
A Case Study on State-Based Robustness Testing of an

Operating System for the Avionic Domain

Domenico Cotroneo1, Domenico Di Leo1, Roberto Natella1, Roberto Pietrantuono1,

1Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II,
Via Claudio 21, 80125, Naples, Italy

{cotroneo, domenico.dileo, roberto.natella, roberto.pietrantuono}@unina.it

Abstract. This paper investigates the impact of state on robustness testing, by
enhancing the traditional approach with the inclusion of the OS state in test
cases definition. We evaluate the relevance of OS state and the effects of the
proposed strategy through an experimental campaign on the file system of a
Linux-based OS, to be adopted by Finmeccanica for safety-critical systems in
the avionic domain. Results show that the OS state plays an important role in
testing those corner cases not covered by traditional robustness testing.

Keywords: Robustness Testing, Operating Systems, Safety-Critical
Systems, DO-178B, FIN.X-RTOS

1 Introduction

The importance of high robustness in safety-critical systems is well recognized
[1][2][3]. The Operating System (OS) is the foundation of any software system, and
an OS failure may affect the system as a whole; thus, assessing its robustness is one of
the most important tasks to perform during verification of critical software systems.
Robustness testing techniques are conceived to assess the system’s ability to not fail
in presence of invalid inputs and unforeseen conditions.

Due to the kind of bugs for which robustness testing is conceived, and to the
complexity and size of OS code, performing an effective robustness testing campaign
is challenging. Robustness bugs are characterized by rare and subtle activation
conditions, which are hard to find during functional testing [1][2][3]. Unfortunately,
in OSs there are so many factors potentially involved in bug activation (such as I/O
events and task scheduling), that it is difficult to include all of them when generating
robustness test cases. As a result, many OS defects found in the field are related to
boundary conditions and error handling, as shown in [3]. This difficulty is further
exacerbated by the OS architecture, whose subsystems are tightly coupled, making it
hard to isolate the reproduction of rare conditions for each of them. Considering these
issues, it is clear that achieving high test coverage in OSs becomes a really tricky task.

In the literature, much effort has been devoted to assess robustness of OSs through
the injection of invalid inputs via APIs (i.e., system calls/driver interfaces) with the
goal of assessing their robustness. From results of these studies, an important
emerging aspect is that, to improve the effectiveness of robustness testing, test cases
should consider one more variable, other than exceptional inputs; that is, the current
state of the OS. Indeed, the OS state can significantly affect its execution, as well as
the test case outcomes. Executing a given robustness test case in different states

increases the probability to explore those parts of the code most rarely reached, i.e., it
increases the final coverage: states representing “unusual” conditions combined with
exceptional inputs can produce very rare execution patterns.

Starting from these studies, this paper investigates the impact of OS state, or part
thereof, on robustness testing. We introduce a robustness testing strategy that
accounts for the state of the file system (in terms of resource usage, concurrent
operations, and other aspects). First, a model of the file system is presented that
considers both entities a file system is composed of, and resources it uses and that
contribute to determine its state. Then, the impact of the state on the achieved
coverage is assessed through experiments performed on an industrial case study.
Finmeccanica is in the process of developing a certifiable Linux-based OS, namely
FIN.X-RTOS, compliant to the recommendations of the DO-178B standard [4], that is
the reference standard in the avionic domain. In this process, evidences should be
provided that the OS underwent a thorough robustness assessment campaign in terms
of coverage. Results show that testing the OS by accounting for its state improves the
final coverage, and hence the confidence in OS robustness, allowing to reach those
corner cases not covered by traditional robustness testing.

After a related work section, the approach is described in Section 3. Section 4
shows obtained results in terms of coverage and via examples of achieved corner
cases in the OS code; Section 5 concludes the paper.

2 Related Work

Past work approached robustness testing of operating systems from different points of
view; they differ with respect to the OS interface under test (system calls or device
driver interface), the assumed fault model, and the failure modes that were analyzed.

BALLISTA [1][2] was the first approach for evaluating and benchmarking the
robustness of commercial OSs with respect to the POSIX system call interface [5].
BALLISTA adopts a data-type based fault model, that is, it defines a subset of invalid
values for every data type encompassed by the POSIX standard. Examples of invalid
inputs for three data types are provided in Table 1. Test cases are generated by all the
combinations of invalid values of the system call’s data types: a test case consists of a
small program that invokes the target system call using a combination of input values.

Table 1. Examples of invalid input values for the three data types of the write(int
filedes, const void *buffer, size_t nbytes) system call.

File descriptor (filedes) Memory buffer (buffer) Size (nbytes)
FD_CLOSED BUF_SMALL_1 SIZE_1
FD_OPEN_READ BUF_MED_PAGESIZE SIZE_16
FD_OPEN_WRITE BUF_LARGE_512MB SIZE_PAGE
FD_DELETED BUF_XLARGE_1GB SIZE_PAGEx16
FD_NOEXIST BUF_HUGE_2GB SIZE_PAGEx16plus1

Test outcomes are classified by severity according to the CRASH scale: a

Catastrophic failure occurs when the failure affects more than one task or the OS
itself; Restart or Abort failures occur when the task launched by BALLISTA is killed
by the OS or stalled; Silent or Hindering failures occur when the system call does not

return an error code, or returns a wrong error code. BALLISTA found several invalid
inputs not gracefully handled (Restarts and Aborts), and some Catastrophic failures
related to illegal pointer values, numeric overflows, and end-of-file overruns [1].

OS robustness testing evolved in dependability benchmarks in the framework of
the DBench European project [6][7]. A dependability benchmark has been proposed
to assess OS robustness in terms of OS failures, reaction time (i.e., mean time to
respond to a system call in presence of faults) and restart time (i.e., mean time to
restart the OS after a test). Valid inputs are intercepted and replaced with invalid ones,
by using a data-type based fault model, as well as by fuzzing (i.e., random values) and
bit-flips (i.e., a correct input is corrupted by inverting one bit). In dependability
benchmarking, the workload has a key role: it is used for exercising the system in
order to assess its reaction. To obtain realistic measures, the workload should be
representative of the expected usage profile (e.g., database or mail server [6][7]). In
[8], a stress test campaign on the Linux kernel assessed the influence of the workload
on kernel performance and memory consumption over long time periods. In this
work, we further investigate the influence of the external environment, and propose a
state model for generating tests that includes the OS workload.

Robustness testing has been adopted for assessing OSs with respect to its interfaces
to device drivers, since drivers are usually provided by third party developers and are
buggier than other OS components [9]. The fault models mentioned above were
adopted also in this case [10], and have been compared in terms of their ability to
expose robustness bugs [11]. In [12], a fault injection approach is proposed that
mutates the device driver code (by artificially inserting bugs) instead of injecting
invalid values at the OS interface. These studies found that OSs are more prone to
failures in case of device driver faults than application faults, since developers tend to
omit checks in the device driver interface to improve performance, and because they
trust device drivers more than applications. Other works assessed the robustness of
OSs with respect to hardware faults (e.g., CPU or disk faults), by corrupting code and
data [13][14][15][16]. Similarly to system call testing, these approaches either rely on
a representative workload for exercising the system, or neglect the system state.

The influence of OS state gained attention in recent work on testing device drivers
[17][18]. In [17], the concept of call blocks is introduced to model repeating
subsequences of OS function calls made by device drivers, since they issue recurring
sequences of function calls (e.g., when reading a large amount of data from a device):
therefore, robustness testing is more efficient when it is focused on call blocks instead
of injecting invalid inputs at random time. Sarbu et al. [18] proposed a state model for
device driver testing, using a vector of boolean variables. Each variable represents an
operation supported by the device driver: at a given time t, the ith variable is true if the
driver is performing the ith operation. Case studies on Microsoft Windows OSs found
that the test space can be reduced using the state model. Prabhakaran et al. [15]
proposed an approach for testing journaling file systems, which injects disk faults at
specific states of file system transactions. These studies showed that the OS state has
an important role in testing such complex systems; however, they model a specific
part of OS state (e.g., device drivers or journaling) and do not consider the overall
state of the OS components, such as the file system and process scheduling.

3 Testing approach

Since OS components can be very complex and their state has a significant
influence on the OS correct behavior, it is necessary to take the states of the
Component Under test (CUT) into account, and assess its robustness as the state
changes. According to this view, a hypothetical test plan is expressed through two
dimensions: the exceptional inputs and the states. Inputs are selected as usual (e.g.,
boundary values) while the state varies in S = {s1, s2 … sn}. In order to apply this
strategy, we need to test the CUT with both a test driver and a state setter. The former
injects invalid inputs to its interface, whereas the latter is responsible for producing
the state transition or keeping the component in a given state sk (see Figure 1).

Figure 1 Robustness testing conducted with the CUT in two different states si and sk

In complex components the state representation (i.e., the state model) plays a key
role. It can be considered at several levels of abstraction, hence determining the
number of potential states the state setter should cope with. This aspect is relevant for
our approach, since it can affect the efficiency and the feasibility of robustness
testing. Thus the state model should satisfy these requirements: i) it should be easy to
set and control by the tester, ii) it should represent the state at a level of abstraction
high enough to keep the number of test cases reasonably small and iii) it should
include those configurations that are the most influential on the component behavior.
Thus, with this regard, the model that we define expresses the state of an OS
component without detailing its internals, since they are not always easy to
understand and to manage, and would inflate the number of states.

3.1 Modeling the File System

In this work, we experiment the described strategy by applying it to the File System
(FS) component. We choose the FS because it is a critical and bug-prone component
[8][19] (its failure can corrupt persistent data or lead to unrecoverable conditions).
Furthermore, the behavior of the FS is influenced by its internal state and the other
components with which it interacts (e.g., virtual memory manger, scheduler).
Following the previous requirements, we conceived a model for the FS (Figure 2).
Moreover, the model is easily adoptable across different FS1 implementations; as a

1 In this work, the term “File System” refers to the OS component for managing files. The term

“filesystem” refers to the contents on the storage, e.g., the structure of tree.

Invalid Inputs State

e1,e2, e3 si
e1,e2, e3 sk

… …

Test Plan

consequence, the proposed model does not take specific “internal design” of a FS into
account (e.g., inode that are adopted in some UNIX file system, but not in others).

Figure 2 File System model

The model is a UML representation of the FS, with three main classes: Item,

FileSystem and OperationalProfile. FileSystem represents the contents of
data on the disk as a whole. It includes the state attributes that are not specific of a
file. The class attributes are reported in Table 2.

Table 2 FileSystem attributes

Attributes Description Type
Partition Type Typology of the partition Primary, Logical

Partition size Size of the partition on which is installed the FS Byte
Partition allocated The Current size of the allocated partition Byte
Max file size The maximum dimension of a file on the FS Byte
Block size The dimension of a block Byte
FS implementation The type of file system NTFS, ext2, ext3

of files allocated The number of files in the FS Integer

of directories The number of directories in the FS Integer
FS layout The tree that represents the FS Balanced,

Unbalanced
of items allocated The current number of items allocated in the FS Integer

The choice of attribute values defines the test cases. Attributes like Partition
Allocated can assume values from a minimum (e.g.,1MB) to the maximum
allowable (e.g., 2TB). Therefore, the number of test cases, just for one parameter,
grows rapidly. However, test cases in which the values of Partition Allocated
varies with very small increments (e.g., from 1MB to 2MB) can be of little interest
(e.g., 1MB or 2Mb both are values for a small partition). Thus, it is necessary to
define criteria to keep the number of test cases reasonably low and cover a reasonable
set of test scenarios. Hereafter, we illustrate potential choices for those attributes that
the tester can set except for the attributes assigned by OS (e.g., Max file size).

The attributes Block size and Partition size are typically set when the file
system is formatted for the first time. In a hypothetical test campaign, these values
could assume minimum, maximum and intermediate values. The attribute
Partition allocated can be expressed as a percentage of Partition size,

therefore the tester can set scenarios in which the file system is totally full, partially
full or empty.

The attribute FS layout deals with the tree representing the directory hierarchy
on the FS. In particular, it can assume the values: balanced, i.e., trees in which the
number of sub-directories is almost the same on each directory, and unbalanced, i.e.,
trees in which the number of sub-directories significantly differs. In order to generate
balanced and unbalanced trees, we introduce P({dk+1dj}), i.e., the probability that a
new directory, dk+1, is a child of a directory, dj, already present in the tree. This
probability allows, to some extent, to control the structure of the hierarchy, once
Number of Directory allocated is fixed. For P({dk+1dj}), we provide the
following formulas for generating balanced and unbalanced trees, although other
choices are possible (e.g., to use a well-known statistical distribution):


 k

i

jjkunbalanced

ddepth
ddepthddP

1

1

)(

1)(})({


 k

i

j

jkbalanced

ddepth
ddepth

ddP

1

1

)(
1

1

)(

1
})({

})}({})...({max{: 111 kkk ddPddPdctoryParentDire 

where k is the number of current directories in the tree, and N the number of
directories to be created; k is increased until k=N. In (1), new directories are more
likely to form an unbalanced tree, since the higher the depth of a node is, the higher
the probability to have children. In (2), new directories are more likely to group at the
same depth. The parent directory (3) is the one with the highest value of P({dk+1dj}).

As for the FileSystem class, it is possible to conceive several criteria for
assigning values to the attributes. For instance, the attribute Name can assume
alphabetical and numerical characters with equal probability or the length should not
overpass a given value. The attributes Permission and Owner can be assigned in
such a way that a given percentage of files are executable by the owner only, another
percentage is readable by all users and so on. The attribute Size can be fixed for all
files, generated according to a statistical distribution.

The Item class represents the entity which a FileSystem is made of. For this
class, we define typical attributes that are available in every OS. Such attributes are:
name of the item, permission (e.g., readable, writeable, executable), owner (root,
nobody, user) and size. The classes that inherit from Item represent the different
types of file in a UNIX file system. Files are randomly generated to populate the
directory tree mentioned above; the location and type of file can be determined
according to statistical distributions.

The FS, like other OS subcomponents, uses resources such as cache, locks and
buffers. We refer to these resources as auxiliary resources, that is, resources that
serve for managing an Item of a FS. For instance, if a thread performs I/O operations
it is likely to stimulate auxiliary resources: indeed, buffers are instantiated; locks to
control the access to them are used, and so forth. These resources are part of the
internal state of the FS, although they are not included in our model, since (i) they
cannot be easily controlled by the tester, and (ii) they are dependent on the FS
internals. Moreover, most of these resources are instantiated at run-time, and they are

(1)

(2)

(3)

not part of the filesystem on the disk. The presence of these resources, however,
cannot be neglected because they may influence the state of the FS and potentially
change test outcomes. Therefore, in order to include both the behavior of the auxiliary
resources in our model and the manner in which the FS is exercised, we introduce the
OperationalProfile class. It expresses the degree of usage of the auxiliary
resources and more generally, the way the FS is stimulated. This class does not
directly model the auxiliary resource, but it allows to know the way in which the FS is
invoked while performing a test. Thus the tester, indirectly, is aware of the
mechanisms that are stimulated, e.g., if there are threads invoking I/O operations it is
likely that caching and mutex mechanisms are invoked. The OperationalProfile
attributes are reported in Table 3.

Table 3 OperationalProfile attributes

Attributes Description Type

Number of tasks
invoking FS ops.

Number of tasks that invokes I/O operations
(like read, write, open).

Integer

Average number of ops/s Average number of operations made by a task Integer
Ratio of read/write ops. Ratio of read/write operations made by a task Float

The OperationalProfile attributes are related to the performance of the File

System and the hardware, which can limit the rate of FS operations that can be served
by the system within a reasonable latency. Therefore, the selection of these attributes
should be preceded by a capacity test aiming at assessing the maximum operation rate
allowed by the system. A capacity test consists in gradually increasing the operations
rate, given a fixed number of concurrent tasks (e.g., 2, 4 or 16), until the I/O
bandwidth is saturated, i.e., the amount of transferred data per second reaches its peak
[14]. After that the I/O bandwidth is known, the tests can select a discrete set of usage
levels (e.g., 10% and 90% of I/O bandwidth) and the ratio between read and write
operations (e.g., 2 read operations per 1 write operation).

4 Experimentation

In this section, we present an experiment aimed at analyzing the effects of the state on
robustness testing, by comparing the proposed approach with a “stateless” approach
and with stress testing. The proposed approach has been applied on the FIN.X Real-
Time Operating System (RTOS) developed by Finmeccanica. It is a Linux-based OS
aimed at industrial applications in the avionic domain. The original Linux kernel has
been enhanced by providing hard real-time and scalability on multi-core architectures
and removing unessential parts. FIN.X-RTOS is accompanied with documentation
and evidences recommended by the DO-178B safety standard [4]. At time of writing
the requirements of the standards at level D have been fulfilled (software functions
that may cause "a minor failure condition"), and FIN.X-RTOS is currently on the
assessment process for the more stringent requirements of level C (software functions
that may cause "a major failure condition"), which encompass robustness testing and
full statement coverage.

4.1 Experimental Setup

The proposed approach has been applied to the ext3 file system available in FIN.X-
RTOS. We selected a set of system calls to test, described in Table 4. The system
calls are commonly used by applications and exercise different parts of the FS code.

Table 4 System calls tested

System Call Description

access check user's permissions for a file
dup2 duplicate a file descriptor

lseek reposition read/write file offset
mkfifo make a FIFO special file (a named pipe)

mmap map files or devices into memory
open open and possibly create a file or device

read read from a file descriptor
unlink delete a name and possibly the file it refers to

write write to a file descriptor

To apply the proposed strategy, we selected, without loss of generality, two well-

known tools for supporting testing execution, namely Ballista and Filebench2. With
regard to Figure 1, Ballista plays the role of test driver, while FileBench is the state
setter. The Ballista tool is currently distributed with the Linux Test Project tool suite.
We ported the original version to FIN.X-RTOS. FileBench is a tool for FS
benchmarking: the user can customize a workload by configuring I/O access patterns
in terms of number of threads, access type and so on. In our test campaign, we choose
a realistic scenario in which the partition of filesystem is partially full (75% of Partiton
size) and there are tasks invoking FS operations, e.g., read and write. Leveraging on
the model introduced in section 3, we create a logical partition with a balanced tree
and the number of directories is 10 each one populated with 100 small files. No other
items have been considered. Table 5 summarizes the values that we selected for the
FileSystem entity’s attributes. Table 6 shows the values selected for the File entities;
all the files, apart from Name, have the same values. Table 7 specifies the attributes of
OperationalProfile, which are typical values for FS benchmarking [6][8].

Table 5 FileSystem values

Attribute Value

Partition type Logical
Partition size 2GB

Partition allocated 1,5GB

Block size 4096

File system implementation ext3

Number of files allocated 1000

Number of directories allocated 10

Number of items allocated 1010

2 http://www.ece.cmu.edu/~koopman/ballista/ - http://www.fsl.cs.sunysb.edu/~vass/filebench/

Table 6 File values

Attribute Value

Name Numeric string with length equals to five
Permission Readable, Writeable, Executable
Owner Root
Size 1500Kb

Table 7 OperationalProfile values

Attributes Values

Number of tasks invoking FS operations 16

Average number of operations per second 10
Ratio of read/write operations 1

Those instances of File, FileSystem, and OperationalProfile reproduce
stressful conditions in which to test the FS. By stressing the FS with read and write
operations on a full allocated partition, we aim at creating exceptional conditions: in
fact, with this setting, it is more likely to experiment conditions in which disk blocks
are not available, seek operations have to traverse several directories, and so on.

4.1.1 Definition of Test Campaigns

We carry out three experimental campaigns:

1. Stateless robustness testing. Ballista injects faults to the selected system
calls (Table 4). The faultload to apply to the parameters of the system call
belongs to the default Ballista configuration. An example of such a
faultload is represented in Table 1. This test campaign lasts 15 minutes.

2. Stress testing. FileBench invokes the system calls read and write on the
files previously allocated for 1 hour. The operations produced by FileBench
reflect the attributes of OperationalProfile (Table 7). Ballista is not
executed.

3. Stateful robustness testing. FileBench and Ballista work at the same time.
Ballista and FileBench use the same configuration (faultload and operations
executed) of the previous campaigns. The entire test campaign lasts 1 hour.

The experimental duration for the first test campaign is the time that Ballista
spends to execute all the test cases. The second campaign lasts the time necessary for
Ballista to execute all the tests while FileBench is running. The time for the third test
campaign is set to 1 hour in order to compare the results between the second and third
campaign over the same duration time.

4.2 Results

We first analyze the outcomes of robustness tests, which are classified according to
the CRASH scale (see Section 2). Table 8 provides the summary produced by Ballista

in the default configuration (i.e., all potential test cases are generated). We did not
observe any Catastrophic failure, and only a small number of Restart and Abort
failures occurred. This result was expected, since the OS is a mature and well-tested
system, and is consistent with past results on POSIX OSs [1], in which only a small
number of corner cases led to Catastrophic failures (e.g., an OS crash). The relevance
of Restart and Abort failures is a controversial subject, since OS developers tend to
consider them as a “robust” behavior of the OS [1]. According to this point of view,
we do not consider Restarts as severe failures: several OSs (e.g., QNX, Minix)
intentionally deal with a misbehaving task by killing it in some specific cases (e.g.,
manipulation of an invalid memory address, or lack of privileges for performing an
operation), in order to avoid further error propagation within the system. Similarly,
Abort failures can represent an expected (and desirable) behavior of the OS, such as in
the case of the read() and write() system calls that can bring a task in a “waiting
for I/O” state. For these reasons, a “Restart” or “Abort” outcome cannot be considered
as a “failure” without a detailed analysis of the expected behavior. It should be noted
that stateful robustness testing differs from stateless robustness testing with respect to
the number of Restart outcomes, mostly due to failed memory and disk allocations.
Although we cannot conclude that these outcomes represent OS failures, this result
points out that OS state can affect test outcomes and the assessment of OS robustness.

Table 8 Results of robustness tests.

However, the stateful tests cover a scenario not considered by stateless tests, and
therefore they represent an additional evidence of the robust behavior of the OS. As a
result, we observed an increased coverage of kernel code after executing the stateful
tests; this aspect is relevant since coverage is a measure of test confidence and a
requirement for software in safety-critical systems (e.g., DO-178B at level C [4]).

We analyzed statement coverage of file system code, which is the target of our
tests. The file system code is arranged in three directories: the code in the "fs/"
directory is independent from the specific file system implementation (i.e., it is shared
among several implementations such as ext3 and NTFS); the "ext3" directory
provides the implementation of the ext3 file system; finally, the "jbd" directory
provides a generic support for journaling file systems. Data about coverage was
collected using GCOV. Table 9 compares the statement coverage with respect to the
three considered scenarios. We observed differences in coverage between stateless
(second column) and stateful robustness testing (fourth column), ranging between
0.49% and 15.11%. Part of the code is covered by the plain state setter (i.e., without

Function # Tests Stateless robustness testing Stateful robustness testing
Restart # Abort # Restart # Abort

access()
dup2()
lseek()
mkfifo()
mmap()
open()
read()
unlink()
write()

3,986
3,954
3,977
3,870
4,003
3,988
3,924

500
3,989

0
0
0
0
0
0
0
0
0

4
0
0
5
0
8

253
1

68

1
1
0
1
0

40
1
0
4

4
0
0
5
0
8

253
1

68

Total 32,191 0 339 48 339

using Ballista); the remaining part is covered due to interactions between Ballista and
the OS state (some examples are provided in the following). In particular, stateful
testing exercised those parts of the file system that interact with other subsystems
(e.g., interactions between "fs/buffer.c" and the memory management subsystem, and
between "fs/fs-writeback.c" and disk device drivers). The coverage improvement is
more significant for the journal-related code (i.e., the JBD component in “fs/jbd”).
This effect can be attributed to the interactions between file system transactions and
the state of I/O queues. For instance, a transaction commit can be delayed due to
concurrent I/O operations, therefore affecting the management of data buffers within
the kernel and the file system image on the disk. Although the improvement is less
significant for the implementation-independent code, the proposed approach has been
useful for improving test coverage with no human effort. This aspect is relevant since
FIN.X-RTOS is mostly composed by third-party code re-used from the Linux kernel;
covering this code can be very costly, due to the lack of knowledge of kernel internals
and the inherent complexity of OS code (e.g., heuristics for memory management).

Table 9 Statement coverage.

Source file Stateless robustness
testing

Stress testing Stateful robustness
testing

fs/binfmt_elf.c
fs/buffer.c
fs/dcache.c
fs/exec.c
fs/fs-writeback.c
fs/inode.c
fs/namei.c
fs/select.c
fs/ext3/balloc.c
fs/ext3/dir.c
fs/ext3/ialloc.c
fs/ext3/inode.c
fs/ext3/namei.c
fs/jbd/checkpoint.c
fs/jbd/commit.c
fs/jbd/revoke.c
fs/jbd/transaction.c

319/850 (37.53%)
529/1320 (40.08%)
371/880 (42.16%)
479/807 (59.36%)
146/273 (53.48%)
252/527 (47.82%)
918/1392 (65.95%)
237/402 (58.96%)
384/556 (69.06%)
140/219 (63.93%)
181/337 (53.71%)
719/1204 (59.72%)
607/1088 (55.79%)
102/263 (38.78%)
300/362 (82.87%)
108/228 (47.37%)
489/697 (70.16%)

331/850 (38.94%)
553/1320 (41.89%)
341/880 (38.75%)
392/807 (48.57%)
169/273 (61.90%)
307/527 (58.25%)
626/1392 (44.97%)
237/402 (58.96%)
385/556 (69.24%)
143/219 (65.30%)
186/337 (55.19%)
729/1204 (60.55%)
654/1088 (60.11%)
141/263 (53.61%)
302/362 (83.43%)
105/228 (46.05%)
500/697 (71.74%)

332/850 (39.06%)
565/1320 (42.80%)
387/880 (43.98%)
486/807 (60.22%)
174/273 (63.74%)
316/527 (59.96%)
925/1392 (66.45%)
239/402 (59.45%)
398/556 (71.58%)
144/219 (65.75%)
189/337 (56.08%)
737/1204 (61.21%)
781/1088 (71.78%)
142/263 (53.99%)
318/362 (87.85%)
116/228 (50.87%)
545/697 (78.19%)

In order to better understand the interactions between OS state and test cases, we
analyzed more in depth part of the kernel code only covered by stateful robustness
testing. Figure 3 shows an example of corner case in the kernel code not covered in
stateless testing (the code is highlighted in bold font; part of the code was omitted; we
kept some comments from developers). The real_lookup() routine is invoked
when file metadata are not in the page cache, and the FS needs to access to the disk. It
blocks the current task on a semaphore (using the mutex_lock() primitive) until a
given directory can be accessed in mutual exclusion. It then checks if metadata have
been added to the cache during this wait period. Usually, metadata are not found, and
the routine performs an access to the disk. In stateful testing, a different behavior was
observed, since the cache has been re-populated during the wait period (developers
refer to this situation as "nasty case"), and additional operations are executed (e.g., to
check that metadata are not expired due to a timeout in distributed file systems). This

code was only executed in stateful testing due to interactions with the cache that occur
when concurrent I/O operations are taking place.

static struct dentry * real_lookup(struct dentry * parent,
 struct qstr * name, struct nameidata *nd) {
 /* --- OMISSIS (declarations) --- */
 mutex_lock(&dir->i_mutex);
 result = d_lookup(parent, name);
 if (!result) {
 /* --- OMISSIS (performs lookup) --- */
 mutex_unlock(&dir->i_mutex);
 return result;
 }
 /* Uhhuh! Nasty case: the cache was re-populated while
 we waited on the semaphore. Need to revalidate.*/
 mutex_unlock(&dir->i_mutex);
 if (result->d_op && result->d_op->d_revalidate) {
 result = do_revalidate(result, nd);
 if (!result)
 result = ERR_PTR(-ENOENT);
 }
 return result;
}

Figure 3 Example of kernel code covered due to interactions between the file system and
caching (from real_lookup(), fs/namei.c:478).

Another example is provided in Figure 4, which is related to concurrency of kernel
code. The ll_rw_block() routine performs several low-level accesses to the disk,
and each access is controlled by a “buffer head” data structure. During the inspection
of the list of buffer heads, one of them could have been locked by another concurrent
task; this condition is detected by the test_set_buffer_locked() primitive,
which may fail to lock the buffer head in some cases. Stateful testing covered this rare
scenario, and it is worth being tested to verify that pending I/O is correctly managed.

void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) {
 int i;
 for (i = 0; i < nr; i++) {
 struct buffer_head *bh = bhs[i];
 if (rw == SWRITE)
 lock_buffer(bh);
 else if (test_set_buffer_locked(bh))
 continue;
 /* --- OMISSIS (performs I/O op.) --- */
}

Figure 4 Example of kernel code covered due to concurrent I/O requests (from
ll_rw_block(), fs/buffer.c:2941).

Finally, we analyzed an example of kernel code interacting with memory
management, which is provided in Figure 5. The try_to_free_buffers() routine
is invoked by the file system when the cache for file system data (the "page cache")
gets large and pages need to be freed for incoming data. It may occur that a file
system transaction involves I/O buffers allocated over several pages, and these pages
cannot be de-allocated until the transaction commits. Pages are then marked with
“mapping == NULL” in order to be reclaimed later (the drop_buffers() routine

checks that I/O buffers in the page are not being used). As suggested by the comment
in the code, this condition is unlikely to occur; the code has been executed in stateful
testing since memory management has been put under stress.

int try_to_free_buffers(struct page *page) {
 /* --- OMISSIS (declarations) --- */
 BUG_ON(!PageLocked(page));
 if (PageWriteback(page))
 return 0;
 if (mapping == NULL) { /* can this still happen? */
 ret = drop_buffers(page, &buffers_to_free);
 goto out;
 }
 /* --- OMISSIS (page writeback and deallocation) --- */
}

Figure 5 Example of kernel code covered due interactions between the file system and
memory management (from try_to_free_buffers(), fs/buffer.c:3057).

5 Conclusion and Future Work

This paper investigated the impact of OS state on robustness testing through an
experiment on the File System of a Linux-based OS for critical applications. In order
to include the OS state in the robustness test plan, we introduced a model of the File
System by including a set of factors (such as file tree layout and concurrent I/O
operations) that are most influential on the File System behavior, and that can be
controlled by the tester. We performed an experiment using the proposed model,
which highlighted the influence OS state on the test outcomes and on statement
coverage. In particular, robustness tests were able to reach corner cases with complex
interactions with other subsystems (such as scheduling, caching and memory
management), which are not covered by traditional robustness testing. In turn, this
approach comes in handy to achieve an increased confidence in OS robustness with
low human effort, since both robustness test cases and OS states can be automatically
generated once programmed by the tester.

Future work encompasses an experimental campaign with more robustness tests
and OS states, in order to assess the full potential of robustness testing. Moreover, we
plan to analyze test planning strategies in order to achieve the best trade-off between
time and the code coverage or the explored states. Another direction is to extend the
approach to other subsystems. For instance, a model similar to the FS could be
introduced for the virtual memory manager, by including the amount and type of
memory areas allocated by processes, physical free memory, swap usage and so on.

Acknowledgements. We would like to thank Mariana Esposito for her valuable
contributions, and Francesco Rogo and MBDA Systems for their technical support
with FIN.X-RTOS. This work has been funded by the FP7 European project
CRITICAL-STEP (http://www.critical-step.eu) IAPP no. 230672, and by the Italian
research project “Iniziativa Software”, which involves the Finmeccanica company
and Italian universities (http://www.iniziativasoftware.it).

References

1. Koopman, P. and DeVale, J., "The exception handling effectiveness of POSIX
operating systems," IEEE Trans. on Software Engineering, vol. 26, no. 9, 2002

2. Koopman, P. and Sung, J. and Dingman, C. and Siewiorek, D. and Marz, T.,
"Comparing operating systems using robustness benchmarks," SRDS 1997

3. Sullivan, M. and Chillarege, R., "Software Defects and their Impact on System
Availability-A Study of Field Failures in Operating Systems," FTCS 1991

4. RTCA Inc., "Software considerations in airborne systems and equipment
certification," RTCA DO-178B, EUROCAEED-12B, 1992

5. IEEE Standard for Information Technology-Portable Operating System Interface
(POSIX). IEEE Std 1003.1b-1993, IEEE CS, 1994

6. Kanoun, K. and Crouzet, Y. and Kalakech, A. and Rugina, A.-E. and Rumeau, P.,
"Benchmarking the Dependability of Windows and Linux using PostMarkTM
Workloads," ISSRE 2005

7. Kalakech, A. and Kanoun, K. and Crouzet, Y. and Arlat, J., "Benchmarking The
Dependability of Windows NT4, 2000 and XP," DSN 2004

8. Cotroneo, D. and Natella, R. and Pietrantuono, R. and Russo, S., "Software Aging
Analysis of the Linux Operating System," ISSRE 2010

9. Chou, A. and Yang, J. and Chelf, B. and Hallem, S. and Engler, D., "An empirical
study of operating systems errors," SOSP 2001

10.Albinet, A. and Arlat, J. and Fabre, J.C., "Characterization of the Impact of Faulty
Drivers on the Robustness of the Linux Kernel," DSN 2004

11.Johansson, A. and Suri, N. and Murphy, B., "On the selection of error model(s) for
OS robustness evaluation," DSN 2007

12.Duraes, J. and Madeira, H., "Multidimensional characterization of the impact of
faulty drivers on the operating systems behavior," IEICE Trans. on Information
and Systems, vol. 86, no. 12, 2003

13.Gu, W. and Kalbarczyk, Z. and Iyer, R.K. and Yang, Z., "Characterization of
Linux kernel behavior under errors," DSN 2003

14.Skarin, D. and Barbosa, R. and Karlsson, J., " GOOFI-2: A tool for experimental
dependability assessment," DSN 2010

15.Bairavasundaram, L.N. and Rungta, M. and Agrawa, N. and Arpaci-Dusseau, A.C.
and Arpaci-Dusseau, R.H. and Swift, M.M., "Analyzing the effects of disk-pointer
corruption," DSN 2008

16. Dreges, R. J. and Nanya, T. "Analysis of Inter-Module Error Propagation Paths in
Monolithic Operating System Kernels," EDCC 2010

17.Johansson, A. and Suri, N. and Murphy, B., "On the impact of injection triggers
for OS robustness evaluation," ISSRE 2007

18.Sarbu, C. and Johansson, A. and Suri, N. and Nagappan, N., "Profiling the
operational behavior of OS device drivers" Empirical Soft Eng, vol. 15, no. 4, 2009

19.Prabhakaran, V. and Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H., "Model-
based failure analysis of journaling file systems," DSN 2005

