
Assessing and Improving the Effectiveness of Logs
for the Analysis of Software Faults

Marcello Cinque, Domenico Cotroneo, Roberto Natella, Antonio Pecchia
Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II

Via Claudio 21, 80125, Naples, Italy
{macinque, cotroneo, roberto.natella, antonio.pecchia}@unina.it

Abstract

Event logs are the primary source of data to character-
ize the dependability behavior of a computing system dur-
ing the operational phase. However, they are inadequate
to provide evidence of software faults, which are nowadays
among the main causes of system outages. This paper pro-
poses an approach based on software fault injection to as-
sess the effectiveness of logs to keep track of software faults
triggered in the field. Injection results are used to provide
guidelines to improve the ability of logging mechanisms to
report the effects of software faults. The benefits of the ap-
proach are shown by means of experimental results on three
widely used software systems.

1 Introduction

Current trends in software engineering exacerbate the
role of software faults as main responsible of system
failures [18]. Faults introduced during the analysis, design,
and coding phases of a complex software system [1] may
lead to a failure when a particular fault trigger (i.e., inputs,
internal state of the system, or external events) occurs. Due
to time constraints and technical limitations, testing is not
able to validate a complex system with respect to every
potential fault trigger. As a result, software is likely to be
shipped with residual software faults, i.e., faults that elude
testing efforts, leading to failures during operation [8]. The
characterization of residual software faults, as they manifest
in the field, is crucial to address dependability issues of cur-
rent systems. A viable solution to gain this understanding
is to look at event logs produced by the system.

Event logs have been used for decades to characterize
the dependability of operational systems [14]. Interesting
studies based on event logs range from early experiences on
mainframe and multicomputer systems [10], to more recent
findings on commodity operating systems [11, 20] and

supercomputers [17, 24]. Event logs provide valuable infor-
mation about errors that occur at run-time. Consequently,
they make it possible to identify the most failure-prone
components [15], thus making it possible to schedule proac-
tive maintenance (e.g., replacing a disk prior to its failure),
as well as to predict the occurrence of failures [16, 24].

Past work on field failures recognized that it may be
difficult to relate failures and software faults by means of
logs [4, 20, 22]. Nevertheless, to the best of our knowledge,
the effectiveness of current logging mechanisms in face of
software faults has not been assessed yet in a quantitative
way. A quantitative analysis is essential to understand how
this issue compromises the quality of collected logs and the
analyses exploiting them. Software faults may escape any
low-level check and remain completely unreported. For
example, in C/C++ programs, bad pointer manipulations
can originate a process crash before any useful information
is logged. An infinite loop caused by bad variable manage-
ment may lead to a hang, without leaving any trace in the
logs. A solution to increase log effectiveness would be to
log every potential error. However, this solution is clearly
not feasible; thus a more focused approach is needed.

This paper proposes an approach to assess and to improve
the effectiveness of logs for the analysis of software faults.
The objective is to evaluate built-in logging capabilities of
a system and to suggest potential improvements. To this
aim, the approach is based on software fault injection, i.e.,
software faults are extensively and deliberately forced in
the system under observation in order to (i) determine the
most common failure modes (i.e., the consequences of the
injected faults), (ii) identify logging deficiencies, and (iii)
guide their improvement.

The approach is applied to three popular open source
systems: Apache Web Server (section 5.1), TAO Open Data
Distribution System (section 5.2), and MySQL Database
Management System (section 5.3). Results reveal that
a significant number of software faults lead to a failure
without producing any log event. The percentage of logged
failures ranges between 35.6% and 42.1% among the case

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 457 DSN 2010: Cinque et al.

studies. We show, by means of specific examples, how to
use analysis results to improve the logging mechanism.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the proposed
logging evaluation/improvement approach. Section 4
presents the fault injection framework. Section 5 describes
our experimental results. Section 6 concludes the work.

2 Background and Related work

Logs are conceived as human-readable text files for
developers and system administrators to gain visibility into
system behavior, and to take actions in the face of failures.
Through a programming interface, applications can write
events, i.e., lines of text in the log, according to developers’
needs. Events are usually placed within the execution path
leading to a failure state (e.g., an assertion about the correct-
ness of a variable; a log event is produced if the assertion
is violated), or if a failure state is reached (i.e., a wrong
service is perceived by the users). Known event logging
systems are UNIX syslog and Microsoft’s event logger.

Logs were the basis of past dependability evaluation
studies. However, several studies pointed out the weak-
nesses of logging mechanisms when used for dependability
analysis. In [2], it was shown that event logs may be
incorrect and may lack suitable data for analysis, leading to
misleading conclusions. A study on Unix workstations and
servers [20] recognized that event logs may be incomplete
or imperfect, and it describes an approach for combining
different sources of data to improve availability estimation.
In [11], a study on a networked Windows NT system
showed that most reboot logs (58%) do not provide any
specific reason, thus highlighting the need for better log-
ging techniques. A study on supercomputers [14] showed
that logs may lack useful information for enabling effective
failure detection and diagnosis.

Other studies pointed out the inadequacy of logs to
provide evidence of software faults. In [4] it showed that,
even if the JVM is equipped with a sophisticated exception
handling mechanism, built-in error detection mechanisms
are not capable of detecting a considerable percentage
of failures (45.03%). In a dependability evaluation of
networked Windows NT workstations [22], log analysis
highlighted that only 3% of system reboots could be related
to application software failures, whereas 58% of reboots
remained unclassified (i.e., a clear cause of the reboot
cannot be found in the logs). These results suggest that a
significant percentage of software faults remain unreported
in the logs, as will be confirmed by our experimental results.

The previously mentioned studies evaluate logging
mechanisms by using log files collected during the opera-
tional phase. In this work, we take a different perspective:
to investigate how logging mechanisms can be evaluated

and improved before the operational phase. This is done
by means of software fault injection, which can reveal
deficiencies affecting dependability evaluation results (e.g.,
unlogged failures, misleading logs). Fault injection is a
well-known technique for dependability evaluation. In the
last decade, a framework has been formulated for rigorous
evaluation of computer systems with emphasis on software
faults, namely dependability benchmarking, which has
been used for comparisons between systems and for risk
assessment [5, 13]. Fault injection has also been used for
fault removal in fault tolerance mechanisms [3, 21].

To the best of our knowledge, no previous work has
been devoted to the systematic improvement of logging
mechanisms in complex systems. In [19], a first attempt
was made by comparing logging mechanisms with other
failure detection techniques for web applications using fault
injection. However, although logs are able to detect failures
due to resource exhaustion and environment conditions,
they provide little coverage with respect to emulated soft-
ware failures (e.g., a deadlock). This motivates an in-depth
analysis of logging mechanisms through the injection of
realistic software faults. Recent studies were also devoted
to exploiting log contents for anomaly detection in complex
systems [23]. However, the effectiveness of anomaly
detection relies on the quality of logs, which we aim to
evaluate and to improve in our work.

3 Overall approach

Our driving idea is to evaluate the effectiveness of log-
ging mechanisms by means of fault injection. Effectiveness
is the ability to provide evidence, i.e., entries in a log
file, if a failure occurs. Detecting failures is thus crucial
to correctly assess effectiveness of logs. To this aim we
design a specific testing environment (Figure 1) to run the
target system under a stressful workload as well as to detect
the occurrence of failures. Experimental results are then
exploited to assess and to improve the logging mechanism,
by suggesting how to place additional events to increase
the probability that a software fault will be logged after its
activation. The proposed approach consists of three steps,
detailed in the following.

1 - Software fault injection campaign. We perform an
experimental campaign to collect logs about failures. The
campaign consists of a sequence of tests, each involving a
faulty version (i.e., containing exactly one software fault,
injected according to the technique described in Section
4) of the system under test. Tests are supervised by a Test
Manager program (see Figure 1). The Test Manager cleans
up stale resources (e.g., zombie processes, unallocated
semaphores) before each test is performed, to ensure the
same initial conditions for all experiments. Moreover, it
initializes the current faulty version of the system. The

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 458 DSN 2010: Cinque et al.

Observed failures
(oracle view)

Observed failures
(log view)

Improvements

Software
fault

Ob d f il

Figure 1: Log assessment and improvement approach.

system is then executed, and exercised using a workload.
The workload is specific to the system under test and does
not vary among the tests of the campaign. It consists of test
cases and/or tools adopted by developers of the system.

Once the workload is completed, the Test Manager labels
the test with an outcome that summarizes, if any, the expe-
rienced failure. The outcome is needed to identify experi-
ments in which a failure actually occurred, i.e., the ground
truth, as well as to classify experiments by type of failure.
We do not rely on logs to understand if a failure occurred
(logs may lack relevant information, which is the issue we
are investigating); therefore our analysis is supported by
additional information. Since experiments are executed in
a controlled environment, we exploit information from the
testing environment to define the outcome. In particular,
the Test Manager jointly exploits (i) data generated by the
operating system (e.g., memory dumps), (ii) workload-
specific information (e.g., output values), and (iii) the
expected response time. The joint use of this information
makes it possible to identify one of the following outcomes:
• Halt: unexpected termination of the system. The system

no longer runs, and no output is delivered.
• Silent: the system is still running, but no output is

produced within a reasonable timeout (e.g., the system is
hung or an expected message is not delivered).

• Content: failures conditions that are not halt or silent
(e.g., wrong values delivered to the user).

• No failure: the system keeps correctly running.
Outcomes provided by the Test Manager, which acts as

a failure detector, represent the oracle view, which will be
compared to log contents in the next step. The Test Manager
is designed to collect a timestamp when the system under
test and the workload are started and terminated, in order
to characterize the expected response time in fault-free
runs performed before the campaign, and to detect a silent
outcome when the system is not responsive. Moreover,
the Test Manager detects a content outcome by comparing
the output of a fault injection experiment (e.g., exchanged

messages) with the output of a fault-free experiment. The
Test Manager is designed to detect and to categorize the
failures with full accuracy; therefore, it was carefully tested
by means of preliminary execution of fault-free and faulty
experiments. Log files and memory dumps are collected by
the Test Manager after the experiment completion.

2 - Assessment of the logging mechanism. In this phase
we identify logged and unlogged failures, i.e., failures
that left and did not leave a trace in collected logs during
the campaign, respectively. To this aim, for each test we
compare (Figure 1), (i) the test outcome as provided by the
Test Manager (i.e., the oracle view), and (ii) the presence of
events in log files (i.e., the log view). The ratio between the
number of logged failures and the total number of failures
represents the relative coverage of the logging mechanism.

3 - Improvement of the logging mechanism. By
matching unlogged failures and the injected faults, we
get back into the source code to identify the point where
the logging mechanism can be improved. To better focus
improvement efforts, a ranking of failure locations by
frequency of occurrence is performed (Section 5.4).

4 Fault injection framework

The technique adopted in this paper is derived from a
past work in the field of Software Fault Injection, in partic-
ular G-SWFIT, presented in [6]. G-SWFIT defines a set of
fault operators that are actually representative of residual
faults found in real-world operational systems (i.e., fixed
after their release). Operators are based on a large field
data study encompassing 668 faults over 12 systems, and
they account for more than 50% of fault types occurring in
the field. In the G-SWFIT technique, faults are injected by
means of changes in the binary code corresponding to pro-
gramming mistakes in the high-level source code. Although
this approach is suitable for off-the-shelf software when the
source code is not available, there can be discrepancies be-
tween high-level software faults and binary changes. In [6],
on the average there are 9% more binary changes not corre-
sponding to high-level software faults, due to the usage of
C macros in the target source code. Moreover, G-SWFIT
requires additional efforts to be adapted to the system of
interest, because of hardware/OS/compiler heterogeneity.

In our study, we inject software faults according to
operators defined in [6]. However, our injection framework
differs from G-SWFIT, since faults are introduced by
means of modifications in the source code. This approach
avoids the inaccuracies of injection performed at the binary
level. Moreover, injection in the source code is portable
among all platforms supported by the original program,
without any additional efforts. We recognize that our
approach increases experiment time (a source file has to
be compiled after the injection of the fault); however,

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 459 DSN 2010: Cinque et al.

accuracy is increased. We developed a support tool1 in
order to automate software fault injection. A source code
file is fed to the tool, which produces a set of faulty source
code files, each containing a different software fault. Each
faulty source code file is subsequently compiled. Figure 2
summarizes the steps followed by the fault injection tool
for each source file, with reference to C/C++ programs.

C pre-
processor p

C /C++
frontend

C/C++
Source files

Abstract
Syntax Tree

Fault
injector

Patch files
(faults)

r f d i r

int main() {
 if(a && b)
 c++;
}

Figure 2: Steps followed by the fault injection tool.

First, a C preprocessor translates the C macros contained
in the source code (e.g., inclusion of header files, macros
for conditional compilation, constants), in order to produce
a complete compilation unit. A C/C++ front-end, i.e., the
part of the compiler that builds the internal representation of
a program, processes the compilation unit, and it produces
an Abstract Syntax Tree (AST), a more suitable structure
to be processed by the Fault Injector program. The Fault
Injector searches for all possible fault locations in the AST,
and applies operators if specific criteria are met, e.g., the
OMIFS operator is applied only if the IF construct contains
at least 5 statements. Operators are summarized in Table 1.

5 Experimental results

We use the approach described in section 3 for three case
studies. We developed a specific Test Manager program,
in charge of supervising experiments, for each case study.
Testbeds are made up of two machines: (i) a server,
equipped with (i) an Intel Pentium 4 3.2 GHz CPU with
Hyper-Threading, 4 GB RAM, 1000 Mb/s Network Inter-
face, and (ii) a client, equipped with an Intel Pentium 4 2.4
GHz CPU, 768 MB RAM, 100 Mb/s Network Interface.

5.1 Apache Web Server

The Apache Web Server is a popular open-source project,
which accounts for more than 50% of installations in the
world2. The wide adoption of Apache and its growing
complexity are increasing the importance of dependability
and security issues caused by software faults. Therefore,
this software is a relevant case study in the context of our
work. Figure 3 shows the Apache configuration adopted in
this work. Apache Web Server3 version 2.2.11 is evaluated

1Available at http://www.mobilab.unina.it/SFI.htm
2http://www.netcraft.com/survey/
3http://httpd.apache.org/

Table 1: Fault operators ([6]).

Acronym Explanation
OMFC Missing function call
OMVIV Missing variable initialization using a value
OMVAV Missing variable assignment using a value
OMVAE Missing variable assignment with an expression
OMIA Missing IF construct around statements
OMIFS Missing IF construct plus statements
OMIEB Missing IF construct plus statements plus ELSE before statem.
OMLAC Missing AND clause in expression used as branch condition
OMLOC Missing OR clause in expression used as branch condition
OMLPA Missing small and localized part of the algorithm
OWVAV Wrong value assigned to variable
OWPFV Wrong variable used in parameter of function call
OWAEP Wrong arithmetic expression in parameter of a function call

in this paper, and httperf4 tool version 0.9.0 is used to
generate HTTP requests for the Web Server. The workload
makes use of the main features offered by the Web Server
(e.g., multiple methods and file extensions, cookies).

Figure 3: Apache testbed.

We perform 4,124 injection experiments. The two
leftmost columns of Table 2 report experiments grouped by
fault operator. Column 3 (Table 2) depicts the number of
injected faults resulting in a failure outcome. For failure
outcomes, we further investigate Apache logfiles to identify
the presence of log entries (two rightmost columns of
Table 2). We find that only 39.6% of failures lead to an
effective notification in logs. Therefore, Apache’s built-in
logging mechanisms do not provide any information for
a significant number of software faults. Figure 4 provides
coverage break-down by failure type.

Halt failures are mainly due to bad pointer manipula-
tions. In most cases (53.8%) no log events are produced.
Logged halts (46.2%) are due to the termination of one or
more Web Server child processes, thus enabling the parent
process to notify their failure. Nevertheless, no significant
information is provided about failure locations or failure

4http://www.hpl.hp.com/research/linux/httperf/

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 460 DSN 2010: Cinque et al.

Table 2: Experimental results (Apache).

Fault Locations Failures logged unlogged
OMFC 199 110 36 74
OMIEB 101 87 37 50
OMLAC 68 36 12 24
OMLPA 1,361 613 216 397
OMVAV 73 40 13 27
OWAEP 118 38 15 23
OWVAV 91 47 16 31
OMIA 419 184 88 96
OMIFS 389 125 49 76
OMLOC 70 32 8 24
OMVAE 631 501 217 284
OMVIV 48 25 6 19
OWPFV 556 185 89 96
Total 4,124 2,023 802 1,221
(%) - - 39.6 60.4

Figure 4: Experiments breakup by failure class (Apache).

causes in the logs. Collected entries just suggest to inspect
memory dumps from the operating system, which are not
always available in the field during the operational phase.

Unlogged silent failures (39.6%) are mainly due to
algorithmic errors leading to infinite loops. Logged silent
failures (60.4%) involve OS resources (e.g., sockets, IPCs).

A large percentage of content failures is unlogged
(79.4%). Most of them (55.7%) actually occur during the
system start-up phase, when the Web Server halts and no
logs are provided. This percentage is due to the presence
of a significant amount of code devoted to configuration
management (encompassing 10.3% of source code and
10.4% of faults). We do not exclude these faults from
the analysis since (i) this code appears to be complex and
error-prone, (ii) faults in configuration management are
not necessarily discovered before release, and they could
be triggered by a specific configuration file in the field
[12], (iii) logs in such a situation can help the system
administrator to fix configuration issues. Logged content
failures (20.6%) mainly correspond to errors with the HTTP
protocol handling (e.g., header corruption) or filesystem
accesses (e.g., wrong resource path).

5.2 TAO Open Data Distribution Service

TAO OpenDDS5 is an open-source C++ implementation
of the OMG’s v1.0 Data Distribution Service (DDS) spec-
ification. DDS, as part of the Event Driven Architectures
(EDAs), is emerging as new technology to design flexible
applications by means of message-driven processing [7]. Its
recent use in mission-critical scenarios, e.g., the Air Traffic
Control domain (Coflight6 project), prompted us to perform
an in-depth evaluation of DDS logging capabilities.

The architecture of a DDS-based application consists
of a publisher process, which sends messages to the DDS
bound to a specific topic, and a subscriber process, which
subscribes to a topic and waits for related messages.
OpenDDS, in particular, consists of (i) a shared library,
namely libTAO_DdsDcps.so, which contains DDS in-
ternal code, and (ii) a DDS repository process, which
provides process control capabilities. Figure 5 shows the
DDS-based application considered in this case study.

Test Manager
3. startup

2. startup

4. collect results

Machine 1

DDS library DDS library

3 startup

Publisher Subscriber

data transmission

log file log file
DDS
repository

co
nt

ro
l 3 t t

1. startup

DDS librarDD

PublishePublisheererrr

yryy

log fg
 DDSS
sitoryosrepoo

co
nt

ro
l

co
nt

ro
l

sitoryospoo

is

t ManagerstTess

artu

lts

DS yyyylibraryyD

pp
SubscribeSubsc

r

er

DDsion

log f

T

cr

Machine 2

Figure 5: DDS testbed.

Faults are injected in the source code of the DDS
library. We execute 2,964 fault injection experiments.
Table 3 reports the number of experiments grouped by
fault operator in the two leftmost columns. We experience
1,705 failures during the campaign (details are provided in
Table 3). Coverage including both DDS processes is 59.4%
(rightmost column of Table 3). This value overestimates
DDS logging capabilities since, in case of large-scale
DDS-based applications, logs for the publisher and the
subscriber sides may not be both available. Consequently,
our focus is on the analysis of individual DDS processes.

We experience that 37.9% of failures lead to an effective
notification in logs (column 4, Table 3) at the publisher
side. Most failures do not leave traces in logs. Figure 6a
reports the experiments broken down by failure class.

Halt failures are mainly unlogged, i.e., 75.3%. Most
of them result from (i) the DataWriterImpl and
PublisherImpl DDS modules (16.4%), due to the bad

5http://download.ociweb.com/OpenDDS/
6http://www.coflight-efdp.com

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 461 DSN 2010: Cinque et al.

Table 3: Experimental results (DDS). (Locs=Locations,
F=Failures, L=logged, UL=unlogged, Pub=Publisher,
Sub=Subscriber)

Pub Sub Pub or Sub
Fault Locs F L UL L UL L UL
OMFC 516 302 123 179 126 176 171 131
OMIEB 151 115 29 86 79 36 95 20
OMLAC 26 19 11 8 12 7 17 2
OMLPA 965 511 202 309 191 320 288 223
OMVAV 307 172 61 111 71 101 107 65
OWAEP 10 3 1 2 1 2 2 1
OWVAV 89 55 14 41 34 21 40 15
OMIA 223 138 57 81 48 90 70 68
OMIFS 175 97 40 57 41 56 62 35
OMLOC 11 5 2 3 3 2 4 1
OMVAE 171 115 37 78 56 59 66 49
OMVIV 122 68 27 41 26 42 39 29
OWPFV 198 105 43 62 30 75 52 53
Total 2,964 1,705 647 1,058 718 987 1,013 692
(%) - - 37.9 62.1 42.1 57.9 59.4 40.6

(a) Publisher.

(b) Subscriber

Figure 6: Experiments breakup by failure class (DDS).

manipulation of DDS messages during the sending phase,
and (ii) Service_Participant DDS module (8.8%).

Silent failures are logged in the majority of cases
(57.2%). The DDS library is able to log silent failures
occurring (i) in the DDS lower transport layer (12.5%),
and (ii) in the DataWriterImpl (10%), which are mainly

due to the bad manipulation of the topic of the DDS
message. Unlogged silent failures (42.8%) mainly occur
within (i) the lower DDS transport layer (18%), mainly
due to the bad manipulation of the send buffer, and (ii) the
Service_Participant DDS module (13%).

Content failures are mostly unlogged (80.7%). Corrupted
messages are delivered to the subscriber side without any
notification.

We similarly analyze the subscriber side (Table 3). We
find that 42.1% of failures lead to an effective notification
in logs vs. the 37.9% of the publisher side. Although
these percentages are similar, the logging behavior is
different, as described in the following. Figure 6b reports
the experiments broken down by failure class.

Halt failures are partially logged (48.1%). As in the pub-
lisher, most of them (7%) are the result of a bad QoS setup
within the Service_Participant DDS module. Further-
more, the subscriber process is able to log a significant per-
centage of halt failures (18%) that occurred at the publisher
side, thus acting as an external failure detector. Unlogged
halt failures (51.2%) are mainly due to problems occurring
in the Service_Participant module (12%), which still
remains a significant source of unlogged halt failures.

A significant percentage (39.2%) of silent failures are
logged. In particular, the DDS library is able to log silent
failures related to bad manipulations of topics and headers
of DDS messages, occurring in the DataReaderImpl
module (12%). Unlogged silent failures (60.8%) mainly
occur (i) in the DataReaderImpl module (13.5%) due to
problems occurring during the topic-subscription phase,
and (ii) algorithmic errors during the message delivery
occurring in the DDS lower transport layer (11%).

Content failures are mostly unlogged (93.5%). A
corrupted messaged is delivered to the subscriber due to
problems occurring in the DDS transport layer.

5.3 MySQL DBMS

MySQL is a widely used open-source DBMS. It has a
market share of about 30% according to several market
studies7. The experimental configuration is shown in Figure
7. It is composed of a MySQL server and a client running
on the same machine, which also hosts the database and
log files. MySQL8 version 5.1.34 is evaluated in this study.

The client is a SQL testing tool, namely MySQL Test Run
(MTR), shipped with the MySQL source code. The work-
load is represented by a subset of test cases from the full
MySQL test suite, which includes functional and regression
tests actually used by the MySQL developers. We selected
73 test cases in such a way to cover most of the MySQL
features within a limited amount of time; all the selected
test cases are sequentially executed during an experiment.

7http://www.mysql.com/why-mysql/marketshare/
8http://dev.mysql.com/downloads/mysql/5.1.html

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 462 DSN 2010: Cinque et al.

Figure 7: MySQL testbed.

MySQL server is represented by the mysqld program,
which, in turn, is made up of several sub-components, such
as the MySQL core and the storage engines. The stan-
dard MySQL configuration also includes a further process,
namely mysqld_safe, which instantiates the mysqld process,
and collects all error messages from mysqld to store them
in a log file. We targeted the MySQL core in fault injection
experiments, since it is the largest and most fundamental
component; it is responsible for managing threads and
connections, and for SQL query parsing, optimization, and
execution. We identified 43,139 fault locations, detailed in
the two leftmost columns of Table 4.

Table 4: Fault injection experiments (MySQL).

Fault Locations Failures logged unlogged
OMFC 3,932 1,222 259 963
OMIA 4,333 1,628 294 1334
OMIEB 756 233 41 192
OMIFS 3,897 1,042 311 731
OMLAC 1,496 440 134 306
OMLOC 1,238 251 69 182
OMLPA 13,436 5,494 2,472 3,022
OMVAE 5,880 2,263 1,029 1,234
OMVAV 1,823 340 122 218
OMVIV 682 188 62 126
OWAEP 723 184 59 125
OWPFV 3,328 1,512 455 1,057
OWVAV 1,615 305 69 236
Total 43,139 15,102 5,376 9,726
(%) - - 35.6 64.4

The two rightmost columns of Table 4 show the coverage
of MySQL logging mechanisms with respect to the 15,102
observed failures. Entries are produced in 35.6% of cases.

Figure 8 shows that almost all halt failures (97.9%) are
detected by the mysqld_safe process; it is the parent of
the mysqld process and receives a notification of the child
process termination from the OS. It should be noted that,
even if Apache has a similar architecture, its coverage with
respect to halts is lower (46.2%). We hypothesize that
the Apache parent process performs active work, which

Figure 8: Experiments breakup by failure class (MySQL).

can lead to a failure without logging. Unlike mysqld_safe,
the Apache parent process is not specifically designed to
collect error messages from child processes; hence logged
data may not be as effective as in the case of MySQL.

A significant percentage of silent and content failures
occur without leaving any message in the log. Logged
silent failures (6.0%) include invalid operations on sockets,
locks or files (3.5%) as well as errors during thread creation
or termination (1.5%). Unlogged silent failures were due
to omission faults related to concurrency (e.g., omitted
call to lock primitives (57.4%)), resource allocation or
initialization (e.g., missing thread deallocation (10.5%)),
and operations on network connections (e.g., connection
not opened (9.2%)). We observe that even if the OS or
external resources are involved, there can be a lack of
log messages due to the omission of an operation. In the
remaining cases, silent failures were related to infinite loops
and corrupted data structures, e.g., linked lists (16.8%).
Therefore, logging mechanisms should be also enforced
during the access to logical resources within the program,
in order to identify this type of problem.

Logged content failures (19.4%) were due, among the
others, to table corruption (1.6%), wrong interactions with
storage engines (1.4%), and incorrect management of
files and sockets (1.2%). Unlogged content failures were
due to faults that affected system behavior in a complex
way, leading to a bad state (e.g., incorrectly initialized
strings or flags), wrong control flow (e.g., a missing if with
a goto instruction), or wrong output (e.g., missing data
manipulation).

5.4 Apache Web Server: improvement

Experimental results show that current logging mecha-
nisms are far from providing comprehensive insights about
the software faults leading to field failures. A possible
improvement is to introduce additional log events within
the paths leading from a fault to error states [9]. However,
error propagation paths are hard, if not impossible, to be
figured out solely by looking the injected fault. Even if

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 463 DSN 2010: Cinque et al.

the fault injection process is deterministic, i.e., we know
the exact location/type of the injected fault, propagation
phenomena within the system are completely unpredictable
and hard to trace. In most cases, a fault may manifest in a
complete different source code location.

In this paper log improvement is achieved by placing ad-
ditional log events in the most likely failure locations, i.e.,
the source code locations where failures are more likely to
surface. We identify failure locations by exploiting memory
dumps, available for halt and silent failures, collected dur-
ing the experimental campaigns. We do not address content
failures in this paper. In this case, errors propagate within
the system without causing any effect perceivable by an ex-
ternal observer, until an improper service e.g., a bad output,
is delivered to the user. These failures can be logged only by
introducing application-dependent checks; hence, it is not
feasible to define general-enough guidelines. Our proposed
improvement strategy consists of three phases, i.e.,

• for each memory dump, we automatically extract from
the top of the stack trace the first function of the platform
under analysis, which was being executed when the
failure occurred;

• we rank the collected functions by the number of
occurrences;

• we manually analyze the most failure-prone functions to
identify failure locations, as well as to design a suitable
improvement for the logging mechanism.

Identifying failure locations makes it possible to improve
the logging mechanism only where actually needed and
to reduce the amount of error-handling code to be written.
This is an essential concern, since the extended use of log
events may inadvertently lead to performance loss and
poor maintainability. We describe achieved results in the
following, by providing specific examples showing how
the logging mechanism has been improved. Due to space
limitations, the focus is on the Apache Web Server. Similar
findings have been experienced for the other case studies.

We analyze memory dumps generated by the operating
system in case of halt failures. Table 5 reports the 10
most frequent functions executed during a halt failure, in
descending order.

Table 5: Functions most prone to halt failures (by # of
occurrences).

Function # occ. Function # occ.

apr_palloc 435 apr_pollset_add 221
ap_escape_logitem 386 add_any_filter_handle 216
apr_socket_addr_get 353 ap_read_request 213
ap_directory_walk 304 core_create_req 198
ap_core_output_filter 258 ap_core_input_filter 175

Example #1: apr_palloc. Figure 9 reports a snippet of
code from the function most frequently executed during a
halt failure. This function is called in a large number of lo-
cations (64 locations within the server source code); thus we
experience a high potential of error propagation towards it.
Many injected faults prevent the proper initialization of the
pool pointer. A viable solution to log this type of errors is
to detect the presence of a NULL pointer before its use and
to produce a specific message as shown in Figure 9 (lines
of code 2-6). Additional operations could be performed in
the case of a halt failure, e.g., to explicitly log information
for debugging or to gracefully stop the program.

1 size = APR_ALIGN_DEFAULT (size) ;
2 if(pool==NULL) {
3 log(’apr_palloc: using NULL pointer’);
4 log(’apr_palloc: called by %s’, caller());
5 graceful_stop();
6 }
7 active = pool−>active ;

Figure 9: apr_palloc (apr_pools.c, lines 637-638)

Example #2: ap_directory_walk. NULL pointers
are not the only cause of halt failures. We found that the
ap_directory_walk function (ranked 4th according to
Table 5), is sensitive to faults leading to bad array indexes.
Figure 10 reports a specific example. This error can be
detected and logged by verifying the suitability of an index
before its use, as shown by lines of code 2-5. As in the
previous case, additional operations could be issued.

1 // ... omissis ...
2 if(bad_index(filename_len))) {
3 log(’ap_directory_walk: using bad array index’);
4 graceful_stop();
5 }
6 r−>filename [filename_len] = 0 ;
7 temp_slash =1;

Figure 10: ap_directory_walk (request.c, lines 739-740)

Analysis reveals that bad memory accesses due to the
propagation of a software fault may result in an unlogged
system halt. Accordingly, we define the following guide-
line: "developers should check before their use the value
of pointers, array indexes, as well as other variables
containing a memory address". Inserting a check before
this type of variables requires a high development effort,
and it may result in too high an overhead at runtime.
However, our approach identifies source code locations
most likely to exhibit a failure. This significantly limits the
number of check-instructions to be inserted.

We perform the same analysis for silent failures. Table
6 reports the 10 most frequent functions experienced during
the campaign, in descending order.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 464 DSN 2010: Cinque et al.

Table 6: Functions most prone to silent failures (by # of
occurrences).

Function # occ. Function # occ.

apr_socket_accept 364 add_any_filter_handle 9
apr_socket_sendfile 59 ap_allow_standard_methods 9
ap_escape_logitem 56 ap_byterange_filter 9
apr_socket_sendv 25 ap_invoke_filter_init 9
ap_directory_walk 17 ap_set_listner 9

We exclude the apr_socket_accept function from
the analysis. We found that in case of a silent failure for
apr_socket_accept, when we force a memory dump to
be generated, most of the Web Server internal processes
are correctly waiting for incoming connections, while only
a single process is actually hanged because of the injected
fault. The analysis of the remaining functions reported in
Table 6 reveals that unlogged silent failures are mainly due
to software faults triggering infinite loops. We report a
specific example showing this scenario in the following.

1 int current_iterations = 0;
2 for (; ∗s ; ++s) {
3 if (TEST_CHAR (∗s , T_ESCAPE_LOGITEM)) {
4 ∗d++ = ’ \ \ ’ ;
5 switch (∗s) {
6 case ’ \ b ’ :
7 ∗d++ = ’b ’ ;
8 break ;
9 // ... omissis ...

10 default :
11 c2x (∗s , ’x ’ , d) ;
12 }}
13 else{
14 ∗d++ = ∗s ; }
15 if(current_iterations++ == MAX_ITERATIONS) {
16 log(’ap_invoke_filter_init: \
17 MAX_ITERATIONS exceeded’);
18 log(’Potential cause: linked list corruption’);
19 }
20 }

Figure 11: ap_escape_logitem (util.c, lines 1795-1826)

Example #3: ap_escape_logitem. Several injected
faults make an infinite for loop in this function. Figure 11
shows the involved lines of code. It is a switch construct
encapsulating seven case clauses. A malformed input re-
sulting from a software fault makes the cycle never end. A
simple but effective solution to deal with this error is to pro-
duce a message when the number of current iterations ex-
ceeds a maximum, estabilished value (lines of code 1, 15-19,
Figure 11). This message eases the failure analysis process.

Leading from the described example, we define the
following logging guideline: "developers should check the

number of iterations of cycles when they are controlled by
complex variable manipulations". A suitable maximum
number of iterations is K × max{n1, n2, ..., nT }, where
n1, n2, ..., nT and K are the observed number of iterations
during fault-free runs of the application, and a multiplying
factor (e.g., 3), respectively.

We integrate the logging code into the source of the Web
Server according to the proposed guidelines. In particular
we focus on the described functions, by modifying the
source code of the Web Server, as described by the previous
examples. We repeat the fault injection campaign in order
to figure out if the code modification actually leads to the
improvement of the logging mechanisms of the program.
We experience that an additional 114 halt and 52 silent
failures are logged by the Web Server, with respect to
the original version of the code. It should be noted that
the achieved improvement is not equal to the number of
instances of the target functions (as depicted in Tables 5,
6). In fact, a failure may generate several memory dumps
(e.g., multi-threaded processes); this may lead to multiple
instances of the same failure location. Coverage for halt and
silent failures increases by 10.1% and 20.8%, respectively,
when compared to the former fault injection campaign,
covering 56.3% and 81.2% of the failures, respectively.

6 Lessons learned

In this paper we evaluated the effectiveness of current
logging mechanisms in the context of three real-world case
studies. By means of fault injection campaigns we showed
that, in most cases, logs are not able to provide any useful
information about failures resulting from injected software
faults. In particular we found that:

• The coverage of current logging mechanisms, in the
proposed case studies, is no more than 40%. The
percentage of logged failures ranges between a minimum
of 35.6%, i.e., the MySQL DBMS, and a maximum
of 42.1%, i.e., the TAO OpenDDS (Subscriber side).
This result suggests that about 6 out of every 10 actual
failures due to software faults do not leave any trace in
logs during system operations.

• Software systems are most prone to log errors that occur
with operating system resources rather than algorithmic
ones. Both Apache Web Server and MySQL DBMS
are able to log software faults resulting in bad sockets,
files, memory or IPCs management. Algorithmic errors
leading, for example, to infinite loops, wrong buffer
management or concurrency issues are mainly unlogged.

• Architectural features influence the effectiveness of
the logging mechanism. We find that the distributed
architecture of the DDS increases the probability to
log failures. The use of the mysqld_safe process is an
effective solution to log almost all halt failures.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 465 DSN 2010: Cinque et al.

• Designing specific logging support increases coverage.
Experimental results show that a distributed infrastruc-
ture for collecting/correlating logs at the publisher and
subscriber sides may increase the number of logged
failures. The addition of a process, responsible for
event collection, can also increase log coverage. These
approaches could provide additional failure data to
developers at the cost of the overhead of log event
transfer to a dedicated node or process.

The approach for improving logs, based on the analysis
of the most frequent failure locations identified during the
experimental campaign, enabled us to draw a few general
guidelines as well as to significantly increase coverage with
a minimal impact on the source code. Although achieving
full coverage, i.e., ideally 100%, is not feasible, due to the
need to introduce logging code in every possible failure lo-
cation, our approach provides a balanced trade-off between
instrumentation efforts and improved effectiveness.

Future work will encompass the definition of a wider set
of guidelines as well as the investigation of techniques to
improve the suitability of logs for the analysis of software
faults.

Acknowledgment

We would like to thank our shepherd Kimberly Keeton
and the anonymous reviewers for their help in improving
this paper. This work has been partially supported by the
project “CRITICAL Software Technology for an Evolution-
ary Partnership” (CRITICAL-STEP, http://www.critical-
step.eu), Marie Curie Industry-Academia Partnerships and
Pathways (IAPP) number 230672, within the context of
the Seventh Framework Programme (FP7), and by the
Italian Ministry for Education, University, and Research
(MIUR) within the framework of the project “Dependable
Off-The-Shelf based middleware systems for Large-
scale Complex Critical Infrastructures” (DOTS-LCCI,
http://dots-lcci.prin.dis.unina.it), DM1407.

References

[1] A. Avižienis, J. Laprie, B. Randell, and C. Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Trans. on Dependable and Secure
Computing, 2004.

[2] M. F. Buckley and D. P. Siewiorek. VAX/VMS event
monitoring and analysis. In Symposium on Fault-Tolerant
Computing, 1995.

[3] J. Christmansson and P. Santhanam. Error Injection Aimed
at Fault Removal in Fault Tolerance Mechanisms-Criteria
for Error Selection using Field Data on Software Faults. In
Proc. Symp. on Software Reliability Engineering, 1996.

[4] D. Cotroneo, S. Orlando, and S. Russo. Failure Classifica-
tion and Analysis of the Java Virtual Machine. In Proc. of
26th Intl. Conf. on Distributed Computing Systems, 2006.

[5] J. Durães and H. Madeira. Generic faultloads based on
software faults for dependability benchmarking. In Proc. of
Intl. Conf. on Dependable Systems and Networks, 2004.

[6] J. Duraes and H. Madeira. Emulation of software faults: A
field data study and a practical approach. IEEE Transactions
on Software Engineering, 32(11):849–867, 2006.

[7] Gartner and Affiliates. Hype cycle for application
development. id number g00147982. 29 June 2007.

[8] J. Gray. Why do computers stop and what can be done
about it. In Proc. of Symp. on Reliability in Distributed
Software and Database Systems, 1986.

[9] J. P. Hansen and D. P. Siewiorek. Models for time coales-
cence in event logs. In Proc. of Intl. Symp. on Fault-Tolerant
Computing, pages 221–227, 1992.

[10] M. Hsueh, R. Iyer, and K. Trivedi. Performability Modeling
Based on Real Data: a Case Study. IEEE Transactions on
Computers, 37(4):478–484, April 1988.

[11] M. Kalyanakrishnam, Z. Kalbarczyk, and R. K. Iyer. Failure
data analysis of a LAN of windows NT based computers.
In Proc. of Symp. on Reliable Distributed Systems, 1999.

[12] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A Tool
for Assessing Resilience to Human Configuration Errors. In
Intl. Conf. on Dependable Systems and Networks, 2008.

[13] R. L. O. Moraes, J. Durães, R. Barbosa, E. Martins, and
H. Madeira. Experimental Risk Assessment and Compari-
son Using Software Fault Injection. In Proc. of Intl. Conf.
on Dependable Systems and Networks, 2007.

[14] A. J. Oliner and J. Stearley. What supercomputers say:
A study of five system logs. In Proc. of Intl. Conf. on
Dependable Systems and Networks, pages 575–584. IEEE
Computer Society, 2007.

[15] D. L. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do internet services fail, and what can be done about it? In
USENIX Symp. on Internet Technologies and Systems, 2003.

[16] F. Salfner and M. Malek. Using Hidden Semi-Markov
Models for Effective Online Failure Prediction. In Proc. of
the 26th IEEE Symp. on Reliable Distributed Systems, 2007.

[17] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. In Proc.
of Intl. Conf. on Dependable Systems and Networks, 2006.

[18] D. Siewiorek, R. Chillarege, and Z. Kalbarczyk. Reflections
on Industry Trends and Experimental Research in Depend-
ability. IEEE Transactions on Dependable and Secure
Computing, 1(2):109–127, April-June 2004.

[19] L. Silva. Comparing Error Detection Techniques for Web
Applications: An Experimental Study. 7th IEEE Intl. Symp.
on Network Computing and Applications, 2008.

[20] C. Simache and M. Kaâniche. Availability assessment of
sunOS/solaris unix systems based on syslogd and wtmpx
log files: A case study. In Pacific Rim Intl. Symp. on
Dependable Computing, 2005.

[21] E. Voas, F. Charron, G. McGraw, K. Miller, and M. Fried-
man. Predicting How Badly “Good” Software Can Behave.
IEEE Software, 14(4):73–83, 1997.

[22] J. Xu, Z. Kalbarczyk, and R. Iyer. Networked Windows NT
System Field Failure Data Analysis. In Proc. Pacific Rim
International Symposium on Dependable Computing, 1999.

[23] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan.
Detecting Large-Scale System Problems by Mining Console
Logs. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating Systems Principles, 2009.

[24] Z. Zheng, Z. Lan, B. Park, and A. Geist. System log pre-
processing to improve failure prediction. In International
Conference on Dependable Systems and Networks, 2009.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 466 DSN 2010: Cinque et al.

