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Abstract. This paper investigates the impact of state on robustness testing, by 
enhancing the traditional approach with the inclusion of the OS state in test 
cases definition. We evaluate the relevance of OS state and the effects of the 
proposed strategy through an experimental campaign on the file system of a 
Linux-based OS, to be adopted by Finmeccanica for safety-critical systems in 
the avionic domain. Results show that the OS state plays an important role in 
testing those corner cases not covered by traditional robustness testing. 
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1   Introduction  

The importance of high robustness in safety-critical systems is well recognized 
[1][2][3]. The Operating System (OS) is the foundation of any software system, and 
an OS failure may affect the system as a whole; thus, assessing its robustness is one of 
the most important tasks to perform during verification of critical software systems. 
Robustness testing techniques are conceived to assess the system’s ability to not fail 
in presence of invalid inputs and unforeseen conditions. 

Due to the kind of bugs for which robustness testing is conceived, and to the 
complexity and size of OS code, performing an effective robustness testing campaign 
is challenging. Robustness bugs are characterized by rare and subtle activation 
conditions, which are hard to find during functional testing [1][2][3]. Unfortunately, 
in OSs there are so many factors potentially involved in bug activation (such as I/O 
events and task scheduling), that it is difficult to include all of them when generating 
robustness test cases. As a result, many OS defects found in the field are related to 
boundary conditions and error handling, as shown in [3]. This difficulty is further 
exacerbated by the OS architecture, whose subsystems are tightly coupled, making it 
hard to isolate the reproduction of rare conditions for each of them. Considering these 
issues, it is clear that achieving high test coverage in OSs becomes a really tricky task.  

In the literature, much effort has been devoted to assess robustness of OSs through 
the injection of invalid inputs via APIs (i.e., system calls/driver interfaces) with the 
goal of assessing their robustness. From results of these studies, an important 
emerging aspect is that, to improve the effectiveness of robustness testing, test cases 
should consider one more variable, other than exceptional inputs; that is, the current 
state of the OS. Indeed, the OS state can significantly affect its execution, as well as 
the test case outcomes. Executing a given robustness test case in different states 



increases the probability to explore those parts of the code most rarely reached, i.e., it 
increases the final coverage: states representing “unusual” conditions combined with 
exceptional inputs can produce very rare execution patterns.   

Starting from these studies, this paper investigates the impact of OS state, or part 
thereof, on robustness testing. We introduce a robustness testing strategy that 
accounts for the state of the file system (in terms of resource usage, concurrent 
operations, and other aspects). First, a model of the file system is presented that 
considers both entities a file system is composed of, and resources it uses and that 
contribute to determine its state. Then, the impact of the state on the achieved 
coverage is assessed through experiments performed on an industrial case study. 
Finmeccanica is in the process of developing a certifiable Linux-based OS, namely 
FIN.X-RTOS, compliant to the recommendations of the DO-178B standard [4], that is 
the reference standard in the avionic domain. In this process, evidences should be 
provided that the OS underwent a thorough robustness assessment campaign in terms 
of coverage. Results show that testing the OS by accounting for its state improves the 
final coverage, and hence the confidence in OS robustness, allowing to reach those 
corner cases not covered by traditional robustness testing.   

After a related work section, the approach is described in Section 3. Section 4 
shows obtained results in terms of coverage and via examples of achieved corner 
cases in the OS code; Section 5 concludes the paper. 

2 Related Work 

Past work approached robustness testing of operating systems from different points of 
view; they differ with respect to the OS interface under test (system calls or device 
driver interface), the assumed fault model, and the failure modes that were analyzed. 

BALLISTA [1][2] was the first approach for evaluating and benchmarking the 
robustness of commercial OSs with respect to the POSIX system call interface [5]. 
BALLISTA adopts a data-type based fault model, that is, it defines a subset of invalid 
values for every data type encompassed by the POSIX standard. Examples of invalid 
inputs for three data types are provided in Table 1. Test cases are generated by all the 
combinations of invalid values of the system call’s data types: a test case consists of a 
small program that invokes the target system call using a combination of input values. 

Table 1. Examples of invalid input values for the three data types of the write(int 
filedes, const void *buffer, size_t nbytes) system call.  

File descriptor (filedes) Memory buffer (buffer) Size (nbytes) 
FD_CLOSED BUF_SMALL_1 SIZE_1 
FD_OPEN_READ BUF_MED_PAGESIZE SIZE_16 
FD_OPEN_WRITE BUF_LARGE_512MB SIZE_PAGE 
FD_DELETED BUF_XLARGE_1GB SIZE_PAGEx16 
FD_NOEXIST BUF_HUGE_2GB SIZE_PAGEx16plus1 

 
Test outcomes are classified by severity according to the CRASH scale: a 

Catastrophic failure occurs when the failure affects more than one task or the OS 
itself; Restart or Abort failures occur when the task launched by BALLISTA is killed 
by the OS or stalled; Silent or Hindering failures occur when the system call does not 



return an error code, or returns a wrong error code. BALLISTA found several invalid 
inputs not gracefully handled (Restarts and Aborts), and some Catastrophic failures 
related to illegal pointer values, numeric overflows, and end-of-file overruns [1]. 

OS robustness testing evolved in dependability benchmarks in the framework of 
the DBench European project [6][7]. A dependability benchmark has been proposed 
to assess OS robustness in terms of OS failures, reaction time (i.e., mean time to 
respond to a system call in presence of faults) and restart time (i.e., mean time to 
restart the OS after a test). Valid inputs are intercepted and replaced with invalid ones, 
by using a data-type based fault model, as well as by fuzzing (i.e., random values) and 
bit-flips (i.e., a correct input is corrupted by inverting one bit). In dependability 
benchmarking, the workload has a key role: it is used for exercising the system in 
order to assess its reaction. To obtain realistic measures, the workload should be 
representative of the expected usage profile (e.g., database or mail server [6][7]). In 
[8], a stress test campaign on the Linux kernel assessed the influence of the workload 
on kernel performance and memory consumption over long time periods. In this 
work, we further investigate the influence of the external environment, and propose a 
state model for generating tests that includes the OS workload. 

Robustness testing has been adopted for assessing OSs with respect to its interfaces 
to device drivers, since drivers are usually provided by third party developers and are 
buggier than other OS components [9]. The fault models mentioned above were 
adopted also in this case [10], and have been compared in terms of their ability to 
expose robustness bugs [11]. In [12], a fault injection approach is proposed that 
mutates the device driver code (by artificially inserting bugs) instead of injecting 
invalid values at the OS interface. These studies found that OSs are more prone to 
failures in case of device driver faults than application faults, since developers tend to 
omit checks in the device driver interface to improve performance, and because they 
trust device drivers more than applications. Other works assessed the robustness of 
OSs with respect to hardware faults (e.g., CPU or disk faults), by corrupting code and 
data [13][14][15][16]. Similarly to system call testing, these approaches either rely on 
a representative workload for exercising the system, or neglect the system state. 

The influence of OS state gained attention in recent work on testing device drivers 
[17][18]. In [17], the concept of call blocks is introduced to model repeating 
subsequences of OS function calls made by device drivers, since they issue recurring 
sequences of function calls (e.g., when reading a large amount of data from a device): 
therefore, robustness testing is more efficient when it is focused on call blocks instead 
of injecting invalid inputs at random time. Sarbu et al. [18] proposed a state model for 
device driver testing, using a vector of boolean variables. Each variable represents an 
operation supported by the device driver: at a given time t, the ith variable is true if the 
driver is performing the ith operation. Case studies on Microsoft Windows OSs found 
that the test space can be reduced using the state model. Prabhakaran et al. [15] 
proposed an approach for testing journaling file systems, which injects disk faults at 
specific states of file system transactions. These studies showed that the OS state has 
an important role in testing such complex systems; however, they model a specific 
part of OS state (e.g., device drivers or journaling) and do not consider the overall 
state of the OS components, such as the file system and process scheduling. 



3   Testing approach 

Since OS components can be very complex and their state has a significant 
influence on the OS correct behavior, it is necessary to take the states of the 
Component Under test (CUT) into account, and assess its robustness as the state 
changes. According to this view, a hypothetical test plan is expressed through two 
dimensions: the exceptional inputs and the states. Inputs are selected as usual (e.g., 
boundary values) while the state varies in S = {s1, s2 … sn}. In order to apply this 
strategy, we need to test the CUT with both a test driver and a state setter. The former 
injects invalid inputs to its interface, whereas the latter is responsible for producing 
the state transition or keeping the component in a given state sk (see Figure 1). 

 

Figure 1 Robustness testing conducted with the CUT in two different states si and sk 

In complex components the state representation (i.e., the state model) plays a key 
role. It can be considered at several levels of abstraction, hence determining the 
number of potential states the state setter should cope with. This aspect is relevant for 
our approach, since it can affect the efficiency and the feasibility of robustness 
testing. Thus the state model should satisfy these requirements: i) it should be easy to 
set and control by the tester, ii) it should represent the state at a level of abstraction 
high enough to keep the number of test cases reasonably small and iii) it should 
include those configurations that are the most influential on the component behavior. 
Thus, with this regard, the model that we define expresses the state of an OS 
component without detailing its internals, since they are not always easy to 
understand and to manage, and would inflate the number of states. 

3.1   Modeling the File System  

In this work, we experiment the described strategy by applying it to the File System 
(FS) component. We choose the FS because it is a critical and bug-prone component 
[8][19] (its failure can corrupt persistent data or lead to unrecoverable conditions). 
Furthermore, the behavior of the FS is influenced by its internal state and the other 
components with which it interacts (e.g., virtual memory manger, scheduler). 
Following the previous requirements, we conceived a model for the FS (Figure 2). 
Moreover, the model is easily adoptable across different FS1 implementations; as a 

                                                        
1 In this work, the term “File System” refers to the OS component for managing files. The term 

“filesystem” refers to the contents on the storage, e.g., the structure of tree. 

Invalid Inputs  State  

e1,e2, e3 si 
e1,e2, e3 sk 

… … 

Test Plan 



consequence, the proposed model does not take specific “internal design” of a FS into 
account (e.g., inode that are adopted in some UNIX file system, but not in others).  

 

Figure 2 File System model 

The model is a UML representation of the FS, with three main classes: Item, 

FileSystem and OperationalProfile. FileSystem represents the contents of 
data on the disk as a whole. It includes the state attributes that are not specific of a 
file. The class attributes are reported in Table 2. 

Table 2 FileSystem attributes 

Attributes Description Type 
Partition Type Typology of the partition Primary, Logical 

Partition size  Size of the partition on which is installed the  FS Byte  
Partition allocated The Current size of the allocated partition  Byte 
Max file size The maximum dimension of a file on the FS Byte  
Block size  The dimension of a block  Byte 
FS implementation The type of file system  NTFS, ext2, ext3 

# of files allocated The number of files in the FS Integer  

# of directories  The number of directories in the FS Integer  
FS layout The tree that represents the FS Balanced, 

Unbalanced 
# of items allocated  The current number of items allocated in the FS Integer 

The choice of attribute values defines the test cases. Attributes like Partition 
Allocated can assume values from a minimum (e.g.,1MB) to the maximum 
allowable (e.g., 2TB). Therefore, the number of test cases, just for one parameter, 
grows rapidly. However, test cases in which the values of Partition Allocated 
varies with very small increments (e.g., from 1MB to 2MB) can be of little interest 
(e.g., 1MB or 2Mb both are values for a small partition). Thus, it is necessary to 
define criteria to keep the number of test cases reasonably low and cover a reasonable 
set of test scenarios. Hereafter, we illustrate potential choices for those attributes that 
the tester can set except for the attributes assigned by OS (e.g., Max file size).  

The attributes Block size and Partition size are typically set when the file 
system is formatted for the first time. In a hypothetical test campaign, these values 
could assume minimum, maximum and intermediate values. The attribute 
Partition allocated can be expressed as a percentage of Partition size, 



therefore the tester can set scenarios in which the file system is totally full, partially 
full or empty.  

The attribute FS layout deals with the tree representing the directory hierarchy 
on the FS. In particular, it can assume the values: balanced, i.e., trees in which the 
number of sub-directories is almost the same on each directory, and unbalanced, i.e., 
trees in which the number of sub-directories significantly differs. In order to generate 
balanced and unbalanced trees, we introduce P({dk+1dj}), i.e., the probability that a 
new directory, dk+1, is a child of a directory, dj, already present in the tree. This 
probability allows, to some extent, to control the structure of the hierarchy, once 
Number of Directory allocated is fixed. For P({dk+1dj}), we provide the 
following formulas for generating balanced and unbalanced trees, although other 
choices are possible (e.g., to use a well-known statistical distribution):  
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where k is the number of current directories in the tree, and N the number of 
directories to be created; k is increased until k=N. In (1), new directories are more 
likely to form an unbalanced tree, since the higher the depth of a node is, the higher 
the probability to have children. In (2), new directories are more likely to group at the 
same depth. The parent directory (3) is the one with the highest value of P({dk+1dj}). 

As for the FileSystem class, it is possible to conceive several criteria for 
assigning values to the attributes. For instance, the attribute Name can assume 
alphabetical and numerical characters with equal probability or the length should not 
overpass a given value. The attributes Permission and Owner can be assigned in 
such a way that a given percentage of files are executable by the owner only, another 
percentage is readable by all users and so on. The attribute Size can be fixed for all 
files, generated according to a statistical distribution. 

The Item class represents the entity which a FileSystem is made of. For this 
class, we define typical attributes that are available in every OS. Such attributes are: 
name of the item, permission (e.g., readable, writeable, executable), owner (root, 
nobody, user) and size. The classes that inherit from Item represent the different 
types of file in a UNIX file system. Files are randomly generated to populate the 
directory tree mentioned above; the location and type of file can be determined 
according to statistical distributions. 

The FS, like other OS subcomponents, uses resources such as cache, locks and 
buffers. We refer to these resources as auxiliary resources, that is, resources that 
serve for managing an Item of a FS.  For instance, if a thread performs I/O operations 
it is likely to stimulate auxiliary resources: indeed, buffers are instantiated; locks to 
control the access to them are used, and so forth. These resources are part of the 
internal state of the FS, although they are not included in our model, since (i) they 
cannot be easily controlled by the tester, and (ii) they are dependent on the FS 
internals. Moreover, most of these resources are instantiated at run-time, and they are 

(1) 

(2) 

(3) 



not part of the filesystem on the disk. The presence of these resources, however, 
cannot be neglected because they may influence the state of the FS and potentially 
change test outcomes. Therefore, in order to include both the behavior of the auxiliary 
resources in our model and the manner in which the FS is exercised, we introduce the 
OperationalProfile class. It expresses the degree of usage of the auxiliary 
resources and more generally, the way the FS is stimulated. This class does not 
directly model the auxiliary resource, but it allows to know the way in which the FS is 
invoked while performing a test. Thus the tester, indirectly, is aware of the 
mechanisms that are stimulated, e.g., if there are threads invoking I/O operations it is 
likely that caching and mutex mechanisms are invoked. The OperationalProfile 
attributes are reported in Table 3. 

Table 3 OperationalProfile attributes   

Attributes Description Type 

Number of tasks 
invoking FS ops.   

Number of tasks that invokes I/O operations 
(like read, write, open).  

Integer  

Average number of ops/s  Average number of operations made by a task  Integer  
Ratio of read/write ops. Ratio of read/write operations made by a task Float 

 
The OperationalProfile attributes are related to the performance of the File 

System and the hardware, which can limit the rate of FS operations that can be served 
by the system within a reasonable latency. Therefore, the selection of these attributes 
should be preceded by a capacity test aiming at assessing the maximum operation rate 
allowed by the system. A capacity test consists in gradually increasing the operations 
rate, given a fixed number of concurrent tasks (e.g., 2, 4 or 16), until the I/O 
bandwidth is saturated, i.e., the amount of transferred data per second reaches its peak 
[14]. After that the I/O bandwidth is known, the tests can select a discrete set of usage 
levels (e.g., 10% and 90% of I/O bandwidth) and the ratio between read and write 
operations (e.g., 2 read operations per 1 write operation). 

4  Experimentation 

In this section, we present an experiment aimed at analyzing the effects of the state on 
robustness testing, by comparing the proposed approach with a “stateless” approach 
and with stress testing. The proposed approach has been applied on the FIN.X Real-
Time Operating System (RTOS) developed by Finmeccanica. It is a Linux-based OS 
aimed at industrial applications in the avionic domain. The original Linux kernel has 
been enhanced by providing hard real-time and scalability on multi-core architectures 
and removing unessential parts.  FIN.X-RTOS is accompanied with documentation 
and evidences recommended by the DO-178B safety standard [4]. At time of writing 
the requirements of the standards at level D have been fulfilled (software functions 
that may cause "a minor failure condition"), and FIN.X-RTOS is currently on the 
assessment process for the more stringent requirements of level C (software functions 
that may cause "a major failure condition"), which encompass robustness testing and 
full statement coverage. 



4.1   Experimental Setup  

The proposed approach has been applied to the ext3 file system available in FIN.X-
RTOS. We selected a set of system calls to test, described in Table 4. The system 
calls are commonly used by applications and exercise different parts of the FS code.  

Table 4 System calls tested  

System Call  Description 

access check user's permissions for a file 
dup2 duplicate a file descriptor 

lseek reposition read/write file offset 
mkfifo make a FIFO special file (a named pipe) 

mmap map files or devices into memory 
open open and possibly create a file or device 

read read from a file descriptor 
unlink delete a name and possibly the file it refers to 

write write to a file descriptor 

 
To apply the proposed strategy, we selected, without loss of generality, two well-

known tools for supporting testing execution, namely Ballista and Filebench2.  With 
regard to Figure 1, Ballista plays the role of test driver, while FileBench is the state 
setter. The Ballista tool is currently distributed with the Linux Test Project tool suite. 
We ported the original version to FIN.X-RTOS. FileBench is a tool for FS 
benchmarking: the user can customize a workload by configuring I/O access patterns 
in terms of number of threads, access type and so on. In our test campaign, we choose 
a realistic scenario in which the partition of filesystem is partially full (75% of Partiton 
size) and there are tasks invoking FS operations, e.g., read and write. Leveraging on 
the model introduced in section 3, we create a logical partition with a balanced tree 
and the number of directories is 10 each one populated with 100 small files. No other 
items have been considered. Table 5 summarizes the values that we selected for the 
FileSystem entity’s attributes. Table 6 shows the values selected for the File entities; 
all the files, apart from Name, have the same values. Table 7 specifies the attributes of 
OperationalProfile, which are typical values for FS benchmarking [6][8]. 

Table 5 FileSystem values 

Attribute  Value 

Partition type Logical 
Partition size  2GB 

Partition allocated  1,5GB 

Block size 4096 

File system implementation ext3 

Number of files allocated 1000 

Number of directories allocated 10 

Number of items allocated 1010 

                                                        
2 http://www.ece.cmu.edu/~koopman/ballista/ -  http://www.fsl.cs.sunysb.edu/~vass/filebench/ 



Table 6 File values 

Attribute  Value 

Name Numeric string with length equals to five 
Permission Readable, Writeable, Executable 
Owner Root  
Size 1500Kb  

Table 7 OperationalProfile values 

Attributes Values 

Number of tasks invoking FS operations   16  

Average number of operations per second 10 
Ratio of read/write operations 1 

Those instances of File, FileSystem, and OperationalProfile reproduce 
stressful conditions in which to test the FS. By stressing the FS with read and write 
operations on a full allocated partition, we aim at creating exceptional conditions: in 
fact, with this setting, it is more likely to experiment conditions in which disk blocks 
are not available, seek operations have to traverse several directories, and so on. 

4.1.1 Definition of Test Campaigns 

We carry out three experimental campaigns:  

1. Stateless robustness testing. Ballista injects faults to the selected system 
calls (Table 4). The faultload to apply to the parameters of the system call 
belongs to the default Ballista configuration. An example of such a 
faultload is represented in Table 1. This test campaign lasts 15 minutes.   

2. Stress testing. FileBench invokes the system calls read and write on the 
files previously allocated for 1 hour. The operations produced by FileBench 
reflect the attributes of OperationalProfile (Table 7). Ballista is not 
executed. 

3. Stateful robustness testing. FileBench and Ballista work at the same time. 
Ballista and FileBench use the same configuration (faultload and operations 
executed) of the previous campaigns. The entire test campaign lasts 1 hour. 

The experimental duration for the first test campaign is the time that Ballista 
spends to execute all the test cases. The second campaign lasts the time necessary for 
Ballista to execute all the tests while FileBench is running. The time for the third test 
campaign is set to 1 hour in order to compare the results between the second and third 
campaign over the same duration time. 

4.2   Results 

We first analyze the outcomes of robustness tests, which are classified according to 
the CRASH scale (see Section 2). Table 8 provides the summary produced by Ballista 



in the default configuration (i.e., all potential test cases are generated). We did not 
observe any Catastrophic failure, and only a small number of Restart and Abort 
failures occurred. This result was expected, since the OS is a mature and well-tested 
system, and is consistent with past results on POSIX OSs [1], in which only a small 
number of corner cases led to Catastrophic failures (e.g., an OS crash). The relevance 
of Restart and Abort failures is a controversial subject, since OS developers tend to 
consider them as a “robust” behavior of the OS [1]. According to this point of view, 
we do not consider Restarts as severe failures: several OSs (e.g., QNX, Minix) 
intentionally deal with a misbehaving task by killing it in some specific cases (e.g., 
manipulation of an invalid memory address, or lack of privileges for performing an 
operation), in order to avoid further error propagation within the system. Similarly, 
Abort failures can represent an expected (and desirable) behavior of the OS, such as in 
the case of the read() and write() system calls that can bring a task in a “waiting 
for I/O” state. For these reasons, a “Restart” or “Abort” outcome cannot be considered 
as a “failure” without a detailed analysis of the expected behavior. It should be noted 
that stateful robustness testing differs from stateless robustness testing with respect to 
the number of Restart outcomes, mostly due to failed memory and disk allocations. 
Although we cannot conclude that these outcomes represent OS failures, this result 
points out that OS state can affect test outcomes and the assessment of OS robustness. 

Table 8 Results of robustness tests.  

However, the stateful tests cover a scenario not considered by stateless tests, and 
therefore they represent an additional evidence of the robust behavior of the OS. As a 
result, we observed an increased coverage of kernel code after executing the stateful 
tests; this aspect is relevant since coverage is a measure of test confidence and a 
requirement for software in safety-critical systems (e.g., DO-178B at level C [4]). 

We analyzed statement coverage of file system code, which is the target of our 
tests. The file system code is arranged in three directories: the code in the "fs/" 
directory is independent from the specific file system implementation (i.e., it is shared 
among several implementations such as ext3 and NTFS); the "ext3" directory 
provides the implementation of the ext3 file system; finally, the "jbd" directory 
provides a generic support for journaling file systems. Data about coverage was 
collected using GCOV. Table 9 compares the statement coverage with respect to the 
three considered scenarios. We observed differences in coverage between stateless 
(second column) and stateful robustness testing (fourth column), ranging between 
0.49% and 15.11%. Part of the code is covered by the plain state setter (i.e., without 

Function # Tests Stateless robustness testing Stateful robustness testing 
# Restart # Abort # Restart # Abort 

access() 
dup2() 
lseek() 
mkfifo() 
mmap() 
open() 
read() 
unlink() 
write() 

3,986 
3,954 
3,977 
3,870 
4,003 
3,988 
3,924 

500 
3,989 

0 
0 
0 
0 
0 
0 
0 
0 
0 

4 
0 
0 
5 
0 
8 

253 
1 

68 

1 
1 
0 
1 
0 

40 
1 
0 
4 

4 
0 
0 
5 
0 
8 

253 
1 

68 

Total 32,191 0 339 48 339 



using Ballista); the remaining part is covered due to interactions between Ballista and 
the OS state (some examples are provided in the following). In particular, stateful 
testing exercised those parts of the file system that interact with other subsystems 
(e.g., interactions between "fs/buffer.c" and the memory management subsystem, and 
between "fs/fs-writeback.c" and disk device drivers). The coverage improvement is 
more significant for the journal-related code (i.e., the JBD component in “fs/jbd”). 
This effect can be attributed to the interactions between file system transactions and 
the state of I/O queues. For instance, a transaction commit can be delayed due to 
concurrent I/O operations, therefore affecting the management of data buffers within 
the kernel and the file system image on the disk. Although the improvement is less 
significant for the implementation-independent code, the proposed approach has been 
useful for improving test coverage with no human effort. This aspect is relevant since 
FIN.X-RTOS is mostly composed by third-party code re-used from the Linux kernel; 
covering this code can be very costly, due to the lack of knowledge of kernel internals 
and the inherent complexity of OS code (e.g., heuristics for memory management). 

Table 9 Statement coverage. 

Source file Stateless robustness 
testing 

Stress testing Stateful robustness 
testing 

fs/binfmt_elf.c 
fs/buffer.c 
fs/dcache.c 
fs/exec.c 
fs/fs-writeback.c 
fs/inode.c 
fs/namei.c 
fs/select.c 
fs/ext3/balloc.c 
fs/ext3/dir.c 
fs/ext3/ialloc.c 
fs/ext3/inode.c 
fs/ext3/namei.c 
fs/jbd/checkpoint.c 
fs/jbd/commit.c 
fs/jbd/revoke.c 
fs/jbd/transaction.c 

319/850 (37.53%) 
529/1320 (40.08%) 
371/880 (42.16%) 
479/807 (59.36%) 
146/273 (53.48%) 
252/527 (47.82%) 
918/1392 (65.95%) 
237/402 (58.96%) 
384/556 (69.06%) 
140/219 (63.93%) 
181/337 (53.71%) 
719/1204 (59.72%) 
607/1088 (55.79%) 
102/263 (38.78%) 
300/362 (82.87%) 
108/228 (47.37%) 
489/697 (70.16%) 

331/850 (38.94%) 
553/1320 (41.89%) 
341/880 (38.75%) 
392/807 (48.57%) 
169/273 (61.90%) 
307/527 (58.25%) 
626/1392 (44.97%) 
237/402 (58.96%) 
385/556 (69.24%) 
143/219 (65.30%) 
186/337 (55.19%) 
729/1204 (60.55%) 
654/1088 (60.11%) 
141/263 (53.61%) 
302/362 (83.43%) 
105/228 (46.05%) 
500/697 (71.74%) 

332/850 (39.06%) 
565/1320 (42.80%) 
387/880 (43.98%) 
486/807 (60.22%) 
174/273 (63.74%) 
316/527 (59.96%) 
925/1392 (66.45%) 
239/402 (59.45%) 
398/556 (71.58%) 
144/219 (65.75%) 
189/337 (56.08%) 
737/1204 (61.21%) 
781/1088 (71.78%) 
142/263 (53.99%) 
318/362 (87.85%) 
116/228 (50.87%) 
545/697 (78.19%) 

In order to better understand the interactions between OS state and test cases, we 
analyzed more in depth part of the kernel code only covered by stateful robustness 
testing. Figure 3 shows an example of corner case in the kernel code not covered in 
stateless testing (the code is highlighted in bold font; part of the code was omitted; we 
kept some comments from developers). The real_lookup() routine is invoked 
when file metadata are not in the page cache, and the FS needs to access to the disk. It 
blocks the current task on a semaphore (using the mutex_lock() primitive) until a 
given directory can be accessed in mutual exclusion. It then checks if metadata have 
been added to the cache during this wait period. Usually, metadata are not found, and 
the routine performs an access to the disk. In stateful testing, a different behavior was 
observed, since the cache has been re-populated during the wait period (developers 
refer to this situation as "nasty case"), and additional operations are executed (e.g., to 
check that metadata are not expired due to a timeout in distributed file systems). This 



code was only executed in stateful testing due to interactions with the cache that occur 
when concurrent I/O operations are taking place. 
 
static struct dentry * real_lookup(struct dentry * parent, 
 struct qstr * name, struct nameidata *nd) { 
    /* --- OMISSIS (declarations) --- */ 
    mutex_lock(&dir->i_mutex); 
    result = d_lookup(parent, name); 
    if (!result) { 
        /* --- OMISSIS (performs lookup) --- */ 
        mutex_unlock(&dir->i_mutex); 
        return result; 
    } 
    /* Uhhuh! Nasty case: the cache was re-populated while 
     we waited on the semaphore. Need to revalidate.*/     
    mutex_unlock(&dir->i_mutex); 
    if (result->d_op && result->d_op->d_revalidate) { 
        result = do_revalidate(result, nd); 
        if (!result) 
            result = ERR_PTR(-ENOENT); 
    } 
    return result; 
} 

Figure 3 Example of kernel code covered due to interactions between the file system and 
caching (from real_lookup(), fs/namei.c:478). 

Another example is provided in Figure 4, which is related to concurrency of kernel 
code. The ll_rw_block() routine performs several low-level accesses to the disk, 
and each access is controlled by a “buffer head” data structure. During the inspection 
of the list of buffer heads, one of them could have been locked by another concurrent 
task; this condition is detected by the test_set_buffer_locked() primitive, 
which may fail to lock the buffer head in some cases. Stateful testing covered this rare 
scenario, and it is worth being tested to verify that pending I/O is correctly managed. 
 
void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) { 
    int i; 
    for (i = 0; i < nr; i++) { 
        struct buffer_head *bh = bhs[i]; 
        if (rw == SWRITE) 
            lock_buffer(bh); 
        else if (test_set_buffer_locked(bh)) 
            continue; 
        /* --- OMISSIS (performs I/O op.) --- */ 
} 

Figure 4 Example of kernel code covered due to concurrent I/O requests (from 
ll_rw_block(), fs/buffer.c:2941). 

Finally, we analyzed an example of kernel code interacting with memory 
management, which is provided in Figure 5. The try_to_free_buffers() routine 
is invoked by the file system when the cache for file system data (the "page cache") 
gets large and pages need to be freed for incoming data. It may occur that a file 
system transaction involves I/O buffers allocated over several pages, and these pages 
cannot be de-allocated until the transaction commits. Pages are then marked with 
“mapping == NULL” in order to be reclaimed later (the drop_buffers() routine 



checks that I/O buffers in the page are not being used). As suggested by the comment 
in the code, this condition is unlikely to occur; the code has been executed in stateful 
testing since memory management has been put under stress. 

int try_to_free_buffers(struct page *page) { 
    /* --- OMISSIS (declarations) --- */ 
    BUG_ON(!PageLocked(page)); 
    if (PageWriteback(page)) 
        return 0; 
    if (mapping == NULL) {      /* can this still happen? */ 
        ret = drop_buffers(page, &buffers_to_free); 
        goto out; 
    } 
    /* --- OMISSIS (page writeback and deallocation) --- */ 
} 

Figure 5 Example of kernel code covered due interactions between the file system and 
memory management (from try_to_free_buffers(), fs/buffer.c:3057). 

5   Conclusion and Future Work 

This paper investigated the impact of OS state on robustness testing through an 
experiment on the File System of a Linux-based OS for critical applications. In order 
to include the OS state in the robustness test plan, we introduced a model of the File 
System by including a set of factors (such as file tree layout and concurrent I/O 
operations) that are most influential on the File System behavior, and that can be 
controlled by the tester. We performed an experiment using the proposed model, 
which highlighted the influence OS state on the test outcomes and on statement 
coverage. In particular, robustness tests were able to reach corner cases with complex 
interactions with other subsystems (such as scheduling, caching and memory 
management), which are not covered by traditional robustness testing. In turn, this 
approach comes in handy to achieve an increased confidence in OS robustness with 
low human effort, since both robustness test cases and OS states can be automatically 
generated once programmed by the tester. 

Future work encompasses an experimental campaign with more robustness tests 
and OS states, in order to assess the full potential of robustness testing. Moreover, we 
plan to analyze test planning strategies in order to achieve the best trade-off between 
time and the code coverage or the explored states. Another direction is to extend the 
approach to other subsystems. For instance, a model similar to the FS could be 
introduced for the virtual memory manager, by including the amount and type of 
memory areas allocated by processes, physical free memory, swap usage and so on. 
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