
Adaptive Monitoring in Microkernel OSs

Domenico Cotroneo, Domenico Di Leo, Roberto Natella
Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II

Via Claudio 21, 80125, Naples, Italy
{cotroneo, domenico.dileo, roberto.natella}@unina.it

Abstract

The microkernel architecture has been investigated by
both industries and the academia for the development of
dependable Operating Systems (OSs). This work copes with
a relevant issue for this architecture, namely unresponsive
components because of deadlocks and infinite loops. In par-
ticular, a monitor sends heartbeat messages to a component
that should reply within a timeout. The timeout choice is
tricky, since it should be dynamically adapted to the load
conditions of the system. Therefore, our approach is based
on an adaptive heartbeat mechanism, in which the timeout
is estimated from past response times. We implement and
compare three estimation algorithms for the choice of the
timeout in the context of the Minix 3 OS. From the analysis
we derive useful guidelines for choosing the best algorithm
with respect to system requirements.

Keywords: Runtime monitoring, Fault detection,
Microkernel, Minix 3 OS

1 Introduction

Operating Systems (OSs) are perhaps the most complex
and critical part of the software stack in modern systems:
they are made up of millions of lines of code (LoCs),
provide fundamental services to user programs, and are
tightly coupled with hardware resources. However, com-
plexity raises concerns about dependability, since it is
challenging to detect and fix software faults (bugs) in such
a complex system within time-to-market constraints [1], as
demonstrated by several studies on OSs failures occurring
after release [2, 3]. Therefore, significant research efforts
have been spent on dependable architectures for OSs, in
order to mitigate the issue of software faults in the OS.
(Microkernel) OSs have a modular based architecture that
can potentially used for developing more dependable sys-
tems. The architecture is composed by several unprivileged
components implementing the most of services (e.g., device
drivers), and a tiny privileged component (microkernel) of a
limited number of lines of code implementing basic services
(e.g., scheduling) [4]. This architecture is adopted in some
commercial OSs (MacOS X Darwin kernels and QNX [5,6]

Since components are unprivileged and execute in pri-

vate address spaces, this architecture prevents a fault from
affecting other components in the system, thus isolating the
fault within the buggy component. Moreover, the microker-
nel architecture can be exploited for recovering from faults,
by automatically restarting a crashed component. However,
we believe there is still room for improving the microkernel
architecture with respect to more complex failure behaviors
than component crashes. In particular, this architecture can
be exploited to deal with unresponsive components, i.e.,
the component is not crashed but it does not reply to any
service request. This behavior is a common issue caused
by software faults, which is related to deadlocks, infinite
loops, and software aging [2, 3, 7].

In this paper, we propose a strategy for detecting unre-
sponsive components in microkernel OSs, which is based
on a heartbeat mechanism, i.e., a “ping” message is period-
ically sent to a component, and it is deemed unresponsive
if a reply is not received within a timeout. To the best of
our knowledge, in existing OSs such as QNX [8] and in
Minix 3 [9] the timeout is chosen a priori. However, the
choice of the timeout is the trickiest part of this mechanism.
On one hand, if the timeout is too short, a component
that is performing a time-consuming computation can be
erroneously considered unresponsive. On the other hand,
if the timeout is too long, an unresponsive component is
detected after a long delay, which can negatively affect per-
formance and dependability. On top of that, the expected
response time from a correct component can vary because
of several random factors, such as the user workload, I/O,
and memory management. For these reasons, the proposed
strategy adaptively selects the timeout, based on the history
of response times of the component. We implemented and
evaluated three algorithms for timeout choice in the Minix
3 microkernel OS, which are experimentally analyzed using
simulations and real system execution. From experimental
results, we derive some useful guidelines for choosing the
best algorithm with respect to system requirements.

The paper is structured as follows. In section 2, we
discuss related work in the field of OS dependability. In sec-
tion 3, we provide an overview of the Minix 3 microkernel
OS. In section 4, we discuss open issues in more detail and
describe the proposed approach. In section 5, we evaluate
timeout estimation algorithms. Section 6 closes the paper.

2010 International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-4244-7728-9 /10/$26.00 ©2010 IEEE 66 DSN-W 2010: Cotroneo et al.



2 Related Work

We analyze past studies on OS dependability from
two major categories: OSs enhanced with fault tolerance
mechanisms and OSs designed to be reliable.

2.1 OSs enhanced with fault tolerance
mechanisms

This class of OSs is not designed to be reliable, but
their native architecture has been extended with additional
components that increase their dependability. To the best
of our knowledge, these OSs do not provide a native
mechanism that detects unresponsive components. For
example, Nooks [10] provides isolation for device drivers
in order to prevent kernel memory corruption. Other
works focus on fast recovery techniques. For instance,
in [11] the “recovery box” technique is proposed to
increase availability by storing system data in a stable
area of memory, which is exploited to avoid a full reboot.
In [12], hang detection in the Linux kernel is improved by
introducing a monitor implemented as a kernel module.
The detector tries to detect whether the system is stuck or
not, by monitoring the interface between the drivers and
the kernel. However, this approach was not aimed at hang
detection in individual OS components. In [13], the support
of special hardware (e.g., performance counters in the
CPU) are exploited to detect hangs in the OS and in user
programs. In [14], a machine learning approach is proposed
to identify anomalies in virtual machines, by monitoring
information collected by the hypervisor such as CPU usage
and I/O operations. However, this approach comes with the
overhead and complexity of virtualization, and it needs to
be preliminarily tuned for a specific system workload.

2.2 OSs designed to be reliable

For these OSs, high reliability requirements drive their
design. For example, in Windows 2000 kernel memory
protection was added into the design of the OS. In the
previous releases of Windows OS, errant applications could
access the kernel space during the installation procedure.
To protect the kernel space from misbehaving applications
they designed Windows 2000 with a kernel address space
protection [15].

Minix 3 is a microkernel OS whose design is completely
devoted to achieve high reliability. Its architecture has
been recently revisited and loosely resembles Minix 2. The
first improvement was to execute all the servers and device
drivers in user space on the top of a microkernel [4, 16].
Minix 3 has the capability to recover faulty device drivers
without user intervention [9]. This feature is achieved by
means of a dedicated component (namely Reincarnation
Server, RS, or Driver Manager) that monitors drivers and re-
covers them when needed. If a monitored process is stuck or
unexpectedly exits, RS restarts it. In [17], a resource reser-
vation framework is introduced in order to add ”temporal
protection” to Minix 3. A new server (Constant Bandwidth

Server, CBS) guarantees that a process executes within a
given interval, and no one can monopolize the CPU. CBS
implements a CPU reservation algorithm that replaces the
native Minix scheduler. The reliability-driven design also
involved the Minix Inter Process Communication system
(IPC) [18]. The native IPC is enhanced with new primitives
and rules that restrict the communication among trusted
processes (e.g., file system server) and untrusted ones (e.g.,
drivers). In [19], the device driver isolation mechanism
has been assessed using a practical approach based on
extensive SoftWare-Implemented Fault-Injection (SWIFI)
testing. SWIFI testing was also helpful to fix rare bugs that
occurred even in the microkernel, and the results showed
the high dependability level achieved by Minix 3. In [20] a
filter driver, settled between the file system and disk driver,
controls the integrity and the sequence of exchanged mes-
sages. The filter driver aims at protecting the file system
from data corruption. Moreover, in Minix 3 RS constantly
monitors device drivers by sending heartbeat messages.
However, the RS heartbeat mechanism is still elementary
and we show in section IV how it can be improved.

3 The Minix 3 OS

Minix is a microkernel POSIX-compliant OS. Its tiny
microkernel encompasses low-level operations (namely
IPC, scheduling, interrupt handling, clock management,
MMU); other services are provided by user-space processes
called servers (e.g., File System server, Process Manager).
The basic component of Minix 3 is the process, in which
servers are executed. As depicted in Figure 1, drivers also
run in user-space processes, and their communication is
restricted to microkernel and server layers.

Figure 1. The design of Minix 3.

Communication among components is based on the
message passing technique, thus the architecture works
according to the client-server paradigm: when a message
is received, the server process executes a computation and
returns a result. Minix 3 also provides self-healing mecha-
nisms [9]: it is possible to recover faulty components using
the Reincarnation Server. This server monitors drivers and
other servers at run-time. They are restarted when a crash,
panic, or unexpected exit occurs in a process. RS is also
able to detect unresponsive process by sending heartbeat
messages to it. A process replies to the heartbeat when it
completes its current computation. If a process does not
reply within a fixed timeout, RS assumes that it is stuck and

2010 International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-4244-7728-9 /10/$26.00 ©2010 IEEE 67 DSN-W 2010: Cotroneo et al.



recovers the component. However, the timeout choice is a
non-trivial aspect in complex scenarios (section 4.1). The
Minix 3 OS is composed by simple components and it lacks
some complex features of modern OSs (e.g., swapping,
multithreading), therefore its heartbeat mechanism was not
designed to adapt the timeout at runtime. We develop our
adaptive monitoring strategy on top of the RS (section 4.2).

4 Timeout Adaptation

4.1 Problem statement

In this section, we describe the proposed approach and
provide details about its implementation in the Minix 3
OS. Our approach copes with the main issue of heartbeat
mechanisms, namely the choice of the timeout. This
choice affects detection for the following reasons: (i) the
timeout should be equal or greater than the computation
time needed by the monitored component under fault-free
conditions, in order to not erroneously deem faulty a
working process, and (ii) an exceedingly high timeout leads
to a long detection delay. However, this computation time
may be unknown, and can vary during execution due to
several random factors, such as:

• Memory management (e.g., page faults for data or
instructions can occur during execution; memory
allocation operations take a variable amount of time);

• I/O (e.g., filesystem fragmentation may slow down disk
operations);

• Algorithmic complexity (e.g., if a program takes
O(log(n)) time, the response time depends on the “input
size” n);

• System overload (e.g., the number of processes currently
in execution).

For existing heartbeat mechanisms in OSs (section 2),
the timeout is fixed and it is chosen before running the com-
ponent to be monitored. However, this approach does not
always work properly, because it is difficult to foresee the
most effective timeout a priori due to the mentioned issues.

4.2 Our approach

To overcome this limitation, our approach (Figure 2)
is based on a dynamic timeout, that is, the timeout is
continuously updated during execution (Figure 3). As
previously mentioned, the timeout value should adapt
to the expected computation time for a process. To this
aim, we store the most recent response times of past
heartbeats in a FIFO circular buffer of size N (i.e., a new
value overwrites the oldest value in the buffer). Response
times are processed to obtain the next timeout, using an
estimation algorithm. This step is based on the assumption
that past response times can be used to estimate the near
future. The assumption follows from the observation that
the above-mentioned factors affecting response times are
unlikely to change within a short time period. For instance:

Circular buffer Response 
time 

history 
New 

timeout 

No 

Yes 

Response time 

Timeout *  
Process 
restarted 

No 

Yes 

Figure 2. Overview of the proposed ap-
proach.

1

2

3

4

5

6

7

8

9

Heartbeats

R
es

po
ns

e 
Ti

m
e

Heartbeat replies
Low Fixed timeout
High Fixed Timeout
Adaptive Timeout

Figure 3. An example of timeout estimation
algorithm. Vertical bars represent heartbeat
response times of a monitored component.

• A page fault is followed by more page faults when the
memory references access to new data or instructions;

• If a memory allocation or I/O operation is slowed down
by memory exhaustion or fragmentation, following
operations will likely be slow;

• An intensive user workload will likely last until the user
gets his work done.

Therefore, on the basis of past response times, the ap-
proach is able to adapt the timeout to the current condition
of the monitored process. Nevertheless, when an abrupt
change of response times occurs, the approach is able to
adapt to the new conditions. In particular, two opposite
cases may occur, that is, the response time is significantly
lower or higher than past values. In the former case, the esti-
mated timeout will be higher than the processing time, lead-
ing to a higher detection delay; however, as more response
times are collected, the estimated timeout will automati-
cally adapt to the lower response time. In the latter case,
a process can be erroneously deemed failed and restarted;
in order to avoid further restarts due to wrong detection, a
new value greater than the current timeout is added to the
history, namely timeout · λ where λ > 1 (see Figure 2).

In order to estimate the next timeout, several algorithms
could be conceived. We consider three algorithms derived

2010 International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-4244-7728-9 /10/$26.00 ©2010 IEEE 68 DSN-W 2010: Cotroneo et al.



from past work; although they were developed in contexts
different than ours, they are worth considering since they
share some interesting similarities with our problem.

The EWMA (Exponential Weighted Moving Average)
algorithm [21] was adopted by the TCP protocol to estimate
the Round-Trip Time (RTT) over a connection. In this
context, the RTT is exploited to set a timeout for TCP seg-
ments (i.e., segments are retransmitted if an acknowledge
is not received within the timeout). The estimated RTT of
a segment to be sent (EstRTT) is derived from the average
RTT observed from previous segments (SampleRTT):

EstRTTnew = (1 − α) · EstRTTold

+ α · SampleRTT. (1)

In (1), the weight given to past RTTs decreases expo-
nentially, in order to give more importance to most recent
response times. Moreover, since the RTT may vary because
of random fluctuations, an additional term is considered,
which is a weighted average of deviations around the
estimated RTT (DevRTT):

DevRTTnew = (1 − β) · DevRTTold

+ β · |SampleRTT − EstRTTold| . (2)

The final estimated timeout is given by:

Timeout = EstRTTnew + 4 · DevRTTnew. (3)

The Max algorithm is a heuristic for estimating the
number of instructions executed by a process before
blocking (e.g., the process invokes a system call or it is
preempted by the scheduler) [13]. This algorithm estimates
the timeout by picking the highest response time in the
history of response times. The timeout is then multiplied
with a constant factor γ to cope with random fluctuations:

Timeout = γ · max (history[0 . . . N − 1]) . (4)

The last algorithm, which we refer to as WeightedSum,
was proposed in [22] for monitoring distributed objects in
CORBA-based systems. In that context, heartbeat messages
are sent to detect a crashed object. The heartbeat timeout is
obtained by adding the weighted sum of previous response
times (N − 1 and 0 are respectively the most and the least
recent values in the history) to the latest response time:

Timeout = history[N−1]+
∑N−1

j=0 weight[j] · history[j]
N

.

(5)
In [22], weights were found empirically and validated

by means of simulations. We include this algorithm to
study how this empirical choice performs in our context.
In particular, the most recent value (N − 1) is given the
greatest weight, which is inversely proportional to the size
N of the history (the greater the history, the lower the
weight), and the remaining values have decreasing weights:

weight[j] =






N+4
N ·4 j = N − 1
(1 −

∑N−1
k=j+1 weight[k])
· weight[N − 1] 0 < j < N − 1

(1 −
∑N−1

k=1 weight[k]) j = 0
(6)

The proposed approach and the algorithms were imple-
mented into the RS of Minix 3.1.2 with minimal intrusive-
ness. In particular, the implementation required to add 154
LoCs and to modify 5 LoCs, spanning over 6 source files.

5 Experimental analysis

5.1 Overview

The goal of our experimental analysis is to find out which
estimation algorithm is the most suitable for dynamically
adapting the timeout when response times vary. In order to
do so, we consider a realistic scenario in which a server pro-
cess is monitored by the RS, and response times can vary
because of algorithmic complexity (section 4.1). We con-
ducted several experiments on this scenario using different
workloads and settings of algorithm parameters, in order not
to bias the results. A workload is a sequence of requests for
the monitored server process, in which each request takes a
specific amount of time to be processed. For a given work-
load, we vary the parameters of algorithms within a range,
and average the results over all settings. Since the number
of experiments becomes large when several workloads and
parameters are considered, we evaluated the algorithms
using simulations to reduce the duration of experiments.
This was accomplished in three steps, that is, (i) the sce-
nario was actually implemented in Minix 3, (ii) the system
was executed under several kinds of request, to profile the
computation time needed for each request, and (iii) the
measured response times were fed to a simulator in order to
evaluate the algorithms. Additionally, the accuracy of sim-
ulation was validated by comparison of real and simulated
executions. Algorithms are then compared with respect to
two metrics relevant for the issue of timeout choice.

5.2 Test scenario

The test scenario encompasses the following processes:
• Key Searcher Server (KSS). It is the only process

monitored by RS. We reproduced the situation in which
response times vary because of algorithmic complexity.
In particular, this process manages a Red-Black Tree
(RBT), i.e., a self-balancing binary tree in which search,
insertion, and delete operations are O(log(n)), where
n is the total number of elements in the tree. An
RBT is a realistic scenario, since it is adopted in real
complex applications such as OSs (e.g., for memory and
process management) and DBMSs (e.g., for storing table
indexes). We implemented KSS as a Minix server that
listens for search requests; the request input is the key
to search, and the request output is a value associated to
the key. In order to emulate a complex computation, we
consider the scenario in which n = 106 and a search is
repeated 6 · 106 times for each request.

• Key Requester (KR). This process sends requests to
KSS for the value associated with a key. This process is
responsible for generating our workload as described in
the next section.

2010 International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-4244-7728-9 /10/$26.00 ©2010 IEEE 69 DSN-W 2010: Cotroneo et al.



In the test scenario, the KSS receives messages from
either RS or KR; the former sends heartbeat messages
and the latter sends requests for RBT data. KSS replies to
heartbeat messages with a “ping reply”, and to KR with the
requested data.

5.3 Workload

Since we want to compare the effectiveness of our
algorithms under varying response times, we considered
two workloads in which response times vary on purpose.
Workloads are designed to frequently vary response
times, in order to analyze the algorithms under worst
cases. Workload W1 (Figure 4a) is a sequence of requests
that progressively increments and decrements the search
time. In particular, we have a set of 4 keys k1, . . . , k4,
where the processing time for the i-th key is t(ki). We
chose the four keys among all keys in the RBT such that
k1 = argminki∈RBT(t(ki)), k4 = argmaxki∈RBT(t(ki)),
and t(k4)−t(k3) = t(k3)−t(k2) = t(k2)−t(k1). Keys are
requested in the following order: k1, k2, k3, k4, k3, k2. Each
key is requested D times, and this sequence is repeated
5 times. Workload W2 (Figure 4b) represents a sequence
of requests in which the processing time peaks for a short
period. Specifically, we consider keys k1 and k4 from W1.
Key k1 is requested F times, and key k4 once; this sequence
is repeated 5 times. Moreover, in order to avoid biasing the
results, we executed several tests with different values of D
and F (D ∈ {1, . . . , 9} and F ∈ {1, . . . , 9} respectively).

1

2

3

4

Workload requests

K
ey

 se
ar

ch
 ti

m
e

D = 2 Repeated 5 times

(a) Workload W1 (D: step
duration).

1

2

3

4

Workload requests

K
ey

 se
ar

ch
 ti

m
e

F = 6

Repeated 5 times

(b) Workload W2 (F : pulse
distance).

Figure 4. Workload request sequences.

5.4 Performance measures

As criteria for comparing the algorithms, we take into
account the need for an algorithm that is both fast and
accurate. Therefore, we adopted two popular metrics [23],
False Positives (FP) and Latency (L). FP is the number
of times that the process is mistakenly restarted during a
test (e.g., a process under heavy workload fails to reply
before the timeout expires). Latency is the mean difference
between timeout values and response times. It represents
the expected detection delay in the case that the process
will never reply to a request. The greater is the latency, the
greater is the time to detect a faulty component. Latency
is expressed in ticks, which is the elementary time unit in

Minix (60 ticks = 1 second). It should be noted that we
execute tests in a fault-free scenario, since an unresponsive
process is eventually detected [23]. Therefore, both FP and
L should be as close as possible to zero.

5.5 Simulations

In our experiments, we considered several settings
of algorithm parameters, in order to take into account
the sensitivity of the algorithms with respect to their
parameters. We considered a set of reasonable settings
for each parameter, and simulated each algorithm using
every combination of settings. Table 1 shows the values we
considered for each parameter.

Table 1. Algorithm parameters.
Algorithm Parameter Range Step

EWMA α [0.1, 0.9] 0.1
β [0.1, 0.9] 0.1

Max γ [0.1, 0.9] 0.1
N [1, 9] 2

WeightedSum N [1, 9] 2

The simulator is a program that takes in input a sequence
of response times (discussed in section 5.3). Given an
algorithm, the simulator evaluates the timeout value esti-
mated for the current heartbeat. It takes into account the
FIFO policy adopted for storing past heartbeats, and the
insertion of the elapsed time in the presence of a process
restart, as shown in Figure 2. The simulator provides in
output the average performance measures (section 5.4)
for a given algorithm configuration. Finally, results from
different algorithm configurations are averaged to obtain a
summarizing result for a given workload.

We validated the results of our simulations against real
executions for a subset of cases (we considered the cases
D = 1 for W1 and F = 1 for W2). The number of false
positives calculated by the simulator and obtained from the
real system were always the same. The accuracy of the
latency measure, in the worst case, was 97.46%. The slight
inaccuracy of latency from the simulator is due to factors
such as process scheduling and the time that RS needs to
execute the estimation algorithms.

5.6 Results

From the simulation results, we obtained the average
number of false positives and the average latency for each
workload and for each algorithm. These measures are
shown in Figure 5 for several values of D and F (section
5.3). In particular, Figure 5a and 5c show the percentage
of false positives, i.e., the ratio between the number of
requests not processed within the timeout, and the total
number of requests in the workload. Figure 5b and 5d
provide the mean latency in ticks.

Since the results are obtained from worst-case work-
loads, they should not be interpreted as an absolute measure
of quality of the algorithms. Instead, we analyze the results

2010 International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-4244-7728-9 /10/$26.00 ©2010 IEEE 70 DSN-W 2010: Cotroneo et al.



(a) False positives for W1. (b) Latency for W1.

(c) False positives for W2. (d) Latency for W2.

Figure 5. Simulation results.

to compare algorithms between each other in worst-case
conditions. It can be observed that both the false positives
and latency measures are monotonically decreasing with re-
spect to D and F , for all algorithms. This result is justified
by the fact that the algorithms perform better when fluctua-
tions in the workload are rare (i.e., high values of D and F ),
since an algorithm may not be able to adapt to a change in
response times thus causing false positives or high latency.

The most significant differences between algorithms
were observed for workload W1 (Figure 5a and Figure
5b). It appears that EWMA is the worst algorithm with
respect to false positives, especially for low values of D.
This result occurred because EWMA gives a lower weight
to oldest values in the history than the other algorithms
(in EWMA weights decrease exponentially). The weight
of oldest values is relevant for workload W1, since the
sequence is long (in Figure 4a, the sequence is 12 samples
long for D = 2) and the algorithm has to take into account
the previous repetition of the sequence to properly set the
timeout. Therefore, the sequence length prevents EWMA
from adapting to increments in workload W1. The Max
algorithm behaves better than EWMA with respect to false
positives, since the γ factor in eq. (4) prevents incremental
variations in the workload from causing false positives.
The WeightedSum algorithm gives the lowest percentage
of false positives. This is due to the high timeout values
produced by the algorithm (see Figure 5b). Before an
increment in the response time occurs, which may cause

a false positive, the algorithm adds to the latest response
time an increment always greater than the variation in the
workload (eq. (5)). However, high timeout values also
cause a mean latency higher than the other algorithms.

In workload W2, differences between algorithms are not
as noticeable as W1, even for low values of F . In particular,
for low F the EWMA algorithm is not worse than the other
algorithms (Figure 5c). This is due to the shorter sequence
length than W1 (for instance, the sequence is 3 samples
long for F = 2), therefore weights for oldest values are
not as important as in the previous experiment. When F
increases (3 ≤ F ≤ 5), EWMA provides a slight higher
percentage of false positives, since the sequence becames
longer. Finally, when F ≥ 6, although EWMA is still
worse than the other algorithms, the absolute difference be-
tween algorithms is negligible, since peaks in the workload
are rare. Instead, in W2 Max and WeightedSum are very
close with respect to both false positives and latency.

Our results can be summarized as follows:

• The estimation algorithm has a major impact on the
proposed approach with respect to W1 (i.e., incremental
workload variations). Among the evaluated algorithms,
there is not a best one with respect to both metrics, due
to the trade-off between false positives and latency.

– The WeightedSum algorithm should be preferred
when false positives is the most important metric, at
the cost of a higher latency.

2010 International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-4244-7728-9 /10/$26.00 ©2010 IEEE 71 DSN-W 2010: Cotroneo et al.



– It appears that EWMA should be preferred when
latency is the most important metric. Nevertheless,
the results does not take into account the cost of
false positives, that is, the time required for killing
and restarting a process, which negatively affects
availability. Moreover, a high number of false
positives may lead to wasted work and to loss of
data (in the case of stateful processes), therefore
we do not believe that EWMA is adequate for a
general-purpose OS such as Minix 3.

– The Max algorithm ranks in the middle, and it
represents a trade-off between FP and L.

• In W2 (i.e., sporadic variations) the estimation algo-
rithms do not differ as significantly as in W1. The
algorithms provide similar false positives and latency,
and the EWMA algorithm seems to be the most sensitive
to F (the ranking of algorithms for F ≤ 3 is opposed to
the ranking for F ≥ 4). In this regard, the WeightedSum
and Max algorithms provide more stable measures.

6 Conclusions and future work

In this paper we proposed an approach to detect unre-
sponsive components in microkernel OSs. Our approach
is based on an adaptive heartbeat mechanism, in which
the timeout is estimated from past response times. We
implemented and compared three estimation algorithms in
the context of the Minix 3 microkernel OS, with respect to
false positives and latency of detection. From our analysis,
we conclude that the WeightedSum or Max algorithm
should be preferred, respectively, when little false positives
are needed or when a trade-off between false positives and
latency is needed. Instead, we do not believe the EWMA
algorithm is adequate for a general purpose OS such as
Minix 3, since it provides highly variable measures, and the
potentially high number of false positives offsets the low
latency it can provide.

Future work encompasses the possibility to evaluate the
algorithm in different scenarios (e.g., by considering more
random factors such as I/O and memory management), to
provide an approach for tuning algorithm parameters, to
evaluate the scalability of the approach (e.g., by increasing
the number of monitored servers), and to analyze more
estimation algorithms.

Acknowledgment

This work has been partially supported by the project
“CRITICAL Software Technology for an Evolutionary
Partnership” (CRITICAL-STEP, http://www.critical-
step.eu), Marie Curie Industry-Academia Partnerships and
Pathways (IAPP) number 230672, within the context of the
Seventh Framework Programme (FP7).

References

[1] E. Weyuker, “Testing Component-Based Software: A
Cautionary Tale,” IEEE Software, vol. 15, no. 5, 1998.

[2] M. Sullivan and R. Chillarege, “Software Defects and
their Impact on System Availability—A Study of Field
Failures in Operating Systems,” in Symp. on Fault-Tolerant
Computing, 1991.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,
“An Empirical Study of Operating System Errors,” in ACM
Symp. on Operating Systems Principles, 2001.

[4] J. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum,
“Construction of a Highly Dependable Operating System,”
in European Dependable Computing Conference, 2006.

[5] “Mac OS X System Architecture,” Apple Developer Con-
nection: http://developer.apple.com/macosx/architecture/.

[6] “The QNX Neutrino microkernel,” QNX Developer
Support: http://www.qnx.com/developers/docs/6.3.0SP3/
neutrino/sys arch/about.html.

[7] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” in
Symp. on Fault-Tolerant Computing, 1995.

[8] “QNX Software Development Platform - High Avail-
ability Framework,” QNX documentation: http:
//www.qnx.com/download/group.html?programid=18790.

[9] J. N. Herder et al., “Failure Resilience for Device Drivers,”
in Conf. on Dependable Systems and Networks, 2007.

[10] M. Swift, B. Bershad, and H. Levy, “Improving the Reliabil-
ity of Commodity Operating Systems,” ACM Transactions
on Computer Systems, vol. 23, no. 1, pp. 77–110, 2005.

[11] M. Baker and M. Sullivan, “The Recovery Box: Using
Fast Recovery to Provide High Availability in the UNIX
Environment,” in Summer USENIX Conf., 1992.

[12] D. Cotroneo, R. Natella, and S. Russo, “Assessment and
Improvement of Hang Detection in the Linux Operating
System,” in Symp. on Reliable Distributed Systems, 2009.

[13] L. Wang, Z. Kalbarczyk, W. Gu, and R. Iyer, “Reliability
MicroKernel: Providing Application-Aware Reliability in
the OS,” IEEE Trans. on Reliability, vol. 56, no. 4, 2007.

[14] D. Pelleg et al., “Vigilant: Out-of-Band Detection of
Failures in Virtual Machines,” Operating Systems Review,
vol. 42, no. 1, 2008.

[15] B. Murphy and L. Bjorn, “Windows 2000 dependability,” in
Conf. Dependable Systems and Networks, 2000.

[16] J. N. Herder et al., “MINIX 3: A Highly Reliable, Self-
Repairing Operating System,” vol. 40, no. 3. ACM
SIGOPS, 2006.

[17] A. Mancina et al., “Enhancing a Dependable Multiserver
Operating System with Temporal Protection via Resource
Reservations,” in Conf. on Real-Time and Network Systems,
2008.

[18] J. N. Herder et al., “Countering IPC Threats in Multiserver
Operating Systems,” in Pacific Rim Symp. on Dependable
Computing, 2008.

[19] ——, “Fault Isolation for Device Drivers,” in Conf. on
Dependable Systems and Networks, 2009.

[20] ——, “Dealing with Driver Failures in the Storage Stack,”
in Latin-American Symp. on Dependable Computing, 2009.

[21] V. Jacobson, “Congestion Avoidance and Control,” in ACM
SIGCOMM, 1988.

[22] S. Lee and H. Youn, “Dynamic Window-based Adaptive
Fault Monitoring for Ubiquitous Computing Systems,” in
Pacific Rim Symposium on Dependable Computing, 2005.

[23] W. Chen, S. Toueg, and M. K. Aguilera, “On the Quality of
Service of Failure Detectors,” IEEE Trans. on Computers,
vol. 51, no. 5, 2002.

2010 International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-4244-7728-9 /10/$26.00 ©2010 IEEE 72 DSN-W 2010: Cotroneo et al.


