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Abstract—This paper reports a practical experience with mem-
ory analysis on a real world complex middleware platform, being
developed in the context of an academic-industrial collaboration.
The reported experience suggests a practical method that can
help practitioners to analyze memory leaks and to adopt proper
actions to mitigate these bugs, especially in the context of complex
Off-The-Shelf based software systems, and in some cases it
highlights issues still open. Indeed, we experience that fixing a
memory leak, when possible, might be not enough to solve the
memory exhaustion problem.

I. INTRODUCTION

Current software systems are getting more and more com-
plex both in the services they provide and in their architectures.
The use of Off-The-Shelf (OTS) software items helps devel-
opers to keep down the development efforts and the time-to-
market but, on the other hand, represents a threat for the system
dependability level. This is more significant in case of safety
and mission critical systems where components delivered
by third-party manufactures or communities (e.g., libraries,
compilers, virtual machines, up to middleware platforms and
operating systems) are adopted. The main problem is that
they do not provide dependability guarantees when they are
integrated, because of complex interactions within a system
[1]. Furthermore, they typically come as executable items (e.g.,
binary objects to be linked in the case of C/C++ programs)
to be included within the application under development.
This makes difficult to discover, to locate, and to treat latent
software defects (also named bugs).

This work has been partially supported by the Consorzio Interuniversitario
Nazionale per l’Informatica (CINI) and by the Italian Ministry for Education,
University, and Research (MIUR) within the frameworks of the Centro di
ricerca sui sistemi Open Source per le applicazioni ed i Servizi MIssion
Critical (COSMIC) Project (www.cosmiclab.it). It is also in the context the “In-
iziativa Software” Project, an Italian Research project which involves Finmec-
canica company and several Italian universities (www.iniziativasoftware.it).

This paper addresses aging-related bugs [2]. They represent
software defects that lead to the progressive system state
corruption (this issue is also known as software aging). These
bugs typically cause memory leaks, data corruption, unreleased
file handles or locks, unclosed sockets, round-off errors buildup
and so on. As a general rule, aging sources should be located
and fixed during the application development. Unfortunately, it
is quite difficult locating these bugs during system testing since
the execution trigger that potentially causes the system failure
may not be easily reproduced. Even when the bug has been
detected, it has to be located and potentially fixed: this is trivial
if it is located in the source code, but it is not always possible
to do that, since many defects are located in OTS software
items. In particular, we focus on memory leaks because they
represent the most considerable source of software aging, as
shown by several works.

This paper reports a practical experience with memory anal-
ysis on a real world industrial middleware platform, namely
CARDAMOM, and, in particular, it describes a memory leaks
analysis technique used to mitigate memory leaks in the
considered case study. An open-source Community Edition
(CE) version of this platform is available on the Web1, and it is
currently under study within the framework of the COSMIC
project, which aims to achieve a dependable version of the
middleware (in the following Development Version, DV).
Moreover, our experiment shows that fixing a memory leak
might be not enough to solve the memory exhaustion problem.
In these cases, it is very useful to estimate the Time To
Exhaustion (TTE) of the involved system resources in order
to plan proper rejuvenation strategies.

The paper is organized as follows. Section II discusses
related works that justify our approach, and introduces our ref-
erence middleware platform. Section III describes the proposed
analysis technique and the related tool, Melany, designed to
automatically process data related to memory leaks. In section

1http://forge.objectweb.org/projects/cardamom
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IV we use the proposed strategy and the developed tool to
locate and fix several memory leaks. In section V we conclude
the work, by discussing the key findings of our experience with
this industrial system.

II. BACKGROUND

Software aging is a well known issue both for mass-
scale and safety-critical applications [3]. Several works report
practical evaluation of operational systems showing that aging-
related bugs cause performance degradation or, at least, hang
or crash failures. These works, which are reported below, also
point out that memory management software related defects
(e.g., memory leaks) represent the most considerable aging
source. This statement justifies our study which focuses on
the characterization of memory usage.

A methodology for estimation of aging is presented in [4].
A comparative analysis of aging effects on different system
resources shows that estimated TTE for real free memory is
lower than the other system resources (i.e. the process or the
file table size). A similar finding comes out from the analysis
of software aging in a web server provided in [5]. As stated
in [6], a significant problem with a software component is
the machine running out of virtual memory, often caused by
a memory leak in the same component. Finally, we can cite
several works that directly focus on memory leak issues, even
in case of Java software [7], [8], [9].

As mentioned, the practical experience described by this
work concerns the CARDAMOM middleware. It is an open
source CORBA-based platform supporting both the object and
the component programming models and it is used in the
development of safety and mission critical systems such as
the ATC domain.

L
if

e
 C

y
c

le

N
a
m

in
g

S
y
s

te
m

 

M
a
n

a
g

e
m

e
n

t

T
im

e
, 
C

lo
c
k

L
o

a
d

B
a

la
n

c
in

g

F
a
u

lt
 

T
o

le
ra

n
c

e

E
v

e
n

t

Build

Code 

Generation

CCM 

Deployment

Foundation

Configuration 

and  Plugging

XML Server

Trace

Container

application

component

ORB

(TAO)

Third Party COTS

Tools

Core

Pluggable

services

Fig. 1: CARDAMOM overview.

Fig. 1 gives an overall view of CARDAMOM. It provides
both tools to simplify application development (e.g., automatic
code generation) and two sets of services intended to be used
by critical applications. The core services are mandatory for
a CARDAMOM-based application. Furthermore, one or more
pluggable services can be adopted by the same application.
The described platform makes use of several OTS components.
Among them, the most relevant are the Linux operating system

and a third-party ORB (specifically TAO2). The presence of
this OTS item is particularly relevant for the issues we are
going to discuss.

III. CHARACTERIZATION OF MEMORY USAGE

In order to cope with the analysis of resources usage by
complex long-running applications, we adopted an approach
based on stress tests. The target application is executed under
stressful environmental conditions (e.g., by requesting a high
number of operations) for a long period, in order to point
out resource leaks, that otherwise would not be identified
during the testing phase of the system (e.g., functional and
performance tests), and could lead to unpredictable failures
during the operational phase. Moreover, stress tests are re-
peated under different environmental conditions, in order to
highlight resource leaks dependencies on workload parameters
(which, in turn, can be used for long-term predictions about
resource consumption). During the program execution field
data are collected in order to be processed by external analysis
tools.

We have developed a specific tool, MELANY (MEmory
Leak ANalYzer), to locate and to analyze memory-leaks
sources within complex C++ applications. Its goals are to i)
find source-code memory management errors, and ii) estimate
the TTE of the main memory.

As a matter of fact, locating the code line that causes a
memory leak can help developers to correct and to leverage
the software. On the other hand, many leaks come from
libraries and other runtime supports. In this case, it is not
always possible to fix the error, although the TTE estimation
turns out to be useful to plan rejuvenation strategies. Fig. 2
gives an overall view about the adopted information processing
approach.
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Fig. 2: Analysis approach.

First of all, there is a preliminary data collection process
from the target system. Collected data are imported within
the MELANY environment by loading them into an internal
database. Using MELANY, the analyst can generate several
reports at different levels of detail. As a matter of fact, the
reports contain information as: the occurred memory leaks

2http://www.theaceorb.com
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with the whole invocation stack that lead to the error; the
source objects causing one or more leaks, their number, and
the functions where they are located; statistics concerning the
memory usage of the application during the test.

A. Information sources

MELANY infers the needed information from two sources:
the operating system and Valgrind3. We obtain the operating
system (OS) information as the output of the command-line util
ps. In particular, for the target process we take into account
the amount of allocated virtual memory, PID, priority, etc.

The other information source is represented by XML reports
coming from Valgrind. In particular, using the memcheck tool,
we enable memory-usage monitoring in order to discover the
following errors: i) syscall parameters (the application tries to
use a not addressable memory buffer), ii) memory leaks which
are grouped in:

• definitely lost bytes: the application is certainly causing a
leak and it has to be fixed;

• possibly lost bytes: the application is probably causing a
leak, unless it is having a very complex pointers usage.

Both the operating system and Valgrind output is saved on
files during the data collection phase. These files are intended
to be processed off-line by MELANY.

B. MELANY output

The collected data contain heterogeneous information. This
is the reason why we developed a tailored tool able to
merge both operating system logs and Valgrind report. As
shown in Fig. 2, MELANY parses these data and performs
filtering operations to store in the internal database (DB) only
the relevant part for the subsequent analysis phase. The DB
contains, for each memory error of the target process, the
error type, the amount of memory involved in the error, and
the source location of the error. This information is inferred
from the Valgrind report, and DB entries are populated. We
enriched the DB also with the information on the amount of
allocated memory extracted from the OS logs, since memory
consumption is not due only by memory leaks. From this point
on, statistical analysis concerning memory errors and usage
can be performed. MELANY performs coalescing operations
(by the means of SQL queries) to build aggregated results
from the single memory leak entries. For instance, leaks are
grouped by source library in order to evaluate its contribution
with respect to the total leaked memory.

MELANY provides two memory error report formats
(namely, base and detailed) and a summarizing report de-
scribing memory leak sources (namely source). The base-
report gives overall information about the under-test process,
the total amount of errors and allocated memory and, finally,
the complete errors list. On the other hand, the detailed-report
adds, for each error, the whole invocation stack. In Fig. 3 (A)

3http://valgrind.org

Type: Leak Possibly Lost

Description: 20 bytes in 1 blocks are possibly lost in loss record 
475 of 3,280

Cause: operator new(unsigned) 

Sources:

1) Method: main; Library: client.cpp; Line 85

2) Method: Cdmw::OrbSupport::OrbSupport::ORB_init

3) Method: Cdmw::OrbSupport::OrbTaoImpl::ORB_init

4) Method: Cdmw::OrbSupport::AceTaoLogger

5) Method: std::string::string

6) Method: unknown; Library: /usr/lib/libstdc++.so

7) Method: std::string::_Rep::_S_create

(A)

Library:

/tools/exec/TAO141_2_06_0913/src/TAO/tao/libTAO.so.1.4.1 Error 
occurencies: 12

Root Source ‘client.cpp’: 91%

Root Source ‘/lib/tls/libc-2.3.4.so’ 8%

(B)

Fig. 3: Leak stack trace (A) - Source-report entry (B).

we show a simplified leak stack trace provided by the detailed
report. For each library causing a leak, the source-report shows
the number of errors, the error root-causes, and the percentage
of each root on the errors amount. Fig. 3 (B) shows a single
entry of this report. In the example figure, the leak located in
libTAO.so.1.4.1 occurs 12 times.

IV. REAL WORLD CASE STUDY

We evaluate the memory consumption of the CARDAMOM
middleware, through a testing application which uses both
core and pluggable services provided by the middleware (see
Fig. 1); in particular, the Trace service (which will turn
out to be the main source of memory leaks) is responsible
for collecting application level messages. The application is
composed by two clients and two servers on different nodes,
in which clients’ requests are balanced among the servers using
a round-robin policy (Fig. 4). The remote method invoked by
the clients returns a fixed-size string. The application is simple
with intent, because we want to highlight memory leaks only
introduced by the middleware. The workload can be varyied
with respect to i) the time between consecutive requests (T) (in
order to evaluate the memory leak trend in function of time),
and ii) the string size (L) (to find out if the amount of processed
data may affect memory management). We study the memory
consumption of CARDAMOM in function of these workload
parameters, in order to discover in what extent memory leaks
are introduced by the middleware when the load increases.
One of the client processes (which make the most extended
use of middleware services, in the form of shared libraries)
was analyzed as described in section III. The hardware con-
figuration of testing machines is made up of 2 Xeon Hyper-
Threaded 2.8GHz CPUs, 3.6GB of physical memory, and a
Gigabit Ethernet interface; machines are interconnected by a
56 Gbps switch.

First of all, we conduct a preliminary experiment to analyze
the memory consumption trend of the client process in function
of time, for a particular choice of workload parameters (T=300
ms, L=1 byte), in CARDAMOM CE. After two hours, the
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Fig. 4: Testing application using CARDAMOM services.

memory consumption increases by ∆ = 4808 KB (from 42572
KB to 47380 KB), despite that it should remain constant
(no explicit memory allocation is made by the application;
therefore, unnecessary memory consumption is due to CAR-
DAMOM misbehavior). Memory consumption is periodically
sampled every second, and a large set of data samples was
collected. Linear regression shows that the memory consump-
tion increases linearly with time throughout the test (with a
correlation coefficient r > 0.99), and TTE amounts to 1484
hours in our testbed. The test actually causes the crash of
the application. This result demonstrates that the middleware
is affected by software aging, and it can eventually lead to
memory exhaustion. Because the memory consumption grows
linearly, we hypothesize that there are predominant sources of
memory leaks (within the middleware code involved in the
remote method invocation) which constantly adds a memory
leak delta at each invocation, and which should be pinpointed
by the means of precise memory usage analysis.

Next, we evaluate the memory consumption after a fixed
execution time (two hours) in function of workload parameters
T and L. As Fig. 5 shows, the memory consumption increases
with the number of processed requests (i.e., when T decreases).
Moreover, the greater the size of the requested string, the
greater the memory consumption. Therefore, the amount of
wasted memory by the faulty code is not fixed, but varies with
the volume and contents of transferred data (e.g., memory leaks
are hidden within code that handles CORBA data structures).

Fig. 5: Memory consumption after 2 hours, with respect to the
request size (L) and invocation period (T).

The memory consumption for CARDAMOM CE is better
detailed in Fig. 6. The Total Memory Consumption (TMC)
is split into Intentional Memory Consumption (IMC) and
Memory Definitely Lost (MDL). The former represents the
amount of memory that can be referenced by the application
(e.g., there exists a valid pointer to that memory region); the
latter represents memory leaks (therefore, TMC = IMC +
MDL). It can be observed that the greatest part of memory
consumption was due to memory leaks; the IMC growth with
time is negligible.

In order to discover software items responsible of this
memory consumption trend, reports provided by MELANY
were closely investigated. TABLE I details the sources of
memory leaks for CARDAMOM CE: most of them are due to
the Trace service and the TAO ORB underlying CARDAMOM
(highlighted in TABLE I). Memory usage reports were useful
to spot the defects liable of memory leaks within the source
code of CARDAMOM. This data was feed back to CAR-
DAMOM developers, which tried to tackle these defects in
order to reduce the amount of leaked memory.

TABLE I
MEMORY LEAKS IN CARDAMOM CE.

Source Object Leaked Bytes Errors /
Functions

Client 88 1 / 1

libACE.so.5.4.1 1799990 (1.46%) 2 / 1

libTAO.so.1.4.1 905844 (0.73%) 12 / 4

libTAO CosNaming.so.1.4.1 176 2 / 1

libcdmwcommon.so 177 2 / 1

libcdmwlbcommon.so 276 3 / 2

libcdmwlbinit.so 123 1 / 1

libcdmwlogging.so 120953872 (97.81%) 57 / 1

libcdmworbsupport.so 48 1 / 1

libcdmwrepositoryidl.so 88 1 / 1

libxerces-c1 3.so 24 1 / 1

Once a new CARDAMOM version has been released, we
tested it in the same way as the previous version. Fig. 7 shows
the memory consumption of the corrected CARDAMOM ver-
sion (DV), which has to be compared to CARDAMOM CE in
Fig. 6. In CARDAMOM DV, the MDL dramatically decreases.
TABLE II highlights that the main source of memory leaks
(the shared library code of the Trace service) was removed.
Nevertheless, the TMC in CARDAMOM DV is even greater
than the one in CARDAMOM CE. Therefore, although the
amount of non-referenced memory (i.e., the MDL) is reduced,
the TTE does not benefit from the corrections (TTE varies
from 128 hours in CE to 100 hours in DV) because, as
shown in Fig. 7, the wasted memory is still referenced for
the whole duration of the experiments. We hypothesize that
CARDAMOM developers prevent memory leaks by continu-
ously storing references to the allocated memory, delaying the
correct memory deallocation; nevertheless, this approach leads
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to memory exhaustion.

TABLE II
MEMORY LEAKS IN CARDAMOM DV.

Source Object Leaked Bytes Errors /
Functions

Client 76 1 / 1

libACE.so.5.5.1 1799970 (66.49%) 2 / 1

libTAO.so.1.5.1 905172 (33.44%) 9 / 3

libTAO CosNaming.so.1.5.1 1181 2 / 1

libcdmwcommon.so 148 1 / 1

libcdmwlbcommon.so 276 3 / 2

libcdmwlbinit.so 111 1 / 1

libcdmworbsupport.so 8 1 / 1

libcdmwrepositoryidl.so 76 1 / 1

Finally, it should be noted that sources of memory leaks
still exist in CARDAMOM DV. TABLE II shows that almost
all memory leaks are located in TAO’s library code; CAR-
DAMOM developers were not able to correct these defects
because they were located in third party OTS components.

V. LESSONS LEARNED AND OPEN ISSUES

This paper showed that several problems can arise when
coping with memory leaks in complex applications. The practi-
cal experience with the case study let us to obtain the following
lessons, and leaved some questions open, which may deserve
further research efforts in the near future:

OTS items are a significant source of memory leaks. In
general, the adoption of OTS software poses serious depend-
ability issues on complex systems, because their interactions
within complex systems may trigger latent faults. Even when
defects within OTS items are known, as in the case of memory

leaks spot by MELANY, they are difficult to deal with, because
system integrators have little or no knowledge about OTS
items internals (e.g., they are often closed source, and they
have been made by other developers). Therefore, it can be
expected that OTS items will be the most significant source of
memory leaks when software becomes mature. Currently, the
only way to approach them is software rejuvenation, although
an approach for correcting them in advance, or at least to
prevent memory consumption, would be beneficial for system
availability and performance; several efforts are devoted by the
research community in this field, but software aging in OTS
items still represents an open issue.

Developers may not correctly fix known memory leaks.
Even after CARDAMOM developers tackled the memory leaks
pointed out by our analysis, the problem of memory exhaustion
remains unsolved, because the memory consumption trend is
still present in CARDAMOM DV. This result may be due to
the lack of adequate skills to cope with memory management
defects during the application lifecycle; simpler and more
effective development techniques in this field, or the adoption
of long-term memory management strategies, would be helpful
to solve these defects.
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