
1

Run-Time Detection of Protocol Bugs
in Storage I/O Device Drivers

Domenico Cotroneo, Luigi De Simone, Roberto Natella

Abstract—Protocol violation bugs in storage device drivers are
a critical threat for data integrity, since these bugs can silently
corrupt the commands and data flowing between the OS and
storage devices. Due to their nature, these bugs are notoriously
difficult to find by traditional testing. In this paper, we propose
a run-time monitoring approach for storage device drivers, in
order to detect I/O protocol violations that would otherwise
silently escalate in corruptions of users’ data. The monitoring
approach detects violations of I/O protocols by automatically
learning a reference model from failure-free execution traces. The
approach focuses on selected portions of the storage controller
interface, in order to achieve a good trade-off in terms of low
performance overhead and high coverage and accuracy of failure
detection. We assess these properties on three real-world storage
device drivers from the Linux kernel, through fault injection and
stress tests. Moreover, we show that the monitoring approach
only requires few minutes of training workload, and that it is
robust to differences between the operational and the training
workloads.

Index Terms—Device drivers; Storage failures; Run-time mon-
itoring; Linux kernel; Fault injection.

I. INTRODUCTION

Data are a valuable asset, and assuring their reliability is an
important requirement for IT systems. Significant investments
are made into technologies and practices for preserving data,
including RAID storage, redundant database servers and data
paths, sophisticated filesystems, I/O virtualization, regular
backups and disaster recovery plans [1], [2]. Nevertheless,
faulty device drivers, which are among the most bug-prone OS
components [3]–[5] and a frequent source of storage failures
[6], [7], still represent a significant threat for the storage
stack due to the shortcomings of failure detection mechanisms
against software bugs.

In particular, protocol violation bugs are the ones that
violate the protocol between the software and hardware parts
of the storage stack, by misinterpreting the device state or
sending incorrect commands to the device. These bugs are
quite problematic since they are able to elude traditional
testing due to their transient behavior (e.g., they are triggered
under very specific states of the hardware and of the OS),
which makes it difficult to achieve good test coverage [8],
[9]. Moreover, protocol bugs represent a large part of device
bugs, as showed by Ryzhyk et al. [10] in the context of
the Linux kernel, where they represented 38% of the total.
More important, protocol violations have the potential to
cause undetected effects. The OS and the hardware focus
on detecting generic failure symptoms, such as an access to
an invalid memory address, but protocol violations do not

necessarily lead to such symptoms. The lack of detection can
lead to silent corruptions of users’ data, thus exacerbating the
cost of software failures.

In this paper, we propose a novel approach for detecting I/O
protocol violations in storage device drivers, by monitoring at
run-time the interactions between the driver and the hardware
device controller. The purpose of the run-time monitor is to de-
tect device driver failures in a timely manner. This solution is
meant both to users and engineers of high-availability storage
systems, including: administrators and end-users of the system,
which need to get alarms about the onset of data corruptions in
order to trigger recovery strategies (such as, to stop the faulty
machine, and to check for data integrity and recover a recent
backup if necessary); kernel developers, which may want to
offer a ready-to-use monitoring module as companion of their
device driver, in order to ease system administrators and end-
users at detecting failures and at providing information for
debugging; and vendors of full-stack storage solutions, which
may want to integrate additional high-reliability features in
their offerings.

The approach addresses the challenging problem of defining
a reference model of the (correct) driver protocol, in order to
point out deviations of the actual driver’s behavior from it. In-
deed, defining such model is a cumbersome and difficult task,
since I/O protocols are complex (e.g., due to concurrency and
to their mixed hardware/software nature), and since the device
controller may differ from public protocol specifications (e.g.,
I/O device standards) in subtle and undocumented ways [10].
Therefore, our approach consists in automatically learning a
reference model from traces of execution of the device driver
under failure-free conditions, by probing how the device driver
interacts with the storage controller (e.g., on memory-mapped
registers) and with the OS kernel (e.g., invocations of I/O
APIs). Then, it generates a kernel module that acts as a run-
time monitor to check for violations from the learned protocol.
The approach focuses on the interfaces of the device drivers,
and it only requires limited knowledge of the device driver
API and key data structures.

We evaluate this approach on three real storage device
drivers of the Linux OS. We analyze the ability of this OS
to detect storage data corruptions through an extensive fault
injection campaign. More in particular, during the experimen-
tal campaign, we addressed the following questions:

. Monitoring coverage. Is the learned monitor actually able to
detect data corruptions? Does the approach improve detection
with respect to existing error detection checks in the I/O stack?

To appear in IEEE Transactions on Reliability (DOI: 10.1109/TR.2018.2841203)

2

Increasing the detection coverage is a key goal for systems
with high reliability requirements, in which even a single case
of data loss due to silent corruption has a significant cost.
. Monitoring accuracy. The run-time monitoring approach is
based on dynamic analysis, in which the monitor is trained
only with a finite subset of the many possible execution traces
of the driver. Moreover, there will be inevitable differences
between the training workload and the actual workload in pro-
duction environments. Can the false positive rate be kept low
enough for practical purposes, despite such limited training
traces? How much training is necessary to get an accurate-
enough monitor? Having a low volume of false positives, and
a quick and robust training are important properties of the
approach to be usable.
. Side effects. The run-time monitor must instrument the
device driver in order to collect state information, but the
instrumentation may slow down I/O operations (i.e., per-
formance overheads) and even cause a probe effect (e.g.,
alterations of the driver’s behavior due to different timings
of events). How to keep the performance overhead low, even
under high-volume I/O workloads? How to prevent the probe
effect from causing alterations that are mistaken by the monitor
as protocol violations (i.e., false positives)?

The experimental results pointed out that the monitoring
approach can achieve a high coverage (by detecting 86% of
data corruption failures), and a good complementarity with
other error checks in the kernel (as 26% of the data corrup-
tion failures were only detected by the proposed approach).
Moreover, the monitoring approach exhibited no false positives
during week-long stress tests. Interestingly, both the high
coverage and high accuracy of the approach are preserved
even when the operational workload differs from the training
workload: a closer analysis of the driver API revealed that
I/O access patterns at that level are insensitive to workload
variations at the user-space level, and that these patterns can
be learned by our approach within few minutes of training
workload. Finally, the performance overhead was negligible
in most of the experimental scenarios.

The paper is structured as follows. Section II provides
background on the storage I/O stack and on device driver
protocols. Section III presents the proposed monitoring ap-
proach. Sections IV and V present the case studies and
the experimental results. Section VI discusses the evaluation
methodology and the practical implications of the proposed
approach. Section VII reviews the related work. Section VIII
closes the paper. The appendix provides more detailed techni-
cal information on the case studies.

II. TECHNICAL BACKGROUND

The I/O protocol defines the types and the order of interac-
tions between the device driver and the other elements of the
storage I/O stack. In this work, the focus is on the detection
of device driver bugs that violate the I/O protocol.

A typical I/O stack is depicted in Fig. 1. On the one
hand, the device driver interacts with the OS kernel. The OS
kernel provides system calls to user applications to read and
write files on the storage. The system calls are served by the

filesystem, which uses the block I/O subsystem for transferring
individual file blocks (e.g., this subsystem schedules I/O
requests and caches recent I/O blocks). In turn, the block I/O
subsystem invokes the device driver to transfer the blocks.
Moreover, the device driver also interacts with the kernel
through generic kernel APIs for managing the I/O bus (e.g.,
identifying devices and getting information such as the device
model and state) and for performing DMA (Direct Memory
Access), i.e., for off-loading to a dedicated chip the task of
copying I/O data between the controller and memory, and for
allocating memory for such transfers.

On the other hand, the device driver interacts with the
storage controller, i.e., the electronic hardware interface of the
device. The controller is connected to the system bus, and it
can be accessed by the CPU and the device driver by means of
memory-mapped I/O registers, i.e., registers of the controller
that are associated to the memory address space, and that
are accessed in the same way as physical memory locations
using the same CPU instructions (e.g., loads and stores). The
addresses of memory-mapped I/O registers are obtained by the
driver through the bus I/O API. These registers expose the state
of the device, and can be used by the device driver to write
commands and to read/write I/O data. Moreover, memory-
mapped registers can point to physical memory areas for large
data transfers, such as DMA memory areas.

Storage I/O
Device Driver

OS kernel
• Filesystem
• Block I/O mgmt
• Bus API
• DMA API

Applications

Storage
controller

User workload (Database, File
Server, etc.)

The kernel turns I/O system calls into
streams of block reads and writes;;
provides APIs to registering device
drivers, performing DMA, etc.

The driver provides a software interface
to the device (accessing blocks, sense

and configure device state, ...)

The controller exposes the device state,
gets commands, and exchanges I/O data

through DMA areas and memory-
mapped registers

Device Driver Protocol (DDP)

I/O Storage Stack Description

Fig. 1. Overview of the I/O storage stack.

The protocol that defines the interactions between the device
driver and the rest of the storage stack is referred to as the De-
vice Driver Protocol (DDP). The DDP involves the software
interfaces of the OS kernel, such as API calls from the kernel
to the driver for initiating I/O transfers, and API calls from the
driver to the kernel to manage resources and notify events (e.g.,
I/O completion). Moreover, the DDP involves the hardware
interfaces of the storage controller, including memory-mapped
I/O registers and DMA areas. Fig. 2 provides an overview of
these interactions: when an application requests an I/O write
operation, the OS invokes the device driver, and the device
driver reads and writes the controller interface to start the I/O
transfer. During the I/O transfer, the control flow is returned

3

to the OS kernel, and the device driver is triggered again by
the controller (e.g., by an interrupt request, IRQ) when the
transfer has been completed.

Device
Driver

The driver is initializedResource allocations
(bus, DMA)

Device configuration

The kernel requests
an I/O block transfer The device driver

reads/writes on the
controller interface

The monitor dumps
the controller

interface (memory-
mapped registers,
DMA) before the

transfer

The monitor dumps
the controller

interface after the
transfer, and
computes the
differences

The I/O transfer has
been started

The device driver
handles an IRQ

The completion of the
transfer is notified to
the OS kernel

OS Kernel Storage
Controller

Protocol
Monitor

Fig. 2. Sequence of the interactions among the driver and the storage stack.

The several interactions between the layers of the storage
stack, both in hardware and software (Fig. 1) exacerbate the
complexity of the DDP. The hardware interactions include
accesses to the interface of the storage controller, as prescribed
by I/O standards such as the ones from IEC, ISO, and ANSI.
These organizations have defined protocols that specify the
types and roles of hardware registers, and the format and
order of events, commands, and data to be exchanged with the
storage controller. The software interactions include API calls
from the OS to the device drivers and vice versa, by following
the conventions required by API developers. Examples are
API calls for allocating DMA buffers and for initiating an
I/O transfer through the device driver.

The need for an automated approach to model the DDP
is due to the lack of formal specifications for both hardware
and software interactions. Typically, I/O standards leave out
of scope, or do not strictly mandate, part of the specification
of the storage controller, in order to let vendors fine-tune
their products to stand out against their competitors (e.g., by
providing multiple I/O channels to improve I/O performance,
or by avoiding unessential features to reduce costs). Moreover,
storage devices may deliberately differ from the standards,
or even adopt proprietary specifications. The DDP also lacks
formal specifications for the software interactions, as the doc-
umentation on API conventions is often lacking, inconsistent
with the implementation, out of date, or only provided in
natural language.

III. PROPOSED APPROACH

The proposed monitoring approach has been designed with
the following objectives:
• Avoiding the need for the end-user to provide formal

protocol specifications, or to know about device driver
internals: As discussed above, device drivers must follow
a cross-layer protocol which is not documented with

formal specifications. Moreover, requiring formal spec-
ifications from the end-users would make the approach
not practical, since they lack in-depth knowledge about
the drivers’ internals and are not willing to invest efforts
to scrutinize third-party protocols and source code for
the sake of deploying a run-time monitor (as the use
of a commodity OS, such as Linux, is to lower the
development effort).

• Low impact on performance: The approach should have
a negligible impact on the performance of the storage
(e.g., in terms of throughput and latency); otherwise, users
may not be allowed to deploy the approach in systems
with high-performance requirements;

• Coverage and accuracy: To be useful and suitable for
production environments, run-time monitoring should be
able to point out misbehaviors of the device driver as soon
as they occur, and should avoid false alarms that would
needlessly trigger maintenance actions.

To fulfill these objectives, the proposed approach auto-
matically learns the DDP from executions under failure-free
conditions. The inferred DDP model is then deployed for
monitoring the device driver and detecting protocol violations.
The approach avoids the need for formal specifications or
detailed knowledge of the device driver, by analyzing the
behavior of the device driver as a black box, with focus on
the interfaces between the device driver and, respectively,
the storage controller (i.e., the contents of memory-mapped
registers and DMA areas) and the OS kernel (i.e., API calls
between the driver and the kernel). This approach is close to
the idea of using behavioral models of sequences of API and
system calls for intrusion detection [11], malware classification
[12], and detection of regression bugs [13].

To keep low the performance overhead, and to achieve high
coverage and accuracy, we designed the approach to only col-
lect and analyze a small amount of selected information from
the device driver. We carefully discarded information from the
DDP model that exhibits high noise but contributes little in
detecting protocol violations. For example, the monitor does
not include in the DDP model the actual memory addresses
of buffers with I/O transfers: these addresses are prone to
unpredictable changes, since the OS memory allocator can
allocate such buffers at different locations depending on non-
deterministic factors such as the current memory availability;
moreover, these addresses contribute little to the detection
coverage of the monitor, since wrong addresses are likely to
lead to memory access exceptions (that are already detected
by the CPU) rather than to subtle protocol violations (e.g.,
omitted or incorrect protocol operations). Instead, we focus
the DDP model on more stable information such as command
opcodes: on the one hand, we can be confident that the
device driver does not generate an invalid (e.g., nonexistent)
command opcode under failure-free conditions; and, on the
other hand, the occurrence of an invalid command opcode
is a reliable indicator that the device driver is misbehaving.
Thus, we hypothesize that monitoring a small, conservative
subset of the device driver interface is useful to detect protocol
violations and to achieve a negligible rate of false positives.

4

More insights on these problems will be discussed in the
experimental part of this study (§ V).

In the first phase of our approach (called model learning
and synthesis), we obtain traces of the execution of the device
driver, by using probes at the interfaces of the device driver.
The probes intercept the beginning and the end of I/O transfers,
and record the state of the controller interface (see also Fig. 2).
These traces are used to generate a monitor as a kernel module,
which performs lightweight checks learned from the traces. In
the second phase of our approach (run-time monitoring), we
deploy the monitor inside the OS to check for violations of
the I/O protocol.

The use of failure-free traces from the device driver is sup-
ported by the empirical observation that device drivers’ failures
are often transient: drivers behave correctly most of the time,
and fail rarely due to the occurrence of subtle environmental
conditions (such as timing of events due to multi-threading,
interrupt handling, hardware events, and virtual memory) [14]–
[19]. This transient nature allows us to use the device driver
to train a reference model, and to use this model to detect
failures of the driver itself (i.e., anomalous behaviors of the
driver because of transient failures).

Even if drivers’ failures are difficult to detect in production,
the user of our approach can easily check that the training
traces are failure-free, since the training runs are performed un-
der well-controlled conditions (e.g., during planned downtime,
or on a dedicated partition not used for storing actual data).
In controlled conditions, it is possible to know in advance the
expected inputs and outputs of the run. For example, when
using synthetic load generators (e.g., tools such as iozone [20]
benchmarking tool that we used in this study), the input data
are created at run-time with a pseudo-random number gener-
ator, which are used to populate the storage or database; then,
the data are read/written again and can be cross-checked using
the same pseudo-random number generator as a reference.
Moreover, in a controlled environment, the user can perform
in-depth checks about the state of the storage at the end of
each training run (for example, by using tools that check the
consistency of the filesystem or the physical disk) [21]. These
consistency checks cannot be used as run-time failure detectors
for device drivers due to their overhead (e.g., the storage
partition could not be accessed during the checks), thus they
are performed infrequently in a production environment (e.g.,
periodically in terms of weeks or months, or when a system is
rebooted). Instead, consistency checks can be freely performed
in a controlled environment. Therefore, the failures are easy
to detect once we can control and check the inputs/outputs of
the runs and can perform thorough checks on the storage.

In the following subsections we present the full monitoring
approach, by discussing the monitoring architecture (§ III-A)
and the model learning techniques (§ III-B).

A. Architecture of the monitoring approach

Fig. 3 shows the architecture of the proposed monitoring
approach. The prober is triggered at every invocation of an
I/O API call made by the OS kernel to the device driver. The
prober inspects the controller interface, by reading commands,

data, and other information stored in the registers of the
controller and in DMA areas. The prober compares byte-to-
byte these contents before and after the I/O API call, in order
to identify and to record which parts of the controller interface
(at byte granularity) have been modified by the device driver.

In the first phase (model learning, Fig. 3a), the prober
dumps the whole controller interface into a trace; a trace
consists of a sequence of such dumps. The trace is processed
off-line in order to generate the monitor component. In the
second phase (run-time monitoring, Fig. 3b), the controller
interface is read and forwarded to the monitor to check the
compliance to what is expected by the DDP model. A warning
is raised in the case of violations. For example, if the driver
issues incorrect commands (e.g., the commands are out of
order, or do not follow the expected format), then a violation
occurs.

The two phases of the approach differ with respect to
the amount of data that is read from the storage controller
interface. In the first phase (before deployment, in which the
performance cost of probing is not a concern, but only the
correctness of the learned monitor), we collect full dumps of
the controller interface. In the second phase (in deployment,
in which performance is a concern), we only read selected
parts of the controller interface, in order to minimize the per-
formance overhead and to focus monitoring only on relevant
parts of the interface. This is further discussed in the next
subsection.

The prober component is triggered on API invocations from
the OS kernel to the device driver, to track the changes
made on the storage controller interface. We take advantage
of dynamic probing mechanisms provided by most modern
commodity OSes (such as DTrace for FreeBSD, Mac OS X
and Solaris [22], Kprobes and SystemTap for Linux [23], [24],
VProbes for VMware ESXi [25], and Detours for Microsoft
Windows [26]). These mechanisms allow inserting breakpoints
at run-time (in a similar way to a debugger) in the kernel.
When the control flow triggers the breakpoint, a (customiz-
able) handler function is invoked. This function can collect
information from the kernel: for example, a breakpoint can
be used to probe the invocations of an API function, where
the handler can collect the input parameters and the return
value of API calls, and any other information in the scope
of the current call. The run-time overhead of these dynamic
probing mechanisms is low enough to be applicable in many
applications: for example, benchmarks from VMware reported
that, in the worst cases, dynamic probes cause a throughput
loss between 3% and 4.5% [25].

The prober acts on device driver APIs, which are functions
that are visible to the upper layers of the OS and can be
easily identified from documentation and OS development kits
[27], [28]. One approach is to look for functions exported
by the device driver for linking with the OS kernel: since
device drivers in modern OSes are developed as pluggable
modules (in order to be loaded on-demand, depending on the
available hardware), the API functions of the device driver
must be publicly exposed to other modules in order to allow
linking. Alternatively, the device driver APIs can be identified
by inspecting the header files or documentation of both the

5

OS kernel Device
Driver

Controller
Interface

MonitorTrace

Prober

Model
learning &
synthesis

1. At initialization, the prober gets the
addresses of the controller interface

from the DMA and bus APIs

2. At each I/O transfer, the prober is
triggered by probes on I/O API calls

4. In the (off-line) learning
phase, the approach

synthesizes a monitor from
the traces

3. The prober collects the full
contents of memory-mapped
registers and shared data

structures

(a) Learning phase.

OS kernel Device
Driver

Controller
Interface

Monitor

Prober
1. At initialization, the prober gets the
addresses of the controller interface

from the DMA and bus APIs

2. At each I/O transfer, the prober is
triggered by probes on I/O API calls

3. The prober collects selected
contents of memory-mapped
registers and shared data

structures

DDP
violations

4. At run-time, the monitor
checks that data comply with the

DDP model

(b) Monitoring phase.

Fig. 3. Architecture of the proposed approach.

drivers and I/O subsystems, which are also public in order
to ease the integration of third-party device drivers. In any
of these cases, the prober installs breakpoints on these API
functions in order to trace API calls. For more information
and examples in the context of the Linux kernel, we refer the
reader to the appendix A.

The approach focuses on persistently-mapped areas of the
storage controller interface, such as memory-mapped registers
and long-lived DMA areas, where the core part of the device
driver protocol takes place, and does not consider transiently-
mapped areas, such as temporary I/O buffers. The prober
obtains the location of the memory-mapped I/O registers and
DMA areas by probing or directly invoking kernel APIs
(Fig. 2). The locations of memory-mapped registers and DMA
areas are known to the OS, since their physical addresses need
to be mapped to virtual memory addresses, and the device
driver must map them using OS APIs; these API calls can be
intercepted when the device driver is loaded and initialized.
Moreover, memory-mapped registers can be identified using
OS APIs for bus management; for example, PCI controllers
use base address registers to configure the mappings, which
can be read using OS APIs and tools such as “lspci” [29].
We remark that the approach does not require a different
prober for each device, as the prober generically performs
memory reads to take snapshots of the device interface. The

only aspect that varies across devices is the base address and
size of the memory areas to be read. These base addresses can
be automatically obtained using OS APIs and tools.

Moreover, the prober takes care to handle the cases of
special registers, such as registers that are write-only or that
have side-effects on subsequent reads and writes. To deal with
this kind of registers, we perform a preliminary analysis of
the hardware interface, in which we exercise the storage and
monitor one byte at a time of the hardware interface. If reading
the byte raises an exception or causes side effects (leading to
I/O failures), we configure the prober to avoid accessing that
byte when applying the monitoring approach. It is important to
note that omitting these registers has a negligible impact on the
effectiveness of the approach, as these registers are relatively
rare, and since a fault that affects such a register would also
indirectly affect the contents of other status registers. In the
case of registers that can exhibit different behaviors (such
as, due to register banking or, more often, registers that are
influenced by the device configuration at initialization time),
the model learned by our approach is tailored to the behavior
that was observed at training time. If, for any reason, the end-
user needs to change the configuration of the device driver,
then the model should be re-learned in order to take into
account the new behavior.

The monitoring begins when a mount operation is started
on a storage partition, and lasts until an unmount operation of
the storage partition completes. Thus, the monitoring includes
all accesses to the device interface that happen during the
mount and unmount operations. The monitoring does not
include the period when the OS loads the device driver before
mounting of the storage partition (e.g., the time during which
the hardware controller is polled, and part of the device driver
data are initialized), since in these periods no I/O operation
can be performed and data corruptions are highly unlikely. For
the same reason, the monitoring does not include the period
between between the unmount of the partition and the unload
of the device driver (e.g., in which the hardware device is
powered off). In the case that a fault hits the device driver
before mounting the partition, the monitoring approach is still
able to detect protocol violations caused by postponed effects
of the fault that may surface later during I/O operations.

B. Monitor learning

The approach uses execution traces from the prober to
generate a monitor, to be deployed at run-time (Fig. 3). The
monitor embeds a state model of the device driver protocol,
where the states represent snapshots of the contents of the
controller interface (i.e., the samples in the trace), with one
state for each unique snapshot of the controller interface; and
transitions connect two states if they appear consecutively at
least one time in the learning trace. Before generating the state
model, the learning technique truncates and transforms parts of
the controller interface in the trace (i.e., states are projections
of the contents of the controller interface) in order to improve
accuracy. More specifically, the learning technique performs
the following four steps to process the trace.

6

. 1. Execute Device Driver with Full Tracing. We execute
and trace the device driver by collecting “full” traces of
the controller interface (e.g., the whole contents of memory-
mapped I/O registers). The raw trace consists of a sequence
of dumps of the changes made on the controller interface. A
sample provides the new values (represented as a vector of
bytes) written on the controller interface during the invocation
of the probed API. In the simple example of Fig. 4, the three
samples show new values that are written in the first byte of
the interface, and from the third byte onward.

Samples

1 2 3 4 …… API

01 00 AB CD …… issue
03 00 CD EF …… issue
01 00 AA BB …… issue
…… …… …… …… …… ………

Column ID

Snapshot of the
controller interface,
at the time of the
API call

The 1st column is retained (non constant,
with low cardinality)

The 2nd column is filtered (constant)

The 3rd and 4th columns are grouped (they
are non-constant and adjacent), and then
filtered (high cardinality)

Fig. 4. A simple example of trace filtering.

During this first tracing step, we dump the whole controller
interface. From this full trace, the approach learns which parts
of the interface are useful for monitoring, by identifying the
type of information that is stored in the bytes of the controller
interface (such as bitfields, commands, or addresses). A subset
of these bytes is selected according to their type. This approach
is motivated by the observation that most of the information
in the controller interface is not useful for detecting protocol
violations. In particular, our approach avoids collecting parts of
the controller interface that are highly-variable and noisy, but
that do not reflect the DDP (for example, the specific memory
address used for an I/O buffer), and that may increase the
monitoring overhead and lead to false alarms (e.g., addresses
may vary across executions in non-deterministic ways).
. 2. Filter Columns from the Full Trace. This step analyzes
the raw traces to identify the relevant parts of the controller
interface to be monitored. The samples are divided into bytes;
a column of the trace is the set of bytes at the same position
of the samples (e.g., the second byte of each sample). This
step generates a list of the subset of columns that should be
traced by the monitor. For example, in Fig. 4, we remove the
second and third columns, and retain the first one for further
analysis. Our approach identifies the following cases.

Constants: We analyze individual columns, and check
which ones always exhibit the same value across the sample,
removing columns with only constant values (i.e., with single
cardinality). For example, the monitor does not need to collect
and check registers that are only modified at start-up (e.g.,
configuration registers) but are constant during I/O operations.

Large fields: After filtering columns that are constant, we
identify and group columns at adjacent positions in the residual
trace. Typically, such adjacent columns represent a multi-byte

register of the device interface. Then, we apply on the group
as a whole the next filters for bit-fields and addresses. For
example, in Fig. 4, we initially filter the column 2, since it is
constant; then, we group the two adjacent residual columns 3
and 4. Later in the process (see the discussion on addresses),
the group represented by 3 and 4 will be filtered as a whole.

Besides checking that columns are adjacent, we perform
an additional check that the columns are not unrelated and
adjacent by chance (for example, a column that represents
a status can be followed by a column with a command).
We avoid to group adjacent, unrelated columns by checking
whether there is at least one sample in the trace where all
the bytes in the group vary at the same time. For example, in
Fig. 4, the group with the third and fourth columns satisfy
this condition, since all bytes in the group vary from one
row to the next one (e.g., from ABCD to CDEF, and from
CDEF to AABB). We can expect that multi-byte groups that
never vary together over a very long trace can be reliably
considered unrelated; for example, it is very unlikely that an
address always varies with respect to only one byte at a time.

Bit-fields: We check whether columns contain bit-fields,
such as, registers that represent the state of a group of I/O
channels, with one bit per channel. We look for differences
between the value of a sample at a given column, and the value
at the same column of the immediately-previous sample. We
perform this comparison for every pair of consecutive samples
in the trace. If there are differences, and the differences involve
only one bit in most of the cases (e.g., more than 90%),
then it is likely that the column represents a bit-field. The
threshold takes into account the possibility of rare cases in
which two or more bits are accidentally changed at the same
time (e.g., due to concurrent I/O requests). We rewrite these
columns by replacing them with the count-of-modified-bits that
are changed during the driver API call. For example, this count
may be 0 (no bit is changed), 1 (only one bit changed), or
greater than 1 (we allow for sporadic variations of more than
one bit); the value can be either positive or negative negative
depending on whether the bits are set or cleared, as these
operations can have different meanings for the device driver
protocol. This simplification allows to keep the monitor small
and robust (as we do not want to over-train the monitor to
look for the exact position of the bits that are set/reset, since
it would make it more prone to false positives), and still retains
useful information for monitoring purposes.

Addresses: We remove from the monitor the columns
that are noisy and highly-variable, by checking for columns
with a high number of different values across samples. This
approach leverages the fact that protocol commands and status
information are likely to have a small cardinality (e.g., few
tens of possible values), while noisy information (such as
memory addresses) tend to vary wildly across executions.
Even if potentially invalid addresses are not checked by the
monitoring approach, the hardware can still identify and notify
them. Invalid pointers used for I/O (such as, pointers to
temporary I/O buffers that are uninitialized, or used after they
are freed) are translated and checked by the I/O and CPU
memory management units (MMUs), respectively when the

7

I/O controller and the device driver access to them. In turn,
the MMU will raise an exception on invalid pointers, since
there is no entry for them in the address translation tables;
moreover, the storage controller can write an error code in
a status register, and raise an interrupt to denote the failure.
The proposed approach will monitor such status registers since
they have a small cardinality.

. 3. Execute Device Driver with Partial Tracing. Once
relevant columns have been selected in the previous step, the
device driver is executed for a second time. In this case, we
only collect “partial” traces of the storage interface (i.e., only
columns selected in the previous step). This additional run
of the device driver is needed to get execution traces that
are free from perturbations that might have been caused by
the “full” tracing, since reading the whole contents of the
controller interface has a high overhead and can perturb the
timing of events in the trace (the notorious “probe effect”
[30]). In the “full” trace, we only need to identify the type
of information contained in the columns (such as bitmasks,
commands, addresses), and thus we are not concerned with
the relative ordering of the events; instead, the “partial” tracing
allows to get a better profile of the driver’s behavior, as the
relative ordering of events and commands is better preserved.
The partial trace converts the columns in the same way of
the previous step (i.e., converting them in bit-field counts and
coalescing them).

. 4. Synthesize Monitor from the Partial Trace. We obtain
a monitor for the DDP from the filtered trace of the previous
step. We generate one distinct monitor for each memory-
mapped region of the storage controller, as these regions can
evolve independently from each other: for example, a storage
controller may provide multiple I/O channels to improve
performance, by exposing different groups of memory-mapped
registers.

In the case of large DMA areas, which are often organized
as large arrays (e.g., where each element represents a different
I/O port or I/O operation), we split the area into individual
elements of the same size, and generate one distinct monitor
for each of them. The size of the elements is easily determined
by looking at the definitions of data structures that are used
by the device driver to interpret the raw contents of the DMA
area. These data structures can be defined in a public header of
the OS, in the case that the data structure is part of a generic
standard that is not specific for an individual device driver,
such as the PCI standard. Once the element size is known,
the columns in the traces are partitioned in different traces
according to the element they belong to. If the definition is
not public (e.g., for closed-source drivers), the user of our
approach would need to determine the size of the data structure
from the executable binary of the device driver, by analyzing
accesses to arrays in DMA areas using reverse engineering
techniques and tools [31]–[33]. As we do not analyze binary
drivers, we leave this topic out of the scope of this work, and
assume that the element size is known.

The monitor maintains and checks at run-time a global set of
allowed states. The distinct vectors of bytes in the (sub-)trace
are turned into allowed states of the protocol. For example, in

the simple case of Fig. 4 with only one column, we generate
two allowed states from the two distinct values of the first
column. Section V-B provides in Fig. 7 another example in the
context of a real device driver. When the monitor component is
synthesized from the filtered trace, the set of distinct allowed
states is stored in a hash table, which is queried at run-
time. At each API invocation of the device driver at run-time,
the monitor collects the selected bytes from the controller
interface, filters the columns (by only keeping the columns
selected in the second step), and checks that the occurred state
is within the set of the allowed ones. Otherwise, if the monitor
detects that the current state is not compliant to the model, it
raises an alarm to notify the DDP violation; in turn, the alarm
can be reported in system logs to ease maintenance, or it can
be fed to an automated system to initiate a recovery process.
These uses of the monitor are further discussed in § VI-A.

IV. CASE STUDY

In this paper, we evaluate the proposed monitoring ap-
proach on the following three storage device drivers from the
Linux kernel: (i) SATA/AHCI (i.e., the ahci driver); (ii) Intel
SATA/PATA (i.e., the ata_piix driver); and (iii) LSI Fusion
MPT (i.e., the mptspi driver). We selected these device drivers
since hypervisors (such as VMware’s products) provide full
hardware virtualization support to run them, which enables us
to perform fault injection experiments in a controlled way, as
discussed in § V. Moreover, they are a relevant target since
Linux is largely used for business-critical servers, which over
the years has matured to support a broad range of storage
devices, protocols and filesystems [34], [35]. Furthermore,
device drivers from the Linux kernel have also been ported
to other systems, such as the VMware ESXi hypervisor [36].

These drivers are representative and complex case studies,
as they involve all the subtleties that are typical of real-
world storage device drivers. SATA/AHCI is a modern I/O
technology (the latest revision dates back to 2014) that is
currently used by a large number of controllers on the market
(e.g., controllers from Intel [37]). LSI Fusion controller tech-
nology is commercialized and widespread across enterprises
[38], and it is representative of the more general category
of SCSI controllers (as the LSI Fusion driver is included in
the architecture of the SCSI subsystem of the Linux kernel).
Finally, we included the SATA/PATA driver even if it is
based on an older technology, since it is representative of
legacy device drivers in which the approach could be applied
by some end-users. Moreover, the SATA/PATA case study
is complementary to the other two drivers, which are more
complex, e.g., in terms of size of the device interface, and
it allows us to evaluate how well the proposed approach
can perform in a relatively favorable case. Fig. 5 shows the
architecture of these three case studies. Further information
on these drivers, and on the application of the monitoring
approach, is provided in the appendix.

V. EXPERIMENTAL EVALUATION

In the following, we first introduce the experimental setup,
and we provide information about how the monitoring ap-
proach has been trained for the three target device drivers.

8

AHCI
Disk controller (HBA)

GHCGHC CLB FB IS . . . SACT. . . CLB FB IS . . . SACT. . .

OS kernel

AHCI device
driver

commands interrupts

CLB FB ISGHC

Received FIS
Structure

Command 0

. . .

Command 31

Command List

Command 0
. . .

Command 31

Command Table 0
(FIS to be issued)

Port
0..31

libata, libahci

SACT

(a) SATA/AHCI.

PIIX IDE (PATA)
Disk controller (HBA)

GHC CLB

OS kernel

ata_piix

commands interrupts

. . .

Command 0

. . .

Command 31

Descriptor Table

PRD
PRD

... IDE
channels

libata

BMIDTPBMIC BMIS

(b) Intel SATA/PATA.

Frame memory
pools

LSI FusionI MPT
Disk controller (HBA)

OS kernel

mptscsih,
mptspi

commands interrupts

Request
Message Queue

MPT
channels

mptbase

Reply
Message Queue

...

GHC... GHC CLB Reply
FIFO . . .

Req.
FIFOHIS

(c) LSI Fusion MPT.

Fig. 5. High-level architecture of the device drivers analyzed in this study.

Then, we evaluate the proposed monitoring approach in terms
of coverage, accuracy, and performance impact.

A. Experimental setup

The System Under Test (SUT) that we considered for
the experiments is a Linux machine running a Fedora 21
distribution, and the Linux kernel version 3.19. We performed
both fault injection tests and long-running stress tests on the
SUT, to evaluate on the one hand the coverage of protocol
violation (by deliberately forcing violations through injected
faults), and on the other hand the accuracy and overhead
of monitoring (by measuring false positives and performance
under failure-free conditions).

In order to inject faults in the SUT, we execute it within a
virtual machine (VM), while we orchestrate the experiments
from the host machine on which the SUT resides. Virtual-
ization is extensively used in fault injection experiments in
OSes [39]–[41], since it is useful to prevent the injected faults
from propagating from the SUT to the orchestration software.
Indeed, using a VM, the injected faults remain isolated within
the SUT, and the orchestration software can correctly save the
data from the current experiment, and to start the next one. We
adopt the VMware ESXi 6.0 hypervisor to run the SUT within
a VM, which fully emulates the disk controllers to be managed
by the three target device drivers (i.e., the disk controller of the
VM appears like a physical disk controller to the device driver
in the VM) [42]. The VM runs on a DELL workstation with an
8-core Intel Xeon 1.80Ghz CPU, with 64GB RAM, and with
a PERC H730 Mini HDD controller. The VM was configured
with a 4-core 1.80Ghz virtual CPU and 4 GB RAM. Fig. 6
shows the experimental setup and workflow of fault injection.

We remark that the virtual devices used for the evaluation
are not simplified versions of their real counterparts, but pro-
vide a full software implementation of storage I/O interfaces:
this property allows the VM to execute unmodified and legacy
device drivers of commodity OSes, such as Windows, Linux,
and even the VMware ESXi hypervisor running on the virtual
devices using nested virtualization [42]–[44]. Therefore, the
virtual devices expose a controller interface that, from the
point of view of the OS and of the device drivers, is fully
equivalent to real devices, and that represents a realistic target
for evaluation of the proposed monitoring approach. Using

Linux
kernel

VM

Workload

Target
Driver

Fault
Injector

System Under Test

Host machine

Experiment
Management

Software

Data collection:
• Driver logs
• Linux kernel logs
• Workload logs
• FS check results
• Monitor logs

Experiment execution:
1. Restart VM
2. Deploy the monitor
3. Configure the fault injector
4. Start the workload generator

M
onitor

Fig. 6. Fault injection setup.

virtual devices brings significant benefits to the experimental
evaluation, since a large number of fault injection experiments
can be fully automated in a reliable way (e.g., by assuring
the correct collection of error logs from the OS), and could
be accelerated by leveraging parallelization and by using VM
snapshots to quickly reboot VMs across experiments. More-
over, the storage stack of the VMware ESXi hypervisor (in
particular, the VMFS filesystem) adopts a lightweight virtual-
to-physical mapping in order to achieve high-performance,
concurrent read/write access on the underlying disk, thus
incurring in minimal overhead [45].

In our experiments, we exercise the I/O storage stack by
using three well-known I/O-bound workloads [46], [47]:

• IOzone: A benchmarking tool for filesystems [20]. IO-
zone generates a mix of file operations, using different
read and write patterns (e.g., random, sequential, fread,
fwrite, strided, repeated), different sizes (e.g., by chang-
ing both record and file sizes), and APIs (e.g., memory-
mapped, asynchronous I/O);

• Postmark: An I/O benchmark that emulates a large email
server, by performing a variety of data- and metadata-
intensive operations on a pool of random text files [47].
Postmark creates the pool of files with uniformly dis-

9

tributed sizes, and performs a sequence (namely trans-
action) of random I/O operations (e.g., file creation,
deletion, read, and append);

• SQLite: This benchmark program comes from the
Phoronix open-source test suite [48]. The program ex-
ercises SQLite by performing a mix of SQL queries to
store and to retrieve tuples.

The IOzone workload is not meant to be representative of
a specific user application, but it is instead a microbench-
mark used to evaluate peak performance, by generating high-
volumes of specific I/O operations. In contrast, the Postmark
and SQLite workloads macrobenchmarks, which perform a
mixture of multiple file system operations, and aim to simulate
more realistic I/O access patterns. These benchmarks are
derived from server and database applications, and focus on
the I/O request patterns and sizes that most frequently happen
in these kinds of applications.

In our experiments, we use the IOzone workload to train
the monitoring approach. This choice reflects the likely use
case for the proposed monitoring approach: the user wants to
train the monitor in his own testing environment, but cannot
exercise the storage stack with a workload representative of
the actual workload in production (e.g., the user may lack
historical data, or the production workload is too complex to
be replicated in a testing environment). In such case, a syn-
thetic workload generator would be a more practical solution.
Therefore, we evaluate how our monitoring approach would
fare when the monitor is exposed to a workload different than
the training workload: for this reason, we evaluate the monitor
by training it with IOzone, and testing it both with IOzone
(an optimistic case where the training workload matches the
operational workload), and with the Postmark and SQLite
workloads (a pessimistic case where the training workload is
not representative of the operational workload).

B. Impact of filtering and learning duration

By applying the learning technique on the three device
drivers, we can evaluate how the filtering of columns from
the trace can actually reduce the information that is collected
from the device drivers. We report in Table I the extent
of the controller interfaces, respectively before filtering (i.e.,
the unaltered controller interface) and after filtering (i.e., the
number of bytes that are retained after removing columns
that do not contribute to monitoring, such as constants and
addresses) as discussed in § III-B. These data show that the
reduction of the monitoring interface is quite significant, as
it ranges between 73.53% (the Intel SATA/PATA driver) and
99.41% (the SATA/AHCI driver).

To better understand the information selected by the filtering
technique, we look in more detail at the SATA/AHCI, for
which the technique selected 3 registers to be monitored (see
the appendix A for more information): the Port and Host
Interrupt registers, and the SACT register. The values read
from the SACT register are processed as a bitmask, and are
converted into a count of the bits that vary between the
beginning and the end of the API call of the device driver
(a positive or negative number, depending on whether the bits

Table I
EXTENT OF THE MONITORED CONTROLLER INTERFACE WITH AND

WITHOUT FILTERING.

Device Driver Extent of regions (bytes)
Before filtering After filtering

LSI Fusion MPT 1,312 44 (-96.65%)

SATA/AHCI 512 3 (-99.41%)

Intel SATA/PATA 34 9 (-73.53%)

-- -- --

-- -- +1

-- -- -1

-- 08 +1

-- 08 --

-- 08 -1

01 -- +1

01 -- --

01 08 +1

01 08 --

01 08 -1

01 08 -2

01 -- -1

Fig. 7. A subset of event sequences in the monitor for SATA/AHCI.

are set to 0 or 1). The SACT register is used by the driver to
specify the entry of the command list in which a command has
been inserted; the other two registers are used by the controller
to point out the completion of commands. The remaining
registers that were filtered out are either constants (such as,
the base address of the command list) or protocol-independent
values, such as the memory address and contents of the I/O
transfers. Fig. 7 shows a finite state machine representation of
a subset of the sequences (for better readability) observed for
these three registers. Once the monitor focuses on selected
parts of the controller interface, the possible sequences of
values for these registers follow few and repetitive paths.

Selecting a small amount of information keeps the mon-
itoring overhead low (since less data needs to be read and
inspected, as further discussed in § V-E), and avoids false posi-
tives, since we do not consider data that have a high variability
and do not contribute to identifying protocol violations. Later
in the paper, we evaluate whether such simple information is
useful to detect protocol violations of faulty device drivers.

To evaluate the influence of the workload on the training of

10

Fig. 8. Number of distinct states with respect to the duration of the training
workload for the three target drivers.

the monitor, we analyze how much training data are needed to
generate the model. For this purpose, we perform an additional
experiment in which we evaluate the number of distinct states
that occur as the training workload keeps executing. To this
goal, we continuously repeat the execution of IOzone up to one
hour, and collect a long trace of samples; then, we compute the
cumulative number of distinct states in the trace over time, by
applying the filtering to increasing subsets of the trace. Fig. 8
shows the outcome of this experiment on the three device
drivers. Most of the distinct states occur at the beginning
of the experiment, and the occurrence of new distinct states
gradually slows down over the course of the experiment. Some
of the new states occur in the middle of the experiment
due to occurrence of relatively-rare combinations of events
(e.g., two or more command entries that are concurrently
being used). After few minutes, the number of distinct states
becomes stable, as no new information is observed even if
the workload duration is extended. The number of distinct
states saturates after 5 minutes of execution in the best case
(Intel SATA/PATA driver), and after 11 minutes in the worst
case (LSI Fusion MPT driver). In all cases, a few minutes
of execution sufficed to get a sufficient number of samples
to train the model, as further training data do not extend
the monitor. Thus, we conclude that it is feasible to train
the monitor without performing long-running tests, which
makes the approach quickly deployable in practice. The actual
coverage and accuracy of the monitor derived in this way are
validated in the next subsections.

C. Evaluation of coverage

In this section, we evaluate the proposed approach in the
presence of faults in the device drivers. When we inject faults,
three possible outcomes can occur:
• Crash or stall of either the OS or the workload. These

cases are identified by checking crash logs in the SUT
(e.g., kernel panic messages), and by testing if the SUT
is still responsive when the experiment ends.

• Data corruption, that is, an execution that neither crashes
nor stalls, but data are corrupted at the end of the
experiment. We identify such cases by (i) checking if the
workload produces output files comparable to the fault-
free execution, and (ii) checking if the filesystem data
structure are inconsistent (e.g., damaged directory trees
and “orphaned” files) by leveraging the fsck filesystem
verification tool;

• Correct execution of the SUT. This outcome occurs
when the injected faults do not generate any error in the
SUT (for example, when corrupted data are not accessed
or are over-written with correct data).

In particular, our analysis focused on data corruption fail-
ures. Such failures are subtle and not easily detected by
checking for crash messages or heartbeats. We quantify the
coverage of our proposed monitor, which is the percentage of
experiments with “data corruption” failures, and the corrup-
tion is detected by the monitor.

We inject faults in the device drivers during the execution
of the workload. We leverage the fault injector developed by
Ng and Chen for evaluating fault tolerance strategies for OSes
[49]. The fault injector emulates common patterns of software
bugs, based on empirical studies on OS faults [50], [51].
The injector emulates the following fault patterns: Assignment,
i.e., incorrect source or destination in assignment instruction;
Control, i.e., incorrect logical condition in loop or branch;
Parameter, i.e., incorrect parameter in a function call; Pointer,
i.e., an incorrect memory pointer computation; Omission, i.e.,
an omitted instruction. These kinds of bugs are emulated
by removing or modifying the existing code in the device
driver. Faults are injected by modifying the binary code of
the driver, where the original instructions are replaced with
faulty ones [52], [53] (e.g., by replacing instructions with no-
ops to emulate omissions). We provide further background on
fault injection in Section VI-B.

These patterns of software bugs can lead to protocol vio-
lations if they are injected in the context of device drivers’
code. To understand the relationship between fault injection
and protocol violations, we consider the four categories of
protocol violation bugs that were identified by Ryzhyk et al.
[10], [54]. Quoting these studies:

• Timing Faults: “Device state transitions can be triggered
by the passage of real time. The driver simulates such
transitions using timeouts. Forgetting to put a timeout
statement in the appropriate place or using an incorrect
timeout value is likely to lead to failure of subsequent
commands issued to the device.”

• Value Defects: “The driver and the device exchange data,
including device descriptors, configuration commands,
and I/O transfer descriptors, via memory and registers.
Defects related to handling of device data include endi-
anness errors, incorrect use of register bit fields, sending
invalid data values to the device, and incorrectly inter-
preting values received from the device.”

• Ordering Defects: “In order to correctly control the
device, the driver must keep track of the internal state
of the device state machine. Errors occur when the pro-

11

grammer’s mental model of this state machine diverges
from its actual implementation. These errors may lead to
the driver issuing a sequence of commands to the device
that fails to meet its intended goal or even leaves the
device in an invalid state.”

• Data Races: “The device and the driver may en-
gage in shared-memory communication using DMA and
memory-mapped I/O. Access to shared memory regions
is synchronised using interrupts, device registers, and
memory barriers. Incorrect use of synchronisation can
lead to a race between the driver and the device.”

When faults (e.g., assignment, control, etc.) are injected in
drivers’ code, they can generate protocol violation bugs of
these four categories (e.g., the injected fault leads to incorrect
data exchanged with the device). Fig. 9 provides examples
of drivers’ code and injected faults, taken from the device
drivers used in our study. Since this kind of code is widespread
in device drivers, fault injection can generate a large number
of protocol violation bugs for evaluating the coverage of the
proposed approach. The examples include:

• In the context of AHCI (e.g., Fig. 9a), timing primitives
are used for Link Power Management (e.g., to wait for
link to become ready, or for the completion of a hardware
reset, before submitting more commands). However, the
delay embedded in the primitives’ parameters has to be
properly tuned (e.g., the AHCI module was revised to
configure the default delay for the specific controller
flavor [55]). When applying omission or parameter faults
on these primitives, the injected fault results in a missing
or incorrect wait. The monitoring approach is intended
to detect out-of-order writes on the storage interface
resulting from bad timing; for example, a bug in the
Adaptec AAC-RAID device driver [56] updated the phase
field in the SCSI command scratchpad area after that
the command had already been completed and the area
has been re-allocated, causing an inconsistent phase value
written on another command.

• In order to support controller flavors that subtly deviate
from the standard, device drivers perform special opera-
tions as workarounds. For example, the LSI Fusion MPT
(Fig. 9b) provides a workaround for the LSI 1078 chipset
on systems with more than 36GB of memory [57]. Inject-
ing a control fault emulates the lack of such workaround
and the resulting misread/write of the device interface.
A regression bug of this kind occurred in libATA [58],
which issued an incorrect mode sense command, which
could have been detected using a monitoring module
trained before the regression.

• The LSI Fusion MPT (Fig. 9c) tracks the status of I/O
transfers using a state machine, which is updated on
interrupts from the device controller. This state machine
includes transitions to handle several corner cases [59];
the example handles the case of an “underrun” indication
when no data has been yet transferred. Injecting a control
or assignment fault on this conditional construct emulates
a lacking or mistaken transition in the state machine. A
similar bug affected the JMicron JM20337 driver [60],

cmd &= ~(PORT_CMD_ASP | PORT_CMD_ALPE);
cmd |= PORT_CMD_ICC_ACTIVE;

writel(cmd, port_mmio + PORT_CMD);
readl(port_mmio + PORT_CMD);

/* wait 10ms to be sure we’ve come out of LPM state */
ata_msleep(ap, 10);

(a) Timing fault (libahci.c:712).

/*
* Setting up proper handlers for scatter gather handling

*/
if (pdev->device == MPI_MANUFACTPAGE_DEVID_SAS1078)
ioc->add_sge = &mpt_add_sge_64bit_1078;

else
ioc->add_sge = &mpt_add_sge_64bit;

(b) Value defect (mptbase.c:1812).

/*
* if we get a data underrun indication, yet no data was

* transferred and the SCSI status indicates that the

* command was never started, change the data underrun

* to success

*/
if (status == MPI_IOCSTATUS_SCSI_DATA_UNDERRUN &&

xfer_cnt == 0 &&
(scsi_status == MPI_SCSI_STATUS_BUSY ||
scsi_status == MPI_SCSI_STATUS_RESERVATION_CONFLICT ||
scsi_status == MPI_SCSI_STATUS_TASK_SET_FULL)) {

status = MPI_IOCSTATUS_SUCCESS;
}

(c) Ordering defect (mptscsih.c:674).

spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
scmd = ioc->ScsiLookup[i];
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);

(d) Data race (mptscsih.c:2471).

Fig. 9. Examples of drivers’ code where the fault injection approach generates
protocol violation bugs [54].

which failed because of an anomalous “Check Condition”
status register not handled by the driver (but detectable
by monitoring the controller interface), that happens when
the Force Unit Access (FUA) mode is disabled.

• The LSI Fusion MPT (Fig. 9d) uses an array of shared
variables to hold concurrent SCSI commands, which need
to be guarded against interrupts handlers triggered by
the device. Injecting omission, assignment, or pointer
faults on accesses to such shared variables corrupts values
read or written on the variable (as would happen in the
case that the access had not been protected from data
races by using a lock and temporarily disabling interrupts
[61]). For example, a bug-fix in the qla2xxx driver [62]
anticipated a mutex lock to protect against inconsistent
reads of the controller state, which caused the overlap of
several I/O writes on the Qlogic controller interface.

We injected faults in the most frequently called functions
of the drivers, which we found using OProfile during the exe-
cution of the three workloads [63]. The fault injection targets
include functions that populate DMA areas with I/O frames
(ahci_qc_prep, ata_bmdma_qc_prep), issue the I/O commands

12

(e.g., ahci_qc_issue, ata_bmdma_qc_issue, mptscsih_qcmd),
handle interrupts (e.g., ata_bmdma_interrupt, mpt_interrupt),
and configure and check the status of the I/O controller (e.g.,
mpt_config, ata_bmdma_setup). Overall, we performed 210,
2160 and 3600 fault injections on distinct code locations,
respectively for the SATA/AHCI, Intel SATA/PATA, and LSI
Fusion MPT drivers, where the number of injected faults
depends on the size of the drivers’ code and on the number of
fault locations that we found in the driver. At each experiment,
we randomly choose the fault type and location within the
target functions to be injected.

From the results, we determined the outcome of the injected
fault as mentioned before and, for data corruption failures,
the outcome of failure detection. Fig. 10 and Fig. 11 show
respectively the percentages of the failure modes, and the
coverage of the monitor. In many cases, the experiments
ended with no failures, in which the injected fault does not
affect the device driver (i.e., the corrupted data were ignored
or overwritten, or the corrupted instructions did not alter
the behavior of the driver). This phenomenon is commonly
observed in fault injection experiments [64]. Nonetheless, a
non-negligible number of experiments led to data corruption
failures, by affecting workload data (causing incorrect outputs)
and/or the filesystem state (such as, orphaned inodes, invalid
partition information, or corrupted superblocks).

The monitor detected data corruptions in 87%, 88%, and
76% of cases respectively for SATA/AHCI, Intel SATA/PATA,
and LSI Fusion MPT (Fig. 11). In these experiments, the
injected faults caused the device driver to perform erroneous
writes on the device interface, which violate the reference
model of the monitor. In the remaining (undetected) cases,
when the kernel invokes the APIs of the device driver, we
observed that the injected faults caused the driver to prema-
turely return the control flow to the kernel, without accessing
to the hardware interface. In these cases, the model stays in
the current state (as the contents of the device interface have
not been changed); the current state is considered a correct one
by the model, but the driver is failing since it was supposed
to change the contents of the device interface. The undetected
corruptions can be attributed to the relative simplicity of the
learned model, which does not consider detailed information
about the calls to the driver API (e.g., the input and output
parameters of the calls), that would increase the detection
coverage, but would also make the monitor more prone to
false alarms. These failures are more easily detected by checks
performed by the kernel, e.g., by handling error codes to detect
the premature termination of the driver API calls (see also the
discussion about error checks in the Linux kernel, at the end
of this subsection). Thus, despite these undetected cases, the
monitor can achieve a good trade-off in terms of coverage and
accuracy (see also § V-D).

It is worth noting that the corruption detection coverage is
high even when the workload used for training the monitor
differs from the workload of the experiments (i.e., in Fig. 11,
the coverage for the Postmark and SQLite workloads is compa-
rable to the coverage for the IOzone workload). This behavior
eases the adoption of the proposed approach, even without
training it with a workload representative of the production

environment, since training with a generic synthetic workload
generator (e.g., IOzone) suffices to achieve a high coverage.
Such results can be explained by the fact that the architecture
of the storage stack (Fig. 1) involves several layers between
user applications and the device driver. We hypothesize that
the variations of I/O access patterns of the workloads (e.g., the
frequency and size of I/O reads and writes) are not perceived
by the device driver, as the intermediate layers (filesystem,
and I/O scheduling, buffering, and caching) turn them into a
regular sequence of I/O interactions. We will further analyze
this behavior in another experiment presented in the next
subsection.

We also evaluated how the proposed monitor complements
the existing error checks inside the I/O storage stack. For
example, I/O standards (including the ones implemented by
the three target drivers of this study) provide mechanisms
to detect and to handle I/O errors (mainly, errors that arise
from physical faults of disks and interconnections), by raising
special interrupts and error codes that can be handled by the
OS. In turn, the OS reports I/O error messages (e.g., through
the system’s logs or management dashboards) to the user to
notify the need for maintenance. However, these mechanisms
are typically not designed to detect misuses of the controller
interface by buggy drivers; therefore, it is worth to consider
that our monitoring approach is deployed alongside these
error checks to further improve the overall fault detection
coverage. Thus, we evaluated the overlap between (i) the set
of experiments with corruptions that were detected by the
monitor; and (ii) the set of experiments with corruptions that
were detected by error checks inside the I/O storage stack, by
looking for error messages in the logs of the Linux kernel.

In all workloads and target drivers, we found that there is
always a part of the corruptions not detected by the error
checks of the Linux kernel, but only by our monitor (26%
of all corruptions, which is a subset of the covered cases in
Fig. 11). A minor part of the corruptions (13%) were only
detected by the Linux kernel, which are the cases where the
fault causes the premature termination of a call to the driver
API; the remaining part of corruptions (56%, which is another
subset of covered cases in Fig. 11) were detected both by
the kernel and the monitor. In particular, the kernel was not
able to detect faults that neither affected the control flow
nor triggered exceptions from the controller, but that caused
omitted or wrong writes on the controller interface. Therefore,
the monitoring approach complements the kernel by covering
faults that would be otherwise unnoticed, thus improving the
overall reliability of the storage stack.

D. Evaluation of accuracy

We investigate the tolerance of the proposed approach
against false alarms, by running the SUT with the monitor
for a long time, without fault injection. As in the previous
experiments, we train the monitor using IOzone, and deploy
this monitor in the SUT. We then stress the three device
drivers for a week using IOzone, Postmark and SQLite. We
repeatedly run a workload by re-launching it right after an
execution has been completed, and we alternate between the

13

30%
9% 6%

15%

17%

20% 17%
18%

53%
71% 77%

67%

0%

25%

50%

75%

100%

IOzone Postmark SQLite All
(a) SATA/AHCI.

28%
8% 11% 16%

37%

52%
57% 49%

35% 40% 31% 35%

0%

25%

50%

75%

100%

IOzone Postmark SQLite All

(b) Intel SATA/PATA.

2% 2% 4% 3%

41% 41% 41% 41%

57% 57% 55% 57%

0%

25%

50%

75%

100%

IOzone Postmark SQLite All

(c) LSI Fusion MPT.

Fig. 10. Fault injection outcomes for the three target device drivers.

14%
25%

13%

86%
100%

75%
87%

0%

25%

50%

75%

100%

IOzone Postmark SQLite All
(a) SATA/AHCI.

10%
21%

8% 12%

90%
79%

92% 88%

0%

25%

50%

75%

100%

IOzone Postmark SQLite All
(b) Intel SATA/PATA.

32% 35%
14%

24%

68% 65%
86%

76%

0%

25%

50%

75%

100%

IOzone Postmark SQLite All
(c) LSI Fusion MPT.

Fig. 11. Corruption detection coverage for the three target device drivers.

three workloads every 10 minutes. Moreover, we flush the I/O
cache after each execution in order to do more stress on the
I/O stack. We again check the correctness of the workloads
and do not inject any fault during the experiment, in order
to ensure that the execution is failure-free. We performed the
experiment on each of the three virtualized storage interfaces
(SATA/AHCI, Intel SATA/PATA, and LSI Fusion MPT from
VMware ESXi). Moreover, we also performed the experi-
ment on two additional configurations with two SATA/AHCI
physical storage controllers (respectively, the Intel C600/X79
and the Intel 82801GR); both these physical controllers were
installed on a bare-metal machine with an 8-core Intel Xeon
3.70GHz CPU and 16 GB RAM. The monitor is expected
not to detect any failure, and DDP violations notified by the
monitor are considered false alarms.

During these long-running experiments, the monitor did not
raise any false alarm. This is an important aspect for the
practical use of the proposed approach, as false positives hin-
der the adoption of monitoring techniques based on anomaly
detection, due to the waste of efforts of system administrators.
The rate of false positives that can be tolerated varies across
users, as it depends on the cost of recovery actions and on
availability requirements of the specific application (see also
the discussion in § VI-A). The exposure of the monitoring

approach to several cumulative weeks of stressful workloads
provides some evidence that the approach can be deployed in
practice without triggering false alarms for a long time.

Since no amount of stress testing can assure the total ab-
sence false positives, we must be careful before drawing con-
clusions. In general, any approach that uses dynamic program
analysis is potentially exposed to false alarms, since training
data cannot include all possible executions of the system.
However, our filtering technique only extracts few, reliable
parts of the controller interface, that are accurately modeled
by the monitor. False positives are avoided by discarding the
areas of the storage controller that exhibit frequent variations
and do not contribute much to checking the I/O protocol. In
this way, the monitor achieves a trade-off among coverage,
false alarms, and performance overhead that is suitable for
many practical scenarios.

We performed an additional experiment to better understand
the reasons of this result, and to gain more confidence that the
probability of false positives is small enough to be negligible
for practical uses. Before this experiment, we hypothesized
that, despite the high variability of the user workload (e.g., in
terms of type and size of I/O system calls, process scheduling,
etc.), the workload of the device driver at a low level (i.e.,
the I/O requests from the OS kernel to the device driver)

14

0 50 100 150 200 250 300

Time [s]

10
2

10
4

10
6

10
8

S
iz

e
 [
B

y
te

s
]

sys_read system calls

0 50 100 150 200 250 300

Time [s]

10
2

10
4

10
6

10
8

S
iz

e
 [
B

y
te

s
]

sys_write system calls

0 50 100 150 200 250 300

Time [s]

10
2

10
4

10
6

10
8

S
iz

e
 [
B

y
te

s
]

low-level device driver API calls

(a) I/O transfers over time.

51
2 4

k
8

k
16

 k
32

 k
64

 k

12
8

k

25
6

k

51
2

k
1

M
2

M
4

M
8

M
16

 M

Size [Bytes]

0

10

20

30

P
ro

b
a
b

ili
ty

 (
%

)

sys_read system calls

51
2

4
k

8
k

16
 k

32
 k

64
 k

12
8

k

25
6

k

51
2

k
1

M
2

M
4

M
8

M
16

 M

Size [Bytes]

0

10

20

30

P
ro

b
a
b

ili
ty

 (
%

)

sys_write system calls

8
k

16
 k

24
 k

32
 k

40
 k

Size [Bytes]

0

20

40

60

80

P
ro

b
a

b
ili

ty
 (

%
)

low-level device driver API calls

(b) Distribution of I/O transfer size.

Fig. 12. An experiment to compare I/O access patterns at a high-level (system calls) and the corresponding low-level access patterns (device driver API).

follows simple, regular patterns, that are easy to learn by our
monitoring approach even with a limited amount of training.

To get insights on this hypothesis, we executed the IOzone
workload on the LSI Fusion MPT driver (the most complex of
the three, as can be seen in Table I), and analyzed it from two
perspectives (as showed in Fig. 12): the amount of data read
and written by system calls of the application (the highest layer
of the storage stack), and the amount of data transferred by
individual I/O requests by the OS kernel to the device driver
(a lower layer of the storage stack). Fig. 12b shows on the top
how the read/written data vary over time, and on the bottom
the corresponding I/O requests served by the device driver over
time. For the same dataset, the Fig. 12b shows the distribution
of the I/O transfer size respectively at the system call and at
the device driver level. The analysis points out that even if
the system calls at the application layer can significantly vary,
the low-level I/O requests follow simpler patterns: when the
volume of the system calls is low (first part of Fig. 12b),
the low-level I/O requests are performed at a regular rate
and with a fixed size; when the volume of the system calls
increases, the low-level I/O requests exhibit more variability,
but the most of individual I/O requests are limited to 16 or 32
fixed-size blocks per transfer (as pointed out in Fig. 12b). We
attribute this behavior to the nature of the device driver API,
which is designed to be simpler than the system call interface

exposed to the users; moreover, the caching and buffering by
the OS kernel also dampens variations. This behavior favors
the monitoring of I/O storage activity at the device driver level,
as this activity is easier to learn by the monitor than the activity
at the user-space level.

E. Evaluation of performance overhead

We evaluated the overhead of the run-time monitoring
approach, by comparing performance measures respectively
without and with the monitor component. We again consider
the IOzone, Postmark, and SQLite workloads, on the three
storage device drivers. As in the previous section, we evaluate
the approach both on three virtualized storage controllers
(using the same setup presented in § V-A), and on two physical
SATA/AHCI storage controllers with real HDDs.

We first analyze the impact of monitoring on the execution
time of the workloads. Fig. 13 shows the average and the
standard deviation of the execution time, that have been
computed from 20 repeated executions of each workload.
According to the tests in Fig. 13, monitoring only introduces
a small overhead in most of the cases. The relative difference
between execution times (lower is better) is only 0.5% in the
best case (Intel SATA/PATA, Postmark workload). Moreover,
the relative performance overhead (i.e., the gap between the

15

IOzone SQLite Postmark
0

25

50

75

100

125

150

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

(a) SATA/AHCI (VMware ESXi).
IOzone SQLite Postmark

0

25

50

75

100

125

150

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

(b) Intel SATA/PATA (VMware ESXi).
IOzone SQLite Postmark

0

25

50

75

100

125

150

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

(c) LSI Fusion MPT (VMware ESXi).

(d) SATA/AHCI (Intel 82801GR, physical). (e) SATA/AHCI (Intel C600/X79, physical).

Fig. 13. Impact of the monitoring approach on the performance of the workloads.

executions with/without the monitor) for the physical SA-
TA/AHCI controllers is comparable to the relative overhead
that has been measured for the virtual SATA/AHCI controller.
We found a noticeable difference only in the case of the
LSI Fusion MPT device driver, which exhibited a relative
difference of 27% in the worst case (SQLite workload).

We attribute these differences to the overhead of dynamic
probing, as every API call to the device driver triggers the
breakpoint handler that is installed by our monitoring ap-
proach. In fact, the execution slow-down is only noticeable
when the OS performs a higher number of driver API calls: for
example, in the case of the IOzone workload, the OS performs
about 90k API calls to the SATA/AHCI driver; under the same
workload, the OS performs about 160k API calls to the LSI
Fusion MPT driver. The number of API calls is determined
by the nature of the API adopted by the device driver and
the I/O subsystem: in the case of the LSI Fusion MPT, the
kernel converts I/O system calls into a stream of smaller, and
more numerous block transfers compared to the other drivers.
In such cases, it is advisable (when possible) to configure the
driver to increase the block transfer size, in order to reduce the
number of API calls and the probing overhead; alternatively,
to avoid dynamic probing by adopting less costly techniques
to intercept API calls (e.g., by rewriting binary code before
loading, as in more recent tracing techniques adopted in the
Linux kernel [65], [66]), at the cost of making the approach
more difficult to deploy in practice.

In another experiment, we evaluated the intrusiveness of
the dynamic probing mechanism in more detail, by measuring

the latency overhead imposed by the prober on the execution
of driver APIs (in particular, to collecting data from the
controller interface). Fig. 14a shows the time to execute our
instrumentation code, without including the time to execute the
driver API; therefore, these measures represent the additional
latency that is introduced by the instrumentation (thus, in the
case of no instrumentation, this measure would be zero). We
evaluate this measures both when probing the full controller
interface (i.e., the full tracing in the first step of § III-B),
and when probing selected parts of the controller interface
(i.e., the partial tracing in § III-B). We compare full and
partial tracing to evaluate the importance of the trace filtering
approach (§ III-B), since including all of the device interface in
the model states worsens the overhead and accuracy beyond
any practical use. Moreover, in Fig. 14b we show the CPU
overhead due to work happening off the critical path (i.e.,
executed separately from the probed I/O operations performed
by the driver), such as the collection of alarms from the
kernel-level prober to a user-space logger. These activities
off the critical path are executed by a user-space process
provided by the SystemTap toolkit. Thus, we evaluate this
performance overhead by measuring the CPU utilization of
this process, which adds up to the normal CPU consumption
of the workload and of the OS, and which is zero if we do
not perform any instrumentation and collection. Again, we
consider both full and partial tracing.

We notice that the gap between full and partial tracing is
quite large with respect to the probing latency, with a slow-
down of full tracing up to 24 times with respect to partial

16

(a) API latency.

(b) CPU utilization.

Fig. 14. Overhead of monitoring in terms of CPU utilization and additional
API latency.

tracing (Fig. 14a), which is an unreasonable overhead for
practical applications. Moreover, monitoring the full device
interface leads to a high frequency of false positives (up to
several false alarms per seconds), since the model includes
noisy information that significantly varies between training
and production runs (e.g., addresses and bit-fields). Thus,
filtering is actually useful to reduce the overhead of probing,
and to avoid the probe effect. Overall, the overhead under
partial tracing (∼1% CPU usage for off-loaded activities, and
a probing latency of few tens of µs) can be considered low
enough to be accepted for many practical scenarios.

VI. DISCUSSION

In this section, we discuss about the deployment of the
monitoring approach in practical scenarios, and about the
problem of realistic fault injection.

A. Deployment of the proposed monitoring approach

We identify the administrators of the storage stack as one
category of adopters of the proposed approach. A system
administrator can enhance the reliability of the OS (e.g., device
drivers from the Linux kernel such as the ones considered
in our study) by introducing a monitoring module, and by
leveraging the monitoring to trigger failure recovery strategies.
From a practical point of view, the system administrator
first needs to install the monitoring module, by identifying
the DMA areas and memory-mapped registers of the device
interface to be monitored, as discussed in section III-A, and
to collect training traces. Then, the traces should be filtered
using the automated techniques described in section III-B, in
order to generate a new version of the monitoring module with
the learned model, that will be deployed in operation.

Another use case for the proposed approach is that kernel
developers release pre-built monitoring modules, and that oth-
ers download and run the modules on their own system. In this
case, the developer is responsible for providing an executable
module that is already tailored to monitor the specific DMA
areas and memory-mapped registers of the device interface.
In this case, no kernel programming knowledge is required
by the users. However, the user should still be responsible
for executing a training workload, in order to let the pre-built
module to learn a model for the storage controller, and make
the monitor tailored for the actual configuration of the system.
This training would not be feasible for developers since their
environment may be different that the one of the user (e.g.,
because of a different configuration or chipset flavor of the
storage controller). To evaluate the feasibility of this strategy,
in this work we experimentally checked that the training can be
performed with reasonable efforts, since the training does not
require the user to apply complex workloads (e.g., it suffices
to use popular and simple tools such as IOzone), and since
the duration of the training is limited to few minutes.

Finally, another possible use case for the proposed approach
is by system integrators (such as companies that commercial-
ize “turn-key” solutions for data centers) to provide a pre-
built computer server with additional high-reliability features
to recover from faults in the storage stack. In this scenario,
the system integrator has full control of the storage compo-
nents and configuration, and can configure and pre-train the
monitoring module for immediate use by its customers.

In order to decide how to react to an alarm raised by the
monitoring approach, the user (e.g., a system administrator)
should take into account the possibility that alarms are not
due to faults from device drivers, but due to faults from the
hardware devices, stressful conditions cased by the workload
(such as low memory), and re-configurations of the storage
(e.g., due to software upgrades, or to hardware maintenance).
In principle, it is possible that external events (such as low
memory and hardware faults), or even the execution a re-
covery procedure (for example, switching the driver to an
alternative I/O mode, such as from interrupt-driven to polling
or viceversa) may change the behavior of the device driver,
thus causing violations with respect to the learned model. In
the case that the system administrator has initiated an upgrade

17

or maintenance action, he/she is already aware of the cause
behind the violation, so the alarm from the monitoring tool
can be recognized as harmless. If the device driver still raises
alarms after the upgrade or reconfiguration, it can be necessary
to re-train the model in order to fit the new configuration; this
re-training is simple as it only requires few minutes and can
be performed with a synthetic workload generator.

In other cases of alarm, it would be appropriate to still
allow the driver to handle the operation, and to let the system
administrator or a separate tool make decisions based on
information from both the monitoring approach and from other
sources (such as kernel logs and other diagnostic tools), in
order to identify whether the alarm had been caused by an
external event or by a failure of the device driver. In the case of
monitoring alarms that happen together with other errors (such
as error messages from the OS related to the memory allocator
and the I/O management subsystem, etc.), the warning could
be considered a consequence of low-memory or a hardware
event. This decision can be made by looking for recent events
that are explicitly logged by the device driver or the OS, or
by querying the state of the device driver. Our monitoring
approach is meant to be deployed side by side with the existing
checks in the storage stack, to detect additional cases (i.e.,
silent protocol violations) that would otherwise not be detected
by the kernel, and to support the diagnosis and handling of
the problem by other tools or by administrators.

If an alarm from the monitoring approach raises suspicion of
device driver failure, the end-user should temporarily stop the
storage operations and perform thorough filesystem checks,
which can identify the presence of data corruptions. The
monitoring approach achieves a high-enough coverage and
accuracy, thus avoiding to needlessly trigger the filesystem
checks, and keeping the impact of checks low in terms of
downtime and computational resources. Moreover, in the case
of alarms, the end-user can undo and retry the recent I/O
operations, or restore a previous version of the data. Having
a timely warning from the monitoring approach helps to
achieve a low time-to-detection, and thus to increase the
likelihood of recovering the data in the case of failures of the
storage driver. In any of these cases, the monitoring approach
should be considered complementary to other error detection
mechanisms in the I/O stack and should be accompanied by
other tools and policies for handling the warnings according
to the root cause of the problem.

B. Realistic injection of software faults
In this work, we have adopted a methodology based on

fault injection to evaluate the monitoring approach. The aim
has been to emulate software faults that do not surface during
testing, and that lead to transient failures only when the driver
is deployed in a production system. This behavior of software
faults also allows us to train the monitoring approach with
failure-free runs. However, it is important to note that it
is difficult to reproduce the real software failure process in
an experimental testbed, and that we need to approximate
the failure process by accelerating its initial part, by forcing
internal software errors, as defined by previous empirical
studies on software mutations and fault injections.

Ideally, one would assess the failure detector with real
failures, by running the target system for a long time, and
by letting it to experience genuine failures caused by residual
bugs in the device drivers. However, such real failures are rel-
atively rare events: for example, two previous studies on field
failure data on Windows 2K and NT machines (respectively
131 machines in the LAAS local area network [67] and 70
machines in a commercial organization [68]) reported a long
time-between-failures of dozens of days on average, and up
to several months for some machines; the time to failure is
even higher when only considering disk driver failures. In our
smaller testbed, OS failures are even more rare, and it would
take years to observe a handful of corruption failures caused
by storage drivers.

Another ideal solution would be to evaluate failure detection
with real residual bugs, by carefully crafting inputs to trigger
them. Unfortunately, this is not always possible, since device
driver bugs are not triggered solely by inputs from applica-
tions, but also require subtle environmental conditions. For
example, some bugs surface only when the disk controller is
equipped with a specific chipset version (as disk device drivers
typically have to support dozens of chipsets); but obtaining
the right hardware for every bug would be unfeasible. In other
cases, the driver should be stimulated by a specific interleaving
of events (e.g., interrupts that overlap with the activity of
asynchronous threads in the kernel or with a specific state
of the memory allocator); but controlling these events would
require a heavy instrumentation of the system (for example,
by modifying the VM hypervisor to carefully controlling the
timing of events for each bug). Moreover, this approach would
bring an additional methodological issue: to have a large set of
bugs, we would need to consider bugs across several versions
of the device driver, so we would need to train and to evaluate
the failure detector on each different version.

For these reasons, the typical approach to evaluate fault-
tolerance solutions, such as previous papers on the reliability
of device drivers, is to perform fault injection to accelerate
failures. In general, (software) fault injection modifies either
the code or the state of a running program, in order to
force the occurrence of failures. In both cases, the program
experiences failures that are not caused by the original code;
this approach relies on the empirical observation that the
injected mutations tend to cause failures that are similar to real
ones. For example, Daran and Thévenod-Fosse [69] closely
compared the variables corrupted respectively by real faults
and mutations, and found a match in 85% of cases, even if the
mutated program differs from the original program. Madeira et
al. [70] and Christmansson and Chillarege [71] provided best
practices for crafting mutations and errors to represent real
failures. In the realm of mutation testing, empirical studies
(such as the one from Andrews et al. [72]) have found that
mutations are as difficult to detect as real faults. As a result,
over the years, software fault injection has become an accepted
approximation of real failures for research purposes.

In our study, we adopt a tool that emulates transient software
failures of device drivers, by dynamically introducing faults at
run-time in driver’s code and state. The injections are dynamic
in order to control the timing of failures, since it is still

18

unfeasible (and still an open research problem, as we pointed
out in a previous work [18], [19], [73], [74]) to automate a
large number of experiments where the permanently-injected
bugs (either injected pre-runtime, or real ones) are dormant
during the training run and are triggered in a controlled way
during the testing run. Therefore, during an experiment, the
original (unmodified) device driver is first loaded in the OS;
then, at run-time, the tool injects corruptions to emulate the
transient effects of software faults, such as incorrect pointers
and operands (e.g., NULL pointers that may circulate in the
driver because of a sporadic failed memory allocation), wrong
API calls (e.g., called prematurely or too late to be valid),
incorrect control flows (e.g., an incorrect logical condition that
does not handle an infrequent corner case).

It is important to note that all these effects may even be
caused by code that is frequently executed, but they may only
manifest themselves because of unlikely combinations of the
timing of events, scheduling, hardware configuration, state of
virtual memory, etc.. Since it is too cumbersome to reproduce
the exact conditions that triggers the real bugs, software fault
injection accelerates the failure process by forcing the faults’
effects, in order to study how these effects lead to anomalies at
the interfaces of the device driver (in our case, the hardware
device interface). For these reasons, the fault injection tool
used in this work is also adopted by many other recent studies
on device driver reliability. Recent uses include research on
Minix 3 fault-tolerant OS (using the HSFI tool [75], which
is based on the same fault injector) and on quick rebooting
techniques for the Linux kernel [76].

VII. RELATED WORK

The basic approach to tolerate faulty device drivers enhance
the OS to provide software fault isolation. These techniques
prevent a faulty driver from overwriting data or code outside
its own, in order to avoid the escalation of the fault (e.g., even
if a driver fails, the other functions of the OS are unharmed,
and recovery actions can be initiated).

Software fault isolation relies on hardware and software
solutions to avoid the propagation of errors from device
drivers. The Nooks approach is one of the earliest and well-
known [14]: it confines a driver into a domain, by dynamically
updating the memory access permissions on the Memory
Management Unit (MMU) before and after the driver’s code
is executed (i.e., by setting the pages of other kernel areas
to read-only). Swift et al. [15] also proposed an approach to
recover from failures of device drivers: once the failure is
detected, a shadow driver (another copy of the driver that
runs alongside the original one) becomes active and performs
I/O requests that have been interrupted, in order to mask the
failure from the user.

Other studies addressed faulty drivers by revising the ar-
chitecture of the OS. The main approach has been to move
device drivers from kernel-space (where the same memory
address space is shared among all kernel components) into
user-space processes (with their own memory address space).
This idea has been applied in the microdrivers approach
[77], and in microkernel OSes, such as Minix [16]. More

recently the I/O Memory Management Unit (IOMMU) has
been leveraged to protect the kernel from overwrites that may
be caused by incorrect DMA transfers, which are otherwise not
subjected to the checks of the MMU of the CPU [78], [79].
Finally, software-enforced fault isolation techniques have been
developed to instrument drivers’ code before loading them.
One of the early techniques of this kind, by Wahbe et al. [80],
inserts checks before every unsafe instruction (e.g., memory
writes) in order to check destination addresses. SafeDrive
[81] and BGI [82] guarantee type safety by placing checks
at compile-time (such as assertions on pointers), which are
enforced at run-time.

Software fault isolation segregates faulty device drivers, in
order to prevent a driver from corrupting memory areas that
belong to other kernel subsystems. However, these approaches
are not meant to mitigate corruptions of memory that belongs
to the faulty driver (e.g., commands and data exchanged with
the I/O device). This limitation is especially problematic for
storage device drivers, since drivers’ failures may affect the
users’ data that are written on the persistent storage, and the
corruptions may be undetected until it is too late to recover the
data. Moreover, many of the studies on drivers’ reliability were
not focused on storage device drivers, and in many cases did
not consider storage drivers at all due to their technical com-
plexity (e.g., because of the large number of OS APIs involved
and the large size of the device controller interface), focusing
instead on simpler devices, such as network controllers and
soundcards [15], [16].

In the field of storage reliability, many techniques and
tools focus on filesystems, e.g., to improve error handling
in filesystems with respect to errors raised by device drivers
[83], [84], where data corruptions are healed with filesystem
repair tools (e.g., fsck) [85]. However, these tools are limited
to preserving the consistency of metadata (e.g., inodes and
directories), but do not address corruptions of data blocks.
Moreover, these tools are meant to be used sporadically (e.g.,
periodically, after a reboot, or after a major failure), and have
a significant overhead [86].

The problem of protecting hardware devices from faulty
device drivers has only been considered in very recent works.
Guardrail [87] is an early solution, which uses an hypervisor
to detect data races and memory access failures. Other ap-
proaches have introduced end-to-end consistency checks be-
tween the filesystem and the device driver (e.g., by computing
and storing checksums of the data before passing them to the
driver), and at the application level (e.g., by replicating blocks
and comparing to each other) [84], [88]–[90]. However, the
utility of such checks is limited since data corruptions are
only detected when the data is read again, but a long time
may elapse until a data block is read after it is corrupted, and
these solutions incur in significant overheads.

To improve the reliability of storage device drivers, we
present an approach that monitors at run-time the interactions
between the device driver and the storage controller, in order
to detect incorrect I/O operations as soon as they occur.
Compared to our previous work [91], this paper presents a
deeper experimental analysis to understand the reasons why
the proposed approach achieves a good trade-off between cov-

19

erage, accuracy, and overhead, including: a sensitivity analysis
with respect to the duration of the training workload; a low-
level analysis of the operational profile of the device drivers;
an analysis of how the proposed approach complements the
existing error detection mechanisms; a detailed analysis of
the sources of overhead and how the approach reduces the
data collection. Moreover, we experiment across three diverse
and complex device drivers from the Linux kernel, covering
different I/O standards and different Linux subsystems.

VIII. CONCLUSION

In this paper, we proposed an approach for detecting proto-
col bugs in storage device drivers at run-time, by monitoring
the interfaces between the device driver and the other layers of
the I/O storage stack, namely the storage controller and the OS
kernel. The approach has been designed to ease its practical
adoption: it avoids the need for source code and protocol
specifications of the device driver, by automatically learning
from execution traces; and it achieves a good trade-off between
coverage, accuracy and overhead, by carefully selecting the
parts of the device driver interface to be monitored.

We validated the proposed approach on three complex and
popular device drivers from the Linux kernel. In particular,
our experimental analysis has been aimed at understanding
why the device driver protocols are amenable for run-time
monitoring. One key finding is that the behavior at the device
driver level, a lower layer of the I/O stack, is much simpler
than the behavior in the uppermost layers of the stack, since
the device driver performs smaller and less diverse types of
I/O operations. Thanks to this property, it is sufficient to train
the monitoring approach for few minutes in order to get a
detector free from false positives, even if using a generic,
synthetic workload generator. Another useful property is that
we focus on selected parts of the storage interfaces (such as
command codes and bitmasks) that are good and minimal
indicators of protocol violation bugs, as the monitor has been
able to detect most of the data corruptions caused by fault
injection. Moreover, the monitor complements well existing
error detection mechanisms (e.g., memory access checks by
the CPU, and error logging in the Linux kernel), as these
existing mechanisms cover the cases that are intentionally left
out from our approach (e.g., incorrect memory addresses that
cause memory access exceptions). Finally, we showed that the
monitoring approach can be deployed with very little impact
on the I/O performance, since we need to monitor only a small
part of the storage interface, and we use dynamic probing
mechanisms that are widespread among modern OSes and
have a very small overhead.

APPENDIX

In this appendix, we provide technical information on the
three device drivers that were analyzed in this study, and on
the application of the proposed monitoring approach.

A. SATA/AHCI

Serial ATA (SATA) is a standard for a bus interface between
storage controllers (Host Bus Adapter, HBA) and mass storage

devices (including hard disks, optical disks, and solid-state
drives), which leverages high-speed serial transmission [92].
The Advanced Host Control Interface (AHCI) is a popular
open standard, proposed by Intel [93], for interfacing a SATA
HBA to the OS kernel using a generic set of memory-mapped
registers and in-memory data structures. AHCI and SATA are
complementary standards (we will jointly refer to them as
SATA/AHCI in the following), as they manage respectively the
communication between the OS and the HBA, and between
the HBA and the physical disk. Fig. 5a shows a simplified
view of an SATA/AHCI storage stack architecture, from both
the hardware and software perspectives.

In SATA/AHCI, the disk controller handles up to 32 ports.
Furthermore, each port can manage up to 32 commands
issued by the driver, which are written on the command list,
an in-memory data structure. Commands and controls are
enclosed in Frame Information Structures (FIS), along with
flow control and error-detection codes to increase reliability.
The device driver issues a command by writing a command
FIS, which includes among others the command operation
code, the logical disk block addresses to be read or written,
etc.; subsequently, the disk controller fetches the FIS, and
begins a data transfer; finally, on command completion, the
disk controller raises an interrupt and writes on a different
in-memory area, the Received FIS Structure, to notify the
device driver about the status of the transfer (e.g., whether
the command is completed without errors). The HBA exposes
a set of per-port memory-mapped registers, which include:
• Generic Host Control (GHC): defines the capabilities and

controls the behavior of the HBA (e.g., which ports the
HBA exposes, and which capabilities the HBA supports,
such as the Native Command Queuing (NCQ));

• Port Command List Base (CLB): points to the command
list of a specific port;

• Port FIS Base Address (FB): points to an in-memory area
with the received FIS of a port;

• Port Interrupt Status (IS): the interrupt status of a specific
port;

• Port Serial ATA Active (SACT): a bitmask with the status
of each NCQ command entry (e.g., bit at position ’3’ is
set if command entry ’3’ has been issued).

B. Intel SATA/PATA

The Intel SATA/PATA device driver in Linux supports
storage controller chips in the PIIX series from Intel, including
both serial (SATA) and legacy parallel (PATA) chipsets. In par-
ticular, we focus our evaluation on the Intel 82371AB/EB/MB
PIIX4 PATA controller, as SATA controllers have already
been covered by the SATA/AHCI device driver. The target
PATA controller leverages the Bus-Master DMA (BMDMA)
mechanism, a de-facto standard for ATA controllers, to allow
the device to perform transfers in place of the CPU.

The device driver performs reads and writes by sending
three command types: PIO, NO-DATA, or DMA. The driver
communicates with the controller by writing information (de-
noted as taskfile) on a set of memory-mapped registers defined
by the ATA standard, which include the command operation,

20

the logical block addresses (LBAs) involved in the transfer,
and so on. The IDE SATA/PATA driver provides two separate
IDE-channels (with two groups of registers) for sending and
receiving commands.

The physical memory region involved in a transfer to
and from the hard disk is identified by a Physical Region
Descriptor (PRD). PRDs are saved in a Descriptor Table in
main memory. Each entry of that table is identified by an
address, and by the size or transfer count of the region in
bytes. As for the SATA/AHCI HBA, the Intel SATA/PATA
HBA provides a set of memory-mapped registers through the
Bus Master Interface Base Address Register (BMIBA), which
is the base address for the Bus Master interface registers. These
registers include:
• Bus Master IDE Command Register (BMIC): enables/dis-

ables the bus master capability for the IDE controller
and controls the direction for DMA transfers. The BMIC
register also provides information that the driver uses to
indicate DMA capability of the IDE device;

• Bus Master IDE Status Register (BMIS): indicates the
status about the IDE device and state of the transfer (e.g.,
the interrupt status);

• Bus Master IDE Descriptor Table Pointer Register
(BMIDTP): provides the base memory address of the
Descriptor Table.

C. LSI Fusion MPT

This driver provides support for disk storage controllers
from LSI based on the Fusion-MPT (Message Passing Tech-
nology) architecture [94]. That architecture provides an open,
unified interface to manage SCSI, Fibre Channel, and Serial
Attached SCSI (SAS) disks. Using the Fusion-MPT archi-
tecture, the host does not need to know the underlying bus
protocol architecture to be able to communicate with the target
devices.

The device driver and the disk controller communicate
through two message queues, the Request Message Queue
and the Reply Message Queue. Request messages trigger
actions of the disk controller (e.g., write blocks on disk); reply
messages contain status information about the disk controller.
The elements in the queues are pointers to message frames
that include a header, which uniquely identifies the message,
and a payload, which contains information about the request
(e.g., the SCSI CDB to specify the blocks to be accessed) or
the reply (e.g., the error status of a completed command).

The addresses of the current request and reply message
frames are pointed to respectively by the memory-mapped
Request FIFO Register and the Reply FIFO register. The LSI
Fusion MPT driver manages a memory pool for handling reply
and request frames. When the driver issues a command, it asks
for an MPT request frame from the pool, and creates a SCSI
request mapped to a DMA area. A pointer to the message
descriptor (i.e., the address that points to the requested frame)
is then stored on the Request FIFO Register. Reply message
queues are notified by the disk controller by setting the value
of Host Interrupt Status register, and raising an interrupt to
be handled by the device driver. We used our prober to

perform a preliminary analysis of side effects of registers of
this storage interface (as discussed in III-A). We found that
reading from the reply FIFO register using our prober causes
I/O failures, since the read has the side effect of clearing the
interrupt register. Therefore, blacklisted this specific register,
and probed all the remaining registers of the interface.

D. Applying the monitoring approach

We deployed the monitoring approach to the three targeted
device drivers, by identifying the Linux kernel modules of
these drivers (as showed in Fig. 5), and their API functions
exposed to the upper layers of the Linux kernel.

The SATA/AHCI device driver is actually separated into two
kernel modules: ahci and libahci (Fig. 5a). As soon as the ahci
module is loaded, it requests and maps the memory regions
needed for the disk controller, registers an interrupt handler,
and resets the disk controller. On the other hand, the libahci
module implements all the low-level mechanisms in order
to communicate with the disk controller. Both the ahci and
libahci kernel modules interact with the libATA [95] library,
which provides a kernel interface for all ATA and SATA device
drivers. All commands towards the disk controller are issued
invoking the ahci_qc_issue function, which is implemented by
the libahci module.

The Intel SATA/PATA device driver (Fig. 5b) consists of
the ata_piix kernel module. When loaded, the ata_piix module
registers the PIIX ATA PCI device using the kernel bus PCI
API. The ata_piix leverages the libATA library for interacting
with ATA devices. In particular, the libata-sff module imple-
ments the ata_bmdma_qc_issue API to send a taskfile towards
a BMDMA controller.

Finally, the LSI Fusion MPT device driver is organized in
three kernel modules: mptbase, mptscsih, and mptspi (Fig. 5c).
The mptbase kernel module initializes the controller and
provides all the basic functionalities of the MPT-Fusion pro-
tocol [94]. The mptscsih and the mptspi kernel modules are
used specifically for MPT-Fusion devices that use the SCSI
bus. In particular, the mptspi kernel module implements the
mptspi_qcmd function that creates a SCSI request and sends
it to the disk controller.

As soon as the identified APIs for issuing a command
to the disk controller are invoked, we collect a snapshot
of memory-mapped registers and in-memory data structures
for the specific device driver. We compute the address of
the memory-mapped registers using the bus APIs functions
provided by the Linux kernel (e.g., pcim_iomap_table). The
addresses of in-memory, DMA-mapped areas are obtained
by probing the DMA APIs when loading the drivers (e.g.,
dma_alloc_coherent). In the case of the LSI Fusion MPT
driver, we manually identified two arrays in DMA areas (the
request and reply queues), and configured the monitor to
separately handle the array elements. We implemented the
monitor using SystemTap [24], by probing the API functions
and inspecting the registers and in-memory data structures
used by the device drivers.

21

ACKNOWLEDGMENT

This work has been supported by UniNA and Compagnia
di San Paolo in the frame of “Programma STAR” (project
“FIDASTE”). Furthermore, we are grateful to Dr. Francesco
Fucci for his technical support with the fault injection tool and
with a previous version of this manuscript.

REFERENCES

[1] Oracle Corp., “Best practices for data reliability with Oracle VM
Server for SPARC,” 2010, http://www.oracle.com/technetwork/articles/
systems-hardware-architecture/vmsrvrsparc-reliability-163931.pdf.

[2] IBM Corp., “Disaster recovery strategies with Tivoli Storage Manage-
ment,” 2002, http://www.redbooks.ibm.com/redbooks/pdfs/sg246844.
pdf.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in SOSP’01.

[4] A. Ganapathi, V. Ganapathi, and D. A. Patterson, “Windows XP kernel
crash analysis,” in LISA’06.

[5] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in Linux: Ten years later,” in ASPLOS’11.

[6] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are disks the dominant
contributor for storage failures?: A comprehensive study of storage
subsystem failure characteristics,” ACM Transactions on Storage, vol. 4,
no. 3, 2008.

[7] W. Jiang, C. Hu, A. Kanevsky, and Y. Zhou, “Don’t blame disks for
every storage subsystem failure,” ;login:, vol. 33, no. 3, 2008.

[8] V. Kuznetsov, V. Chipounov, and G. Candea, “Testing closed-source
binary device drivers with DDT,” in USENIX ATC’10.

[9] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing
drivers without devices,” in OSDI’12.

[10] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser, “Dingo: Taming device
drivers,” in EuroSys’09.

[11] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151–180, 1998.

[12] G. Canfora, F. Mercaldo, and C. A. Visaggio, “An HMM and structural
entropy based detector for Android malware: An empirical study,”
Computers & Security, vol. 61, pp. 1–18, 2016.

[13] L. Mariani, F. Pastore, and M. Pezze, “Dynamic analysis for diagnosing
integration faults,” IEEE Transactions on Software Engineering, vol. 37,
no. 4, pp. 486–508, 2011.

[14] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” in SOSP’03.

[15] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recov-
ering device drivers,” ACM Transactions on Computer Systems, vol. 24,
no. 4, 2006.

[16] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Fault
isolation for device drivers,” in DSN’09.

[17] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Mi-
croreboot: A technique for cheap recovery,” in OSDI’04.

[18] D. Cotroneo, R. Natella, and S. Russo, “Assessment and improvement
of hang detection in the Linux operating system,” in SRDS’09.

[19] R. Natella and D. Cotroneo, “Emulation of transient software faults for
dependability assessment: A case study,” in EDCC’10.

[20] “IOzone filesystem benchmark,” http://www.iozone.org/, accessed:
2015-08-01.

[21] E. Nemeth, G. Snyder, S. Seebass, and T. Hein, UNIX System Adminis-
tration Handbook. Pearson Education, 2000.

[22] B. Gregg and J. Mauro, DTrace: Dynamic Tracing in the Solaris, Mac
OS X, and FreeBSD. Prentice Hall Professional, 2011.

[23] W. Cohen, “Gaining insight into the Linux kernel with Kprobes,” 2005,
http://www.redhat.com/magazine/005mar05/features/kprobes/.

[24] ——, “Instrumenting the Linux Kernel with SystemTap,” 2005, http:
//www.redhat.com/magazine/011sep05/features/systemtap/.

[25] M. Carbone, A. Kataria, R. Rugina, and V. Thampi, “VProbes: Deep
observability into the ESXi hypervisor,” VMware Technical Journal,
Summer, 2014.

[26] G. Hunt and D. Brubacher, “Detours: Binary interception of Win32
functions,” in USENIX Windows NT Symp. ’99.

[27] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the impact of
faulty drivers on the robustness of the Linux kernel,” in DSN’04.

[28] M. Mendonca and N. Neves, “Robustness testing of the Windows DDK,”
in DSN’07.

[29] “The PCI utilities,” http://mj.ucw.cz/sw/pciutils/, accessed: 2017-11-03.
[30] J. Gait, “A probe effect in concurrent programs,” Software: Practice and

Experience, vol. 16, no. 3, 1986.
[31] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic

extraction of protocol message format using dynamic binary analysis,”
in CCS’07.

[32] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in NDSS’10.

[33] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures,” in NDSS’11.

[34] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers:
Where the Kernel Meets the Hardware. O’Reilly Media, Inc., 2005.

[35] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A
study of Linux file system evolution,” ACM Transactions on Storage,
vol. 10, no. 1, p. 3, 2014.

[36] M. Khalil, Storage Design and Implementation in vSphere 6: A Tech-
nology Deep Dive. VMware Press Technology, 2017.

[37] Intel Corporation, “AHCI supported chipsets,” https://www.intel.
com/content/www/us/en/support/articles/000005642/technologies.html,
accessed: 2017-11-03.

[38] Broadcom Ltd., “SAS/SATA/NVMe host bus adapters,” https://www.
broadcom.com/products/storage/host-bus-adapters, accessed: 2017-11-
03.

[39] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa, and
M. Sato, “D-Cloud: Design of a software testing environment for reliable
distributed systems using cloud computing technology,” in CCGRID’10.

[40] I. Irrera, J. Durães, H. Madeira, and M. Vieira, “Assessing the impact of
virtualization on the generation of failure prediction data,” in LADC’13.

[41] S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “No PAIN,
no gain? the utility of parallel fault injections,” in ICSE’15.

[42] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y.
Wang, “Bringing virtualization to the x86 architecture with the orig-
inal VMware Workstation,” ACM Transactions on Computer Systems,
vol. 30, no. 4, 2012.

[43] M. Hosken, VMware Software-Defined Storage. Sybex publisher, 2016.
[44] A. Mauro, P. Valsecchi, and K. Novak, Mastering VMware vSphere 6.5.

Packt Publishing, 2017.
[45] VMware Inc., “VMware vSphere VMFS,” Tech. Rep., 2017.
[46] A. Traeger, E. Zadok, N. Joukov, and C. Wright, “A nine year study of

file system and storage benchmarking,” ACM Transactions on Storage,
vol. 4, no. 2, 2008.

[47] K. Kanoun, Y. Crouzet, A. Kalakech, A. Rugina, and P. Rumeau,
“Benchmarking the dependability of Windows and Linux using
PostMarkTM workloads,” in ISSRE’05.

[48] “Phoronix test suite,” http://www.phoronix-test-suite.com/, accessed:
2015-08-01.

[49] W. T. Ng and P. M. Chen, “The design and verification of the rio file
cache,” IEEE Trans. Comput., vol. 50, no. 4, 2001.

[50] M. Sullivan and R. Chillarege, “Software defects and their impact on
system availability: A study of field failures in operating systems,” in
FTCS’91.

[51] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 11, 2006.

[52] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental
analysis of binary-level software fault injection in complex software,”
in EDCC’12.

[53] D. Cotroneo, A. Lanzaro, and R. Natella, “Faultprog: Testing the
accuracy of binary-level software fault injection,” IEEE Transactions
on Dependable and Secure Computing, 2016.

[54] L. Ryzhyk, “On the construction of reliable device drivers,” Ph.D.
dissertation, PhD Thesis, School of Computer Science and Engineering,
University of New South Wales, 2010.

[55] LKML mailing list, “Rework AHCI LPM handling a little,” https://lkml.
org/lkml/2015/4/18/76, accessed: 2018-02-14.

[56] ——, “scsi: aacraid: Fix command send race condition,” https://lkml.
org/lkml/2017/11/21/897, accessed: 2018-05-10.

[57] LSI Logic, “MPT Fusion Linux OS driver release notes (mptlinux-
4.00.13.04-1),” Tech. Rep., 2007.

[58] LKML mailing list, “Storage related regression in linux-next 20120824,”
https://lkml.org/lkml/2012/9/9/6, accessed: 2018-05-10.

[59] Ubuntu Linux Launchpad, “LSI Logic MPT driver mapping of scsi
device busy to scsi host+device busy leads to read-only ext3 fs remounts
on VMware ESX Server,” https://bugs.launchpad.net/ubuntu/+source/
linux-source-2.6.22/+bug/137585, accessed: 2018-02-14.

[60] LKML mailing list, “JMicron JM20337 USB-SATA data corruption
bugfix,” https://lkml.org/lkml/2008/7/22/631, accessed: 2018-05-10.

http://www.oracle.com/technetwork/articles/systems-hardware-architecture/vmsrvrsparc-reliability-163931.pdf
http://www.oracle.com/technetwork/articles/systems-hardware-architecture/vmsrvrsparc-reliability-163931.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246844.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246844.pdf
http://www.iozone.org/
http://www.redhat.com/magazine/005mar05/features/kprobes/
http://www.redhat.com/magazine/011sep05/features/systemtap/
http://www.redhat.com/magazine/011sep05/features/systemtap/
http://mj.ucw.cz/sw/pciutils/
https://www.intel.com/content/www/us/en/support/articles/000005642/technologies.html
https://www.intel.com/content/www/us/en/support/articles/000005642/technologies.html
https://www.broadcom.com/products/storage/host-bus-adapters
https://www.broadcom.com/products/storage/host-bus-adapters
http://www.phoronix-test-suite.com/
https://lkml.org/lkml/2015/4/18/76
https://lkml.org/lkml/2015/4/18/76
https://lkml.org/lkml/2017/11/21/897
https://lkml.org/lkml/2017/11/21/897
https://lkml.org/lkml/2012/9/9/6
https://bugs.launchpad.net/ubuntu/+source/linux-source-2.6.22/+bug/137585
https://bugs.launchpad.net/ubuntu/+source/linux-source-2.6.22/+bug/137585
https://lkml.org/lkml/2008/7/22/631

22

[61] Linux-scsi mailing list, “[PATCH] - fusion - mptfc bug fix’s
to prevent deadlock situations,” https://marc.info/?l=linux-scsi&m=
114600847100560, accessed: 2018-02-14.

[62] LKML mailing list, “scsi: qla2xxx: Get mutex lock before checking
optrom_state,” https://lkml.org/lkml/2017/8/9/848, accessed: 2018-05-
10.

[63] W. E. Cohen, “Tuning programs with OProfile,” Wide Open Magazine,
vol. 1, pp. 53–62, 2004.

[64] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri, “An
empirical study of injected versus actual interface errors,” in ISSTA’14.

[65] B. Gregg, “Choosing a Linux Tracer,” 2015, http://www.brendangregg.
com/blog/2015-07-08/choosing-a-linux-tracer.html.

[66] J. Evans, “Linux tracing systems & how they fit together,” 2017, https:
//jvns.ca/blog/2017/07/05/linux-tracing-systems/.

[67] C. Simache, M. Kaâniche, and A. Saidane, “Event log based depend-
ability analysis of Windows NT and 2K systems,” in PRDC’02.

[68] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer, “Failure data analysis
of a LAN of Windows NT based computers,” in SRDS’99.

[69] M. Daran and P. Thévenod-Fosse, “Software error analysis: A real case
study involving real faults and mutations,” in ISSTA’96.

[70] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software
faults by software fault injection,” in DSN’00.

[71] J. Christmansson and R. Chillarege, “Generation of an error set that
emulates software faults based on field data,” in FTCS’96.

[72] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in ICSE’05.

[73] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, “Representativeness
analysis of injected software faults in complex software,” in DSN’10.

[74] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, 2013.

[75] E. van der Kouwe and A. S. Tanenbaum, “HSFI: Accurate fault injection
scalable to large code bases,” in DSN’16.

[76] K. Yamakita, H. Yamada, and K. Kono, “Phase-based reboot: Reusing
operating system execution phases for cheap reboot-based recovery,” in
DSN’11.

[77] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and
S. Jha, “The design and implementation of microdrivers,” in ASPLOS’08.

[78] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider,
“Device driver safety through a reference validation mechanism,” in
OSDI’08.

[79] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers
in Linux,” in USENIX ATC’10.

[80] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in SOSP’93.

[81] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer, “SafeDrive: Safe and recoverable extensions
using language-based techniques,” in OSDI’06.

[82] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”
in SOSP’09.

[83] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Model-based failure analysis of journaling file systems,” in DSN’05.

[84] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “Improving file system reliability with I/O
shepherding,” SOSP’07.

[85] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts.
Wiley, 2013.

[86] A. Ma, C. Dragga, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. K. Mckusick, “Ffsck: The fast file-system checker,” ACM
Transactions on Storage, vol. 10, no. 1, 2014.

[87] O. Ruwase, M. A. Kozuch, P. B. Gibbons, and T. C. Mowry, “Guardrail:
A high fidelity approach to protecting hardware devices from buggy
drivers,” in ASPLOS’14.

[88] J. N. Herder, D. C. Van Moolenbroek, R. Appuswamy, B. Wu, B. Gras,
and A. S. Tanenbaum, “Dealing with driver failures in the storage stack,”
in LADC’09.

[89] R. Alagappan, A. Ganesan, E. Lee, A. Albarghouthi, V. Chidambaram,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Protocol-aware recovery
for consensus-based storage,” in FAST’18.

[90] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Redundancy does not imply fault tolerance: Analysis of dis-
tributed storage reactions to single errors and corruptions,” in FAST’17.

[91] D. Cotroneo, L. De Simone, F. Fucci, and R. Natella, “MoIO: Run-
time monitoring for I/O protocol violations in storage device drivers,”
in ISSRE’15.

[92] Serial ATA International Organization, Serial ATA Revision 3.0, www.
sata-io.org.

[93] Intel Corporation, Advanced Host Controller Interface for Serial ATA,
http://www.intel.com/content/www/us/en/io/serial-ata/ahci.html.

[94] LSI Corporation, “Fusion-MPT Device Management User Guide,” 2007,
https://docs.broadcom.com/docs/12353292.

[95] LibATA. Linux ATA wiki - Main Page. https://ata.wiki.kernel.org/index.
php/Main_Page.

Domenico Cotroneo (Ph.D.) is associate professor
at the Federico II University of Naples. His main
interests include software fault injection, depend-
ability assessment, and field-based measurements
techniques. He has been member of the steering
committee and general chair of the IEEE Intl. Symp.
on Software Reliability Engineering (ISSRE), PC
co-chair of the 46th Annual IEEE/IFIP Intl. Conf.
on Dependable Systems and Networks (DSN), and
PC member for several other scientific conferences
on dependable computing including SRDS, EDCC,

PRDC, LADC, and SafeComp.

Luigi De Simone received his MSc degree with hon-
ors in Computer Engineering in 2013, and the PhD
degree from the Federico II University of Naples,
Italy, working on reliability evaluation of Network
Function Virtualization infrastructures, within the
Dependable Systems and Software Engineering Re-
search Team (DESSERT) group. His research ac-
tivity focuses on fault injection and dependabil-
ity benchmarking of operating systems and cloud
computing infrastructures. He received the “Best
Student Presentation Award” from the ISSRE 2014

Conference, and the “Best Paper Award” from the NetSoft 2015 Conference.

Roberto Natella (Ph.D.) is assistant professor at
the Federico II University of Naples, Italy, and co-
founder of the Critiware s.r.l. spin-off company. His
research interests include dependability benchmark-
ing, software fault injection, and software aging
and rejuvenation, and their application in operating
systems and virtualization technologies. He has been
involved in projects with Finmeccanica, CRITICAL
Software, and Huawei Technologies. He contributed,
as author and reviewer, to several journals and
conferences on dependable computing and software

engineering, and he has been in the steering committee of the workshop
on software certification (WoSoCer) held with recent editions of the ISSRE
conference.

https://marc.info/?l=linux-scsi&m=114600847100560
https://marc.info/?l=linux-scsi&m=114600847100560
https://lkml.org/lkml/2017/8/9/848
http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html
http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
www.sata-io.org
www.sata-io.org
http://www.intel.com/content/www/us/en/io/serial-ata/ahci.html
https://docs.broadcom.com/docs/12353292
https://ata.wiki.kernel.org/index.php/Main_Page
https://ata.wiki.kernel.org/index.php/Main_Page

	Introduction
	Technical background
	Proposed approach
	Architecture of the monitoring approach
	Monitor learning

	Case study
	Experimental evaluation
	Experimental setup
	Impact of filtering and learning duration
	Evaluation of coverage
	Evaluation of accuracy
	Evaluation of performance overhead

	Discussion
	Deployment of the proposed monitoring approach
	Realistic injection of software faults

	Related work
	Conclusion
	Appendix
	SATA/AHCI
	Intel SATA/PATA
	LSI Fusion MPT
	Applying the monitoring approach

	References
	Biographies
	Domenico Cotroneo
	Luigi De Simone
	Roberto Natella

