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Abstract—With software systems becoming increasingly large
and complex, many difficulties in coping with software bugs arise
for developers. Despite good development practices, thorough
testing, and proper maintenance policies, a non-negligible num-
ber of bugs remain in the released software. Understanding the
type of residual bugs is fundamental for adopting proper coun-
termeasures in current and future software releases. Depending
on the fault triggering conditions that lead to a failure, developers
can introduce fault-tolerance mechanisms and plan verification
and validation strategies.

In this paper, we analyze bugs in four large open-source
software systems during their lifecycle, based on the concept of
fault triggers. We first investigate how the type of system affects
the bug type proportions, and their evolution over years. Then, an
analysis of bug subtypes is performed, so as to better understand
their nature, followed by a comparison with respect to attributes
such as their average time to fix and severity.

Index Terms—aging-related bug; Bohrbug; Mandelbug; fault
classification; fault trigger

I. INTRODUCTION

Failures (i.e., deviations of service delivered from correct
service) and partial failures (i.e., degradations in function-
ality or performance) experienced during software usage are
preceded by incorrect internal states of the software, known
as errors [1]. Such errors can be caused by faults in the
software [1], also referred to as defects or bugs. By fault
trigger we mean the set of conditions activating a fault and
propagating the resulting error(s) into a failure. Often, fault
triggers are complex, involving for instance the timing of
events and interactions with other systems, which leads to
failures that are very hard to reproduce [2], [3]. These faults
are difficult to spot with traditional dynamic testing techniques,
since it can be challenging to control and explore complex
fault triggers in a testing environment. Therefore, this kind of
fault requires specific strategies to be dealt with. Examples
are fault tolerance strategies that mask faults, for instance
by reinitializing the software state and retrying the failed
operation [4], [5], [6], [7], and verification techniques that
do not need to actually reproduce the fault trigger during
execution, such as code reviews and model checking [8],
[9]. Faults that can easily be triggered, instead, require more
thorough testing in order to improve reliability. The objective
of this study is to analyze the characteristics of bugs reported
in large open-source software (OSS) projects.

Past research studies attempted to classify bugs according
to this view, by adopting different terminologies with slightly
different meanings, such as hard vs. soft faults [3], or tran-
sient vs. non-transient bugs [10]; other studies focused on
concurrency bugs [11], [12], [13], [14] as the class of faults
causing failures that are difficult to reproduce. To examine
fault triggers in a comprehensive way, Grottke and Trivedi [15]
developed the following definitions concerning the conditions
related to the fault activation and the error propagation:

• Bohrbug: a bug which can easily be isolated and which
manifests consistently under a well-defined set of con-
ditions, because its activation and error propagation lack
“complexity”.

• Mandelbug: a bug whose activation and/or error propa-
gation are “complex”, where complexity can be caused by
the possibility of a time lag between the fault activation
and the failure occurrence, or by the possible influence of
indirect factors, such as the interactions of the software
application with its system-internal environment (hard-
ware, operating system, or other applications), the timing
of inputs and operations (relative to each other), and the
sequencing of inputs and operations.

There is a further subtype of Mandelbugs, that is responsi-
ble for a phenomenon increasingly being studied, known as
process aging [16] or software aging [17]. Software aging
is a typical problem of long-running software systems in
which an increasing failure rate and/or degraded performance
is observed. This Mandelbug subtype is defined as follows.

• Aging-related bug: a Mandelbug that is capable of
causing an increasing failure rate and/or degraded per-
formance, because the rate at which it is activated and/or
the rate at which errors caused by it are propagated
into (partial) failures increases with the total time the
system has been running. Often, such an increasing error
propagation rate is caused by the accumulation of internal
error states. Since aging-related bugs are a subtype of
Mandelbugs, each Mandelbug is either an aging-related
bug or a Mandelbug that does not cause software aging,
called a non-aging-related Mandelbug.

Note that these definitions do not focus on the circumstances
of one specific manifestation of the bug (e.g., the one that



made the testers notice its presence, or that helped them
locate it in the code), but rather on its potential manifestation
characteristics and its inherent features [18]. For example, even
if a developer is able to reproduce a failure in a well-controlled
environment, the underlying fault is classified as a Mandelbug
if its manifestation can result in a transient failure at the user
site because one of the criteria of complex fault activation or
error propagation (as laid out above) applies. Similarly, even if
an aging-related bug is detected before it has had the chance
to actually lead to a decreasing performance (e.g., during a
code inspection), the fault is still considered aging-related.

Adopting the above classification, we performed an exten-
sive analysis of fault triggers in four large OSS projects: the
Linux kernel, the MySQL database management system, the
Apache HTTPD server, and the Apache AXIS Web services
framework. From publicly-available bug repositories, we in-
spected problem reports describing the failure occurrences
observed, the underlying bugs, and their fix. Based on our
classification procedure, we classified each unique fault as
Bohrbug (BOH), non-aging-related Mandelbug (NAM), or
aging-related bug (ARB), and then analyzed its features.
Moreover, we extended the classification to provide additional
insights about subclasses of the NAM and ARB categories.

The analysis of these OSS projects provides evidence of
Mandelbugs also in OSS systems which are often adopted
in mission- and business-critical applications, and are quite
different from NASA mission systems on which recent studies
have focused [18]. Moreover, analyzing projects of different
nature (e.g., in terms of type of system, size, and programming
language) allows to relate the type of system with the type of
bugs. Furthermore, dealing with OSS projects enables us to
publicly release our data to the research community1, allowing
other researchers to adopt the classification more easily, and
to carry out further analyses based on our data.

Our analysis reveals the following main findings:
• The proportion of Mandelbugs significantly varies among

systems, and can be close to the proportion of Bohrbugs
as in the case of the Linux kernel; the proportions can be
related to both the size and the nature of the system.

• In every project, the proportion of Mandelbugs seems
to converge to a constant value during the lifecycle,
although past studies hypothesized that the percentage
of Mandelbugs should be predominant in the long term.
This may be explained by ineffective quality assurance
and testing activities, and by the possibility of introducing
new bugs during the project lifecycle.

• The analysis of subtypes indicates that timing-related
faults are the largest part of Mandelbugs, although other
Mandelbugs, such as those involving interactions with
other software and hardware, account for a remarkable
share. Similarly, memory-related aging-related bugs pre-
dominate, although leaks related to system-dependent
data structures are also frequent.

• The time to fix a bug is significantly affected by the bug

1http://goo.gl/aeKoGR

type, and strategies specifically tailored for Mandelbugs
would certainly help.

The paper is organized as follows. In Section II, we discuss
relevant studies on bug classification and empirical analyses. In
Section III, we describe the approach adopted for classifying
bug reports. Section IV provides the results from our analysis
of four OSS systems. Section V closes the paper.

II. RELATED WORK

In the last decades software bugs in large and complex sys-
tems have extensively been studied for several purposes. Most
of the studies were aimed at understanding and characterizing
bugs in terms of their location in the code and their features,
in order to focus testing on the most fault-prone parts of the
code [19], [20], [21], [22]. However, bugs were classified in a
way not meant to be generic, but specific to a class of systems.

The study published in [23] proposed a wider classification
of software faults that offered a large set of bug types, stressing
the notion of fault morphology (i.e., “what is”) in terms of
code and separating the classification from aspects such as
causes (“why it was done”). Orthogonal Defect Classification
(ODC), by Chillarege et al. [24], is a well-known classification
scheme for obtaining insights on the development process
from the distribution of defect attributes. Attributes include
the defect type, which reflects the fix made by the program-
mer. The definition of defect types is based on cause-effect
relationships between them and the development phase in
which defects originate: for example, an excessive number of
“function” defects (that is, missing or incorrect functionalities
of the system) indicates that high-level design phases should be
improved. In a similar way, the defect trigger attribute relates
the fault to the activities that made it surface during verification
and validation (V&V), e.g., code reviews, white- and black-
box tests, or in the field, and provides feedback on the V&V
process. It is important to note that ODC defect triggers are
related to the conditions that actually led to the discovery of
a specific defect, while the notion of fault trigger adopted in
this paper refers to the potential manifestation characteristics
of a fault.

The focus of this work is on defect characteristics that
are related to fault triggers and reproducibility, rather than
the perspective of the developers that were involved in the
mistake. Fault reproducibility was first thoroughly discussed
in the seminal work by Gray [3], who distinguished between
“solid” (or “hard”) faults, for which failure occurrences are
easily reproducible, and “elusive” (or “soft”) faults, whose
activation is not systematically reproducible. Gray named the
former type “Bohrbugs”, alluding to the physicist Bohr and
his rather simple atom model, and the latter one “Heisenbugs”,
referring to Heisenberg and his uncertainty principle. Grottke
and Trivedi [15] revised this nomenclature based on the finding
that the term Heisenbug had originally been coined in the
1960s by Lindsay (while working with Gray), referring to
“bugs in which clearly the behavior of the system is incorrect,
and when you try to look to see why it’s incorrect, the problem
goes away” [25]; this is a more narrow definition than the one



published later by Gray. Instead of Heisenbug, Grottke and
Trivedi identified Mandelbug as the complementary antonym
of Bohrbug. The “complex” fault activation and/or error prop-
agation of a Mandelbug as defined in Section I endow it with
the potential to behave (apparently) non-deterministically or
chaotically; this explains the name, alluding to the fractal
innovator Mandelbrot. Heisenbugs (in the sense of Lindsay)
are a subtype of the more general class of Mandelbugs.
Likewise, aging-related bugs are a Mandelbug subtype. For
example, for those ARBs causing the accumulation of internal
error states there needs to be a time lag between fault activation
and the failure occurrence.

Several field data studies analyzed fault reproducibility, even
though not adopting the Bohrbug/Mandelbug terminology, and
identified various sources of transient behavior of faults that
can be related to Mandelbugs, such as: concurrency; timing
of external events (e.g., from hardware); wrong memory state;
resource leaks [2], [10], [12], [14], [26]. Performing such
studies has proven to be a daunting task, since data about
non-reproducible faults is hard to collect by their nature.

Notwithstanding the difficulties in finding evidences of
Mandelbugs, the cited field studies confirmed that they account
for a significant part of bugs in complex software. The analysis
of field failures in Tandem computer systems [2], [3] showed
that most software failures were caused by bugs whose features
are referable to Mandelbugs. More recent analyses found that,
although Bohrbugs represent the majority of software faults,
Mandelbugs account for a significant share (in the 20-40%
range) [10], [27]. Recent work [18] confirmed this result for
NASA missions, and also showed that the proportions of
Bohrbugs (and, consequently, of Mandelbugs) for different
missions seem to stabilize around almost the same value.
Moreover, it was found that ARBs represent a non-negligible
share of faults even in mission-critical software (4.4%). These
results, other than emphasizing the importance of Mandelbugs
in such systems, highlight that even in critical and well-
tested software a large proportion of Bohrbugs can still remain
during the operational phase. In this paper, we carry out the
classification based on the criteria adopted by Grottke et al.
[18], but at a greater detail and focusing on four diverse open-
source software applications. We aim at investigating more
surgically Mandelbugs than in past work, e.g., by identifying
subtypes of NAMs and of ARBs, and by investigating the
association between the bug type and other attributes, such as
the size and the nature of the project, the manifestation time,
the fixing complexity, and the assigned severity.

III. APPROACH

A. Extended bug type classification

To classify bugs more in detail, we define the following
subtypes of a non-aging-related Mandelbug (NAM), based on
the different kinds of complexity in fault triggering conditions:

• LAG: there can be a time lag between the activation of
the fault and the occurrence of a failure;

• ENV: the activation and/or error propagation is influ-
enced by the interactions of the software application with
its system-internal environment;

• TIM: the activation and/or error propagation is influenced
by the timing of inputs and operations;

• SEQ: the activation and/or error propagation is influenced
by the sequencing (i.e., the relative order) of operations.

Of course, these subcategories could also be employed for
ARBs. However, it can be expected that the LAG subclass
would apply to almost all of them. It is thus more informative
to distinguish ARBs according to the various underlying
reasons for the software aging phenomenon. Based on our
definition of an ARB as well as on the software aging literature
[28], [29], we identify the following ARB subtypes:

• MEM: ARBs causing the accumulation of errors related
to memory management (e.g., memory leaks, buffers not
being flushed);

• STO: ARBs causing the accumulation of errors that affect
storage space (e.g., the bug consumes disk space);

• LOG: ARBs causing leaks of “other logical resources”,
that is, system-dependent data structures (e.g., sockets or
inodes that are not freed after usage);

• NUM: ARBs causing the accumulation of numerical
errors (e.g., round-off errors, integer overflows);

• TOT: ARBs in which the increase of the fault activa-
tion/error propagation rate with the total system run time
is not caused by the accumulation of internal error states
(e.g., due to a bug in the Patriot missile defense system
[28], [30], the system runtime was incorrectly processed,
but the error produced was only propagated into a failure
if the system had been running for more than eight hours;
error states did not accumulate).

B. Bug sources

We considered four open-source software systems with
public and actively-used bug repositories, which provided us
with a large number of bugs for the analysis. The chosen
software systems are widely adopted in business-critical con-
texts [31], and they cover different types of software: (i) the
Linux kernel, a feature-rich OS used in several domains, from
embedded systems to supercomputers; (ii) MySQL, one of
the most-used database management systems, accounting for
a significant market share among IT organizations; (iii) the
Apache HTTPD server, and (iv) the Apache AXIS framework
for Web services, adopted by many companies for running
their Web applications.

Since these systems are very large and have been around for
a long time, tens of thousands of problems have been reported
by their users; hence it is unrealistic to analyze all of them.

We therefore selected a subset of these components for each
project, and focused the analysis on the problem reports related
to them. The selected components/subsystems were: Network
Drivers, SCSI Drivers, EXT3 Filesystem, and Networking/IPV4
for Linux; InnoDB Storage Engine, Replication, and Optimizer
for MySQL; Apache httpd core, Apache httpd mod proxy,
Apache httpd mod cgi, Apache httpd mod ssl for Apache



TABLE I: Overview of the considered projects.

Project Language LoC (selection) LoC (project) #reports (selection) #reports (project) Time frame

Linux C 1.31M 9.58M 346 3914 Jul 2003 - May 2011
MySQL C/C++ 453K 1.1M 244 894 Aug 2006 - Feb 2011
HTTPD C 145K 195K 157 405 Mar 2002 - Oct 2007
AXIS Java 80K 80K 216 226 Jul 2001 - Nov 2005

HTTPD; for Apache AXIS, we inspected all reports but those
related to the Distribution, Documentation, and Samples areas
(i.e., only reports about problems that can affect the system
during its execution). In the selection, we accounted for the
relevance of subsystems/components in terms of usage and
number of problem reports, as well as for the coverage of
diverse functionalities of the system and of a significant share
of the system code. TABLE I provides, for each project,
its programming language, the total size in LoC (computed
using the sloccount utility) of the whole project and of the
considered components, the number of problem reports that
have been marked as “fixed” and “closed” by the developers
(i.e., a fix was found and included in the source code), and
the time frame during which these reports were issued.

The bug repositories2 provide a large amount of informa-
tion. Although projects may slightly differ with respect to
the gathered information (e.g., they use different versioning
schemes or fault severity scales), all reports provide:

• the type of the problem report (e.g., if it is a bug report
or a request for a new feature);

• the date it was opened, closed, and last modified;
• the severity of the problem (i.e., the perception of its

effects by users and developers);
• the version(s) affected by the problem;
• the component or subsystem affected by the problem;
• some textual messages describing the effects of the

problem, its diagnosis by developers, and information on
whether and how it can be reproduced (e.g., the inputs
for triggering the failure behavior at the user’s site, or a
test case accompanying the bug fix);

• the status (e.g., the problem has been assigned to a
developer, it has been solved, etc.).

To work with reliable bug descriptions, we filtered the
bug repository, focusing on problem reports that had been
solved (i.e., marked as “fixed” and “closed”). Moreover, we
restricted the analysis to reports related to the abovementioned
components as well as to stable and mature system versions;
in particular, the considered versions were Linux 2.6, MySQL
5.1, Apache HTTPD 2, and Apache Axis 1.

C. Classification procedure

Given a problem report, to classify the related bug as a
Bohrbug, a non-aging-related Mandelbug, or an aging-related
bug, we conducted a manual analysis by examining the tex-
tual descriptions and, if available, the test case to reproduce

2Available at https://bugzilla.kernel.org (Linux 2.6), http://bugs.mysql.com
(MySQL 5.1), https://issues.apache.org/bugzilla (Apache HTTPD 2), and
https://issues.apache.org/jira/secure/IssueNavigator.jspax (Axis 1).

the failure occurrence, the available patches, and additional
information attached to the problem report. We defined a
classification procedure consisting of the following steps to
classify faults in a rigorous way:

1) The problem report was first examined to make sure
that it was related to a unique bug; i.e., problems
turning out to be operator errors, requests for software
enhancements, and duplicates were removed from the
analysis. A report was considered a duplicate if either a
field in the report or the textual description indicated that
the reported problem was caused by the same underlying
bug as another report already included in our study.

2) The report was then searched for any information on
the activation conditions of the bug (e.g., the set of
events and/or inputs required to trigger errors), its error
propagation (e.g., how the bug affected the program
state and how an erroneous state propagated through the
running system), and the failure behavior (e.g., the bug
effects perceived by the users).

3) The bug was classified as an ARB if there were indi-
cations that the rate with which it is activated and/or
the rate with which errors caused by it are propagated
into (partial) failures can be an increasing function of
the total time the system has been running (e.g., the
report refers to leakage and/or gradual corruption of
resources, or to the accumulation of numerical errors).
Typically, the information in the failure report allowed
us to determine the ARB subtype (MEM, STO, LOG,
NUM, TOT) as well (e.g., because it was reported
that memory expected to be freed had not been freed).
Sometimes, it was merely known that the failure rate of a
bug tended to increase over time (e.g., because it caused
a failure only after a certain function had been called
multiple times), but there was not enough information
about the exact failure mechanics, like the presence of
error accumulation. In such a case, we classified the bug
as an ARB of unknown subtype (ARU).

4) A bug that was not an ARB was classified as a NAM if
we found indications that one of the types of “complex-
ity” of the activation and/or error propagation, embodied
in the four subtypes LAG, ENV, TIM, and SEQ, applied
to it. Sometimes, we did not have sufficient information
about the activation and error propagation conditions of
a bug that was reported to sporadically cause failures
that could not be reproduced. We then classified this
bug as a NAM of unknown subtype (NAU).

5) If there was evidence that the bug was neither an ARB
nor a NAM, we classified it as a Bohrbug (BOH).



TABLE II: Examples of NAMs and ARBs.

Project Bug ID Type Description

MySQL 54453 NAM/SEQ “if you ‘alter table .. rename to ..’ on
a table that has an active transaction
open and UNIV DEBUG is defined,
mysqld crashes”

Linux 7207 NAM/LAG ”[The e1000 network driver at sus-
pend/resume does not] explicitly free
and allocate irq [...] Restarting the
network solved the problem”

HTTPD 8184 NAM/ENV “The error only occurs intermittently
[...] It behaves as if requests are be-
ing distributed (via round-robin or
the like) and handled sometimes by
a worker thread that is not properly
initialized”

AXIS 1270 ARB/MEM “Strings and char[]s are being leaked”

Linux 32832 ARB/LOG “In 2.6.35 and earlier, shutdown(2)
will fully remove a socket. This does
not appear to be true any more and is
causing software to misbehave.”

HTTPD 13511 ARB/STO “Apache child processes will die try-
ing to write logs which have reached
2GB in size.”

6) Sometimes, a report did not contain sufficient details to
classify the underlying bug as an ARB, NAM, or BOH.
It was then labeled as a bug of unknown type (UNK).

During the manual analysis, further information was ex-
tracted for the purpose of our analyses: the time at which the
report was opened and closed, and the severity stored in the
bug repository. To clarify the classification, TABLE II shows
examples of NAMs and ARBs, along with statements from
the reports that provide information about the fault activation,
the error propagation, and the failure occurrence.

IV. ANALYSIS

Our inspection of problem reports, using the procedure
previously described, provided a large set of bug data. We
first examine the relative frequencies of the bug types in the
considered projects, and relate the results with the features of
the considered projects. Subsequently, we analyze bug types
with respect to some relevant features, including the time to
fix the bugs and their severity.

A. Bug type proportions

TABLE III summarizes the absolute numbers and the per-
centages of each bug type. Among the 963 problem reports,
we identified 852 actual bugs: these reports include neither
operator errors nor duplicates nor problems that do not affect
the operational software, such as documentation and compile-
time issues. A subset of 816 bugs was classified as BOH,
NAM, or ARB. The remaining bugs, which we refer to as
UNK, were lacking information for classifying them with
certainty. Most of these bugs belong to the Linux project: for
this system, some problem reports do not provide a precise
diagnosis of the bug, since the related failure disappeared in

newer versions of the system (e.g., the bug did not manifest
itself anymore after a major rewrite of a module or subsystem).

Comparing the projects with respect to their relative per-
centages of BOH, NAM, and ARB, it is possible to notice
significant differences. In the Linux project, there are more
Mandelbugs than Bohrbugs (NAMs and ARBs together ac-
count for more than 50% of all bugs), while in the remaining
projects the percentage of Bohrbugs is predominant: this
percentage ranges between 56.6% and 92.5%. We believe that
the first cause for this result is the different nature of the
considered projects: Linux and operating systems in general
are tightly related to hardware devices; this makes them more
prone to incorrect interactions with the hardware and to bugs
in event handling, which can lead to transient failures. Another
reason for the high percentage of Mandelbugs is the presence
of several complex and tightly-interacting subsystems in the
Linux kernel. It seems that the proportion of NAMs decreases
as we move up in the “software stack”; that is, the proportion
is higher for “low-level” code, such as an operating system,
and lower for “high-level” code, such as middleware for
web applications. This can be expected since in “high-level”
code there are fewer interactions with the hardware and less
resource management burdens.

We observe that the percentage of ARBs is approximately
the same for the Linux, MySQL, and HTTPD projects. Instead,
for AXIS the percentage of ARBs is lower than for the other
three projects. This can be explained by considering the kind
of system and by the fact that AXIS has been developed
using the Java language, which provides automated memory
management through garbage collection. By contrast, the other
three projects adopted the C and C++ languages, in which
memory management is handled by developers, and which
are therefore more prone to software aging issues. However,
it is important to note that Java software is also subject to
software aging, even in the presence of garbage collection:
This happens in the case of objects that are no longer needed
but still referenced, which prevents the garbage collector from
reclaiming them [32].

Another perspective on the relative importance of the bug
types is given by TABLE IV, which provides an estimated
fault density, expressed in faults per kLoC, for each type of
bug and each project. To obtain these fault density estimates,
we divided the estimated total number of bugs of each type
(calculated by multiplying the total number of bug reports,
including reports that are still open and UNK reports, with
the respective bug type proportion among all classified bugs)
by the LoC of the considered components shown in TABLE I.
This computation necessarily makes the assumption that the
bug type proportions among the reports classified are the same
as among those bug reports not yet closed or not classified. Of
course, the considered projects exhibit different #bugs/kLoC
ratios, which is a result of the software development process
and of quality assurance activities. Nevertheless, we can notice
different trends for individual bug types. In fact, the ratio
#BOH/kLoC decreases fast with an increase in the project
size; instead, the decrease in the #ARB/kLoC and #NAM/kLoC



TABLE III: Total numbers and percentages for each bug type.

Project #actual bugs #classified bugs #BOH #NAM #ARB #UNK %BOH %NAM %ARB %UNK

Linux 289 267 122 121 24 22 42.2 41.9 8.3 7.6
MySQL 221 209 125 67 17 12 56.6 30.3 7.7 5.4
HTTPD 143 141 116 15 10 2 81.1 10.5 7.0 1.4
AXIS 199 199 184 7 8 0 92.5 3.5 4.0 0.0

TABLE IV: Estimated fault densities for each bug type.

Project #bugs/kLoC #BOH/kLoC #NAM/kLoC #ARB/kLoC

Linux 0.3434 0.1569 0.1556 0.0309
MySQL 0.4939 0.2954 0.1583 0.0402
HTTPD 3.1054 2.5548 0.3304 0.2202
AXIS 26.1994 24.2245 0.9216 1.0532

ratios is slower. Therefore, when a large software project is
considered, the fault densities for Bohrbugs and Mandelbugs
may be similar, while for smaller projects the fault density
for Bohrbugs tends to be higher. Note that in our sample of
projects, there is a high dependency between code size and the
kind of system (e.g., Linux is both a large and a “low-level”
software); we therefore cannot separate these effects, and both
are likely to have an influence on the fault densities.

Fig. 1, Fig. 2, and Fig. 3 show the evolution of the BOH,
NAM, and ARB proportions among the classified bugs during
project life. For all the projects, the proportions stabilize
around a constant value after about two years after project
birth. Another interesting result is that the ARB proportions
also settle to constant values, which are about the same for
three of the four projects (as reported above).

It could have been expected that the proportion of Mandel-
bugs increases with time: according to Gray’s conjecture [3],
most of the software faults remaining after thorough testing
and years of production are Mandelbugs due to their transient
manifestation. However, there are other aspects that have to
be taken into account to explain this result. The proportion
of Bohrbugs (or Mandelbugs) is not necessarily equal to
the percentage of software failures caused by Bohrbugs (or
Mandelbugs, respectively): the failures actually experienced
by the users also depend on the operational profile, that is,
the kind of system usage that is made by its users. For this
reason, our results do not contradict past empirical studies
that were concerned with failures rather than faults, and that
reported Mandelbugs as a major cause of software failures
[2]. Note that even if Bohrbugs are easy to reproduce and to
debug once detected, they are still difficult to detect in large
and complex software systems. This may be due to ineffective
quality assurance and testing activities, or simply due to the
fact that it is impractical to extensively test such large systems.
As a result, a significant number of Bohrbugs can still be found
after several years. Another possible factor is that OSS in
general are continuously evolving during their lifetime, since
new features keep being introduced by developers. Therefore,
even if Bohrbugs are detected and fixed, more Bohrbugs could
be introduced when changing or extending the software.
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Fig. 1: Proportions of BOH among classified bug reports.
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Fig. 2: Proportions of NAM among classified bug reports.

To better understand which factor is most influential on
the observed trends in bug type proportions, we analyzed the
release dates of minor and major versions of the considered
projects. Fig. 4 shows the occurrences of minor and major
releases for each project during the same time windows of
Fig. 1, Fig. 2, and Fig. 3. It can be seen that for all four projects
several minor releases (e.g., Linux 2.6.31, 2.6.32, . . . ) occurred
during the whole lifecycle. Instead, major releases occur rarely.
Considering that after a major release (and even some time
before it goes public) most development efforts are devoted
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Fig. 3: Proportions of ARB among classified bug reports.

to the new major release (e.g., new important functionalities
are introduced in MySQL 5.5 instead of MySQL 5.1), we
can assume that the effects of code changes on bug type
proportions are less significant from that time. In fact, when
a major release occurs, minor releases are mostly focused
on bug fixes and minor improvements, and are less likely
to introduce new faults; therefore, the bug type proportions
after a major release mainly reflect old bugs rather than new
ones. In the case of MySQL and HTTPD, major releases occur
in the middle of the lifecycle of a previous major version
(e.g., the major version 5.5 of MySQL was released while
MySQL 5.1 was still being updated and widespread among
users), while for AXIS and Linux a major version is released
after the end of the lifecycle of the previous major version
(i.e., the lifecycles of two major releases do not overlap).
For the MySQL and HTTPD projects, at the time of a new
major release (at about 1250 days), a stabilization of bug type
proportions has already occurred, and there does not seem to
be an increasing trend in the proportion of NAMs; therefore,
we attribute the stabilization of bug type proportions for these
projects to old Bohrbugs that keep being discovered after some
time rather than to new Bohrbugs introduced by late releases.
For Linux and AXIS, significant changes may have occurred
during their lifecycle, but the Bohrbug/Mandelbug proportions
among the newly-introduced faults seem to be similar to those
among the fixed faults.

In Fig. 5 and Fig. 6, we provide the proportions of NAM
and ARB subtypes for all projects (omitting ARB/TOT, which
never applied). As for Linux and MySQL, there is a predom-
inance of timing-related bugs, which can be explained by the
nature of these systems, where threads concur to access shared
resources and have to be properly synchronized. Timing is a
less significant problem in Apache HTTPD: although it is a
multi-threaded software, there is a high degree of indepen-
dence between threads, because they seldom have access to
shared resources when handling HTTP requests, which renders
synchronization problems much less frequent. Environment-
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Fig. 4: Minor and major release dates of considered projects.

related faults are also a significant share of NAMs: in Linux,
they are often related to hardware management, while in
Apache HTTPD and AXIS they are related to the network
and the filesystem. Bugs exhibiting a time lag before a failure
only affect Linux and MySQL, which have a tendency towards
data corruption problems that may cause failures only after
these errors have propagated through the system. As for ARBs,
there is a strong predominance of memory-related bugs (e.g.,
memory leaks). Leaks associated with storage and other logical
resources were also found. Only few ARBs (a total of two
bugs) were related to numerical problems, and in particular
to integer overflows. This low number is probably due to the
scarcity of floating point arithmetic in the considered projects,
which is not used at all in the case of the Linux kernel [33].
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TABLE V: Comparison of time to fix for bug types.

Project Time to fix: avg. (std. dev.) Test result (adj. p-value)
BOH NAM+ARB BOH vs. NAM+ARB

Linux 157.34 (226.21) 229.84 (304.24) reject (0.0560)
MySQL 107.92 (176.76) 89.45 (109.60) do not reject (0.2820)
HTTPD 99.09 (199.44) 116.65 (133.84) reject (0.0973)

AXIS 111.19 (254.99) 186.50 (256.18) reject (0.0973)

B. Time to fix

In order to understand the impact of bug types on the
defect management process, we analyzed the time spent by
developers on fixing bugs. We hypothesized that the type
of a bug has a significant impact on the time to fix, since
Mandelbugs tend to be more difficult to reproduce and to
diagnose than Bohrbugs. We collected from each bug report
the date at which it was issued, as well as the date at which
the bug was considered definitively solved by developers, and
computed the difference between these two dates. This time
period includes the time spent by developers on reproducing
the failure reported by the users, diagnosing its root cause,
developing a fix for the bug, and validating the effectiveness
of the fix through testing and user feedback. It does not
include the time required for users to reproduce the failure
on-site before a bug report is filed; however, we expect that
the delay for this activity is no longer for Bohrbugs than for
Mandelbugs, given their transient nature, and therefore the
time to fix obtained from the bug reports should not bias the
comparison in favor of Mandelbugs.

We compared the time to fix for Bohrbugs and Mandelbugs
by means of the Wilcoxon rank-sum test [34], which assesses
whether one of two independent samples tends to attain larger
values. TABLE V provides the average and the standard
deviation of the time to fix for each class of bugs. It also
shows whether the null hypothesis that for both types of bugs
the time to fix is sampled from the same distribution can be
rejected at a type I error level of 10%, which is the case for a p-
value below 0.1. Since multiple comparisons (one per project)
are being performed, using unadjusted p-values for making
a test decision would lead to a probability of at least one
false rejection that is larger than the type I error level chosen.
We therefore adopted the Benjamini-Hochberg procedure [35],
controlling the false rejection probability and retaining a
higher power of the tests, to derive adjusted p-values. Despite
this correction, which makes the tests more conservative, the
null hypothesis can be rejected for three of the four projects
(Linux, HTTPD, and AXIS); in each of these cases, the time
to fix tends to be greater for Mandelbugs (including both
NAM and ARB classes) than for Bohrbugs. One possible
cause for this finding is that upon a failure caused by a
Mandelbug the developer often requires additional information
to understand its nature and to detect the underlying bug in the
code. Moreover, Mandelbugs may be located in components
that are more difficult to maintain (e.g., a problematic code
area that can be dealt with only by few developers in the team).
As Mandelbugs seem to be more difficult and time-consuming

TABLE VI: Contingency tables for bug type and severity.

(a) Linux (outcome = do not
reject, adj. p-value = 0.8276)

BOH NAM+
ARB

Blocking 9 11
High 18 30
Low 7 4

Normal 88 100

(b) MySQL (outcome = do not reject,
adj. p-value = 0.8276)

BOH NAM+
ARB

Critical 28 17
Serious 41 29

Non-critical 55 36
Performance 1 2

(c) HTTPD (outcome = do not
reject, adj. p-value = 0.8276)

BOH NAM+
ARB

Blocker 4 0
Critical 16 4

Major 24 7
Minor 8 0

Normal 62 14
Trivial 2 0

(d) AXIS (outcome = do not
reject, adj. p-value = 0.4924)

BOH NAM+
ARB

Blocker 5 0
Closed 1 0
Critical 6 3

Major 78 6
Minor 15 0
Trivial 1 0

to cope with than Bohrbugs, strategies specifically tailored
for Mandelbugs should be useful to improve the reliability
of software systems in a cost-effective way, both by means of
fault tolerance mechanisms and by specific testing methods.

C. Bug severity

Finally, we compared the severity of bugs as perceived by
users and developers, who can assign through the bug tracker
system an indication of the “importance” of the bug in terms
of consequences caused by it. We limited this analysis to
severity because it is the only indicator of bug importance
available for all the four considered projects. In every project,
the severity is expressed using a severity scale. Since the scale
is different for each project (in terms of the number and names
of severity levels), the severities of the bugs of two different
projects cannot be compared. We thus focus on analyzing the
severity of bugs within the same project. TABLE VI provides
the contingency tables for bug type and bug severity, which we
analyzed in order to understand whether there is a bug type
that is perceived to be more severe than the other one. We
adopted Fisher’s exact test of independence [34], assessing the
null hypothesis that two variables are independent. Again, p-
values were adjusted using the Benjamini-Hochberg procedure
[35]. The null hypothesis cannot be rejected at a reasonable
type I error level for any of the projects; the percentage of
bugs across severity levels does not seem to be influenced by
the bug type. Therefore, we conclude that, although Bohrbugs
and Mandelbugs exhibit a different behavior, there is no
evidence from the considered projects that their effects in
terms of failure severity are perceived to be different. This
can be explained by the fact that the distinction between
Bohrbugs and Mandelbugs is concerned with fault triggering
(e.g., the sequence of inputs or events that make the fault
affect the system state), rather than the way in which a
bug manifests itself to external users as failures. Therefore,
different strategies are needed for dealing with each of them.



D. Limitations

Although the analysis is comforted by the extensiveness
of the study, accounting for more than 900 problem reports,
care must be taken when interpreting the results and drawing
conclusions. While the classification procedure can easily be
generalized, results are limited by the chosen applications and
components, by the bugs considered, and by the quality of bug
reports, like for any empirical study in this field. However,
using the outlined criteria for bug selection, we selected a
well-defined set of bugs (i.e., the entire set of fixed bugs)
from the repositories, avoiding biases related to sampling
(e.g., keyword-based sampling, random sampling), which was
instead adopted in past empirical studies to deal with the huge
number of bug reports [10], [11], [13], [14]. Moreover, we
focused our attention on widely-used and diverse projects and
components (e.g, we considered both “low-level” code, such
as device drivers and a storage engine, and “high-level” code,
such as a web framework).

The analysis does not include bugs that have not yet been
fixed, since their reports may contain inaccurate or incomplete
information. This could bias our estimates, since unfixed
bugs may have properties different from the fixed ones; for
instance, Mandelbugs may tend to be fixed less frequently than
Bohrbugs. However, the previous study of NASA systems [18],
for which all reports were analyzed due to the availability of
detailed failure data, showed trends similar to the ones in this
study; it is thus possible that our focusing on fixed bugs has
not biased the results. Also, the analysis of fixed bugs found a
remarkably large (absolute) number of Bohrbugs, highlighting
that Bohrbugs are a serious problem even for mature systems.

V. DISCUSSION

The classification and analysis of bug reports presented in
this paper provide insights about how bugs manifest them-
selves during operation. These kinds of results are useful for
(i) understanding the bug characteristics that make failures
difficult to reproduce, and (ii) identifying the best counter-
measures to cope with bugs during development, testing, and
maintenance. The following findings help us on these issues.

The bug type proportions vary with the size and nature of
systems. Although Mandelbugs (NAMs and ARBs) account for
about 32.9% (25.7% and 7.2%, respectively) of all classified
faults, which is in line with previous studies [18], [27], we
noticed significant differences among systems. While the size
of the software may have some influence, its kind seems
to play an important role as well. In fact, non-reproducible
behavior of bugs is often related to interactions of the systems
with hardware and with low-level resource management. This
observation is confirmed by the subsequent analysis of bug
subtypes, which distinguishes between the causes of complex-
ity; the environment and the timing of inputs and events (e.g.,
concurrency) represent the main subtypes of Mandelbugs,
whereas the LAG class is a secondary cause. NAM/LAG bugs
exhibit a long chain of events between fault activation and
manifestation, which hinders systematic reproduction; they
are related to coupling among system components and to

code complexity. The predominance of ENV and TIM, along
with the greater percentage of NAMs in Linux, suggests
that Mandelbugs are more related to low-level interactions
and resource management than to software size/complexity.
Further analyses are needed for investigating the relationship
between NAMs and software metrics. As for ARBs, results
confirmed that memory-related problems are the main source
of software aging, but the non-negligible percentage of ARBs
connected with other system-dependent resources suggests
pushing the research on software aging (today mainly focused
on memory issues) to investigate other types of ARBs.

Within each project, the bug type proportions stabilize
over the years. This finding contradicts the popular opinion
that the prevalence of simple bugs (i.e., Bohrbugs) decreases
with time, thus leading to an increase in the proportion of
Mandelbugs; instead, an approximately constant proportion
has been observed. The similarity of this behavior among
projects (even in terms of the time to stabilization) suggests
that both Mandelbugs and Bohrbugs keep being detected dur-
ing the overall lifecycle of the product. This appears to be the
consequence of ineffective verification activities, leaving many
Bohrbugs in the code. It is, in fact, impractical to extensively
test large systems. Analyzing the evolution of bug types
during the lifecycle of large systems can provide feedback
on the effectiveness of quality assurance and on the need
for improvements. Another influential factor is the continuous
evolution of open-source software, since maintenance actions,
such as corrective actions and the introduction of new features,
can introduce regression Bohrbugs, as well as Bohrbugs in new
functionalities. This observation can be symptomatic of the
need to improve maintenance activities: Bohrbugs represent a
significant portion of faults and should not be neglected when
operating on existing code. This means that more thorough
analyses should be made to verify the effects of changes.

Mandelbugs take longer to fix, and require specific strate-
gies to be dealt with. We found a statistically significant
difference in the times to fix of Bohrbugs and Mandelbugs,
respectively, for three out of four projects. In each of these
cases, Mandelbugs tend to have a greater time to fix than
Bohrbugs. Adopting strategies and tools for improving the di-
agnosis of Mandelbugs would improve the fixing time of such
bugs. This is the case for the MySQL project, in which there
is no statistically significant difference in the times to fix; we
attribute this result in parts to the fact that MySQL developers
make extensive use of the Valgrind debugging tool for tracking
down NAMs and ARBs [36]. Moreover, Mandelbugs are by
their nature difficult to detect by testing, and they require more
specific techniques to be found during V&V. If the number of
Mandelbugs found during operation is high, there are basically
two alternatives. The first one is to employ additional V&V
techniques for future releases, by introducing model checking,
stress testing, code reviews. The second solution is to rely on
runtime failure detection [37] and recovery mechanisms [7],
[30], to compensate for the longer repair time of these bugs,
and avoid system downtime while developers investigate the
root cause of problems. Recovery mechanisms include: restart



of a component or a service; reconfiguration of components
(e.g., migration to a diverse environment); retry operations.
These strategies can be adopted depending on the system
and failure type (e.g., a retry can succeed in the case of
a timing bug in the software application, while a complete
reboot is needed for bugs in the OS). Moreover, software
aging issues can be prevented by software rejuvenation [16],
a technique that proactively restarts a system in order to avoid
the occurrence of aging failures.

The severities of bug types are perceived to be similar.
The analysis of bug severity highlights that, despite the
higher complexity of Mandelbugs that might endow them with
more severe consequences, the failure severity assigned by
developers shows no significant differences between Bohrbugs
and Mandelbugs. These bug types differ in their failure re-
producibility, not in their impact on the system. The rela-
tive importance of Bohrbugs and Mandelbugs during design,
testing, and maintenance activities is therefore determined by
their relative proportions. If there is a significant proportion
of Mandelbugs, additional testing and recovery strategies are
recommended, while more regression and functional testing
may be needed if the proportion of Bohrbugs is high.

We believe that in the near future a deeper understanding
of bugs from this perspective will be a driving factor in
implementing policies for cost-effective software development.
Our future work will therefore be devoted to relating these bug
features to the software development process.
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