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Abstract—Network Function Virtualization (NFV) aims to pro-
vide high-performance network services through cloud comput-
ing and virtualization technologies. However, network overloads
represent a major challenge. While elastic cloud computing
can partially address overloads by scaling on-demand, this
mechanism is not quick enough to meet the strict high-availability
requirements of “carrier-grade” telecom services. Thus, in this
paper we propose a novel overload control framework (NFV-
Throttle) to protect NFV services from failures due to an
excess of traffic in the short term, by filtering the incoming
traffic towards VNFs to make the best use of the available
capacity, and to preserve the QoS of traffic flows admitted in
the network. Moreover, the framework has been designed to fit
the service models of NFV, including VNFaaS and NFVIaaS. We
present an extensive experimental evaluation on the NFV-oriented
Clearwater IMS, showing that the solution is robust and able to
sustain severe overload conditions with a very small performance
overhead.

Index Terms—Overload Control; Network Function Virtual-
ization; NFVIaaS; VNFaaS; Cloud Computing; IP Multimedia
Subsystem

I. INTRODUCTION

NETWORK services experience an overload condition
when they work with more traffic flows than their

engineered capacity, causing resource exhaustion, and the
disruption and unavailability of services. This condition leads
to SLAs violations, thus potentially compromising customers’
contracts. Overload and congestion control has been a key re-
search topic in Telecom network appliances; most of proposed
techniques are well assessed and are today part of networking
industry standards and commercial products [1]–[3].

Telecom services are now rapidly changing to cut costs and
energy consumption, to improve manageability, and to reduce
time-to-market. To pursue these objectives, we are witness-
ing a shift of Telecom network functions from proprietary
hardware appliances to software [4], adopting the Network
Function Virtualization (NFV) paradigm [5], which leverages
virtualization and cloud computing technologies.

In this new context, overload control techniques are re-
quired to evolve in order to achieve the same high-availability
and performance requirements as before. In principle, virtual
network functions could take advantage of cloud elasticity
by scaling-out network services with on-demand resource
allocation to face overload conditions. Unfortunately, cloud
elasticity alone is not quick enough to meet the strict high-
availability requirements of “carrier-grade” telecom services,
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which can only afford few tens of seconds of outage per month
[6], [7]. As a matter of fact, scaling-out can require up to
several minutes to allocate new VM replica [8], [9]; moreover,
in the case of extreme overload conditions, an individual
cloud datacenter may lack resources for scaling, thus requiring
coordinated actions across several datacenters [10], [11]. For
these reasons, NFV requires additional solutions for mitigating
overloads in the short-term (i.e., within few tens of seconds),
by rejecting or dropping the traffic in excess with respect to
the capacity of the network.

Overload control solutions must also take into account the
additional deployment constraints that are imposed by the “as-
a-service” model of cloud computing, for both Virtual Network
Function (VNF) and NFV Infrastructure (NFVI) providers. On
the one hand, providers of VNFaaS must face the lack of
control of the underlying public cloud infrastructure, limiting
the opportunities to introduce overload control solutions at
infrastructure level. On the other hand, NFVI providers have
little visibility and control on VNF software, since it will be
distributed and deployed as black-box VM images on their
NFVIaaS [12]. In this case, overload control should not rely
on the cooperation of VNF software.

We propose a novel overload control framework for NFV
(NFV-Throttle) to protect NFV services from overloads within
a short period of time, by tuning the incoming traffic towards
VNFs in order to make the best use of the available capacity,
and to preserve the QoS of traffic flows admitted by the
network services. The architecture of the framework has
been designed to fit into the VNFaaS and NFVIaaS services
models, by taking into account the separation between service
and infrastructure providers. To this purpose, the framework
provides a set of modular agents to detect and to drop the
traffic in excess, that can be installed either at VNF- or at
NFVI-level without requiring changes to VNF software. More-
over, we provide general design guidelines, and a reference
implementation, to let NFV designers to introduce user-defined
heuristics for controlling the traffic drop/reject rates.

We performed an extensive experimental evaluation of the
proposed solution on an NFV-oriented IMS, namely Clearwa-
ter [13], which has been designed to support massive hori-
zontal scalability, and adopts popular cloud computing design
patterns and technologies, including the OpenStack/KVM vir-
tualization stack. We performed experiments for both VNFaaS
and NFVIaaS use cases. The experimental results reveal that:
• In both cases, the solution is able to timely protect the

VNF network from severe overload conditions, even up
to 1000% of the engineered capacity, by sustaining a high
system throughput;

• The overload control solution has a small performance
cost: the CPU overhead is at most 1.5% under non-
overload conditions, and less than 4% under the most
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severe overload conditions (1000%); the memory over-
head is up to few MBs and is constant.

• Overload control at the infrastructure-level can achieve
the best performance; but overload control at the VNF-
level can achieve comparable performance, and is a
suitable solution for VNF providers that cannot control
the underlying infrastructure. Moreover, network-level
overload control is useful to notify users about an over-
load condition inside the network, in order to let them to
gradually reduce the workload.

• Even if the Clearwater IMS already embeds overload
control mechanisms [14]–[16], it can still experience
software failures and low performance under severe over-
load conditions. The proposed solution is able to prevent
these failures and outperforms these overload control
mechanisms.

The paper is structured as follows. Section II discusses
the problem of overload control in NFV, the goals of the
proposed solution, and related work on overload control in
cloud computing and computer networks. Section III presents
the design of the proposed solution. Section IV provides the
results of the experimental evaluation of the proposed solution.
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. The problem of overload control in NFV
We consider overload conditions in which the network traf-

fic significantly exceeds the processing capacity of VNFs (such
as during mass events). The overload may cause the disruption
of already-established connections and the unavailability of
high-priority services, thus violating SLAs. Even worse, an
overload condition exposes the VNFs to cascading failures: the
overload may create the conditions (e.g., resource exhaustion)
that trigger subtle bugs in VNF software, such as memory
leaks, buffer overruns, and race conditions, that cause the crash
of VNF software. For example, we found several bugs of this
kind in the software repository of the IMS studied in this paper
[17, pulls #598, #517, #551]. In turn, a failure of a VNF replica
increases the load for the remaining replicas, thus repeating
the cycle and causing a cascade of failures. The problem is
further exacerbated by user retries, in which the failed requests
generate more and more traffic [6].

This problem is exemplified in Fig. 1. Typically, the network
capacity is designed according to technical and economical
considerations, in order to support some “Reference load”
(point C1), for example in terms of amount of traffic per
second. Under this load level, the network can perform well,
and assures an “engineered throughput”. However, when a
mass event or a cascade failure occurs, the network becomes
overloaded (“Overload condition”, point C2 in the figure).
The network does not have enough resources to process all
the incoming flows. Thus, if the overload condition is not
managed, the network throughput can significantly degrade
(dashed curve in the figure). Ideally, using overload control,
the network should maintain a steady throughput (for example,
no lower than 90% of the engineered throughput, the continu-
ous curve in the figure) even under an overload condition, by
dropping or rejecting the traffic in excess, in order to accept
only few traffic flows in the network, and by efficiently using
its resources.

Fig. 1: Network throughput under overload conditions.

According to this view, the NFV overload control solution
should consider the following requirements:

1. The NFV network should achieve an acceptable level
of service (for example, not less than 90% of its engineered
throughput) during severe overload conditions (such as 10
times the reference load).

2. The overload control solution should quickly react to
an overload condition, in order to prevent violations of SLAs
during the transition between a normal load and the overload
condition. Since carrier-grade services can afford only few
minutes of downtime per year, it is important to react to
overloads within few tens of seconds at most.

3. The overload control solution should be integrated with
the use cases and scenarios of NFV, including VNF providers,
and NFVI providers. For VNF providers, it is desirable that
the solution is transparent to VNF software, which can be
developed by third-party vendors and whose source code may
not be available. Moreover, the solution should allow NFVI
providers to perform overload control at the infrastructure-
level, without relying on cooperation of the VNF layer.

4. The overload control solution should introduce minimal
overhead, and must not degrade the quality of service under
normal load conditions (for example, it should not filter traffic
when processing resources are available).

B. Related work

Performance issues in the cloud and in NFV represent a
broad research field, where a variety of performance-related
problems have been addressed [18]–[26]. Most of the existing
approaches focused on overload prevention, that is, to scale
a system in advance to avoid bottlenecks and to reserve
resources for the expected workload. Many approaches provide
models and algorithms for the optimal VNF placement [27]–
[30] and routing [31], [32] to reduce cost and to guarantee
the quality of service requirements [33]–[35]. The resource
allocation is either decided off-line (i.e., before the VNFs are
deployed), or, as in the case of Pham et al. [36], on-line to
accomodate for dynamic changes of user demands. However,
these solutions are meant for long-term capacity planning, but
not for addressing sudden, unexpected overload conditions.

An active research area focuses on cloud elasticity to
scale network functions [37], [38]. Indeed, cloud elasticity
can be adopted in two ways: predictive and reactive. The
predictive approach can be used when overload conditions can
be predicted in advance, for instance by forecasting periodic
workload variations (e.g., weekly and monthly trends), and by
scaling the system in advance. To this purpose, researchers
have been investigating novel elastic architectures for NFV,
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such as the UNIFY framework [37], [39]. However, these so-
lutions cannot counteract unexpected overload conditions, such
as the ones caused by sudden traffic spikes and software bugs,
which necessarily require reactive solutions. When used in the
reactive way, cloud elasticity increases the system resources as
soon as an overload has been detected, by deploying new VMs
and/or triggering complex reconfigurations to accommodate
the new workload [8]–[11]. However, cloud elasticity can
require a long amount of time (e.g., up to several minutes).
For this reason, cloud elasticity is not sufficient to react to
overload condition in ultra-high availability applications such
as NFV, and other reactive countermeasures are needed.

Our overload control framework complements these solu-
tions by adding a new layer of defense against overloads (i.e.,
it can be used in conjunction with other strategies to scale the
VNF network). For example, in the case of a sudden overload,
our solution is quickly turned on and throttles the traffic, to
only accept incoming traffic that could be served with a good
quality of service with the current resources. In the meanwhile,
the network of VNFs can be scaled and re-configured in order
to increase the capacity of the network and to accommodate
for more traffic.

In general, traffic throttling solutions detect an overload state
by monitoring the performance at the application layer (e.g.,
HTTP, SIP) and the resource consumption of the server (e.g,
CPU and memory utilization). Under an overload condition,
the filter protects the server from requests in excess. The filter
can either reject the requests by replying with application-level
messages (e.g., HTTP 503 “Service Unavailable”), or silently
drop them. Traffic throttling solutions has been developed
for internet applications as well as for carrier grade telecom
appliances. Welsh et al. [14] proposed an adaptive overload
control approach based on a token bucket and a closed control
loop according to a service latency model. A similar approach
has been included in the NFV software [15]. However, latency-
based approaches suffer from poor performance due to cloud
variability: the same kind of request can be served by a differ-
ent group of nodes deployed on physical machines with differ-
ent performance that are geographically distributed. Kasera et
al. [40] discusses the performance of two different throttling
algorithms in the context of carrier-grade telecom switches:
the first algorithm is a variant of the Random Early Discard
(RED [41]) in which the traffic is throttled according to the
request queue size; the second is the Occupancy algorithm
that ensures a target CPU utilization by throttling the traffic
according to the CPU utilization and the rate of accepted calls.

In this work, we develop a traffic throttling framework that
takes into account the NFV architecture and its uses cases,
such as VNFaaS and NFVIaaS. One important difference is
that, in previous approaches, the service to be protected was
completely managed by only one provider; instead, in cloud
computing, the management of the stack is divided between
service and infrastructure providers, and services from several
providers can be combined into service chains. According
to these use cases, we propose an architecture in which
the components can be deployed by different actors (e.g.,
NFVIaaS and VNFaaS providers). Moreover, cloud and NFV
systems extensively adopt replication and load balancing on
a much larger scale than the systems considered in previous
studies. For example, our industrial partners have systems
with thousands of replicas. Thus, we propose a hierarchical

overload control architecture, including both global and local
protections against overload conditions.

III. THE PROPOSED OVERLOAD CONTROL SOLUTION

In the following, we describe an overload control so-
lution aimed at fulfilling high-availability and performance
requirements of telecom services, and at complying with the
service models of NFV and cloud computing. In particular,
we consider two main use-case scenarios:

1) A telecom operator designs a network service (e.g., to
offer it as a service, VNFaaS), by assembling VNFs and
composing them into a VNF service chain (see Fig. 2a).
The VNFs can run VNF software developed in-house
or provided by third-party NFV software vendors. The
VNFs are deployed on an NFVI managed by a third-party
NFVI provider (NFVIaaS). In this scenario, the telecom
operator can customize the VNFs and deploy VMs on the
NFVI, but it cannot change the underlying NFVI.

2) An NFVI provider manages an infrastructure (e.g., to
offer it as a service, NFVIaaS) to host VNFs from telecom
operators (see Fig. 2b). In this scenario, it is desirable (or
even mandatory, if the VNFs are provided as black-boxes)
to address overloads at the infrastructure level, without
making changes to VMs.

(a) Deployment managed by the VNF provider.

(b) Deployment managed by the NFVI provider.

Fig. 2: Overview of the overload control solution.

The proposed solution is an overload control framework
based on a set of overload detection agents and overload
mitigation agents. These agents are software modules to be
deployed inside the NFV network, and transparent to VNF
software (Figure 2):
• Overload detection agents check whether the incoming

traffic towards the VNF exceeds its capacity due to
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a workload peak. If an overload condition occurs, the
detection agent triggers an overload mitigation agent.

• Overload mitigation agents protect the VNF from in-
coming traffic in excess, by dropping it, or by only
admitting a subset of users to the service, and it allows
again the traffic once the overload condition disappears.

The overload detection and mitigation agents are further
divided in three complementary types. The VNF-level agents
protect individual VNFs from inside their VMs, and react to
overload conditions by dropping traffic in excess. The host-
level agents also protect individual VNFs by dropping traffic,
but they run outside VMs. Finally, network-level agents protect
the NFV network from overload condition that affect the whole
network (i.e., overloads spread across several VNFs), and react
by rejecting traffic and notifying the clients about the overload
condition.

The agents can be deployed across the NFV network to
support any of the two use-case scenarios mentioned before:

1) A telecom operator can install the detection and mit-
igation agents in the same VMs of the VNFs, or in
dedicated VMs (Fig. 2a). The VNF-level agents collect
resource utilization metrics from VMs, and forward traffic
to VNF software through a transparent network tunnel,
which drops traffic in excess in the case of an overload.
Moreover, network-level agents are deployed on dedi-
cated VMs, and are interposed between the NFV network
and external networks. They detect overload conditions
that are spread across several VNFs, and use a transparent
network tunnel in order to forward network traffic and to
reject traffic in excess.

2) An NFVI provider may not be allowed to install agents
inside the VMs of VNFs, but has the opportunity to install
agents in the physical hosts of the NFV infrastructure
(Fig. 2b). Host-level detection and mitigation agents
are deployed as processes or services running on the
physical hosts. The host-level agents use a transparent
network tunnel towards each VNF, by leveraging virtual
networking mechanisms provided by the infrastructure, in
order to protect an overloaded VNF from ingoing traffic
in excess. In a similar way, network-level agents can be
deployed on physical hosts and can be interposed between
the NFV network and external networks.

Our framework encompasses two kinds of agent: i) VM-
level agent, which implements a traffic control strategy at local
level, depending on the node status, and ii) Network agent,
which implements a traffic control strategy at global level,
depending on the network status. Both agents are active at the
same time, and cooperate each others to protect VNF from the
different overload scenarios, as described in the following.
• The VNF-level agents are deployed on individual VNFs;

instead, the network-level agents are deployed on the
entry point of the service function chain, and throttle the
traffic before it enters the service chain and it is forwarded
to all the VMs containing the VNFs.

• The “global decision” performs a different, additional
action than “local decisions”, in order to further mit-
igate overload conditions. The VNF-level agents drop
the traffic in excess (packets are not delivered to the
VNF); instead, the network-level agents do not simply
drop traffic, but they also send reject notifications to the

clients, in order to notify them to reduce the traffic (e.g.,
to avoid avalanche effects caused by user retries).

• The “global decision” is made at a different time than the
“local decisions”. The VNF-level agents can make local
decisions more frequently (e.g., every few seconds), since
they only use metrics that are collected from the local
VM, and can quickly mitigate the overload state. Instead,
the network-level agents make a “global decision” less
frequently (e.g., every few tens of seconds), since it
needs to collect the state from the VNF-level agents and
throttle if a majority of them is in overload state. This
different timing allows the network-level agents to trigger
the “global decision” only if the “local decisions” persist
for a long time and affect several VNFs: in this way, the
network-level agents do not over-react (e.g., the overhead
of sending reject notifications to users) when an overload
condition lasts for a very short time, or when there is a
transient, random spike in resource utilization.

• Since the network-level overload control is triggered after
a longer time period than the VNF-level overload control,
it uses a different update rule (e.g., multiplicative instead
of additive) in order to be able to increase/decrease the
rejection rate more quickly, and to be able to react
against very high load conditions for which the VNF-
level overload control may not be sufficient.

The proposed overload control framework is designed to
react to overload in the short term (e.g., few tens of seconds),
and is complementary to elastic cloud computing mecha-
nisms that expand the capacity of VNFs. The framework
does not require to change VNF software and virtualization
software, and can be transparently installed into NFV networks
with third-party VNF software and virtualization technologies.
The overload detection agents only rely on metrics that are
widespread across guest OSs and hypervisors, and that are
easily collectible through APIs or IPC channels exposed
by the guest OSs and hypervisors, without modifying their
internals. Moreover, the solution gives to NFV designers and
administrators the ability to install agents only for specific
VNFs, where overload control is most needed; to reuse the
overload control framework across different types of network
functions; to address overload either at VNF- or at host-level,
and/or globally at the NFV network level. For example, the
NFV designers can take into account special requirements of
the users, such as to deploy VNF-level agents to protect a
certain high-priority VNF; and to not deploy the network-
level solution for protecting an individual VNF that is not
replicated.

A. VNF-level design

The architecture of the overload control solution at VNF
level is showed in Fig. 3, which includes a detection agent
and a mitigation agent.

The VNF-level Detection Agent is a component deployed
by a VNF provider inside a VM, in order to address overloads
of an individual VNF (Fig. 2a). It collects resource utilization
metrics from the VM, by using interfaces exposed by the guest
OS (such as the procfs virtual filesystem of the Linux OS).
Specifically, it collects metrics about the utilization of virtual
CPU by the VM. These metrics include the busy virtual CPU
ticks, consumed both by user-space applications (including
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Fig. 3: Architecture of VNF- and host-level overload control.

VNF software) and by the guest OS (including system calls
and interrupt service), and the idle CPU ticks of the VM.
Moreover, the VNF-level Detection Agent collects from the
VNF-level Mitigation Agent the throughput of VNF traffic,
in order to correlate the CPU utilization with the amount of
incoming network traffic.

The output of the VNF-level Detection Agent is represented
by the traffic drop rate, i.e., the percentage of input VNF traffic
not to be accepted. This rate is continuously tuned by the VNF-
level Detection Agent, according to the general steps showed
in Algorithm 1.

In general, the traffic drop rate should be null if the
workload is within the capacity of the VNF (e.g., the CPU
utilization is below a limit). If the CPU utilization approaches
saturation, then the agent must drop part of the input traffic
to reduce the load on the VNF software; the agent should
only let in enough traffic in order to keep the CPU at full
utilization, but without overloading it. In our framework, we
allow NFV designers to plug-in their own user-defined heuris-
tics to control the drop rate. In our reference implementation
of the framework, we tune the drop rate proportionally to the
CPU utilization and to the amount of input traffic, as discussed
below.

The VNF-level Mitigation Agent acts as a network tunnel
between the VNF software and other VNFs in the NFV
network. The network traffic towards the VNF software is
first forwarded to the VNF-level Mitigation Agent. In turn,
the VNF-level Mitigation Agent connects to the VNF software,
and it forwards the traffic to the VNF software.

This forwarding is accomplished by using network traffic
forwarding mechanisms that are provided by the guest OS. For
example, in the case of the Linux OS, the iptables network
utility can be used to introduce a forwarding rule inside the
guest OS, to redirect VNF traffic, according to the destination
port, to a different network port that is exposed by the VNF-
level Mitigation Agent.

The VNF-level Mitigation Agent is transparent to the VNF
software, and has only a small impact on network latency and
throughput, since it does not perform any traffic analysis or
manipulation. The VNF-level Mitigation Agent only computes
metrics on network throughput, and sends these metrics to the
VNF-level Detection Agent.

When an overload condition occurs, the VNF-level Mitiga-
tion Agent filters out part of the input network traffic, in order
to protect the VNF software from the traffic in excess (which

Algorithm 1: VNF- and host-level overload control
Data: SP: sampling period
Data: N : size of the vector of samples
Data: reference cpu usage: ”factor of safety” for virtual

CPU usage
Result: drop rate for incoming VNF traffic
begin

while True do
collect cpu ticks, incoming traffic and
accepted traffic measurements;

update the drop rate;

send cpu ticks to the Network-level Detection
Agent;

send the updated drop rate to VNF-level
Mitigation Agent;

wait SP seconds;

is dropped and not forwarded to the VNF), according to the
traffic drop rate configured by the VNF-level Detection Agent.

The VNF-level Mitigation Agent applies a traffic-matching
rule on the contents of network traffic (such as, to a ”type”
field in the header), in order to identify which network traffic it
should drop. For example, in the case of the SIP protocol, it is
preferable to only drop ”REGISTER” and ”INVITE” requests
in excess, and not to drop other types of messages. In this
way, new users are prevented from registering, and the VNF
software is protected from the overload caused by new users
that try to enter in the network. Moreover, the users that are
already registered are not affected by the traffic drop, and do
not experience any degradation of the quality of service.

We implemented a reference version of the framework,
by defining a set of heuristics to control the drop rate. In
our implementation, the agent updates the drop rate using a
simple and robust rule: it allows all the incoming traffic if the
CPU utilization is below a reference value; instead, if the CPU
utilization exceeds the reference, the allowed traffic is scaled
proportionally to the gap between the reference and the actual
CPU utilization. The update rule is defined as:

capacity =
MEAN[accepted traffic[1 . . . N]]

MAX[cpu usage[1...N ]]
reference cpu usage

(1)

where cpu usage is a sliding window of the latest N samples
of the percentage of busy virtual CPU ticks (up to 100%, and
strictly greater than 0); the accepted traffic is the volume of
traffic that is actually passed to VNF software by the agents.

When the volume of traffic in input to the VNF-level
Mitigation Agent (i.e., incoming traffic) exceeds the capacity,
we evaluate the fraction of the traffic to drop as:

drop rate = 100 ·
(
1 −

capacity
incoming traffic[N]

)
(2)

if incoming traffic[N] > capacity; otherwise, drop rate = 0.
In order to quickly react to an overload condition within a

short time frame (e.g., 10 seconds for critical NFV networks),
the VNF-level Detection Agent collects a new sample of
resource utilization metrics (cpu usage, incoming traffic, and
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accepted traffic) at a high frequency (later in this study, we
configure the agent to collect one sample every 2 seconds).
Moreover, the VNF-level Detection Agent analyzes the most
recent N samples (e.g., we consider the last N = 5 samples
when sampling every 2 seconds) of virtual CPU utilization and
of the network traffic throughput. The VNF-level Detection
Agent first identifies the highest virtual CPU utilization sample
among the recent samples, and compares it to the reference
virtual CPU utilization.

The reference virtual CPU utilization is chosen by NFV
designers or administrators: it represents a ”factor of safety”
for virtual CPU utilization, under which the VNF is designed
to perform well (e.g., no service disruptions), as showed in
Fig. 1, and which leaves a small amount of residual capacity
to handle unexpected load conditions. We base our algorithm
around a reference value since setting a reference is a frequent
practice among designers and administrators (e.g., for monitor-
ing and troubleshooting purposes). For example, the VNF can
be designed and configured (e.g., during performance testing
and capacity planning of virtual and physical resources) to
have a virtual CPU utilization up to 90%, with good quality
of service, under some reference workload.

If the virtual CPU utilization exceeds the reference virtual
CPU utilization, the traffic allowed into the VNF (capacity)
is reduced by the update rule (eq. (1)). The new value is
obtained by scaling down the average of the most recent N
samples of traffic volume accepted into the VNF; the scaling
is proportional to the gap between the reference virtual CPU
utilization and the actual virtual CPU utilization. Thus, the
larger the gap, the lower the capacity, and the higher the traffic
drop rate.

This computation is periodically repeated for each new
sample of resource utilization. If the overload condition per-
sists (i.e., the CPU utilization is still higher than the refer-
ence value), the accepted traffic and the capacity will keep
reducing, and the drop rate will further increase. Instead,
when the VNF leaves the overload condition (i.e., the virtual
CPU utilization is below the reference value), the VNF-level
Detection Agent will gradually increase the capacity and
reduce the traffic drop rate, until it becomes zero (that is, all the
input network traffic is again allowed in the VNF software).
At each update, the traffic drop rate is sent to the VNF-level
Mitigation Agent.

This approach is robust to false positives, since a sporadic
increase of the virtual CPU (e.g., transient peaks in the samples
that are not due to an overload condition, but are due to random
effects) is quickly discarded since we adopt a relatively small
window of samples (e.g., N = 5), which only causes to drop a
small amount of traffic and a negligible impact on the quality
of service. In the case of a larger window, the update rule
can be changed by replacing the MAX[·] function with a
percentile (such as the 90th percentile among the N samples).
Moreover, the VNF-level Detection Agent applies a moving-
average filter to the samples of network traffic throughput,
which lessens the effect of sporadic out-of-norm samples from
network measurements.

B. Host-level design

The architecture of the overload control solution for this
level includes a detection agent and a mitigation agent. These

components enable NFVI providers to deploy the same level
of protection of the VNF-level solution, but acting only on the
NFV infrastructure layer.

The Host-level Detection Agent is a multi-threaded ap-
plication, which can be deployed by the NFVI provider on
top of the hypervisor as a privileged process (Fig. 2b). This
agent replaces the VNF-level Detection Agent, in order to
protect a VNF from traffic in excess when the deployment
is managed by the NFVI provider. The Host-level Detection
Agent monitors one or more VNFs in the NFV network.
It is possible to deploy more than one Host-level Detection
Agents on the same cloud infrastructure, where each Host-
level Detection Agent monitors a subset of VNFs in the NFV
network.

The Host-level Detection Agent collects data on virtual
CPU utilization using APIs provided by the hypervisor (for
example, in the case of KVM, CPU utilization of VMs can be
measured using the taskstats interface of the Linux kernel).
The Host-level Detection Agent detects the traffic in excess
towards a VNF, by using the same algorithm of the VNF-level
Detection Agent (Alg. 1, and eq. (1) and (2) in section III-A).
For each VM, it periodically samples the virtual CPU usage of
the VM, and its network throughput; then, it tunes the traffic
drop ratio of individual VNFs to drop traffic. Therefore, the
Host-level Detection adopts a similar architecture to the VNF-
level Detection (Fig. 3).

Finally, the Host-level Detection Agent aggregates the infor-
mation about the overload state of VNFs that it monitors, and
sends periodic update messages to the Network-level Detection
Agent, as discussed later in this section.

The Host-level Mitigation Agent is an application that
executes in the same environment of the Host-level Detection
Agent. In the case of NFVI providers, such as in NFVIaaS
(Fig. 2b), the Host-level Mitigation Agent can be used to
drop the traffic in excess towards individual VNFs, in a
similar way to the VNF-level Mitigation Agent (section III-A).
This is achieved by configuring network traffic forwarding
mechanisms of the virtualization infrastructure to establish a
network tunnel. This approach leverages the privileged access
of NFVI providers to the infrastructure, and overcomes the
lack of access to the VNF software. Moreover, this approach
can potentially achieve a lower overhead than the VNF-level
solution, since the traffic in excess can be dropped before it
is forwarded to the VMs.

When the Host-level Detection Agent detects an overload
condition, it triggers the Host-level Mitigation Agent to drop
the traffic in excess. The amount and the type of traffic
to drop is configured by the Host-level Detection Agent as
described in section III-A: the Host-level Detection Agent
updates the traffic drop ratio according to a rule that uses
resource utilization metrics, and it applies traffic-matching
rules to identify which traffic should be dropped.

C. Network-level design

The architecture of the overload control solution for this
level includes a detection agent and a mitigation agent, as
shown in Fig. 4.

The Network-level Detection Agent is a multi-threaded
application, which executes in a dedicated VM in the same
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Fig. 4: Architecture of network-level overload control.

cloud infrastructure of the VMs running VNF software. Alter-
natively, it can execute as a privileged process on a physical
machine of the NFVI.

The Network-level Detection Agent collects the status of
all VNFs in the NFV network, and checks the presence of an
overload condition (Alg. 2), according to overload notifications
(i.e., drop rates greater than zero) coming from Host-level
or VNF-level Detection Agents. The criteria for detecting a
network-level overload condition can be configured by the
administrators of the NFV network: a simple criterion is to
count the number of VNFs affected by overload, and detect
an overload state when overloaded VNFs are the majority.
Another possible criterion is to compute a weighted count of
the number of overloaded VNFs, by taking into account the
relative importance of VNFs in the NFV network.

The Network-level Mitigation Agent acts as a network
tunnel at the boundary of the NFV network. It receives the
traffic that was originally intended for the NFV network, and
forwards it to the VNFs. This forwarding is accomplished
by installing the Network-level Mitigation Agent into a load
balancer, placed at the boundaries of the NFV network, either
in a dedicated VM, or in a physical machine. Thus, the
Network-level Mitigation Agent is transparent to the VNFs.
Moreover, the Network-level Mitigation Agent has only a
small impact on network latency and throughput, since it does
not perform any traffic analysis or manipulation. The traffic in
excess is not forwarded to VNFs.

Since these agents are deployed at the boundary of the
VNF network, they can prevent users from entering the VNF
network by explicitly rejecting them, e.g., by replying with
an overload notification to clients, in order to prevent them
to generate more traffic. For example, in the case of the SIP
protocol, the Network-level Mitigation Agent can reply with a
“503 Service Unavailable” response in order to notify clients
about the overload state. Moreover, the Network-level Mitiga-
tion Agent applies a traffic-matching rule on the contents of
network traffic (such as, to a “type” field in a packet header),
in order to identify which network traffic it should reject (such
as, session initiation requests). This approach differs from
the previous VNF- and host-level agents, which just dropped
traffic without notifying the user.

The Network-level Detection agent iterates with a longer
period than then VNF-/Host-level agents, since it is meant
to mitigate overloads that persist for a longer time (e.g.,
we consider a time period of 30 seconds for Network-level
detection). For such persistent overloads, it is worth to spend
additional resources (CPU and network) to send notifications

to reject the users, rather than simply dropping their traffic.
In the network-level agents, the traffic is rejected according

to a traffic rejection rate, which is periodically updated by
the Network-level Detection Agent. In general, the traffic
rejection rate is gradually increased when the VNFs are in an
overload condition, and it is decreased otherwise. Similarly to
the previous agents, the framework allows NFV designers to
adopt their own heuristics for controlling the rejection rate.
In our reference implementation, we adopt a heuristic that
updates the rejection rate according to a multiplicative function
(differing from VNF-/Host-level Detection, which instead used
an additive update rule). Since the Network-level overload
control reacts after a longer time period than the VNF-/Host-
level detection, then it should be able to increase/decrease the
rejection rate more quickly than them, in order to be able to
react against very high load conditions.

The traffic rejection rate is given by:

capacity =



capacity/(α + γ) if overloaded
capacity · (β − γ) otherwise

(3)

reject rate = 100 ·
(
1 −

capacity
incoming traffic[N]

)
[%] (4)

in which the reject rate is capped between 0% and 100%. The
incoming traffic is the volume of traffic in input, and α and
β are constants, with α > 1 and β > 2. The γ coefficient is
a variable factor, which tunes the reject rate according to the
persistence of the overload condition. It is defined as:

γ =
dropped traffic[N]

incoming traffic[N]
(5)

that is, γ represents the fraction of traffic that has been rejected
during the last sampling period. This coefficient has been
introduced to keep the reject rate low if the overload condition
lasts for a short amount of time, in order to soften the impact
of sporadic false positives in overload detection; and, at the
same time, this coefficient serves to keep the reject rate high if
the overload condition is severe and persists over time. When
the current fraction γ of rejected traffic is null or low, α + γ
is closer to 1, thus the capacity decreases with a smaller step,
and increases with a larger step. Thus, the approach avoids to
reject too much traffic when the overload condition is short
and sporadic. Instead, when the γ is high (which happens
when the overload condition already lasted for a relatively long
time), the capacity decreases with a larger step, and increases
with a smaller step. In this way, if the overload condition
disappears only for a small amount of time, the reject rate
is still kept high; the full capacity is restored only once the
network becomes stable and non-overloaded.

IV. EXPERIMENTAL EVALUATION ON A NFV IMS

A. Overview of the NFV System
To evaluate the overload control framework, we performed

an experimental analysis on an NFV-oriented IP Multimedia
Subsystem (IMS). We evaluate the ability of the overload
control framework in the context of a real NFV software, in
terms of performance under overload conditions, overhead of
the framework, and failures of NFV software.
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Algorithm 2: Network-level overload control
Data: SP: sampling period
Data: VNF[1 . . . M]: overload state of monitored VNFs
Result: reject rate for incoming VNF Network traffic
begin

while True do
foreach node k in VNF do

collect overload state for VNF[k]

if majority of VNFs is overloaded then
decrease capacity;

else
increase capacity;

update and send the reject rate to the
Network-level Mitigation Agent;

wait SP seconds;

The Clearwater IMS [13] is an open-source implementation
of the IMS core standard [42]. IMS functions are implemented
in software and packaged in VMs, and are designed to take full
advantage of virtualization and cloud computing technology:
thus, it is possible to deploy a Clearwater instance on industry-
standard IT virtualization platforms. It is modular, and its
deployment can be customized by only enabling specific
functions. All components can scale out horizontally using
simple, stateless load-balancing based on DNS. Moreover,
Clearwater follows common design patterns for scalable and
reliable web services, by keeping most components largely
stateless, and by storing long-lived state in clustered data
stores. Clearwater is a large software project, mostly written
in C++ and Java, and including several subsystems. The
architecture of Clearwater core is showed in Fig. 5, and
includes the following components:

• Bono (P-CSCF): The Bono nodes are the first point of
contact for an UE (User Equipment), and they represent
the edge proxy providing P-CSCF standard interfaces to
IMS clients. They are replicated to form a cluster of
proxy nodes, allowing load balancing of requests at the
boundary of the system.

• Sprout (S-CSCF and TAS): The Sprout nodes are
horizontally-scalable SIP registrars and authoritative rout-
ing proxies. These nodes implement the S-CSCF and
I-CSCF interfaces of the IMS standard. Furthermore,
they implement a distributed cache, using Memcached
[43], for storing registration data and other long-lived
information.

• Homestead: The Homestead nodes are horizontally-
scalable, redundant mirrors for the HSS (Home Sub-
scriber Server) data store, using Apache Cassandra [44],
for retrieving authentication credentials and user profile
information. HSS mirrors are part of both the S-CSCF
and I-CSCF interfaces, and provide Web services (over
HTTP) to the Sprout layer.

• Homer: A Homer node is a XML Document Management
Server (XDMS) to store service settings documents for
each user of the system, using Apache Cassandra as the
data store.

• Ralf (Rf-CTF): The Ralf nodes provide charging and
billing functions, used by Bono, Sprout and Homestead
nodes to report events occurring when the CSCF chain is
traversed.

Fig. 5: Architecture of the Clearwater IMS

Our framework does not require any change to the Clear-
water architecture or to the VNF software. The NFV-Throttle
agents are stand-alone components deployed as processes in
dedicated VMs and in the physical nodes, according to the
two use cases discussed in Section III, Fig. 2.

The Clearwater IMS includes a throttling mechanism, which
rejects requests in excess to avoid overloading a node [15],
[16]. It uses a token bucket to control the rate of requests
that a node is allowed to process. The token replacement rate
is tuned by measuring the latency for processing requests,
and by comparing, every twenty requests, this measure with
a configured latency target. Clearwater adopts a variation of
the algorithm proposed by Welsh and Culler [14], by using a
smoothed mean latency to compare with the latency target. In
our experiments, we evaluate our overload control framework
with respect to this overload control solution included in the
Clearwater IMS.

We treat the VNF software as a black-box, and in all of
the evaluation experiments of Section IV-D, we enable the
Clearwater’s built-in throttling mechanism. Thus, we compare
the performance of the IMS by considering the case where the
IMS is only protected by its built-in mechanism, and the case
where the NFV-Throttle agents are deployed in the system.

The agents of the NFV-Throttle framework are deployed
both on the VMs (VNF-level agents) and on the hosts (Host-
level and Network-level agents). The agents have been devel-
oped in C, respectively as background daemons at VNF-level
and Host-level, and as extensions of the OpenSIPS [45] proxy
at Network-level. The VNF-level and Host-level detection
agents collect CPU utilization metrics from the proc FS, and
network utilization metrics from the mitigation agents. The
mitigation agents, both at VNF-level and at Host-level, act
as a filtering proxy for all the network traffic destined to a
specific VNF, using iptables NAT rules. The network traffic
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accepted by the agent is forwarded to the VNF, on behalf of
the originator. In the case of UDP traffic (such as in the case of
SIP clients and P-CSCF VNF instances), UDP datagrams are
forwarded by the agent on behalf of the source, by replacing
the source IP and port with the ones of the SIP client; thus,
the destination (e.g., P-CSCF) can directly reply to the source.
In the case of TCP traffic (such as between a P-CSCF VNF
and a S-CSCF VNF), during the TCP handshake phase, the
mitigation agents establishes two connections, respectively
with the source (e.g., P-CSCF) and the destination (e.g., S-
CSCF). Then, the agent reads and writes data from both the
two streams, acting as a man-in-the-middle. Note that, for both
UDP and TCP, only a fixed set of iptables rules is required,
regardless of the number of clients and connections.

B. Experimental testbed

The experimental testbed (Fig. 6) consists of four host
machines: three Dell PowerEdge R520 servers, equipped with
two 8-Core 2.2 GHz Intel Xeon CPU, 64GB DDR3 RAM,
two 500GB SATA HDD, two 1-Gbps Ethernet NICs, 8-Gbps
Fiber Channel HBA; one Dell PowerEdge R320 server with
a 4-Core 2.8 GHz Intel Xeon CPU, 8GB DDR3 RAM, two
500GB SATA HDD, two 1-Gbps Ethernet NICs, 8-Gbps Fiber
Channel HBA; A PowerVault MD3620F disk array with 4TB
of network storage with a 8-Gbps Fiber Channel link.

Fig. 6: Experimental testbed

The hosts are connected to a 1-Gbps Ethernet network for
general-purpose traffic, and another 1-Gbps Ethernet network
for management traffic. The virtual disks of VMs are stored
on three distinct GlusterFS partitions of the PowerVault SAN,
which are mounted on the hosts through the Fiber Channel
link.

The hosts are configured with CentOS Linux 7 and the
KVM hypervisor. The testbed is managed using the Open-
Stack virtualization platform, version Juno [46]. The Dell
PowerEdge R320 serves as OpenStack Controller and Network
node; the three Dell PowerEdge R520 servers represent the
OpenStack Compute and Storage nodes, and run the VMs
of the Clearwater IMS. The OpenStack services include:
Nova, which manages the compute domain; Neutron, which
manages virtual networks among VMs; Cinder, which controls
the lifecycle of VM volumes; Glance, which manages the
cloud images of VMs; Heat, which orchestrates, through a
native REST API, the virtual IMS deployment; Horizon, which
supports the Web-based management dashboard.

C. Experimental plan

We evaluate the proposed overload control framework in
the context of the Clearwater IMS case study, by performing
experiments with stressful workloads and resource contention.
In particular, we evaluate:

• The ability of the framework to assure a high throughput
(up to the maximum capacity of the system), in terms
of register attempts per second (RAPS) and call attempts
per second (CAPS) that are successfully handled with
no failures (i.e., requests that are neither timed-out nor
rejected).

• The resource overhead introduced by the framework, in
terms of CPU and memory footprint consumed by the
agents of the overload control framework.

The experiments use a mix of SIP registrations and call
setup requests. The workload is generated using the SIPp
traffic generator [47] to emulate SIP subscribers. Each couple
of subscribers will attempt to register or renew the registration
every 5 minutes on average. After a successful registration, a
subscriber can either attempt to setup a call to the other (with
16% of probability), or remain idle until the next registration
renewal (with 84% of probability). The call hold time is
configured to 60s. We calibrate the number of VNF instances
with a preliminary capacity planning using 400k subscribers.
These numbers have been suggested by our industrial partners
as a realistic baseline for testing an IMS service, and on which
we impose overload conditions.

We tuned the number of VNF instances to have at most
80% virtual CPU utilization on average, and no failed requests.
The IMS can handle this workload with 10 replicas of Bono,
Sprout, and Homestead, 4 replicas of Ralf, and 1 replica of
Homer and DNS. Each replica runs on a distinct VM with
1 virtual CPU. In this experimental setup, 400k subscribers
represent the engineered capacity of the IMS (see also Fig. 1).
The IMS experiences an overload condition when the number
of subscribers exceeds this engineered capacity (� 400k
subscribers). In these cases, the CPU becomes the performance
bottleneck. Moreover, an overload condition happens when
the IMS compete for resources with other services that are
deployed on the same physical infrastructure.

We consider three high-workload scenarios to evaluate the
performance of overload control under a peak of subscribers.
Every scenario is executed four times, respectively with: the
plain Clearwater IMS; the VNF-level overload control; the
Host-level overload control; and the Network-level overload
control. In total, we perform 12 high-workload experiments.
We adopt the following workloads (TABLE I):

• Small overload (480K subscribers): the load is at 120%
with respect to the engineered level, and saturates the
maximum capacity of the testbed. At this load level,
the overload control solution should throttle a small part
of service requests, in order to preserve the QoS for
subscribers that are already registered in the IMS before
the overload.

• Medium overload (1M subscribers): the load is 250%
with respect to the engineered level, and above the
maximum capacity of the testbed. At this load level, the
overload control solution should throttle a large amount of
requests to prevent a significant throughput degradation.
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TABLE I: Workloads for evaluating the overload control
solution.

# Subscribers Load Level RAPS CAPS
400k

(Engineered Level) 100% 1,379 111

480k
(Small Overload)

120% 1,655 133

1M
(Medium Overload)

250% 3,448 278

4M
(High Overload)

1000% 13,793 1,111

• High overload (4M subscribers): the load is ten times
higher (1000%) than the engineered level. At this load
level, there is a significant resource pressure since a
considerable amount of connections must be handled,
thus exposing the IMS software to potential crashes due
to resource exhaustion.

Each experiment lasts 1 hour, and is divided in three phases:
• Load generation (Ramp-up): When the experiment

starts, 400k subscribers are created in the initial 15
minutes (Initial ramp-up period). The system can handle
this load without failures. This load is generated by a
set of 10 SIPp instances, for all the duration of the
experiment. This phase is common to all the experiments.

• Overload generation: This phase starts at the 20th
minute, and lasts for 30 minutes. In this phase, additional
subscribers, over the engineered level (TABLE I), are
introduced in a short amount of time (Overload Ramp-
up period). Then, all the subscribers constantly generate
requests for call setup and registration renewal.

• Overload termination (Ramp down): This phase starts
at the 50th minute, and lasts until the end of the run. In
this phase, each subscriber that fails to register or make
a call, will not attempt to retry and will leave the system.

D. Experimental results
1) Node level: We first consider the case in which overload

control is performed only at the VNF-level (i.e., by installing
an agent inside VMs, as discussed in Section III-A). Fig. 7
shows the performance of the Clearwater IMS at varying levels
of overload, respectively at 120%, 250% and 1000% load with
respect to the engineered capacity.

The graphs of Fig. 7 shows the registration throughput
on the left side, and the call throughput on the right side.
Each graph shows three curves: the input load, in terms of
registration and call requests per second, and the throughput
of successful requests, respectively with NFV-trottle enabled,
deployed at VNF-level (in yellow), and without our overload
control solution (i.e., only with Clearwater’s built-in overload
control, in red).

With an overload level of 120% (Fig. 7a and 7b) the
registration and call throughput are close to the input request
rate, both with and without the proposed overload control
framework. In both cases, the capacity of the IMS has been
saturated. However, in the case without our overload control
framework, the call throughput exhibits a significant variabil-
ity, and tends to be lower than the input rate of requests.
This behavior is a consequence of the problem discussed in
Section II: even if resources are fully utilized, they do not

necessarily produce useful work, since the system attempts to
manage too many users but cannot provide an acceptable QoS
to any of them. Instead, the overload control solution has been
able to avoid service failures for already-established sessions,
by rejecting the requests in excess during the overload phase.

With higher overload levels (Fig. 7c – 7d at 250% load,
and Fig. 7e – 7f at 1000% load), and without our overload
control framework, the impact of overload is even more severe.
We observed that, despite the built-in overload protection,
most of the nodes exhibit failures due to resource exhaustion,
causing the crash of VNFs and performance degradation of the
IMS. This results in a significant performance degradation,
with registration throughput lower than 200 RAPS and call
throughput lower than 1 CAPS in the worst case.

In the same scenarios, with the overload control framework,
the registration and call throughput are stable around the
engineered level, which is the maximal throughput attainable
by the IMS. Moreover, there are no failures of the VNFs, since
the overload control framework is implemented outside VNF
software and is more robust to huge overload conditions. In
particular:
• Load level of 250%: (1) the registration throughput

reaches on average 1664.9 RAPS, which is 137% more
than the case without the mitigation and 20% more than
the engineered level; (2) the call throughput reaches on
average 114.60 CAPS, which is 194% more than the case
without the mitigation and close to the engineered level.

• Load level of 1000%: (1) the registration throughput is
1439.5 RAPS, which is 152% more than the case without
the mitigation and 4% higher than the engineered level;
the call throughput reaches on average 97.17 CAPS,
which is 200% more than the case without the mitigation
and close to the engineered level.

2) Host level: We performed the same experiments us-
ing the Host-level overload detection and mitigation, which
replace their VNF-level counterparts. The results obtained
with Host-Level overload control are comparable to VNF-level
overload control in Fig. 7, thus they are not shown here for the
sake of brevity. It is worth to mention that the overload control
framework, under an overload level of 250%, can achieve a
registration throughput 136% higher than the case without the
mitigation, and 18% more than the engineered level. Similar
results were also obtained under an overload level of 1000%.
Again, overload control prevented IMS failures due to resource
exhaustion.

3) Network Level: Fig. 8 shows the performance measure-
ments obtained with Network-level overload control. As for
the previous cases (VNF-level and Host-level), the overload
control at Network-level is able to sustain a high throughput
in all overload scenarios. Moreover, with a load level of 250%
and 1000%, the control solution is able to avoid resource
exhaustion and crashes of IMS components.

These experiments point out an additional benefit of
Network-level overload control. During the overload, the
Network-level mitigation agent rejects the registration requests
in excess by replying to the clients. During the first 10 minutes
of overload (in the period 1200s-1800s in the graphs), the rate
of incoming registration requests gradually decreases due to
rejections, and stabilizes again around the engineered capacity.

Fig. 9 summarizes the results, by providing aggregated
statistics (median, upper and lower quartiles, minimum and
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(a) Registration Throughput 120% (b) Call Throughput 120%

(c) Registration Throughput 250% (d) Call Throughput 250%

(e) Registration Throughput 1000% (f) Call Throughput 1000%

Fig. 7: Registration and Call Throughput for each overload level (i.e., 120%, 250% and 1000%) at Node Level.

maximum) obtained respectively with overload control at
VNF-level, Host-level, and Network-level. Figure 9a shows the
performance of the IMS in terms of registration throughput at
different loads (from 400k to 4M subscribers), while Fig. 9b
shows the performance of the IMS in terms of call throughput.

At the engineered level (400k subscribers), there are no sig-
nificant differences between the three cases and the engineered
capacity (TABLE I). In all cases, during the first 20 minutes of
the experiments, when the load is within the engineered level,
the performance with and without overload control are closely
matching. Thus, the overload control does not have negative
side effects on the IMS when there is no overload condition.

In overload conditions (more than 400k subscribers), the
Host-level overload control provides the best average registra-
tion and call throughput compared to VNF-level and Network-
level control. The performance gap between VNF-level and
Host-level can be explained by observing that the VNF-level
control incurs in the overhead of transmitting all of the traffic
to VMs, and to discard the traffic in excess in the VM. The
Host-level solution acts in the hypervisor rather than the VM,
thus avoiding this additional overhead. Thus, when feasible,
the Host-level solution should be preferred to the VNF-level
one. The Host-level solution can be adopted in the case of
NFVIaaS providers, which have access to the infrastructure,
while it may not be feasible for NFVIaaS consumers, which

can only deploy VNF-level solutions.
The Network-level overload control also exhibits lower

performance than the Host-level one, in particular with respect
to the registration throughput. The performance of Network-
level overload control is mainly affected by the detection
mechanism. The main factor is that detection is distributed
and uses a longer sampling period compared to the Host-
level solution (which are respectively 30s and 10s), since
the Network-level solution needs to collect information from
several nodes. Thus, the Network-level solution has a slightly
higher detection latency, and it is thus more exposed to os-
cillations of the workload. Moreover, there are sporadic cases
in which the workload is not uniformly balanced across the
replicas. Since the Network-level solution detects an overload
when a majority of nodes is overloaded, these cases lead to
sporadic delays in overload detection.

4) Overhead Evaluation: The mitigation agents act as a
lightweight filtering proxy for the network traffic destined
to VNFs. Since all the traffic, both TCP and UDP, will be
processed by the mitigation agent, we analyze the performance
overhead of this critical component. Moreover, since the
implementation of the proxy agent is different between the
UDP and the TCP transport protocols, we separately analyze
both of them.

We performed experiments with the High Overload sce-
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(a) Registration Throughput 120% (b) Call Throughput 120%

(c) Registration Throughput 250% (d) Call Throughput 250%

(e) Registration Throughput 1000% (f) Call Throughput 1000%

Fig. 8: Registration and Call Throughput for each overload level (i.e., 120%, 250% and 1000%) at Network Level.

nario (that is, 1000% the engineered level), as discussed in
Section IV-C. This scenario is the most stressful among our
experiments, and thus represents a worst-case for our overload
control framework.

The plot in Figure 10 shows the CPU usage of the Linux
process that executes the mitigation agent during the experi-
ments, and that tunnels UDP datagrams. The Figure 10 shows
the amount of CPU time spent in the kernel within the process
(i.e., the system time), the time spent in user space (i.e., the
user time), and the overall time consumption of the process
(i.e., the total time).

When the workload is within the engineered level of traffic
(900s − 1200s), the CPU overhead is very little (≈ 1.5%).
When the workload reaches ten times the engineered level,
the mitigation agents drops the UDP traffic in excess, and its
overhead is less than 4%. The memory consumption during
the whole experiment is fixed at 3.5MB, since the agent does
not allocate any dynamic memory.

We repeated the same experiment, at maximum level of
overload (i.e., 1000% the engineered level), by analyzing
the CPU usage of the process under TCP traffic. The plot
in Fig. 11 shows the CPU consumption of the mitigation
agent during the experiment. At the engineered level of traffic
(900s − 1200s), the overhead is again very little (≈ 1.5%). At
ten times the engineered level, when dropping the TCP traffic

in excess, the overhead of the mitigation agent is less than
3%.

The CPU consumption is lower than the UDP case, since
the TCP connections with the clients are persistent. In fact, the
overhead peak in the TCP case happens during the creation of
the pool of connections (at 1000s) and during their shutdown
(at 3000s). It is important to note that, in case of overload,
the TCP agent does not reject or close the TCP connections,
but it transparently filters application-level messages from the
connection stream.

Moreover, in the case of TCP, the memory consumption is
dependent of the number of TCP connections that are currently
active. During the peak of the traffic, the maximum memory
consumption was 16MB, greater than the UDP mitigation
agent.

V. CONCLUSION

In this paper, we proposed a novel framework, NFV-
Throttle, for overload control in NFV services. This framework
has been designed to support the service models of NFV
(in particular, NVFIaaS and VNFaaS), by providing a set of
overload detection and mitigation agents to be deployed either
on VMs or on the physical hosts. These agents adopt simple
and robust rules to control traffic drop and reject, by analyzing
CPU utilization and the network traffic volume.
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(a) Registration Throughput

(b) Call Throughput

Fig. 9: Mitigation performance at different operational levels (i.e., node, host and network level)

Fig. 10: CPU Consumption of the UDP mitigation proxy

Fig. 11: CPU Consumption of the TCP mitigation proxy

We evaluated the proposed framework in the context of
Clearwater, an open-source, NFV-oriented IMS product. In our
experiments, we considered stressful overload conditions with
high workloads (up to 1000% of the nominal capacity of the
system). In all the scenarios, the proposed framework is able
to achieve a high throughput, comparable to the maximum
throughput under normal conditions, with a negligible memory
and CPU overhead. Moreover, the overload control framework
avoids failures of the NFV software that are triggered by stress
and resource exhaustion. We also analyzed the relative benefits
and complementarity of VNF-level, host-level, and network-
level overload control. The host-level control achieves the best

performance, since it avoids the overhead of forwarding the
traffic in excess to the VMs; however, the VNF-level control
achieves comparable results, and can be applied in scenarios
in which the physical infrastructure cannot be modified; fi-
nally, the network-level control allows to reject traffic at the
boundaries of the NFV network, thus enabling the network to
send notifications to neighbours about overload conditions, in
order to gradually reduce the traffic in excess.
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