
Towards Patching Memory Leak Bugs in
Off-The-Shelf Software

Domenico Cotroneo, Roberto Natella
Consorzio Interuniversitario Nazionale per l’Informatica (CINI)

Università degli Studi di Napoli Federico II, Italy
{cotroneo, roberto.natella}@unina.it

Abstract—Static and dynamic analysis techniques for bug
detection have significantly improved in the last decades, and
are today implemented in industry-strength tools and routinely
applied by developers. Nevertheless, it is still difficult to deal with
bugs located in OTS software, since developers lack the source
code and/or knowledge about their internals to fix these bugs. In
this paper, we propose an approach for fixing memory leak bugs
in OTS software, that leverages dynamic binary analysis tools to
find bugs, and binary code rewriting to patch them. Patching
will allow to rejuvenate OTS-based software less frequently,
thus further improving the availability of applications using
this approach. Future work will implement this approach in a
prototype, and validate it on real memory leaks found in complex
software.

Keywords—Memory leaks; Off-The-Shelf software; dynamic
analysis; static analysis; binary analysis; software aging; software
rejuvenation

I. INTRODUCTION

There are software bugs that are very difficult to find and
to fix. This is the case, for instance, of memory management
and synchronization bugs, that surface as software failures only
after a long period of execution. As pointed out by Huang et
al. in their seminal work [1], the complexity of these bugs, and
tight time and budget constraints, hinder developers in finding
and fixing them before a software release. This problem is even
worse when the bugs are located in reused and Off-The-Shelf
(OTS) software, for which developers do not have access to
the source code: in this case, it is not possible for developers
to fix the root cause of a bug.

To deal with these bugs, developers and researchers have
been devising practical fault tolerance approaches to mask
them. For instance, software rejuvenation can prevent failures
by proactively cleaning (e.g., by restarting) the software at
a convenient time [1]. This kind of approaches work around
many tricky bugs without fixing them, at the cost of small
period of downtime during recovery and rejuvenation [2], [3].

Today, after several decades, we need to consider that
bug detection techniques significantly improved since early
studies on fault tolerance and software rejuvenation. Several
techniques have been developed for static and dynamic code
analysis, that are able to discover classes of subtle bugs such as
race conditions, deadlocks, memory leaks, integer and memory
overflows [4], [5], [6]. These techniques are now regularly
adopted by developers, and are implemented by industry-
strength tools (both commercial and open-source) [7], [8], [5]
and included in development toolchains (for instance, modern

compilers includes rich set of advanced static and dynamic
analysis techniques for early bug detection) [9], [10]. Some of
these techniques can even be applied on binary code.

As a result, developers are now able to detect and fix tricky
bugs that were previously out of reach to them. Nevertheless, it
is still difficult to deal with bugs located in OTS software. Even
if developers are able to pinpoint these bugs with automated
tools, they lack the source code and/or knowledge about
software internals needed to fix these bugs [11]. Thus, for this
case, even if the bugs are known, software rejuvenation and
fault tolerance still represent the sole viable paths.

In this paper, we propose an approach for fixing memory
leak bugs in OTS software. The approach aims to patch OTS
software automatically, and without requiring source code or
other knowledge about its internals. The idea is to leverage
dynamic binary analysis tools to find memory leaks, and
binary code rewriting to inject memory management code for
preventing the leaks. Reducing memory leaks by patching OTS
code will allow to rejuvenate software less frequently, thus
further improving the availability of applications using this
technique. The goal of this paper is to present the ideas behind
the approach, and discuss the challenges that need to be faced.
Future work will implement this approach in a prototype, and
validate it on real memory leaks found in complex software.

This paper is structured as follows: Section II briefly
describes dynamic binary analysis for detecting memory leaks;
Section III discusses our proposed idea for patching OTS code;
Section IV discusses related work; Section V concludes with
directions for future work.

II. DYNAMIC BINARY ANALYSIS

There are several tools for static and dynamic analysis of
binary code, aimed at testing, security and reverse engineering
purposes. In this section, we focus on Valgrind [5], a dynamic
binary analysis framework that is widely used by developers
for detecting and debugging memory corruption and concur-
rency issues. For instance, MySQL developers adopt Valgrind
in their automated regression tests, in order to timely detect
memory leaks and other memory-related issues [12].

Valgrind is a framework for supporting several types of
code analysis at the binary level. This framework consists of
the Valgrind core, and a set of tool plug-ins (each implement-
ing a specific type of analysis) based on the Valgrind core. The
most well-known Valgrind tool is MemCheck, which is aimed
at detecting memory-management problems in C and C++
software [13], [14]; other Valgrind tools include Cachegrind

#include <stdio.h>!
#include <stdlib.h>!
#include <string.h>!
!
void print_hello(void) {!
!
 char * string = (char *) malloc(sizeof(char)*12);!
!
 strcpy(string, "Hello World");!
!
 printf("%s\n", string);!
!
 return 0;!
}!
...!

HEAP SUMMARY:!
 in use at exit: 12 bytes in 1 blocks!
 total heap usage: 1 allocs, 0 frees, 12 bytes allocated!
!
12 bytes in 1 blocks are definitely lost in loss record 1 of 1!
 at 0x4C2B6CD: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)!
 by 0x400555: print_hello (test.c:7)!
 by 0x400585: main (test.c:18)!
!
LEAK SUMMARY:!
 definitely lost: 12 bytes in 1 blocks!
 indirectly lost: 0 bytes in 0 blocks!
 possibly lost: 0 bytes in 0 blocks!
 still reachable: 0 bytes in 0 blocks!
 suppressed: 0 bytes in 0 blocks!

Fig. 2. An example of trivial memory leak bug, and report from Valgrind/MemCheck. Please note that source-code locations in the report are provided for
readers’ convenience, but no source-code information can be assumed to be available for OTS software.

Valgrind JIT compiler

Native
machine

code block

Intermediate
representation

Instrumented
intermediate

representation

Instrumented
native machine

code block
Software

under analysis
(binary code)

Native
system

Analysis	

Valgrind
tool

Fig. 1. Overview of dynamic binary analysis in Valgrind.

(a cache profiler), Helgrind (a data race detector), and Massif
(a heap profiler).

In Valgrind, the software under analysis is interpreted by a
JIT compiler, in a similar way to a JVM interpreting Java byte-
code (Fig. 1). The JIT compiler dynamically translates native
code (e.g., x86 machine instructions in a binary program) into
an intermediate representation (IR), which is an architecture-
independent language with simple (RISC-like) instructions and
amenable to instrumentation an analysis. IR code fragments
are then passed to a tool plug-in (such as MemCheck), which
injects additional IR instructions in the code fragment for
tracing and analysis purposes. Finally, the instrumented IR
code fragment is translated into native code and executed
by the CPU. Compared to other binary instrumentation tools,
such as Pin [15], which instrument the native code without
intermediate translations, the dynamic translation performed
by Valgrind enables more powerful types of analysis, such as
shadow-tracking every memory bit (it is thus denoted by its
authors as a “heavyweight” binary instrumentation tool [5]).
However, this flexibility incurs in a overhead: for instance,
programs executed under MemCheck run about 10–30x slower
than normal.

The MemCheck tool plug-in uses this dynamic binary in-
strumentation mechanisms to trace operations that allocate and
de-allocate heap memory, as well as memory accesses made
by a program, in order to detect memory leaks (i.e., blocks of
heap memory that are not referenced by any pointer, and are
thus unreachable and leaked) and read accesses to uninitialized
memory. MemCheck injects tracing instructions after each
instruction that accesses memory, and after each instruction
that allocates or de-allocates heap memory. For instance, the
injected instructions record the location of every live heap
block in a hash table; with this information, MemCheck can
detect bad or repeated frees of heap blocks, and memory
leaks [14]. Fig. 2 shows an example of report produced by
MemCheck for a trivial memory leak: in this example, a
memory leak occurs at the end of the print_hello()

function, in which the pointer to the string allocated in heap
memory is lost and is not more reachable by the program.
Using information collected by the instrumented program,
MemCheck provides a summary about the amount of leaked
memory, and the location in the program where leaked blocks
were allocated.

Finally, it is important to note that while this kind of
analysis (and, in general, static/dynamic analysis) cannot find
every possible memory leak bug in a program (in the case
of MemCheck, the leak must occur during execution to be
pinpointed), it proved to be useful at identifying several subtle
bugs in practice, even in mature and complex software [12].

III. BINARY PATCHING APPROACH

Our approach is aimed at fixing memory leak bugs in
binary code and in an automated way, that is, by avoiding
human involvement and the need for source code and other
information about software internals. The idea (see also Fig. 3)
is to collect feedback from program analysis tools about
memory leaks, and to inject additional memory management
code where necessary into a binary program, to force the
deallocation of a leaked memory area once the last pointer
to that area is invalidated.

Dynamic	
program	 analysis	

Binary COTS
software

Binary	 rewri2ng	

Patched binary
COTS software Detected

memory leaks

1. Bug detection 2. Bug fixing

Fig. 3. Overview of the proposed binary patching approach.

To be applicable to OTS software, the approach should
only rely on results from binary analysis (such as MemCheck).
Therefore, for each detected memory leak, we will only
require: (i) the code instruction that allocated a leaked area,
and (ii) the last code instruction after which the the memory

leak occurs. This information can be used to (i) insert code
right after the allocation of the heap area (allocation site) that
records the address of the area, and (ii) insert code right before
the loss of the pointer to the heap area (loss site) that forces
the de-allocation of the area.

#include <stdio.h>!
#include <stdlib.h>!
#include <string.h>!
!
void print_hello(void) {!
!
 char * string = (char *) malloc(sizeof(char)*12);!
!
 ALLOCATION SITE!
!
 strcpy(string, "Hello World");!
!
 printf("%s\n", string);!
!
 LOSS SITE!
!
 return 0;!
}!
...!

record the address
of the heap area

going to be leaked!

force de-allocation of
the heap block!

Fig. 4. An example of binary code patching through the injection of memory
management code.

For instance (see Fig. 4), the loss site can be the end
of a function, in which the heap area is pointed by a local
pointer variable, and the pointer is lost when the function ends.
Another case is when the pointer is stored in a data structure
in heap memory, and this data structure is deallocated without
deallocating the area pointed by this pointer (for instance, a
C++ class that does not deallocate a heap area in its destructor);
the loss site is the code location in which the data structure
(e.g., the object of the C++ class) is deallocated. Finally, a
third case is when a pointer, either in local, heap, or global
memory, is overwritten with a new value without deallocating
the heap area pointed by the old value; in this case, the loss
site is before the instruction that overwrites the pointer. All
these types of loss sites can be detected by a dynamic memory
analyzer such as MemCheck, which tracks the life of a pointer
to heap memory from the allocation site to the loss site in order
to detect memory leaks.

The injected code must strive for a very low overhead,
since it is meant to be executed in production, in order to
avoid memory leaks at run-time and thus reduce software
rejuvenation. Since our memory management code will be
significantly simpler than tools such as MemCheck, existing
“lightweight” binary rewriting techniques, that inject machine
instructions either dynamically (such as in Pin [15]) or stat-
ically (such as in PSI [16]), will suffice for our purposes.
These techniques can be adopted to introduce small portions
of memory management code into allocation and loss sites
of memory leak bugs in the program. We expect that the
overhead of this code will be low since: (i) In most cases,
only a small minority of heap areas are leaked, and only
leaked heap areas need to be tracked and freed by injected
code. (ii) Injected code will be executed only when the the
memory area is allocated and when its pointer is loss; memory
management code will run seldom, and will not be involved
during the program reads/writes to the leaked memory areas.
We also expect that this approach will lead to significantly
lower overhead than using an automatic, full-fledged garbage
collector [17], [18], since our memory management code will
focus on specific heap areas that we know to be affected by
leaks: as mentioned above, this information will be provided
us by a memory leak analyzer such as MemCheck.

Special care is needed to deal with heap areas that are
pointed by more than one pointer. In such cases, the heap
area must not be forcefully deallocated when there are still
valid pointers to the area, otherwise the program will not be
able to access to the area even if it is still reachable. It is
thus necessary to deallocate the area only when it is actually
leaked, that is, all pointers to it have been removed (e.g.,
overwritten with a new value or de-allocated). To do so, the
approach will need to inject memory management code for
each pointer, respectively when each pointer is initialized and
is removed, using a reference counting mechanism: when a
pointer is removed, a counter associated to the heap area is
decremented, and when the counter reaches zero, the heap
area is deallocated. To implement this mechanism, the memory
leak analysis must be extended to provide information about
all pointers to the leaked heap area (in particular, the code
location in which these pointers are initialized and removed).
These pointers can be found by means of static analysis [19].
Even if static analysis has intrinsic limitations (e.g., in some
cases, it may not be able to track inter-procedural propagation
of pointers through function pointers), it will still allow to fix
those bugs for which propagation of pointers can be precisely
tracked. The degree of effectiveness of this approach, however,
has to be validated by applying it on memory leak bugs
actually experienced by users and developers.

IV. RELATED WORK

Binary code rewriting has been proposed in past studies
for making OTS software more robust against external threats
and to improve its security, and we discuss here some relevant
examples of binary rewriting for security purposes. Second-
Write [20] is a binary rewriting tool aimed at retrofitting
security checks in binary COTS software. It has been used
to prevent attacks that affect the control flow, by inserting
“stack canaries”, by eliminating base pointers, by adding
code for checking return addresses and indirect function calls.
Several other tools [21], [22] adopt binary code rewriting
to randomize elements of a program and to make it more
difficult to attack, such as randomizing the ordering of code
blocks and data, the layout of stack and heap memory, and the
allocation of variables to registers. In [23], automatic black-
box testing and code instrumentation are adopted to improve
the robustness of web services, by discovering inputs that are
not gracefully handled, and by filtering these inputs through
protective wrappers, that are introduced in Java bytecode using
an aspect-oriented programming framework. Finally, binary
rewriting has been applied to protect against untrusted binary
programs obtained from external sources: in Reins [24], COTS
x86 binaries are rewritten to prevent damages to the file
system or network, and corruptions of trusted modules, by
redirecting system API calls to a policy-enforcement library
and by protecting it from attacks that affect the control flow.
All these security applications are not meant to fix known bugs
into binary software, but to make software more robust against
external attacks, and to sandbox untrusted applications.

Binary rewriting has also been applied to perform “live
updates” of software, in order to apply patches in production
without restarting neither applications nor the OS [25], [26].
Live updates differs from our work, since we do not expect the
availability of the source code, and do not require developers

to provide bug-fixes, as we take advantage of dynamic binary
analysis to automatically discover and fix memory leak bugs.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed an approach for fixing bugs in
OTS software, using dynamic binary analysis and rewriting
techniques. This approach has the potential to reduce the
impact of memory leaks caused by OTS software, in an
automated way and with a small overhead. In future work,
we will implement this approach in a prototype, by extending
existing static and dynamic analysis tools such as Valgrind.
Moreover, we will apply the approach on complex software
with known memory leak bugs, in order to evaluate the
overhead introduced by the approach and its ability to deal
with these bugs. Finally, we will investigate how to extend the
approach to fix other types of bugs, such as race conditions
and deadlock bugs.

ACKNOWLEDGMENT

This work has been partially supported by the TENACE
PRIN Project (n. 20103P34XC) and by the SVEVIA PON
Project (PON02 00485 3487758) funded by the Italian Min-
istry of Education, University and Research.

REFERENCES

[1] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software Reju-
venation: Analysis, Module and Applications,” in Fault-Tolerant Com-
puting, 1995. FTCS-25. Digest of Papers., Twenty-Fifth International
Symposium on. IEEE, 1995, pp. 381–390.

[2] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating bugs as
allergies—a safe method to survive software failures,” in ACM SIGOPS
Operating Systems Review, vol. 39, no. 5. ACM, 2005, pp. 235–248.

[3] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, 2007.

[4] D. Engler and K. Ashcraft, “Racerx: effective, static detection of race
conditions and deadlocks,” in ACM SIGOPS Operating Systems Review,
vol. 37, no. 5. ACM, 2003, pp. 237–252.

[5] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM Sigplan Notices, vol. 42,
no. 6. ACM, 2007, pp. 89–100.

[6] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer overflow
in c/c++,” in Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 2012, pp. 760–770.

[7] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” Software Engineering, IEEE Transactions on, vol. 32, no. 4,
pp. 240–253, 2006.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[9] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detec-
tion in practice,” in Proceedings of the Workshop on Binary Instrumen-
tation and Applications. ACM, 2009, pp. 62–71.

[10] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker.” in USENIX Annual Technical
Conference, 2012, pp. 309–318.

[11] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo,
“Memory leak analysis of mission-critical middleware,” Journal of
Systems and Software, vol. 83, no. 9, pp. 1556–1567, 2010.

[12] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in
Software Reliability Engineering (ISSRE), 2013 IEEE 24th International
Symposium on. IEEE, 2013, pp. 178–187.

[13] J. Seward and N. Nethercote, “Using valgrind to detect undefined value
errors with bit-precision,” in USENIX Annual Technical Conference,
2005, pp. 17–30.

[14] N. Nethercote and J. Seward, “How to shadow every byte of memory
used by a program,” in Proceedings of the 3rd international conference
on Virtual execution environments. ACM, 2007, pp. 65–74.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” ACM Sigplan
Notices, vol. 40, no. 6, pp. 190–200, 2005.

[16] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, “A platform for
secure static binary instrumentation,” in Proceedings of the 10th ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments. ACM, 2014, pp. 129–140.

[17] B. Willard and O. Frieder, “Autonomous garbage collection: resolving
memory leaks in long-running server applications,” Computer Commu-
nications, vol. 23, no. 10, pp. 887–900, 2000.

[18] T. Tsai, K. Vaidyanathan, and K. Gross, “Low-overhead run-time
memory leak detection and recovery,” in Dependable Computing, 2006.
PRDC’06. 12th Pacific Rim International Symposium on. IEEE, 2006,
pp. 329–340.

[19] Y. Park and B. Goldberg, “Static analysis for optimizing reference
counting,” Information processing letters, vol. 55, no. 4, pp. 229–234,
1995.

[20] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and
A. D. Keromytis, “Retrofitting security in cots software with binary
rewriting,” in Future Challenges in Security and Privacy for Academia
and Industry. Springer, 2011, pp. 154–172.

[21] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[22] P. Larsen, S. Brunthaler, and M. Franz, “Security through diversity: Are
we there yet?” Security Privacy, IEEE, vol. 12, no. 2, pp. 28–35, Mar
2014.

[23] N. Laranjeiro, M. Vieira, and H. Madeira, “A Technique for Deploying
Robust Web Services,” IEEE Trans. Services Comput., vol. 7, no. 1, pp.
68–81, 2014.

[24] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing untrusted
code via compiler-agnostic binary rewriting,” in Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012, pp.
299–308.

[25] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in Proceedings of the 4th ACM European conference on
Computer systems. ACM, 2009, pp. 187–198.

[26] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic
live update for operating systems,” ACM SIGPLAN Notices, vol. 48,
no. 4, pp. 279–292, 2013.

