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Abstract—Nowadays, an increasing number of systems needs
to be kept running for long periods without showing failures,
but several factors compromise their correct behavior during the
operational phase. Logs play a key role to address dependability
issues of current systems and to enable proactive actions against
failures (e.g., proactive maintenance, failure prediction). Never-
theless, they may lack any information in case of software faults,
which escape the testing phase and are activated on the field by
complex environmental conditions.

In this paper, we evaluate built-in logging capabilities of a
software system, namely the Apache Web Server, by means of
an extensive software fault injection campaign. We experience
that, in most of cases, software faults lead to failures without
leaving any information in Apache logs. For this reason, we
provide a few guidelines for developers that can be used during
the development cycle, in order to improve the effectiveness of
logs during the operational phase.

Index Terms—Field Failure Data Analysis, Software Fault
Injection, Log Evaluation, Web Server.

I. INTRODUCTION

Nowadays, an increasing number of systems needs to be

kept running for long periods without showing failures, as in

the case of mission critical software. At the same time, the

need to provide users with rich and high-performance services

leads to a growing complexity of both system architecture and

software. As a result, several factors compromise the correct

behavior of the system during the operational phase. Latent

bugs, misconfiguration, and other operator errors may cause

occasional failures [1], [2], [3].

An in-depth understanding of the nature of failures plays a

key role to address dependability issues of current systems;

therefore it represents an important enabler for proactive

actions aiming at anticipating upcoming failures. For instance,

data about failures enable the identification of the most failure-

prone components and their Time To Repair [4], which can be

used to schedule proactive maintenance, as well as to predict

the occurrence of failures [5].

A viable solution to gain this understanding is provided by

Field Failure Data Analysis (FFDA). An important source of

failure data is represented by system and application logs,

which are often the only available source of information

about the system running state. The effectiveness of FFDA

results strictly relies on the quality of logs and their content.

Collected events can be broadly classified in two categories:

(i) informational events, (ii) exceptional events. The former

provides information about current operations and/or state of

the system. The latter provides data about errors that occur

at run-time, i.e., events related to erroneous behaviors that

may prevent a computation to correctly succeed. For example,

at the operating system level, these events may notify I/O

errors and resources exhaustion. With regard to the application

layer, log events usually notify unreachable servers or DBs,

unavailable services, expired timeouts and so on. These events

are intended to ease the analysis of problems caused by

execution environment.

This paper addresses the effectiveness of logging mecha-

nisms in presence of software faults (also known as bugs). It

is difficult to locate them in advance during the testing phase.

As a matter of fact, they can be activated on the field by com-

plex environmental conditions that are difficult to reproduce

[1]. Although software faults manifest during the operational

phase, logs may lack any information about them [6], [7]. For

example, in C/C++ programs, wrong pointer manipulation can

originate a crash before any useful information is logged.

This paper reports a practical experience involving the

Apache Web Server. We evaluate its built-in logging capa-

bilities by means of an extensive software fault injection

campaign. During experiments, we collect data (e.g., memory

dumps) in order to (i) devise the most common failure modes

and (ii) identify possible logging deficiencies. We experience

that, in most of cases, software faults lead to failures without

leaving any information in Apache logs. For this reason, we

provide a few guidelines for developers that can be used during

the development cycle, in order to improve the effectiveness

of logs during the operational phase.

The paper is organized as follows. Section II discusses

related work about FFDA and fault injection. Section III

describes the proposed logging evaluation/improvement ap-

proach. Section IV describes the fault injection framework.

Section V describes our experience with the Apache Web

Server. Section VI concludes the work.
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II. RELATED WORK

Several research studies focused on log analysis for com-

plex software systems. There are also past works devoted to

evaluation of logging mechanisms. In [8], it is shown that

event logs may be incorrect and may lack suitable data for

analysis, leading to misleading conclusions. A study on Unix

workstations and servers [9] also recognizes that event logs

may be incomplete or imperfect, and it describes an approach

for combining different sources of data to improve availability

estimations. In [10], a study on a networked Windows NT

system shows that most reboots (58%) do not show any

specific reason, thus highlighting the need for better logging

techniques. A study on supercomputers [11] shows that logs

may lack useful information for enabling effective failure

detection and diagnosis. It also suggests that it would be useful

to include operational context information (i.e., the time at

which the log was produced such as scheduled downtime, pro-

duction time, and so on) along with log entries. These works

evaluate logging mechanisms by means of log files collected

during the operational time. In this work we investigate how

logging mechanisms can be evaluated and improved before the

operational phase by means of fault injection, which can reveal

deficiencies affecting FFDA results (e.g., unlogged failures,

misleading logs).

In [12], a log format is proposed for enabling autonomic

computing, i.e., log messages have to be well-structured and

categorized into standard classes, in order to be suitable for

automatic analysis. A log quality metric is also proposed for

evaluating how comprehensive and expressive log files are,

although there is not a systematic approach for analyzing large

log files from complex systems.

Fault injection is a well known approach for dependability

evaluation. In the last decade, a framework has been formu-

lated for rigorous evaluation of computer systems with em-

phasis on software faults, namely dependability benchmarking,

which has been used for comparisons between systems and for

risk assessment [13], [14]. Fault injection has also been used

for fault removal in fault tolerance mechanisms [15], [16]. To

the best of our knowledge, no previous work was devoted to the

systematic improvement of logging mechanisms in complex

systems. In [17], logging mechanisms are compared with other

failure detection techniques for web applications using fault

injection. Although logs are able to detect failures due to

resource exhaustion and environment conditions, they provide

little coverage with respect to emulated software failures (e.g.,

a deadlock). This motivates an in-depth analysis of logging

mechanisms through injection of realistic software faults.

III. OVERALL APPROACH

In this paper we present an approach based on the extensive

injection of software faults into the source code of a complex

system. This is done to figure out potential failure modes not

covered by logging mechanisms. In turn, this analysis is used

to improve logging by inserting additional mechanisms into

those source locations that are the most affected by error

propagation. It may be too difficult to correct all faults in

advance, since they can be activated under rare and complex

conditions [1]. Logging their effects during the operational

phase is useful to cope with them.

Fig. 1 shows the causal relationship between faults and fail-

ures. Logging mechanisms can be placed within the execution

path leading to a failure state (e.g., an assertion about the

correctness of a variable; a log is produced if the assertion

is violated). As an alternative, logs can be produced when a

failure state is reached (i.e., a wrong service is perceived by

the users).
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Fig. 1: Fault propagation chain and logging mechanisms place-

ment.

To this aim, we identify the most likely failure modes

using fault injection, and we suggest how to place additional

logging mechanisms to cope with them in order to increase

the probability that a software fault will be logged after its

activation.

The proposed approach is composed by the following steps:

• Execution of the fault injection campaign, and collection

of failure data.

• Classification of failures. We evaluate the effectiveness

of logging mechanisms by means of the presence of log

entries due to the injected fault, in order to identify not

logged failure modes. The ratio between the number of

logged failures and the total number of failures represents

the relative coverage of existing logging mechanisms,

which can be automatically evaluated. Future work will

encompass definition of further metrics based on log

relevance (i.e., to evaluate if a log is misleading). Failures

are also classified by type (e.g., crash, hang) in order to

simplify subsequent analysis.

• Ranking of failure locations by frequency of occurrence,

in order to better focus development efforts. A failure

location is a source code location in which a failure

surfaced.

• Reverse analysis of failure modes, and addition of log-

ging mechanisms; logs are placed in the source code by

following appropriate guidelines.

In this paper, we will give a few examples of guidelines,

based on the close examination of failures experienced in the

case study. Future work will encompass the definition of a

rich guidelines library, in order to make it easier the logging

improvement process.

IV. FAULT INJECTION FRAMEWORK

The fault injection approach adopted in this paper takes ad-

vantage of past work in the field of Software Fault Injection, in
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Fig. 2: Steps followed by the fault injection tool.

particular the G-SWFIT technique described in [18]. G-SWFIT

copes with the representativeness of software faults, by using

fault operators based on real faults found in several open-

source projects. Representativeness is a major concern, since

we aim to help developers to improve logging mechanisms

against software faults. The more representative are injected

faults, the more logging mechanisms will be able to provide

information about real faults when they are triggered.

We inject software faults by means of modifications in

the source code of the program, which is different than G-

SWFIT. In G-SWFIT, faults are injected by means of changes

in the binary code corresponding to programming mistakes

in the high-level source code. G-SWFIT is suitable for OTS

software items when the source code is not available, but

there may be discrepancies between high-level software faults

and binary changes (in [18], on the average there are 9%

more binary changes not corresponding to high-level software

faults, due to the usage of C macros in the target source

code). Injection of software faults in the source code avoids

those inaccuracies. Moreover, G-SWFIT requires additional

efforts to be adapted to the system of interest, because of

hardware/OS/compiler heterogeneity. Instead, injection in the

source code is portable among all platforms supported by the

original program, without any additional efforts. It should be

noted that both techniques need to be adapted to the particular

programming language of the target program, in order to

represent high-level faults. The drawbacks of our approach are

(i) the injection time (source files have to be re-compiled after

fault injection) and, (ii) the need for the source code (if it is

not available, the approach can not applied). We chose the

high-level fault injection approach, because of source code

availability in our case study, and the greater accuracy of

injected faults.

We developed a support tool1 in order to automate software

fault injection. The tool takes as input a source code file, and

it produces a set of faulty source code files, each containing a

different software fault. Faulty source code files can be used

to compile several times the Web Server, each time including

an individual software fault.

Fig. 2 summarizes the steps followed by the fault injection

tool for each source file. First, a C preprocessor translates

the C macros contained in the source code (e.g., inclusion of

header files, macros for conditional compilation, constants),

in order to produce a complete compilation unit. A C/C++

1Available at http://wpage.unina.it/roberto.natella/

front-end2 elaborates the compilation unit, and it produces an

Abstract Syntax Tree (AST) representation suitable for the

subsequent processing by the Fault Injector program. The Fault

Injector searches for fault locations in the AST, and applies

fault operators if specific criteria are met. Fault operators are

based on previous studies on software faults [13], [18]. In this

paper, the most frequent software faults are considered for fault

injection. Fault operators used by the Fault Injector are listed

in table I.

TABLE I: Fault operators (see also [18]).

Acronym Explanation

OMFC Missing function call

OMVIV Missing variable initialization using a value

OMVAV Missing variable assignment using a value

OMVAE Missing variable assignment with an expression

OMIA Missing IF construct around statements

OMIFS Missing IF construct plus statements

OMIEB
Missing IF construct plus statements
plus ELSE before statements

OMLAC
Missing AND clause in expression
used as branch condition

OMLOC
Missing OR clause in expression
used as branch condition

OMLPA Missing small and localized part of the algorithm

OWVAV Wrong value assigned to variable

OWPFV Wrong variable used in parameter of function call

OWAEP
Wrong arithmetic expression in
parameter of a function call

V. CASE STUDY

A. Experimental setup

Fig. 3 shows the testbed configuration adopted in this work.

It is made up of two Personal Computers, (i) a Server Machine

(Intel Pentium 4 3.2 GHz with Hyper-Threading, 4 GB RAM,

1000 Mb/s Network Interface), and (ii) a Client Machine

(Intel Pentium 4 2.4 GHz, 768 MB RAM, 100 Mb/s Network

Interface). An Ethernet LAN interconnects these machines.

The Apache Web Server3 version 2.2.11 is evaluated in this

2In compiler theory, a front-end is the part of a compiler which builds
the internal representation of a program, by means of lexical, syntactic, and
semantic analysis.

3http://httpd.apache.org/
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paper, and the httperf4 tool version 0.9.0 is used to generate

HTTP requests for the Web Server. The Apache Web Server

and Test Manager program execute on the Server Machine.

For each experiment, the Test Manager executes the following

operations:

1) It replaces the Apache executable file with a faulty one.

Each experiment involves exactly one software fault.

2) It starts the Web Server, then it starts the workload

generator on the Client Machine. It stops the Web Server

after the client has received a response for all requests,

or the response time exceeds a timeout. The timeout is

set to 5 seconds, which is much larger than the expected

response time. The start and stop phases have also to be

completed within a timeout of 5 seconds.

3) After the experiment, it stores log files produced by

the Web Server. If one or more Web Server processes

crashed or blocked during the experiment, it also stores

a memory dump (i.e., a snapshot of processes raw

memory at the time of abortion). It finally cleans

up stale resources (e.g., zombie processes, unallocated

semaphores) before the next experiment.

Server machine 

Client machine 

HTTPerf 

workload 

generator 

Apache 

Web 

Server 

che

Test 

Manager 

Logs 
Memory 

Dump 

1. Setup 

3. Collection 

2. Run 

Software fault 

Fig. 3: Testbed setup

B. Logging mechanisms evaluation

Preliminary experiments aim to evaluate Apache built-in

logging capabilities with respect to the injected software faults.

Table II reports the total amount of experiments grouped by

fault operators.

TABLE II: Number of fault injection experiments.

Fault Locations Fault Locations

OMFC 774 OMIA 975
OMIEB 314 OMIFS 884
OMLAC 133 OMLOC 213
OMLPA 2,715 OMVAE 1,442
OMVAV 242 OMVIV 83
OWAEP 383 OWPFV 1,767
OWVAV 324 Total 10,249

4http://www.hpl.hp.com/research/linux/httperf/

Experiments are classified with respect to the following

outcomes:

• Crash: the injected fault causes the unexpected termi-

nation of one or more Web Server processes. Memory

dumps are generated by the operating system;

• Hang: one or more of the HTTP requests, or the Web

Server start/stop phases, are not executed within the

timeout. We force memory dumps to be generated;

• Value: all the error conditions that are not the result of

a crash or a hang (e.g., protocol error perceived by the

client, Web Server termination with an error code);

• No failure: all the requests supplied by the workload

generator are correctly executed.

Fig. 4 depicts the percentage of faults resulting in a failure

outcome (20%). For failure outcomes, we further investigate

Apache logfiles in order to figure out the presence of log

entries. We experience that 39.7% of failures lead to an

effective notification in logs. Therefore, for the most of failures

due to software faults, built-in Apache logging mechanisms do

not provide any information. Fig. 4b provide an in-depth view

on unlogged and logged failures.

no failure; 80% 

failure; 20% 

logged failure; 39.7% 

unlogged  

failure; 60.3% 

(a) Logged and unlogged experiments.

!"#

$!"#
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logged failures unlogged failures 

20.6% 
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60.4% 

53.8% 

46.2% 

4% 79.4% 79.4% 4% 79.4% 79.79.4% 39.6% 39.6% 39.6% 39.6% 6% 8% 53.8% 53.8% 8% 53.8% 53.53.8% 

(b) Experiments breakup by failure classes.

Fig. 4: Experimental fault injection results.

For value failures, a large number of cases is unlogged

(79.4%). Most of them (55.7%) actually occur during the

system start-up phase, when the Web Server aborts without

crashing and no logs are provided. Logged value failures

(20.6%) mainly concern errors with HTTP protocol handling

(e.g., header corruption) or filesystem accesses (e.g., wrong

resource path).
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Unlogged hang failures (39.6%) are mainly due to algorith-

mic errors resulting in infinite loops. Logged hangs (60.4%),

instead, usually involve OS resources (e.g., sockets, IPCs). As

for example, logs are produced when the server tries to write

to a badly initialized socket. In this case, the fault prevents the

server from replying to the client.

Crash failures are mainly due to wrong pointer manipula-

tions. In most of cases (53.8%), no log entries are produced.

An in-depth understanding on the occurred failure thus relies

on memory dumps. Logged crashes (46.2%) are due to the ter-

mination of one or more Web Server child processes, enabling

the parent process to notice their failure. Nevertheless, no

information is provided about failure location or about failure

causes. Log messages suggest to inspect memory dumps from

the operating system, which may be not always available on

the field during the operational phase.

C. Logging mechanisms improvement

We aim at improving Apache log mechanisms by providing

developers with logging guidelines to be followed during the

coding phase. These guidelines are intended to make logs more

suitable to detect software faults resulting in field failures.

To deal with the most common causes of hang and crash

failures, we analyze memory dumps collected during the pre-

liminary experiments. In order to perform a precise analysis,

we separated dumps into two classes, hang and crash failures,

respectively. For each dump, we identify the function that

the process was executing when the failure occurred. This

information is obtained by analyzing the stack.

Table III reports the 10 most frequent functions executed

during hang failures, in descending order.

TABLE III: Most hang-prone functions (by # of occurrences).

Function # occ. Function # occ.

apr_socket_accept 364 add_any_filter_handle 9
apr_socket_sendfile 59 ap_allow_standard_methods 9
ap_escape_logitem 56 ap_byterange_filter 9
apr_socket_sendv 25 ap_invoke_filter_init 9
ap_directory_walk 17 ap_set_listner 9

We provide practical examples showing how to improve logs

with respect to hang failures, in order to draw more general

logging guidelines. First of all, it should be pointed out that the

apr_socket_accept function is excluded from the analysis.

We do so because, in case of hang failure, when we force

memory dumps generation, most of the Web Server processes

are still correctly waiting for incoming connections, and only

one process is actually in hang because of the injected fault.

This explains the large number of occurrences of this function.

Example 1: ap_escape_logitem. Several injected faults

result in a never ending for cycle within this function. Fig. 5

shows the involved lines of code. A viable solution to track this

type of errors is to check if the current number of iterations

exceeds a maximum value. Logging an error message eases

the failure analysis process (lines of code 1-2, 19-22).

1 int current_iterations = 0;

2 char * p = s;

3 for ( ; ∗s ; ++s ) {
4 if ( TEST_CHAR (∗s , T_ESCAPE_LOGITEM ) ) {
5 ∗d++ = ’ \ \ ’ ;
6 switch (∗s ) {
7 case ’ \ b ’ :
8 ∗d++ = ’b ’ ;
9 break ;

10 // ... omissis ...

11 default :
12 c2x (∗s , ’x ’ , d ) ;
13 d += 3 ;
14 }
15 }
16 else{
17 ∗d++ = ∗s ;
18 }
19 if(current_iterations++ == MAX_ITERATIONS) {

20 log(’ap_escape_logitem: MAX_ITERATIONS exceeded’);

21 log(’Potential cause: malformed input (%s)’, p);

22 }

23 }

Fig. 5: ap_escape_logitem (util.c, lines 1795-1826)

Example 2: ap_invoke_filter_init. There are faults

involving wrong pointer assignment, that result in a never

ending while cycle within the function. Fig. 6 shows the

involved lines of code. Like the previous example, it is possible

to track this type of errors, by checking the total number of

current iterations. A log message can be generated as shown

by the boldface line of codes (1, 11-14).

1 int current_iterations = 0;

2 while ( filters ) {
3 if ( filters−>frec−>filter_init_func ) {
4 int result =
5 filters−>frec−>filter_init_func ( filters ) ;
6 if ( result != OK ) {
7 return result ;
8 }
9 }

10 filters = filters−>next ;
11 if(current_iterations++ == MAX_ITERATIONS) {

12 log(’ap_invoke_filter_: MAX_ITERATIONS exceeded’);

13 log(’Potential cause: linked list corruption’);

14 }

15 }

Fig. 6: ap_invoke_filter_init (config.c, lines 311-319)

The most common cause of unlogged hang failures is due to

algorithmic errors that result in infinite loops. The following

guideline addresses this issue: "a cycle including complex

variable manipulations (e.g., strings, pointers) should provide

a check on the number of iterations".

We perform a similar analysis on memory dumps produced

by crash failures. Table III reports the 10 most frequent

functions executed during a crash, in descending order.

Example 3: apr_palloc. Fig. 7 reports a snippet from

the most frequent function in case of crash failures. Since this

function is called in a large number of source locations (i.e., 64
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TABLE IV: Most crash-prone functions (by # of occurrences).

Function # occ. Function # occ.

apr_palloc 435 apr_pollset_add 221
ap_escape_logitem 386 add_any_filter_handle 216
apr_socket_addr_get 353 ap_read_request 213
ap_directory_walk 304 core_create_req 198
ap_core_output_filter 258 ap_core_input_filter 175

times within the server source code), there is a high potential

of error propagation towards it. A viable solution to log this

type of failure is to figure out the presence of a NULL pointer

before its usage. This can be done as shown in Fig. 7 by the

boldface lines of code (2-5).

1 size = APR_ALIGN_DEFAULT ( size ) ;
2 if(pool==NULL) {

3 log(’apr_palloc: using NULL pointer’);

4 log_stack();

5 }

6 active = pool−>active ;

Fig. 7: apr_palloc (apr_pools.c, lines 637-638)

Inserting a check before every pointer usage requires a high

development effort, and it results in a too high overhead at

runtime. Our approach identifies source code locations most

likely to fail due to NULL pointers. This information enables

developers to narrow the number of checks to be inserted.

The following guideline has been defined: "most likely NULL

pointers should be checked before the usage". Logging the

contents of the uppermost stack locations (i.e., by means of the

log_stack() function) is also useful to identify the function

that ultimately caused the failure.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we investigated the problem of evaluating the

quality of logs within the Apache Web Server. An extensive

fault injection campaign demonstrates that, in the most of

cases, logs are not able to provide information about failures

due to software faults. Therefore, we proposed an approach

for improving logs, based on the analysis of most frequent

failure locations identified during the campaign. The approach

enabled us to draw a few general guidelines that can be

followed by developers during the development phase.

Future work will be devoted to the definition of a wider

set of guidelines, not only by an in-depth analysis of the

Apache case study but also of other complex software systems.

Our ultimate objective is to demonstrate that the proposed

approach can actually improve the effectiveness of logs of

current systems.
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