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Abstract

In this paper, we analyze the problem of overloads caused by physical CPU contention
in cloud infrastructures, from the perspective of time-critical applications (such as Virtual
Network Functions) running at guest level. We show that guest-level overload control solutions to
counteract traffic spikes (e.g., traffic throttling) are counterproductive against overloads caused
by CPU contention. We then propose a general guest-level solution to protect applications
from overloads also in the case of CPU contention. We reproduced the phenomena on a IP
Multimedia Subsystem (IMS) testbed based on OpenStack on top of KVM. The results show
that the approach can dynamically adapt the service throughput to the actual system capacity
in both cases of traffic spikes and CPU contention, by guaranteeing at the same time the IMS
latency requirements.

Keywords: Overload control, Resource over-commitment, CPU contention, Traffic throttling,
Network function virtualization, IP Multimedia Subsystem

1. Introduction

Overload conditions are a major cause of cloud service failures [1]. These conditions occur
when the incoming traffic exceeds the available capacity (e.g., by tens, or even hundreds of
times). Overloads are not only due to exceptional traffic spikes (e.g., due to mass events): an
important, and often underestimated, cause of overload conditions is the resource contention
inside the cloud infrastructure, whose effect is to decrease the available capacity for serving
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the incoming traffic. The risk of resource contention arises due to over-commitment of cloud
computing infrastructures, e.g., the provider incorrectly allocates resources to too many users
due to bad capacity planning or operator mistakes [2, 3]. Moreover, resource contention can
also be caused by faults in the infrastructure, e.g., a background service may consume too much
resources because of a software bug, a failed update, or configuration problem [4, 5].

To mitigate overload conditions, time-critical applications include overload control mecha-
nisms at the guest-level (i.e., inside VMs), such as real-time rate adaptation [6], graceful perfor-
mance degradation through brown-out [7] and traffic shaping [8, 9] to reject the application-level
traffic in excess. Unfortunately, physical CPU contention at the infrastructure-level has severe
side effects on these existing overload control algorithms, which are designed with only traffic
spikes in mind. These algorithms collect resource utilization metrics at run-time, in order to
tune the amount of traffic that can be accepted by the service [9, 10, 11]. To these algorithms,
traffic spikes and physical CPU contention both appear as a saturation of the virtual CPU, but
these conditions need to be managed differently. As an example, when CPU contention occurs,
the virtual CPU of the VM becomes saturated since the hypervisor schedules less virtual CPU
time, in order to share the physical CPU among several competing VMs and host processes. Such
condition can be misinterpreted by the application as a traffic spike. If the application discards
part of the incoming traffic to compensate for CPU saturation, the hypervisor can preempt more
virtual CPU time form the VM (i.e., the CPU bandwidth that has just been freed by discarding
traffic) in favor of the competing VMs, leading again to a saturated virtual CPU. This sequence of
events triggers a vicious cycle that degrades the quality of service (QoS).

In this paper, we analyze the problem of overloads that are caused by physical CPU con-
tention, and address the limitations of traditional traffic throttling at handling these conditions.
We study this problem in the context of virtual network functions (VNFs), i.e., network appli-
ances implemented in software, and deployed on industry-standard COTS hardware and cloud
computing technology, which are becoming very popular due to the increasing industry interest
in the Network Function Virtualization (NFV) paradigm. Virtual network functions are a class of
cloud applications with very strict performance and high-availability requirements, where the
overload problem assumes a critical importance. The contributions of this paper include:

• We present a critical discussion of the problem of overload control from the perspective of
time-critical applications deployed on virtualization technology. In particular, we analyze
the issue of detecting physical CPU contention using guest-level CPU utilization metrics,
and how this issue impacts on overload control algorithms.

• We propose a solution to enhance overload control algorithms, by making them able to
handle overload conditions caused both by traffic spikes, and by physical CPU contention.

• We present a experimental study of overload control algorithms with respect to both
traffic spikes and physical CPU contention, in the context of an NFV-oriented IMS case
study. The results demonstrate that existing overload control algorithms are vulnerable to
physical CPU contention, which can cause severe latency degradation. Moreover, we show
that the proposed approach is robust against physical CPU contention, as it can assure
that the IMS application can guarantee low latency and high throughput at the same time.
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The key point of the proposed solution is that it is designed to be deployed with the appli-
cation at the guest-level (i.e., inside a VM). This aspect is especially relevant in the case of NFV
Infrastructures-as-a-Service (NFVIaaS), where a time-critical VNF has little visibility and control
on the underlying physical resources (e.g., on scheduling priorities at the physical CPU level).
To the best of our knowledge, no previous work has addressed the problem of physical CPU
contention from the guest-level perspective. Moreover, the proposed solution is complementary
to recovery mechanisms at the infrastructure-level, by mitigating the overload during the period
while the infrastructure recovers the available capacity (e.g., through elasticity and migration),
which can take several minutes [12, 13].

In the following, we introduce the problem of physical CPU contention in Section 2. We
present the proposed overload control strategy in Section 3, and the experimental evaluation in
Section 4. Section 5 discusses related work. Section 6 concludes the paper.

2. Overview of CPU overloads and CPU utilization metrics

In this section, we expose the problem of overload conditions, how to interpret CPU utiliza-
tion metrics, and the pitfalls for overload control strategies when using these metrics.

Ideally, the input traffic for a service should not exceed its engineered capacity, that is,
the maximum amount of input traffic that can be served while achieving SLAs. SLAs typically
require a low probability of failures (such as, traffic loss or processing errors) and low latency
(such as, the time to process or respond to an individual traffic unit). These requirements are
especially demanding in the case of the telecom domain [14, 15], where the engineered capacity
is carefully planned at design time, by allocating computing resources according both to cost
considerations, and to the expected reference workload: for example, according to the expected
rate of busy-hour call attempts (BHCA) in the case of a VoIP service.

In the context of IaaS, the designers of VNFs need to plan in advance the flavor and the
expected amount of VMs; for example, a common rule-of-thumb is to plan for VMs such that
each VM consumes at most 90%, or some other threshold (the engineered level), of the available
virtual CPUs under the reference workload, leaving a small amount of residual capacity as a
factor of safety [1, 16]. Overload conditions saturate the capacity of virtual CPUs; in these cases,
the VNFs should throttle the input traffic (i.e., rate-limit by dropping or rejecting requests) in
order to assure that the traffic processed by the VNFs is within the engineered capacity and can
meet the SLAs. This strategy is further discussed in Section 3.

Physical resource contention is a special case of overload condition, in which the available
capacity of the VNFs is reduced due to competition. However, the behavior of the system is
different than the case of traffic spikes. To illustrate the problem, we consider thorough the paper
a generic example (in Figure 1) of a VNF with a 1-GHz virtual CPU, deployed on a 2-GHz physical
CPU. Therefore, the CPU quota of the VM is 50% of the physical CPU. In this example, we
assume that the engineered capacity of the VNF uses 75% of the virtual CPU under the reference
workload. From inside the VM (Figure 1, CASE 1), the OS measures the virtual CPU utilization by
counting the virtual CPU cycles that have been spent busy at executing applications or the OS
kernel, and idle at waiting for I/O or without any workload (i.e., vCPU utilization = busy/busy+idle).
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Figure 1: CPU utilization metrics under three scenarios.

When the input traffic overloads the VNF (Figure 1, CASE 2), the virtual CPU utilization raises to
100% to serve all of the traffic, and hits the CPU quota at 1 GHz enforced by the hypervisor.

In addition to these metrics, we also consider the CPU steal time metric, which is also
influenced by overload conditions, but can be mistakenly considered as an indicator of physical
CPU contention. We use the name “CPU steal” in reference to the metric available in Linux
and in the KVM and IBM z/VM hypervisors [17, 18, 19]; an equivalent metric is also available
in other hypervisors such as VMware ESXi, Xen and Microsoft Hyper-V, respectively under
the name “CPU Stolen Time” [20, 21] and “CPU Wait Time Per Dispatch” [22]. This metric is
provided by hypervisors to VMs, e.g., through hypervisor calls. In all these systems, this metric is
technically defined as the time that a virtual CPU is ready to execute, but it is waiting to execute
on the physical CPU. In other terms, the metric represents the time spent by the virtual CPU
on the hypervisor’s scheduling queue. The term “steal” refers to CPU cycles that a VM spends
waiting because either the hypervisor or other VMs are using the physical CPU (for example,
the hypervisor is using CPU cycles to emulate an I/O device). However, in most situations no
CPU cycle is actually “stolen” from the VM, as the hypervisor still assures the CPU quota for the
VM, and that the VM is eventually scheduled; it would be better understood as an “involuntary
wait” time. For example, in the CASE 2 of Figure 1, the VM is put on hold after that it consumes
its virtual CPU quota; thus, the rest of the physical CPU time is accounted as “steal time” from
the perspective of the VM, since it is waiting on the scheduling queue. Even in the case of low
workload, it is still possible that a moderate share of CPU time is accounted as stolen, e.g., when
two VMs are sporadically ready to execute at the same time. Thus, steal time is not a sufficient
condition for an overload condition.
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The third scenario involves physical CPU contention (Figure 1, CASE 3). In this case, we are
assuming that 3 VMs with equal priority are scheduled on the same physical CPU (e.g., because
of overcommitment, bug or misconfiguration of the infrastructure). The 3 VMs all have a CPU
quota set to 1 GHz, and an engineered capacity that uses 75% of the virtual CPU (as in the
previous two scenarios). Since the total CPU demand (0.75 ·3 GHz) exceeds the capacity of the
physical CPU (2 GHz), the hypervisor equally divides the CPU bandwidth among the VMs, where
each virtual CPU actually gets a slice (fair share) of 0.66 GHz (i.e., 33% of the physical CPU time).
Since the VNF is ready to execute even after consuming this slice (as the workload exceeds the
virtual CPU capacity), the rest of the physical CPU time (66%) is accounted as steal time for the
VM.

Both in CASE 2 and CASE 3 of Figure 1, the VNF is in an overload condition. However, if the
VNF is deployed on IaaS, it cannot easily distinguish between the two cases, since the VNF cannot
inspect or control the underlying infrastructure. From the perspective of the VNF, only looking
for high virtual CPU consumption or for high CPU steal time does not suffice to discriminate
between a traffic spike or physical resource contention. The only difference between the two
cases is that the actual CPU share of the VM (0.66 GHz) is lower than the original CPU quota (1
GHz). Therefore, to address both these cases, the proposed overload control approach throttles
the workload by adapting to the CPU share (either the quota or the fair share) that is actually
available to the VNF.

3. Overload control strategy

In this section we discuss the problem of overload control in the context of NFV services. In
detail, in Section 3.1 we present a well known feedback-loop based overload control in order
to discuss how this kind of approaches can cause the problem of the vicious cycle (Section
3.2) during physical cpu contention. Finally, in Section 3.3 we propose an enhancement to the
feedback-loop based overload control along with a technique to avoid the vicious cycle.

To recover from overload conditions, the long term solution would be to meet the high
demand by scaling up the computing resources, or to relieve physical resource contention by
shutting down other services that have a lower priority or that are hogging the resources.

However, these recovery actions can take several minutes, even in an optimistic case. During
this transient period, VNFs are still exposed to the risk of outages. This problem is exemplified
in Figure 2. Typically, the capacity of a VNF is designed to support up to a reference load (point
C1), in terms of requests per seconds completed with an acceptable quality of service. When
a mass event or a cascade failure occurs, the network load exceeds the reference load. If the
network does not have enough resources to process all of the incoming flows, then the individual
requests will not get enough computing resources to meet SLA requirements. For example, even
if many requests are processed at the same time (the interval between the points C1 and C2 in
the Figure 2), the latency of the responses can become exceedingly long. Beyond a given point
(point C2 in the Figure 2), if the overload condition is not managed, the rate of successfully-
processed traffic can significantly degrade because of too much resource competition [23, 11].
Handling too much traffic also increases the likelihood of software failures such as failed resource
allocations, timeouts, and race conditions [24, 25]. Therefore, long-term recovery actions should
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Figure 2: Network performance under overload conditions.

be combined with short-term solutions for throttling the traffic, in order to allow only the traffic
that can be processed with the currently available capacity entering the system [8, 26, 9, 10].
Ideally, using overload control, the network should maintain a steady throughput (for example,
no lower than 90% of the engineered capacity (T*), the continuous curve in the Figure 2) even
under an overload condition.

3.1. Basic feedback control-based overload control

In the case of traffic spikes in VNFs (the CASE 2 in Figure 1), the throttling algorithm should
reject part of the traffic, in order to reduce the virtual CPU utilization to the engineered capacity
(i.e., to return to the CASE 1 in Figure 1). For example, increase/decrease algorithms are a popular
solution to tune the amount of traffic to be accepted (e.g., the window size for packet flow
control) [27, 28, 29] by decreasing the traffic when the network is overloaded (e.g., by a constant
or multiplicative factor), or by increasing the traffic otherwise. This approach has been recently
applied in the context of NFV [30], using a heuristic criterion to tune the traffic that a VNF can
serve (capacity):

capacity = processed_traffic

current_vcpu_usage
· reference_vcpu_usage (1)

where the first factor estimates the cost per traffic unit (in terms of virtual CPU cycles), which is
multiplied by the reference virtual CPU budget (i.e., the engineered level) to get the total amount
of traffic that can be correctly served. When the virtual CPU utilization exceeds the engineered
level, the heuristic drops a percentage of the incoming traffic (drop rate):

drop_rate = 100 ·
(
1− capacity

incoming_traffic

)
(2)
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in which the higher the gap between capacity and the incoming traffic, the higher the drop rate.
The drop rate is periodically updated every few seconds, and is capped between 0% and 100%.
In the case of a traffic spike, the virtual CPU utilization increases, thus the heuristic lowers the
capacity and increases the drop rate; as result, the virtual CPU utilization settles again around
the engineered level.

3.2. The control loop vicious cycle

The throttling heuristic presented in the previous section, may not work correctly in the case
of physical CPU contention. We consider again the example of Section 2, where the physical
CPU contention leads to the following chain of events (see also the Figure 3):

1. Due to the contention, the hypervisor allocates less physical CPU time to the VM (0.66
GHz, as in the CASE 3 in Figure 1). As a result, the current workload saturates the VNF, and
the virtual CPU utilization becomes 100% (i.e., the ratio busy/busy+idle), which is higher than
the reference CPU utilization (e.g., 75% in the example).

2. The heuristic increases the drop rate to reduce the load. The virtual CPU utilization then
settles around 75%. It is important to note that the 75% of the virtual CPU is equal to
0.66 ·75% = 0.5 GHz of physical CPU. The residual 25% of the virtual CPU (i.e., 0.66 ·25% =
0.166 GHz of physical CPU) becomes idle.

3. Due to the physical CPU contention, the hypervisor opportunistically schedules these idle
CPU cycles for the demand of other VMs or processes on the host machine. Thus, the
virtual CPU is not anymore idle, and virtual CPU utilization becomes again 100%.

4. The heuristic further increases the drop rate, to reduce again the virtual CPU utilization
down to 75% (as in the previous step 2). The virtual CPU now consumes 0.66 ·75% ·75% =
0.375 GHz of physical CPU.

5. The hypervisor preempts again the idle CPU time. The heuristic enters a vicious cycle
where the virtual CPU utilization is reduced more and more.

The vicious cycle is caused by the work-conserving behavior of hypervisor schedulers (i.e.,
they ensure that the CPU is never idle if there is at least one VM ready for execution) [31, 32, 33].
The VNF yields to the hypervisor part of its virtual CPU time, by dropping part of the incoming
traffic. In the case of physical CPU contention, in which several VMs or processes on the
host machine are demanding more CPU time than the available physical CPU, the hypervisor
scheduler uses the freed CPU cycles to meet these demands. Then, the virtual CPU shrinks again
and causes the vicious cycle. In general, the feedback control loop approach (not limited to the
heuristics of eqs. (1) and (2), but any other control rule based on virtual CPU utilization) can be
vulnerable to physical CPU contention, due to the distortion of virtual CPU utilization metrics.

3.3. Enhanced feedback control-based overload control

To address the problem of overload control under physical CPU contention, we extend the
feedback control loop approach with an additional mechanism to break the vicious cycle. The
design goal of the approach is to assure that the VNF gets no less than its fair share of the physical
CPU even under contention (e.g., 0.66 GHz in the previous example); and, at the same time,
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Figure 3: Chain of events caused by physical CPU contention.

that the virtual CPU utilization inside the VNF settles at the engineered level (e.g., 75% of the
virtual CPU in the example). This condition is showed in Figure 4: the available virtual CPU
under physical contention reduces to 0.66 GHz; since this virtual CPU is not sufficient to reach
the original engineered level (0.75 GHz), we still apply the feedback control loop to reduce the
virtual CPU utilization down to 75% of the available virtual CPU (i.e., 0.5 GHz of physical CPU).
This is the same condition of the step 3 of the vicious cycle; we break the cycle at this point,
using the following approach.

We introduce a mechanism into the VNF to avoid the preemption of idle virtual CPU cycles
under physical CPU contention. This effect can be obtained in different ways depending on
the guest OS used in the VNF. The most generic approach is to add a placeholder process
(one process per virtual CPU of the VM) that actively consumes virtual CPU cycles to avoid
preemption by the hypervisor; it executes a CPU-bound task for the sake of consuming virtual
CPU cycles. The placeholder process should execute at minimal priority on the guest OS of the
VNF; moreover, it should be configured as a batch task in order not to take away any virtual CPU
cycle from the VNF software (i.e., the placeholder only uses the virtual CPU when the VNF is
not executing). For example, this effect can be obtained on Linux by setting the SCHED_BATCH
or SCHED_IDLE scheduler class for the task [34], and on Windows by setting an idle trigger [35].
Yet another approach is to configure or to modify the idle loop of the guest OS [36]. As a result,
the placeholder takes the place of the idle time of the virtual CPU, as in Figure 4: at any given
time, the virtual CPU is either executing the VNF or the placeholder process, and the virtual
CPU consumes the residual physical CPU cycles granted by the hypervisor scheduler. This
behavior breaks the vicious cycle, since the hypervisor cannot preempt the virtual CPU cycles
that are freed by the feedback control loop. Moreover, settling the virtual CPU utilization at the
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Figure 4: CPU utilization metrics under physical contention, with virtual CPU placeholder.

engineered level provides a “margin of safety" (e.g., to compensate for small random workload
fluctuations) as in the case of the original engineered level, since the VNF software can preempt
the placeholder process at anytime.

We enable the placeholder process on the condition that the CPU steal time spans all the
physical CPU not used by the VM. This condition occurs when the VNF consumes its available
virtual CPU, either because of a traffic spike that saturates the virtual CPU quota (CASE 2 in
Figure 1), or because of physical CPU contention that reduces the available virtual CPU (CASE 3
in Figure 1). We apply the same solution regardless of which one of these two cases is causing the
saturation of the virtual CPU. The solution still applies the feedback control loop, but excluding
the CPU consumption of the placeholder process from the virtual CPU utilization metric, that is:

vCPU utilization =
busyall −busyplaceholder

busyall + idle
. (3)

For example, in Figure 4, the virtual CPU utilization is 75% if the utilization of the placeholder
is not included. The virtual CPU utilization metric (i.e., the dependent variable controlled by the
feedback loop) is thus not influenced by the presence of the placeholder process (which only
opportunistically consumes the idle virtual CPU cycles). Therefore, in the case of traffic spikes,
the proposed feedback control loop still works as in previous work [30]. In the case of physical
CPU contention, the placeholder avoids the interaction between the feedback control loop (that
frees the virtual CPU) and the hypervisor (that preempts the freed virtual CPU), thus allowing
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the feedback control loop to work correctly in this additional case.
Since CPU contention is a relatively rare event, we designed the placeholder process not to

execute when there cannot be physical CPU contention. Since CPU steal time is a necessary
condition (even if not sufficient, as discussed in Section 2) for physical CPU contention, the
placeholder process remains idle if there is no accounted CPU steal time (CASE 1 in Figure 1).
The placeholder process becomes active (i.e., it consumes virtual CPU cycles) once it detects
that the CPU steal time has peaked (which denotes that the virtual CPU is trying to exceed a
limit), and runs for a fixed amount of time Tactive. Once Tactive has elapsed, the placeholder
process returns in the idle state. Then, the placeholder process inspects again the CPU steal time
to check whether the VNF is not anymore saturating its virtual CPU. If there is still either a traffic
spike or CPU contention, the placeholder process continues to be active, repeating the check
later. The Tactive should be chosen according to the expected duration of the recovery actions,
such as for scaling out, hot-fixing a bug, or migrating the services to another host machine.
Eventually, the virtual CPU executes again on a non-overloaded physical CPU.

4. Experimental analysis

We performed experiments on an NFV IMS system to reproduce the problem of physical
CPU contention, and to evaluate the effectiveness of overload control solutions, including both
the basic and the enhanced feedback control-based approaches.

We executed experiments on a testbed based on the Clearwater open-source IMS system [37].
Clearwater is a complete, commercial-grade implementation of the IMS core network, including
components (P-CSCF, S-CSCF, etc.) for SIP signaling, user authentication and authorization,
charging, and other IMS functions. The architecture of the IMS is showed in Figure 5. The
IMS components are intended to run in separate VMs and deployed on cloud computing
infrastructures, and to support load balancing and horizontal scalability.

Our experimental testbed runs these components on three Dell PowerEdge servers, equipped
with two 8-core 2.6 GHz Intel Xeon CPUs, connected by two Gigabit Ethernet networks, and
attached to a Fiber Channel storage area network. The physical machines are managed using
OpenStack (version Juno) and the KVM hypervisor (based on the Linux kernel version 3.10).
Each Clearwater service is replicated in two VMs, configured with 1 virtual CPU and 4GB of RAM;
each VM runs one VNF instance, and Ubuntu Linux 14.04 as guest OS. We use the SIPp workload
generator [38] to exercise the IMS with register and call-setup requests. The IMS workload
reproduces the typical message flows between subscribers, according to the SIP protocol. These
flows are also adopted to test the Clearwater IMS, and the complete scenario used in our tests is
available online [39].

Therefore, our workload reproduces a stressful traffic profile of 5 BHCA (i.e., Busy Hour Call
Attempt) per user and 60 BHRA (i.e., Busy Hour Registration Attempt) per user. We regulate
the workload intensity by varying the number of subscribers in order to reach the engineered
level of the system. The engineered capacity of the experimental testbed is 40,000 subscribers,
which can perform on average 660 registration requests and 55 call requests per second without
SLA violations. The engineered level for the virtual CPU utilization is 75% under this reference
workload.
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Figure 5: Architecture of the Clearwater NFV IMS.

We reproduce physical CPU contention by pinning an additional VM running a CPU-bound
workload on the same physical CPU core running VMs of the IMS. CPU pinning and CPU schedul-
ing affinities are often adopted as best-practices to optimize latency-sensitive applications [40],
since they can optimize memory access in NUMA architectures and reduce the hypervisor
scheduling latency. However, due to poor load balancing caused by CPU over-subscription,
these practices also represent a potential cause of physical CPU contention. Moreover, manually
setting CPU affinities can increase the risk of contention problems due to misconfiguration by
the system administrators of the infrastructure [41]. Thus, this CPU contention scenario can be
considered representative of typical issues occurring in time-critical applications running in
virtualized environments.

In the following, we present and discuss three groups of experiments:

1. In the first group (Section 4.1), we consider a basic overload control solution, using the
feedback control loop and heuristic that was introduced in Section 3. On this configura-
tion, we reproduce overload conditions both due to traffic spikes and to physical CPU
contention, in order to show that the feedback control loop can degenerate because of the
vicious cycle.

2. In the second group of experiments (Section 4.2), we enhance the feedback control loop
with the mechanism for breaking the vicious cycle, and reproduce the same overload
conditions to evaluate the proposed solution.

3. In the third group (Section 4.3) we evaluate how the performance of overload control varies
across different conditions, by considering both the basic and the enhanced feedback
control loop solutions under different contention patterns.
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During the following failure scenarios, we analyze the registration attempts and the registra-
tion throughput which include both new users and retries of failed attempts. After a failure, a
user starts a back-off period (uniform between 0 and 2 min) before making a new registration
attempt.

4.1. Basic feedback control-based overload control

We deployed the basic feedback overload control in the two Clearwater VMs running the IMS
P-CSCF network function, since this component is a capacity bottleneck for our deployment
configuration. In a first experiment we reproduce a workload surge which is 2.5 times higher
than the engineered capacity level. The experiment lasts 15 minutes and it consists of two phases:
in the first phase, we gradually introduce 40,000 subscribers and wait until the workload reaches
the steady state at engineered level; in the second phase, starting at second 450s, we introduce in
the system 100,000 additional subscribers, causing a workload surge and the overload of P-CSCF
components. Figure 6 shows the registration request rate and throughput of the IMS during the
experiment. Before the overload phase, the average registration throughput at steady state is 624
registrations per second; during the overload phase the average throughput is 634 registrations
per second, with an average CPU utilization of 73.32%. The basic overload control solution
described in Section 3 (eqs. (1) and (2)) has been able to successfully protect the IMS system:
it avoids service failures for already-established sessions, by correctly estimating the capacity
of the system and rejecting the requests in excess with respect to the capacity, which would
saturate resources and cause failures both for the initial and the new subscribers. As a result, the
throughput is constant despite the traffic spike.

Figure 6: Performance of the IMS registrations during a 2.5x traffic spike (450-900s), using the basic feedback control
loop.

In a second experiment, we consider again the basic control loop approach, and we repro-
duce an overload condition due to physical CPU contention. To this purpose, we pin the virtual
CPU of the VMs running the IMS P-CSCF functions to a separate, reserved physical CPU. Then,
we introduce a new VM running a CPU-bound workload (generated using the cpuburn tool
1 ) and we pin its virtual CPU to the same physical CPU core of the IMS P-CSCF, in order to
cause the contention. The experiment lasts 15 minutes (900s) and it is organized in three phases:

1The tool can be downloaded at https://patrickmn.com/projects/cpuburn/
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during the first 5 minutes we generate a workload up to the engineered level; then, we activate
the CPU-bound workload in the second VM to cause physical CPU contention for additional 5
minutes; finally, in the last 5 minutes of the experiment, we simulate the resolution of the CPU
contention (e.g., as an effect of scaling out or migration of VMs to relieve the contention), by
unpinning the virtual CPU of the CPU-bound VM. Figure 7 shows the registration request rate
and the throughput of the system during the experiment with CPU contention.

Figure 7: Performance of the IMS registrations during CPU contention (300-600s), using the basic feedback control
loop.

Figure 8: Virtual CPU utilization during CPU contention (300-600s), using the basic feedback control loop.

During the contention in the middle of the experiment, the throughput is affected by a high
variability, which is a symptom that the basic control loop is unable to stabilize the load at the
actual capacity of the VM. By looking at the virtual CPU usage during the experiment, showed
in Figure 8, we noticed that as soon as we inject the CPU contention at min 5, the virtual CPU
utilization raises to 100% since the hypervisor scheduler preempts physical CPU time from
the virtual CPU, causing involuntary waits of the VM. As a consequence, the basic feedback
control loop starts dropping part of incoming requests to reduce the virtual CPU utilization to
the reference value of 75%. The Clearwater VM reduces its load and enters the vicious loop,
since the CPU-bound VM takes advantage of the idle CPU time freed by the overload control
mechanism. As a result, the virtual CPU utilization gradually drops down to about 20%. We also
observed that the virtual CPU utilization saturates again to 100% after a period of approximately
10 seconds. This pattern is repeated periodically until the physical CPU contention is removed
at minute 10, causing the high variability of CPU utilization. We found that this behavior is a
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side effect of the overload control mechanism, which sporadically resets the drop rate to 0 when
the virtual CPU utilization becomes much lower than the reference value, thus admitting a high
amount of input traffic and saturating again the virtual CPU. This high variability has a strong
impact on the service latency, as further discussed in the next subsection.

4.2. Enhanced feedback control-based overload control

We deployed the enhanced feedback overload control strategy, and validated it by reproduc-
ing the same scenarios described in the previous subsection.

In the first experiment, after 450s, we caused a workload surge 2.5 times higher than the
engineered capacity, and we evaluate the throughput of the IMS. As shown in Figure 9, in
absence of physical CPU contention, the enhanced approach exhibits the same performance of
the basic approach. Before the overload phase, the average registration throughput at steady
state is 620 registrations per second while; during the overload phase the average throughput is
645 registrations per second with an average virtual CPU utilization of 74.55%. Therefore, our
extension to the feedback loop does not cause any negative effect in the case of traffic spikes.

Figure 9: Performance of the IMS registrations during a 2.5x workload spike (450-900s), using the enhanced feedback
control enabled.

In the second experiment, we reproduced the scenario with physical CPU contention, under
the same conditions of Section 4.1. The time series in Figure 10 shows the throughput of the IMS.
At 5 min, we enable the CPU-bound VM. The enhanced heuristic described in Section 3 timely
detected a change in the system capacity. The during the contention the average throughput
is reduced by about 32% and the system is able to complete 380 registration per second, with
an average CPU consumption of 68%. Moreover, the throughput during the contention is more
stable than the case with the basic feedback approach: since the placeholder process avoids the
preemption of CPU time from the hypervisor, since the reference value of CPU utilization is not
anymore a “moving target”, thus avoiding the variations of the heuristic for capacity estimation.

If CPU contention is not properly managed, the system accepts more requests that it can
actually handle with the available CPU. However, many of the accepted requests are served with
a poor quality of service, and many others fail in the middle of a session (therefore, the “goodput”
of the system is actually lower than the throughput). A key goal of service providers is to ensure
an appropriate QoS for users that are admitted into the system, and to gracefully handle users
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that cannot be admitted (e.g., to notify an overload status without starting a session that cannot
be assured).

Figure 10: Performance of the IMS registrations during CPU contention (300-600s), using the enhanced feedback
control loop.

Figure 11: Virtual CPU utilization during CPU contention (300-600s), using the enhanced feedback control enabled.

It is worth noting that the throughput only appears to be higher without our enhanced
control. Figure 12 compares the IMS throughput under CPU contention, with the basic and
the enhanced feedback control loop. By looking at the throughput of the two approaches,
the differences of the throughput are not significant. However, the variance of the enhanced
control approach is slightly lower, for both the registration workload (Figure 12a) and call-setup
workload (Figure 12b).

A more accurate capacity estimation has also a strong positive impact on the quality of service
perceived by the IMS users in terms of service latency, which is a key performance indicator
considered by SLAs for telecommunication systems. In particular, SLAs typically mandate
latency requirements for the average (e.g., the median latency) and the worst cases (e.g., the 90th
percentile of latency) [14]. In Figure 13, we compare the CDFs of the latency of the successful
registrations, respectively under the basic and the enhanced overload control strategies, during
the contention phase of the experiments. The median latency (i.e., the average case, represented
by the 50th-percentile of the CDF) is up to 118.6ms for the basic approach. In the worst case,

15



(a) Registration Throughput (b) Call-setup Throughput

Figure 12: IMS Registration (12a) and IMS Call-setup (12b) throughput during CPU contention, with the basic and
the enhanced feedback control.

represented by the 90th-percentile, the IMS with the basic approach exhibits latencies up to
369.9ms. These latency values are close, and even exceed the SLA objectives typically adopted
for IMS systems (e.g., 150ms and 250ms respectively for the 50th and 90th percentiles) [42, 43].
Instead, the proposed approach significantly improves the quality of service, by achieving a
service latency up to 28.5ms and 106.2ms respectively for the 50th and 90th percentiles.

Figure 13: Cumulative distribution of registration latency, with the basic (red line) and the enhanced (blue line)
feedback control.

4.3. Performance evaluation under different contention patterns

In the following, we present another group of experiments, to assess the performance of the
basic and the enhanced feedback loops in response to different CPU contention patterns. The
purpose of this analysis is to identify which scenarios will benefit the most from the proposed
solution. We vary the intensity of the CPU contention, and the duration of CPU contention
periods.

• Intensity. The intensity of contention is determined by the amount of competing virtual
machines that are deployed on the same physical machine. The intensity of contention
can impact on the variability of CPU utilization by the virtual machine (e.g., the amplitude
of swings in CPU utilization metrics), with side effects on the overload control loops.
Therefore, we performed additional experiments where we vary the intensity of contention
between 1x (i.e., 50% available CPU time due to the CPU contention with one additional
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VM) and 3x (i.e., 25% available CPU time due to the CPU contention with three other
VMs).

• Duration. The duration of contention is determined by the overlap over time of CPU-
bound activities on several virtual machines. If contention periods are long (e.g., due to
a configuration error with persistent effects), then the overload control algorithm can
eventually converge to a stable condition; instead, if contention periods are short and
intermittent (e.g., due to transient high CPU usage by background tasks in the VMs),
the overload control algorithm may exhibit unstable behavior and poor performance.
Therefore, in addition to the previous experiments (where the CPU contention is constant
for a relatively long period), we perform more experiments with short, periodic contention
periods, where the periods last respectively for 5s and 10s.

We applied these conditions both on the basic and on the enhanced feedback loop solutions.
Each experiment lasts 15 minutes (900s) and it is organized in three phases: during the first
5 minutes we generate a workload up to the engineered level; then, for 5 more minutes, we
force physical CPU contention (either periodically or constantly, depending on the duration as
discussed above), by activating the CPU-bound workload in the additional VMs (between one
and three VMs, depending on the intensity as discussed above); finally, in the last 5 minutes of
the experiment, we simulate the resolution of the CPU contention, by unpinning the virtual CPU
of the CPU-bound VMs, as an effect of scaling out or migration of VMs to relieve the contention.

Figure 14 summarizes the performance of the IMS (latency and throughput) during these
additional scenarios, with both the basic (blue boxes) and the enhanced (red boxes) feedback
loop strategies. When the contention period is very short (5s) there are no significant differences
between the two solutions. This scenario represents the most unfavourable condition for our
enhanced solution, since the control feedback is based on a sampling window of 5 seconds, and
thus the proposed solution is unable to provide any improvement. The percentage of requests
violating the latency goal of 250ms is 9.6% for the basic approach and 9.8% with the other. In
both cases, the SLA goal of 90%-percentile is not violated.

Starting with a period of 10s up to constant patterns, the enhanced feedback loop shows
a significant improvement of latency compared to the basic feedback loop. In the case of a
periodic contention of 10s, only the 0.1% of the requests experiences latency higher than 250ms,
in contrast to the basic approach in which the 20.1% of the requests were served with a latency
higher than the requirement, thus violating the SLA goal.

With a constant contention pattern at 1x intensity, the average available CPU capacity is
reduced to 50%, since the CPU is contended between 2 VMs. As discussed in the previous section,
there are no significant differences in the IMS throughput between the two approaches, but the
proposed approach shows significant reduction in latency: by using the enhanced approach the
percentage of requests violating the 90%-percentile requirement decreases from 17.9% to 0.2%.

This behavior is exacerbated by higher contention intensities (2x, 3x). In these cases, the
basic overload control solution is unable to accurately estimate the available CPU capacity (eq.
(1)), due to the wider swings in CPU utilization metrics; therefore, it degenerates by accepting
more requests than the actual capacity of the IMS system. The result is a significant increase

17



(a) IMS Latency

(b) IMS Throughput

Figure 14: IMS Throughput (14b) and IMS Latency (14a) under different CPU contention patterns, with the basic
and the enhanced feedback control.

of IMS latency in the basic feedback loop. With a constant CPU contention at 2x intensity, the
available CPU capacity of the VNF is reduced to 33% on average, since the CPU time is contended
with 2 additional VMs. In this case, more than the 42% of the requests violates the 90%-percentile
latency requirement, in contrast to the 8.1%, when using the enhanced approach. With CPU
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contention at 3x intensity, with only 25% of the CPU time is available to the VNF. By using the
enhanced solution, the number of requests violating the 90%-percentile latency requirement
drops from 48% to 9%, thus achieving the SLA requirement.

It is interesting to note that, under the higher intensities of CPU contention, the average
throughput with the basic approach is higher than the enhanced approach (e.g., 380 req/s
versus 270 req/s in the case of 2x intensity). As discussed in Section 3, the (apparently) better
throughput comes at the cost of a poor quality of service (Figure 2), since the IMS is processing a
volume of requests which is higher than its capacity. The result is that the IMS takes a long time
to serve many of these requests, thus violating the latency requirement. Instead, the enhanced
solution only lets in the IMS the subset of requests than can be processed with adequate quality
of service: this is a desirable effect of throttling, which is intended to drop the traffic in excess
to the system. This result points out that the proposed feedback solution is best suited for
those applications (such as the IMS, and NFV in general) where latency and throughput are
both important SLA goals. If the proposed solution is not deployed, the throttling mechanism
degenerates and lets in the IMS too much traffic, thus favoring throughput at the expense of
latency.

4.4. Threats to validity

Internal validity threats concern the relation between theory and observations. As this is an
experimental study, there are measurement errors (such as the randomness of the workload gen-
erator, or perturbations on the network and the hardware). We repeated each experimentation
five times, in order to be confident that the effect obtained on the throughput and the latency of
the service is not due to other factors out of our control. Moreover, since we collect measure-
ments from repeated experiments on the same system, we need to assure the independency
between consecutive experiments. Therefore, before every experiment, we restored the same
initial condition of the VMs, by reverting them to a fixed snapshot. After restoring the state of
VMs, in every experiment we performed a warm-up phase in common with all the experiments.
We excluded the performance measures of this phase from the experimental results.

External validity threats concern the possibility to generalize our findings. To perform
experiments on a representative NFV system, we consider an IMS system, which is a key use
case of NFV [44], and adopted an NFV IMS implementation (Clearwater) that is backed up by a
commercial vendors and is gaining popularity across the open-source community. Moreover, we
reproduced typical interactions between end-users and the IMS, by using the well-known SIPp
workload generator and traffic scenarios from the company that supports the Clearwater project.
In order to get representative results with respect to the potential CPU contention patterns that
can affect cloud infrastructures, we performed experiments under several different durations
and intensities of contention. Finally, in order to get representative results with respect to the
underlying virtualization technology, we checked that the work-conserving behavior of the
hypervisor scheduler is comparable across the main open-source and commercial hypervisors,
including Xen, VMware ESXi, and Microsoft Hyper-V [31, 32, 33], and the metrics involved in the
overload control solution (such as the CPU utilization and the steal time) are available for all of
them. Thus, we can expect that the findings are applicable to these virtualization technologies.
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Construct validity threats concern the connection between theory and the experimental
evaluation. Therefore, we designed experiments to assert that the theoretical behavior discussed
in the paper matches the actual behavior of the system. Both the basic and the enhanced
approaches are evaluated with the two kinds of overload (i.e., traffic spikes and CPU contention).
We demonstrated that the degenerative condition of basic feedback control loop happens only
in the case of CPU contention. Moreover, we demonstrated that this degenerative condition can
be mitigated by the enhanced approach described in Section 3.

Reliability validity threats concern the possibility of replicating this study. To ease repli-
cations, we adopted open-source software for the workload generator and the software stack.
Moreover, we provided detailed information on the configuration of the hardware, software, and
workload, and we suggest several technical suggestions for re-implementing the placeholder
process of the proposed solution.

5. Related work

5.1. CPU contention in virtualization infrastructures

CPU contention is a typical problem of virtualization infrastructures and suffered by guest
VMs. Nikounia et al. [45] characterized the performance degradation due to resource overcom-
mittment in virtualized environments. Their study identified the CPU resource as the one that
impacts the most on service performance during contention with noisy neighbors VMs, and
found a major case of execution time slowdown in the hypervisor CPU scheduler. Since this
problem is widespread, there have been many studies on ensuring performance isolation at in-
frastructure level, in order to avoid side-effects from CPU contention. In general, these solutions
prevent or mitigate contention by enhancing the placement and scheduling of VMs on the physi-
cal infrastructure. Q-Clouds [46] is a representative solution of this kind, which is a QoS-aware
framework aiming to enforce performance isolation by opportunistically provisioning additional
resources to alleviate contention. Caglar et al. [47] proposed HALT, a performance-interference
aware placement strategy based on on-line monitoring and machine learning. To avoid the
side effects of the contention for time-sensitive services, HALT adopts a VM migration plan
to a different host, based on the learned workload behavior. More recently, in the context of
NFV, Kulkarni et al. [48] presented NFVnice, a framework to dynamically adjust the scheduling
behavior according to the relative priority of the running services and the estimated load. This
approach uses cgroups to optimize the scheduling behavior and traffic throttling at host level to
prevent overloads in the guest.

A drawback of these solutions is that they require full control of the underlying infrastructure,
since they are meant for system administrators and infrastructure management products. How-
ever, in the case of NFV Infrastructures as a Service (NFVIaaS), the VNFs do not have control on
the underlying infrastructure, where the infrastructure provider may adopt an over-commitment
policy that increases the risk of physical CPU contention, at the expense of the VNFs. Another
drawback is that, despite the best efforts of system administrators, performance isolation strate-
gies cannot completely prevent contention issues at infrastructure level, due to unexpected
maintenance tasks, accidental misconfigurations, or other faults. Thus, services with very high-
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availability requirements need to include protection mechanisms that mitigate unexpected
overloads until its root cause has been solved.

In practice, system administrators adopt CPU consumption metrics to troubleshoot CPU
contention issues. At guest level, the steal time metric is a well-known indicator of physical CPU
contention. This indicator is typically exposed by hypervisors to the guest OSes, as discussed in
Section 2. Ayodele et al. [49] demonstrated the impact of the steal time on cloud applications
performance under physical CPU contention. Moreover, other studies focus on quantifying the
effect of the steal time on CPU time metrics at process- and thread-level [50, 51], provided by
the guest OS. This metric is often adopted through heuristics sets by system administrators (e.g.,
using threshold), for example, by triggering VM migration when the steal time is very high for a
prolonged period [52].

However, such heuristics based on the steal time are unsound, since a high steal time is not
a sufficient condition for a physical CPU contention. For example, a VM voluntary suspended
for I/O activity can be subject to high wait time, due to the contention with other VMs that run
a CPU-bound workload). In this case, the guest OS metrics will report a lower CPU utilization
and low steal time. The best practices from VMware also suggest not to trust CPU consumption
metrics provided by the guest OS, since they can be inaccurate in case of physical CPU contention
[53] due to time accounting issues. Additionally, even in case of CPU-bound workloads, the
steal time can also be inaccurate in case of hyper-threading enabled at host level [54]. Thus,
the percentage of steal time is dependent by the workload running in the guest VM. Moreover,
a steal time quota can be the consequence of CPU quotas and CPU credits imposed by the
infrastructure providers [55].

In this work, we revise the use of CPU consumption metrics in overload control mechanisms
inside VNFs. In particular, we discussed why using the steal time metric would not be adequate
for self-adaptive overload control solutions, which require to estimate the available CPU capacity
in a feedback loop. We proposed a solution that is robust to the inaccuracy and high variability
of the steal time, by triggering a low-priority CPU-bound task when the steal time becomes high.
If there is no actual physical CPU contention, the mechanism does not cause any problematic
effect on the quality of service perceived by users, since it has low priority and it is preempted
by the VNF software. Instead, in the case of an actual condition of physical CPU contention,
this mechanism can break the degenerative condition caused by the behavior of the hypervisor
scheduler, as discussed in Section 2.

5.2. Capacity management and overload control in NFV

Previous research on NFV reliability and performance covered several areas. The majority of
the recent research efforts are on the problem of allocating computing resources to VNFs, e.g.,
by formulating several flavors of optimization problems to place VNFs across an infrastructure
[56, 57, 58, 59] and to route traffic [60, 61], according to different objective functions and problem
constraints (e.g., to take into account resource utilization, performance, reliability, etc.). These
approaches forecast the user workloads to plan the allocation of resources, but are not intended
for handling sudden overload conditions that deviate from the expected workload. Therefore,
these studies are complementary to our work on overload control.
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Another branch of research studies has been focused on detecting and diagnosing perfor-
mance issues in NFV. NFV-VITAL [62] is a solution that can be applied pre-deployment, in order
to identify and prevent performance bottlenecks and bugs: it is a framework to characterize the
performance of VNFs at different scales, by allowing engineers to design performance evalu-
ation experiments (i.e., by varying the flavor of virtual machines, the workload rate, etc.) and
to conduct and to report on the experiments. However, NFV-VITAL is not meant to address
performance issues after the system has been deployed in operation. Recent frameworks for
operational monitoring purposes include anomaly detection systems from Sauvanaud et al. [63]
and Cotroneo et al. [64], which analyze metrics at guest- and hypervisor- level through machine
learning and statistical techniques to detect performance issues at run-time, and NFVPerf [65],
which inspect the VM-to-VM traffic to infer potential bottlenecks affecting the performance of a
network function. Once performance issues are detected, this information can be conveyed to
NFV orchestration solutions, such as the UNIFY framework [66, 67] to perform load balancing
and elastic scaling of VNFs. These solutions are useful to pinpoint the reliability and perfor-
mance problems, and to reconfigure the VNFs to address them. However, these solutions can
take a significant amount of time (up to tens of minutes) to recover from overloads. Therefore,
they need to be complemented by mechanisms to protect in the short-term the VNFs from the
traffic in excess, such as the overload control solutions investigated in this paper.

Traffic throttling is a typical overload control approach used in many IT and telecom systems.
A complete survey of these throttling solutions is beyond the scope of this paper; other survey
papers, such as the one by Hong et al. [11], present a detailed overview of such overload control
schemes. A representative example is represented by the adaptive overload control approach
by Welsh et al. [9], which uses a token bucket and a closed control loop to dynamically tune
the traffic according to the service latency. This approach has also been implemented in the
Clearwater NFV IMS that we analyzed in this paper. Other throttling algorithms adopted in the
context of carrier-grade telecom switches have been analyzed by Kasera et al. [8]: the Random
Early Discard (RED [68]) algorithm throttles traffic according to the request queue size, while
the Occupancy algorithm ensures a target CPU utilization by throttling the traffic according to
the CPU utilization and the rate of accepted calls. Traffic throttling mechanisms and algorithms
have also been recently ported in the context of NFV systems. In particular, NFV-Throttle [30]
provides deployment strategies for both NFVIaaS and VNFaaS, and adopts a combination of
closed-loop algorithms at different granularity levels (guest-, host-, and network-level traffic
throttling).

A limitation of these existing approaches is that they do not consider the subtleties of overload
conditions caused by physical CPU contention, which have different implications than overloads
due to workload peaks. Therefore, in this paper, we investigated the interplay between physical
CPU contention and overload control algorithms, and we proposed a technique for making
overload control algorithms applicable for the case of physical CPU contention.

6. Conclusion

In this paper, we analyzed the problem of overload conditions caused by physical CPU
contention. We pointed out that this form of overload conditions have a different behavior (e.g.,
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in terms of CPU utilization metrics) than the case of traffic spikes; and that the overload control
solutions for traffic spikes can be ineffective, or even counterproductive, in the case of physical
CPU contention.

Therefore, we extended the existing feedback control-based approach to also address physi-
cal CPU contention. A key requirement of this solution has been to support VNFs deployed on
IaaS, where the VNF has little visibility or control of the underlying infrastructure. Our solution
introduces a mechanism inside the VNF to occupy the CPU cycles freed by traffic throttling, in
order to protect the feedback control loop from the opportunistic behavior of the hypervisor
that may reclaim the CPU cycles. Moreover, we discussed CPU utilization metrics available in
IaaS infrastructures, and how these metrics should be interpreted in order to deal with physical
CPU contention. Our experiments on an NFV IMS system confirmed that the proposed solution
can avoid interferences between resource hogs and the overload control mechanisms.
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