T ← 0
xi ← xlast

if ¬S1 then
Notify: Input data is not enough to obtain an accurate trend
xd ← NIL

else
repeat

T ← TrendEstimation(samples(xt . . . xi))
xi ← xi−1

until xi = xt ∨ ¬S1 ∨ |T − Tref | > ε · |Tref | ;
xd ← xi

end

Algorithm 2: Algorithm for estimation of stress test duration (step 3.2).

collected samples are enough to obtain an accurate trend estimate; the initial test in the
Algorithm also assures that Tref 6= 0.

Algorithms 1 and 2 do not ensure that a detected trend is a performance degradation
or resource depletion trend. However, in the proposed case study the detected trends were
actually due to the aging phenomena, as discussed in Section 5.2.

Table 2 summarizes results achieved for both RTT and RSS under low stress condition.
The experienced durations can be assumed to be upper bounds, since, in our case study, the
more intensive the workload, the faster the trend detection.

Table 2: Transient phase and minimum test duration estimates obtained from algorithms 1 and 2.

Transient phase duration Minimum test duration Margin of error (ε)

RSS 0.41 hours 2.5 hours 0.01

RTT 1.58 hours 25.41 hours 0.15

The influence of transient samples on the estimation accuracy can be appreciated in
Tables 3 and 4. These Tables show trends obtained with the transient phase included in
the samples in leftmost column. In the first row, there is the aging trend estimated over the
maximum test duration (i.e., 75 hours); in the second row, there is the aging trend obtained
by analyzing samples within the minimum test duration (e.g., 2.5 hours for RSS). The last
row shows the percentage difference between trends obtained after maximum and minimum
test durations. In the rightmost column, the same comparison between maximum and
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minimum duration is made, in case that the transient phase is excluded from the samples.
The difference between trends is greater when the transient phase is not filtered; this is
especially true in the case of RTT, where the difference drops from 63.12% to 9.97% when
transient phase is filtered. This demonstrates that, when test duration is reduced to its
minimum, filtering transient samples is crucial to keep the estimation error low.

Table 3: RSS trend estimates (KB/min) with 95% confidence interval for different test durations and
transient hypotheses.

With transient phase Without transient phase

Maximum duration 1.05417 · 102 1.05417 · 102

(about 75 h) [1.05416, 1.05418] · 102 [1.05416, 1.05418] · 102

Minimum duration 1.0970 · 102 1.0640 · 102

(about 2.5 h) [1.0686, 1.1619] · 102 [1.0533, 1.0834] · 102

Difference +4.06% +0.93%

Table 4: RTT trend estimates (µs/min) with 95% confidence interval for different test durations and transient
hypotheses.

With transient phase Without transient phase

Maximum duration 1.2918 · 10−1 1.2028 · 10−1

(about 75 h) [1.1365, 1.4488] · 10−1 [1.0485, 1.3610] · 10−1

Minimum duration 2.1074 · 10−1 1.3316 · 10−1

(about 25 h) [1.3083, 2.8499] · 10−1 [0.5627, 2.1350] · 10−1

Difference +63.12% +9.97%

5.4. Experimental campaign (step 4)
We executed the experimental campaign for all combinations of workload parameters. We

applied a full factorial design of experiments (S = F ) [17] since the number of combinations is
low (|F | = 20). Each experiment lasted D = 25.41 hours, as computed in the previous step.
This value is the maximum of the test durations for the two performance indicators (i.e., RSS
and RTT). D is lower than Tmax; the total experimentation time is dMS +dLS +D ·(|F |−2) =
597.38 hours, which is lower than Tmax · |F | = 2000 hours.

5.5. Analysis (step 5)
5.5.1. Aging trends analysis

We analyze how memory consumption varies with respect to the workload parameters,
T and L. In Figure 9a, RTT trends exhibit a greater variability than RSS (Figure 9b and
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9c), due to the greater uncertainty associated to RTT estimates. In fact, for RTT we chose
a greater margin of error than for RSS (ε = 15%, Table 2), in order to keep the test duration
low.
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Figure 9: Aging trends, with respect to the request size (L) and invocation period (T ).

We use the ANalysis Of VAriance (ANOVA) [17] to detect relationships between workload
parameters and aging trends, if any, with a given confidence. ANOVA makes it possible to
quantitatively analyze the impact of a workload parameter on the aging trend. It compares
the variability of all runs to the sum of the variability within each sample and the variability
between samples (in our case study, a sample is a group of runs with the same value of the
workload parameter under evaluation), that is:

variabilitytotal = variabilitywithinsamples + variabilitybetweensamples (7)

in which the variability of a set of values is estimated by the mean square error (namely, the
average sum of squared deviations from the mean value of the set). Equation 7 is used to
compute a test statistic for the hypothesis test. Under the null hypothesis that the workload
parameter is not influential, the total variability should be similar to the variability within
samples. To test the null hypothesis, we evaluate the p-value, i.e., the conditional probability
that the test statistic is equal to or greater than the actual value of the test statistic, given
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that the null hypothesis holds. If the p-value is lower than the preset type I error level
(i.e., one minus the preset confidence level), then the null hypothesis can be rejected. In
other words, the lower this value, the greater the evidence that the parameter does indeed
influence the trend (e.g., if p-value < 0.01, the parameter had a significant effect with 99%
confidence level).

We use the non-parametric Friedman’s test [28] for ANOVA, which only assumes that
observations are mutually independent. Mutual independence is guaranteed by the careful
experimental setup (e.g., machines are rebooted before each experiment; experiments are
executed in random order). Non-parametric tests do not rely on the assumption that data
come from normal distributions. However, Friedman’s test does not allow to analyze inter-
actions between factors. This limitation is not a concern in our case study, since we are
interested in the influence of individual parameters on software aging, in order to map them
to aging sources. Since interactions cannot easily be mapped to aging sources, we do not
consider them.

Table 5 shows ANOVA results for the case study. Experiments were executed once
for each experimental condition, i.e., each combination of workload parameters in F. A
single execution was enough to obtain reliable results, since experiments were conducted in
a supervised environment (e.g., machines were rebooted after each experiment, and they
only executed the test application). ANOVA reveals a non-negligible dependence of RTT
trend on T. Hence, we expect the application slowdown to be more evident under most
stressful conditions. On the contrary, the amount of transferred data has low influence
on RTT. Figure 9b and 9c show the estimated aging trends for RSS, with respect to the
client and to the servers, respectively. A significant influence of L on memory consumption
can be observed for both the client and the servers. The influence is more pronounced for
the client due to the use of the CARDAMOM Trace service to log the whole content of
messages. As detailed in the following, Trace service is a significant source of memory leaks
in CARDAMOM. The estimated RSS trend exhibits a strong dependence on the invocation
period T, probably due to the fact that a memory leak is caused at each invocation.

Table 5: ANOVA on RTT and RSS trends with respect to workload parameters. SS, DF, and MS values
refer to the considered factors (T and L).

RTT RSS (client) RSS (server)

T L T L T L

Sum of Squares (SS) 23.5 1.8 40 25 40 20.2

Degrees of Freedom (DF) 4 3 4 3 4 3

Mean Squares (MS) 5.875 0.6 10 8.3333 10 6.7333

χ2 9.4 1.08 16 15 16 12.12

p-value 0.0518 0.7819 0.003 0.0018 0.003 0.007
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Aging trend estimates can be leveraged to plan software rejuvenation strategies. Aging
trends can be used to predict the time when the application response time or the available free
memory will be lower than a predefined Quality of Service (QoS) threshold, and to determine
optimal times for triggering a proactive application restart. Hence, it is an effective mean
to control and to prevent application performance losses. Of course, the more accurate
the trend estimate, the more accurate rejuvenation actions (that will be performed only if
required), thus preserving system availability and performance.

5.5.2. TTE estimation

We aim to assess the accuracy of the TTE predictions calculated based on the estimated
trends. To this aim we compare actual free memory and the estimated one. As the applica-
tion is deployed on a single host, predicted free memory for all processes at time t is given
by:

free memory(t) = initial memory −
∑

j

trendj(T, L) · t (8)

in which trendj(T, L) is the RSS aging trend for process j, and initial memory is the
amount of free memory right after the initial transient period (which is estimated by means
of Algorithm 1). The trend depends on the workload (we assume T=300 ms and L=1000
bytes in this experiment). Observed free memory depletion trend is depicted in Figure 10.
It shows that free memory decreases almost linearly (for about 64.5 hours), before stopping
at 149, 932 KB. This is due to the OS memory management policy. In Linux environments,
the Out-Of-Memory killer (OOM) selects processes to be killed in order to guarantee that
free memory within the system does not fall below a given threshold. Low priority processes
are killed first; then privileges, memory consumption, and execution time are considered to
select the victim process [19].

Such a behavior can be observed in Figure 10, where the zoomed region corresponds to
the three-hours interval in which the OOM keeps killing low priority processes (the amount
of available memory fluctuates around the mean value 149, 549 KB). When the OOM kills
the case study processes, almost all physical memory is freed; we hypothesize that the OS
delays their termination because they are actively executing.

Assuming 149, 932 KB as the minimum amount of free memory before the OOM starts
killing processes, equation 8 estimates the time until which the application can still allocate
memory, before other processes get killed. By using the RSS trends in figures 9b and 9c,
the estimated TTE amounts to 65.1752 hours. The difference between the actual and the
estimated trends amounts to the 1.05% of the actual trend, which is close to the chosen
margin of error (see Table 2). Hence, aging trends are able to provide an accurate TTE
estimates with respect to the available free memory.

5.5.3. Detailed memory consumption analysis

The most significant aging phenomena emerged when T=300 ms and L=1000 bytes.
We went further into the investigation of aging sources in this case. We aim to pinpoint
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Figure 10: Free memory during most intensive workload conditions, until application crash.

the software items that are responsible for the memory consumption trend. This is done by
means of MELANY reports, which have been analyzed in depth.

Processes memory consumption is detailed in Table 6, when using CARDAMOM CE.
It points out that the most of memory consumption is due to memory leaks for the client
process. On the other hand, the MDL of the server process grows more slowly than the
one of the client. This is because the client makes a more extensive usage of CARDAMOM
libraries. Additionally, a greater number of memory leaks at the client side are due to the
TAO ORB. These results are useful hints for developers (e.g., they could concentrate their
efforts on the improvement of those services used by the client).

Table 7 provides an in-depth analysis on the sources of memory leaks for CARDAMOM
CE. As evidenced, most of them are due to the Trace service and the TAO ORB. Addition-
ally, we found out that memory leaks in TAO are greatly affected by the string size L, i.e.,
the volume of transferred data (we omit these data for the sake of brevity). This makes it
reasonable to suppose that leaks are hidden in the request serialization handling code.

Memory usage reports provided by MELANY also helped us to pinpoint the defects
in CARDAMOM source code that caused memory leaks. These data have been sent as
feedback to the CARDAMOM development team in order to get these bugs fixed.

Table 8 summarizes memory consumption for both the client and the server, when using
CARDAMOM DV. A significant reduction of MDL has been achieved in this version.

Table 9 indicates that the main source of memory leaks in CARDAMOM CE (i.e., the
shared library code of the Trace service) has been removed. Nevertheless, the TMC in CAR-
DAMOM DV is even greater. This is because almost all the wasted memory is referenced
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Table 6: Memory consumption (KB) for CARDAMOM CE processes

Client Server

1 hour 2 hours 3 hours 1 hour 2 hours 3 hours

TMC 140, 120 184, 832 229, 268 TMC 116, 280 128, 052 139, 740

IMC 115, 755 136, 337 156, 635 IMC 113, 897 123, 334 132, 694

MDL 24, 365 48, 495 72, 633 MDL 2, 383 4, 718 7, 046

Table 7: Memory leaks for CARDAMOM CE.

Source Object
Leaked Errors /
Bytes Functions

libACE.so.5.4.1 31, 826, 000 1 / 1

libTAO.so.1.4.1 31, 826, 262 5 / 2

libcdmwcommon.so 29 1 / 1

libcdmwlbcommon.so 276 3 / 2

libcdmwlogging.so 10, 723, 932 52 / 1

libxerces-c1 3.so 24 1 / 1

(a) Client process.

Source Object
Leaked Errors /
Bytes Functions

libTAO.so.1.4.1 3, 202 1 / 1

libcdmwcommon.so 29 1 / 1

libcdmwlbcommon.so 176 2 / 1

libcdmwlogging.so 7, 212, 140 16 / 1

libxerces-c1 3.so 24 1 / 1

(b) Server process.

for the whole experiment duration. We hypothesize that CARDAMOM developers prevent
memory leaks by continuously storing references to the allocated memory (e.g., by means
of the C++ “smart pointers” feature or abstract data types such as STL containers), in
order to delay deallocation of unnecessary memory. This approach can inadvertently lead
to memory exhaustion if deallocation does not occur on time (e.g., elements within an STL
container are never deleted), as in the case of CARDAMOM DV.

It should also be noted that sources of memory leaks still exists in CARDAMOM DV.
Table 9 shows that almost all memory leaks are located in the code of the TAO library;
CARDAMOM developers did not correct these defects because they were located in third
party OTS components.

6. Conclusions

This paper proposed a practical approach to detect aging trends due to memory leaks
in complex software systems based on a CORBA-compliant OTS middleware. A real-world
middleware for developing mission-critical applications for Air Traffic Control has been stud-
ied. More specifically, the proposed approach aimed (i) to achieve a definite quality of results,
in terms of statistical accuracy of aging trends, and (ii) to keep down experiments duration,
by means of algorithms for data filtering and careful scheduling of the test campaign. The
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Table 8: Memory consumption (KB) for CARDAMOM DV processes

Client Server

1 hour 2 hours 3 hours 1 hour 2 hours 3 hours

TMC 153, 108 202, 768 252, 604 TMC 140, 336 174, 704 210, 240

IMC 152, 930 202, 414 252, 074 IMC 140, 332.8 174, 700.8 210, 236.8

MDL 178 354 530 MDL 3.2 3.2 3.2

Table 9: Memory leaks for CARDAMOM DV.

Source Object
Leaked Errors /
Bytes Functions

libACE.so.5.5.1 362, 082 2 / 1

libTAO.so.1.5.1 181, 276 5 / 2

libcdmwlbcommon.so 276 3 / 2

(a) Client process.

Source Object
Leaked Errors /
Bytes Functions

libcdmwlbcommon.so 3, 321 2 / 1

(b) Server process.

approach allowed to estimate the aging trends with a duration of experiments much shorter
than other approaches (given the margin of error), with a time reduction factor greater than
3. Moreover, we experienced that several problems can arise when coping with memory
leaks in complex applications. The experiments with the real-world case study revealed the
following two interesting lessons.

OTS items are a significant source of memory leaks. In general, the adoption of
OTS software poses serious dependability issues on complex systems, because their interac-
tions within complex systems may trigger latent faults. Even when defects within OTS items
are known, as in the case of memory leaks spotted by MELANY, they are difficult to deal
with, because system integrators have little or no knowledge about internals of OTS items
(e.g., these items are often closed source, and they have been made by other developers).
Therefore, it can be expected that OTS items will be the most significant source of memory
leaks when software becomes mature. Currently, the only way to approach them is software
rejuvenation, although an approach for correcting them in advance, or at least to prevent
memory consumption, would be beneficial for system availability and performance; several
efforts are devoted to this problem by the research community in this field, but software
aging in OTS items still represents an open issue.

Developers may not correctly fix known memory leaks. Even after CAR-
DAMOM developers tackled the memory leaks pointed out by our analysis, the problem
of memory exhaustion remained unresolved; the memory consumption trend is still present
in CARDAMOM DV. This result may be due to the lack of adequate techniques and skills
to cope with memory management defects during the application lifecycle; simpler and
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more effective development techniques in this field, or the adoption of long-term memory
management strategies, would be helpful to solve these defects.
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