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Abstract—Software failures are still a major concern in mission- and enterprise-critical contexts, despite significant efforts spent in 
software testing. In fact, while software testing is effective against easily-reproducible bugs (Bohrbugs), it is considerably less suitable 
for dealing with bugs that lead to hard-to-reproduce failures (Mandelbugs). On the positive side, the elusive nature of Mandelbugs 
provides opportunities for failure recovery, which are investigated in this paper. Based on real cases of Mandelbugs in eleven 
Information Technology (IT) systems running in production, the paper proposes a model that describes the recovery processes in IT 
systems. It then presents closed-form expressions, and a numerical analysis, of the mean time to recovery, and the software 
(un)availability. This analysis allows the designer to compare recovery strategies, as well as to determine the parameters having a high 
influence on the efficacy of recovery from failures caused by Mandelbugs. 

Index Terms –Mandelbugs, mean time to recovery, semi-Markov model, sensitivity analysis, software quality. 

ACRONYMS AND ABBREVIATIONS 
ATM Automated teller machine 

DCE Data communication equipment 

IT Information Technology 

JVM Java Virtual Machine 

MTTF Mean time to failure 

MTTR Mean time to recovery 

ODC Orthogonal Defect Classification 

OS Operating system 

SSUA Steady-state unavailability 

TCP Transmission Control Protocol 

NOTATION 
E[Dad] Mean time to automatic failure detection 

E[Dmd] Mean time for manual failure detection 

E[Ddg] Mean time for failure diagnosis 

E[Drs] Mean time for restart of software component or service 



	
  

	
  

E[Drb] Mean time for reboot of hardware server or virtual machine 

E[Drc] Mean time for reconfiguration of software component or service 

E[Dhf] Mean time to carry out hot-fix 

E[Dbf] Mean time to carry out bug-fix 

pad Probability of automatic failure detection 

pi Probability that a failure is caused by the bug type i 

p4hf Probability of correct hot-fix 

dij Probability of diagnosing the bug type j, given a bug type i 

 

	
  

I. INTRODUCTION 
Reliability is a key quality attribute of Information Technology (IT) software systems; and weeks, or even months, are spent in the 
functional, integration, and performance testing of mission- and enterprise-critical applications [1]. Despite these efforts, a 
number of bugs remain in the software released to users, and result in IT software failures. Such failures affect end users and 
operations personnel, leading to prolonged outages, increased maintenance costs, and a low perceived quality: the recent issues 
with the HealthCare.gov portal [2], and several accidents in mission-critical systems [3], are examples of how severe the 
consequences of IT software failures can be. 

For these reasons, recent research [4], [5], [6], [7] investigated the nature of software failures, and countermeasures against 
them. The authors found that bugs can be classified into two categories: Bohrbugs, and Mandelbugs. A Bohrbug is a fault that is 
easy to isolate, and whose manifestation is consistent under a well-defined set of conditions. Once a Bohrbug has caused a failure, 
it is thus a relatively simple task to track it down in the software code, and to remove it. In contrast, the behavior of a Mandelbug 
may appear non-deterministic, because the same set of input data seems to make it cause a failure at some times, but not at others. 
Therefore, failures caused by Mandelbugs are usually difficult to reproduce. These characteristics of a Mandelbug may be traced 
back to the complexity of its activation or error propagation or both. One possible cause can be a time lag between the fault 
activation and the failure occurrence. Another possible cause can be the influence of indirect factors, such as the interactions of 
the software application in which the Mandelbug is located with its system-internal environment (hardware, operating system, or 
other applications), the timing of inputs and operations (relative to each other), and the sequencing of inputs and operations. A 
race condition [8] is a typical example for a problem caused by a Mandelbug. Concurrent programs, which are currently 
developed at a high rate due to the advent of multi-core servers and distributed architectures, are highly prone to containing 
Mandelbugs [9], [10].  

While Bohrbugs can be effectively counteracted through testing and debugging, it is a daunting task to find and remove 
Mandelbugs because of their elusive nature. Of course, once a Mandelbug has been understood, it can be fixed in the code. 
However, for a failure caused by a Mandelbug, it is usually difficult to determine what is causing the failure.  For instance, to deal 
with a race condition, a developer should first identify the sequencing of concurrent processes that cause the race, and then fix it 
through the use of proper sequencing or locking techniques.  

On the positive side, the elusive nature of Mandelbugs provides opportunities for fault-tolerance strategies: as the conditions 
that trigger Mandelbugs (often related to event timing or to the environment) are volatile, theses bugs usually do not manifest 
again after restarting the failed system or component, and retrying the failed operation a second time (e.g., when the environment 
is slightly different) [6], [11], [12], [13], [14]. For instance, retrying a failed operation will succeed with a high probability in the 
case of a race condition, because the process scheduling by the operating system (OS) is likely to be different during the second 
execution. Other kinds of failures can be tolerated by rebooting the failed machine, where the reboot cleans up erroneous data that 
were corrupted by a Mandelbug, or by reconfiguring the system with different parameter settings, such as timeouts and size of 
buffers. IT system designers know from experience that they can exploit this kind of environmental diversity to quickly recover 
from software failures, thus improving the availability of their systems in a cost-effective way, without resorting to costly design 
diversity, or to fixing the Mandelbug which caused the failure. By contrast, restarting, rebooting, or reconfiguring a system will 
not succeed against Bohrbugs, because these bugs will again produce a failure when the same input data are submitted to the 
system for a second time [6]. 

This paper presents an analytic model for evaluating and comparing recovery strategies in IT systems, by taking into account 
the different nature of Mandelbugs and Bohrbugs. The interest in building and analyzing such models is threefold. First, we obtain 
a systematic understanding of how IT systems behave just by composing the model. Second, we get to derive measures of interest 
out of the model, such as the mean time to recovery, and steady-state software (un)availability. Third, and most importantly, the 



	
  

	
  

model allows us to (i) compare the relative benefits of different recovery actions, and of recovery strategies based on these 
actions; and (ii) find recovery bottlenecks so as to be able to pinpoint the most critical system parameters for improving the mean 
time to recovery, through numerical and parametric sensitivity analysis. We deliberately designed a model that can easily be 
understood, configured, and used by IT practitioners; and we strived to make realistic assumptions about IT systems and failure 
recovery strategies. The main contributions of this paper include concrete examples of Mandelbugs found in real IT systems, a 
detailed model of recovery from failures due to such bugs, and closed-form solutions of the mean time to recover from them, as 
well as the resulting software (un)availability.  

This paper is organized as follows. In Section II, we discuss related work in the area of bug analysis and analytic modeling. 
Section III presents several examples of Mandelbugs that have been found in eleven IT systems during operations, as well as a 
classification of the Mandelbugs and the recovery actions taken. In Section IV, we then develop an analytic model for recovery 
from failures caused by Mandelbugs, based on the insight gained in the previous section. The mean time to recover implied by 
this model is derived in Section V, and a sensitivity analysis is carried out. Finally, Section VI concludes the paper. 

II. RELATED WORK 
Software bug analysis has been a common theme in a variety of IT project implementations. Its main goal has been to reduce 

the impact and costs of bugs in software development projects, by avoiding the introduction of bugs, and by improving bug 
removal in the early stages of development. These analyses resulted in guidelines and practices ranging from test case design to 
root cause analysis, checklists, as well as programming and debugging practices. Among the many studies on bug analysis 
presented in the past, the following studies and their applications are worthy of note.  

• Basili and Perricone [15] classified software fault types into initialization, control structure, interface, data, and 
computation faults; and further divided those into omission, and commission faults; obtained their frequency during 
software development; and pointed out their relationships with a number of factors such as code complexity (e.g., 
cyclomatic complexity), code reuse, and developers’ experience. 

• Perry and Evangelist [16] focused their analysis on interface faults (i.e., faults associated with structures outside the 
module’s local environment, but which the module used), as they represent a significant part of faults in large 
systems. They classified the interface faults of a real-time system in a detailed way (e.g., disagreements on module’s 
functionalities, misuse of interfaces, violation of data constraints), and provided suggestions to mitigate each category 
of interface faults, including the improvement of the training of inexperienced developers, and of design and 
verification activities. 

• Orthogonal Defect Classification (ODC), proposed by Chillarege et al. [17], is a classification scheme for obtaining 
insights into the development process from the distribution of defect attributes. Attributes include the defect type, 
which reflects the fix made by the programmer. The definition of defect types is based on the cause-effect 
relationship between the defect and the development phase in which it originated, enabling the identification of the 
stages of the process that require more attention: for example, an excessive number of Function defects (that is, 
missing or incorrect functionalities of the system) indicates that the high-level design phase should be improved. 

• Several books and technical papers from software practitioners [18], [19], [20], [21] surveyed common bugs 
occurring in the coding phase (e.g., syntactic and semantic faults due to misunderstandings of programming language 
constructs), and suggested programming practices to prevent them. 

In this paper, we utilize the classification of bugs into Mandelbugs (and their antonym, Bohrbugs) as in Grottke and Trivedi 
[5], [6], [7]. This classification is related to the non-reproducibility of bugs due to the transient nature of failures caused by them. 
In his seminal work, Gray [22] observed that such a behavior, once attributed to hardware faults [23], [24], was also prevalent 
among software faults. He even hypothesized that most software failures occurring in mature, high-availability systems are 
transient, as rigorous testing activities and years of production usage removes most bugs except those related to complex 
conditions (such as race conditions, overloads, and device faults), which manifest themselves at (apparently) random times. Such 
bugs are thus difficult to reproduce and to debug by developers [12]. This transient behavior is caused by the subtle relationships 
between the bugs and the program’s environment, such as the timing of events, and the state of OS resources. 

To account for these aspects, Grottke and Trivedi [5], [6], [7] defined Mandelbug as a bug where either (i) the propagation of 
the error (i.e., the incorrect internal state of the running system) generated by the bug involves several error states or several 
subsystems or both before turning into a failure (i.e., it is not simply reproducible by repeating only the latest events and inputs 
that occurred just before the failure), or (ii) the occurrence of a failure is influenced by indirect, difficult to control factors, such as 
the program’s environment (e.g., the OS, other concurrently executing programs, or the hardware), the timing of inputs and 
operations (relative to each other), and the sequencing of inputs and operations. If one of these two conditions holds, then failures 
caused by the bug are typically difficult to reproduce. This classification scheme has been adopted and validated in several studies 
(discussed below), and has been refined over time by considering subtypes of Mandelbugs [25]. 

Differing from the bug classification studies mentioned above, the Mandelbugs-Bohrbugs classification has important 
implications on the design of fault-tolerant architectures, as discussed in the introduction. Therefore, recent research studies have 
focused on understanding the different types of Mandelbugs, on proposing and evaluating techniques and strategies to tolerate 



	
  

	
  

failures caused by them, and on investigating the relationships between the type and the domain of a software system and the 
occurrence of Mandelbugs.  

• Huang et al. [26] observed that a special type of Mandelbug, affecting continuously-running applications and called 
aging-related (Mandel)bug by Grottke et al. [7], can be mitigated by a proactive method that is applied before the 
occurrence of a failure, namely software rejuvenation. This is the case, for instance, of bugs causing memory leaks 
and bloating, which lead to the gradual exhaustion of memory, and to a sudden stop of the application. In this 
scenario, performing a restart of the application at a convenient time (e.g., during a scheduled maintenance period) 
frees the leaked memory, and potentially avoids the occurrence of a failure. Alonso et al. [33] presented an 
experimental comparison of software rejuvenation strategies, and Cotroneo et al. [27] conducted a comprehensive 
survey of software aging and rejuvenation studies. Aging-related bugs found in open-source software were analyzed 
in [28] and [29]. 

• Based on the definitions due to Grottke and Trivedi [6], subsequent studies analyzed the occurrence of Mandelbugs in 
real systems, by classifying and analyzing Mandelbugs found in the field and during pre-release testing. The analysis 
of software anomalies in NASA missions conducted by Grottke et al. [7] revealed that, although Bohrbugs 
represented the majority of faults, Mandelbugs accounted for a substantial share, in the 20% to 40% range. Moreover, 
these authors showed that the proportions of Bohrbugs (and, consequently, of Mandelbugs) for different missions 
seem to stabilize around almost the same value. They also found that aging-related bugs represent a non-negligible 
share of faults, even in long-running mission-critical software (4.4%). More recent studies analyzed the fraction of 
Mandelbugs in systems of different types, and from different domains, including a large, distributed defense system 
[30]; the Linux, MySQL, Apache HTTPD, and Apache AXIS open-source projects [25]; and two enterprise products 
[31]. Even if these studies made similar conclusions about the general trends of Mandelbugs and Bohrbugs, they 
pointed out that the proportion of Mandelbugs is influenced by the domain and the type of software, where embedded 
and operating system software tend to exhibit a higher proportion of Mandelbugs, while this proportion is lower for 
middleware and enterprise software. The stage of the software lifecycle also has an influence on the proportion of 
Mandelbugs, as software in the pre-release testing stage tends to exhibit a higher proportion of Bohrbugs than 
software in the post-release stage. Finally, empirical evidence [7], [25] showed that Bohrbugs and Mandelbugs are 
perceived by users and developers as similarly important according to a severity scale, while Chillarege [32] pointed 
out that Mandelbugs impact different product areas than Bohrbugs; in particular, Mandelbugs significantly affect the 
perceived availability (i.e., continuity of service), but they do not seem to have an impact with respect to the 
functional requirements of the system. 

• Among the several fault tolerance techniques that have been proposed for tolerating failures caused by Mandelbugs, 
we mention the microreboot [11], which reacts to failures by restarting selected sub-components of an application, 
thus avoiding a full application restart, and reducing the time to recovery; NT-SwiFT [13], which provides several 
tools for developing fault-tolerant cluster systems, including tools for detecting process and nodes failures, and for 
the checkpoint and rollback of failed processes; and Rx [14], which re-executes a failed program under a modified 
environment (e.g., by changing the timing of asynchronous events, the thread scheduling, and the allocation of data 
structures in heap memory) to increase the likelihood of masking Mandelbugs. Because re-execution in a different 
environment is used in all of the above, we refer to these approaches as environmental diversity in contrast with the 
classical software fault tolerance techniques based on design diversity. 

These studies pointed out the importance of Mandelbugs in mission-critical systems, highlighting that a large number of 
Mandelbugs affect such systems, and that availability and fault tolerance can be significantly improved by adopting fault recovery 
strategies against failures caused by Mandelbugs. 

Many models for tuning software rejuvenation to counteract the effects of aging-related bugs have been published in [26], 
[34], [35], [36], [37], [38], and [39]. But only a few studies have been conducted on the modeling of the more general class of 
Mandelbugs, and on the analysis of related recovery strategies. Models for system availability have been proposed in the literature 
for specific instances of platforms. Garg et al. [40] proposed analytical models of cold and warm replication schemes provided by 
the SwiFT and DOORS fault-tolerance technologies, and derived closed-form expressions for availability, throughput, and 
probability of request loss in the presence of transient software failures. Trivedi et al. [41] analyzed a Session Initiation Protocol 
(SIP) for IBM Websphere; the paper took into account non-aging-related Mandelbugs, and recovery from failures due to such 
bugs. Grottke and Trivedi [42] carried out a detailed model-based study of systems that can be recovered using various 
techniques.  

The recovery model presented in this paper is inspired by that in [41] and [42]. While the model in [42] features a very general 
topology, the model presented in this paper is tailored to the specifics of recovery from Mandelbugs in IT systems. Compared to 
our preliminary work [43], we provide an enhanced version of the recovery model. The new model uses a customized recovery 
strategy by tuning failure detection, failure diagnosis, and recovery actions in the model, thus making it useful for comparing 
alternative recovery strategies. Moreover, the new model is more suitable for including information from field failure data on 
Mandelbugs (in terms of type and frequency), thus making it easier to analyze recovery strategies under realistic scenarios. We 



	
  

	
  

use the model to compare three recovery strategies in the presence of Mandelbugs, and provide insights about the effectiveness of 
recovery strategies and about the most critical factors for effective recovery. The analysis is performed by taking into account 
field failure data about Mandelbugs described in [25], from which we derive three realistic scenarios for the analysis of recovery 
strategies. Combining recovery strategies with software rejuvenation is not considered in this paper, and is left for future research. 

III. ANALYSIS OF MANDELBUGS IN REAL IT SYSTEMS 
For this study, we considered failures due to Mandelbugs that occurred in eleven IT systems. We analyzed Mandelbugs that 

were not found during testing, and that affected the IT systems in production even after several months after their release. Two of 
the authors of this paper, who were involved in the review and maintenance of these IT systems, had first-hand access to design 
documents, test suites, and data about IT system failures and bugs. With the support of the IT staff, we analyzed the processes that 
they adopted for failure detection, recovery, and fix. 

The eleven IT systems span several domains, and include a stock exchange system, a foreign exchange trading system, a 
government’s tax information system, a product for front office order routing, and an online quizzing application in an IT 
organization. The remaining projects involve a large bank, a clearing corporation, two brokerages, a large pharmacy, and a large 
telecom vendor. Except for the quizzing application, these IT systems are critical projects for the core business of their companies. 
All the IT systems had up to thousands of concurrent users, and were subject to peak loads. In almost all cases, no unplanned 
downtime was allowed, because it would result in substantial business losses. 

Our analysis was focused on the technical aspects of the IT failures, and was aimed at identifying root causes and the actual 
recovery actions adopted by the IT operations staff. In the following subsections, we first provide examples of Mandelbugs, along 
with the respective recovery actions taken. We then provide a classification of the Mandelbugs found by our analysis, and the 
recovery methods employed to deal with them. 

A. Examples of Mandelbugs 
The following six examples are Mandelbugs found in our analysis, and are representative of the failures and recovery actions 

performed by the IT operations staff.  

• Bug #1: Out-of-sync request elaboration in a stock exchange system. 
- System description: The system managed incoming requests from traders for entering, modifying, and cancelling 

orders. Requests were processed by a pipeline of two stages. First, requests were queued for validation, and a 
confirmation was sent to the user if the request was valid (e.g., the requested order was a valid one). Second, valid 
requests were then queued for processing. 

- Bug description and manifestation: The system was affected by a timing issue involving requests for order entry and 
requests for modification of the same order. The root cause of the failure was that new orders were inserted into an 
order book only at the end of the pipeline, instead of inserting them just after validation. Thus, if the order entry 
request had been validated but it was still in the processing queue, then modification requests for that order were 
erroneously rejected, even if the requested order had already been validated. The failure occurred sporadically, for 
instance under rare overload conditions, and manifested itself to traders as a failure of modification requests. 

- Recovery action: The failure could be recovered by re-issuing a modification request after a few seconds. 

• Bug #2: Fragmentation of a large logistics company database. 
- System description: The system had a primary database for on-line transaction processing, and an archival database 

for old data. A nightly batch job moved data from the primary to the archival database in order to improve 
performance. To avoid unavailability, the data was archived without shutting down the database, by using delete 
queries on the primary database. 

- Bug description and manifestation: The delete queries performed at run-time caused the fragmentation of the 
primary database, thus affecting its performance. In some cases, the archival job did not complete on time, and 
interfered with jobs executed in the morning, which updated the status of shipments. 

- Recovery action: The system recovered from the performance degradation after a daily coalescence of database 
indexes was carried out to defragment them. 

• Bug #3: Front-end screen unresponsiveness in a large telecommunications system. 
- System description: Users accessed the system through front-end screens. When a user initiated a new session, a small 

temporary file was created on a server. 
- Bug description and manifestation: The temporary file was never cleaned up at the end of a session, causing the 

accumulation of thousands of temporary files in the file system of the server. Therefore, the server became slower, 
and front-end screens started to freeze at random times. Screen freezes kept occurring even after a reboot of the 
server, at an increasing frequency. 



	
  

	
  

- Recovery action: Developers introduced a background utility to periodically move temporary files away from the 
server, and to delete them later. 

• Bug #4: Memory exhaustion in a large government tax information system. 
- System description: The system was adopted by companies to submit income records of their employees. Users 

uploaded files with records to a Java Web application. 
- Bug description and manifestation: The Java virtual machine (JVM) running the application crashed due to the 

exhaustion of JVM heap memory. As the heap memory consumption increases over time, the probability of crash 
increased as well, and a crash occurred when a company uploaded a large file.  

- Recovery action: System administrators had to increase the JVM heap size to allow the upload of large files. 

• Bug #5: Crash of an X.25 data communication equipment (DCE). 
- System description: An X.25 DCE is a network interface to connect to X.25 networks. In this case, the DCE was 

produced by a large telecom equipment vendor, and was based on a general-purpose CPU running a proprietary real-
time OS. The DCE was updated with a new software feature, and this feature was subject to high packet traffic. 

- Bug description and manifestation: The software running on the DCE crashed under certain load conditions that 
invoked the new feature many times. The new feature used a function for copying memory areas (similar to the 
memcpy() function in the C language), but was copying twice the amount of data necessary to be copied. As a result, 
a shared linked list was getting corrupted. There was no immediate segmentation fault as the process address space 
was not violated. A failure occurred when another unrelated process tried to access this list, causing a DCE crash. 

- Recovery action: The failure could be recovered by re-initializing the X.25 DCE, and was eliminated in production 
once the root cause was determined. 

• Bug #6: Network communication failure of automated teller machines (ATMs). 
- System description: An ATM connected to a server using an X.25 network. The X.25 DCE interface exchanged 

acknowledgements with the server to control the data flow. 
- Bug description and manifestation: The DCE did not correctly send acknowledgements when a bit variable was 

erroneously set to one, causing a communication failure. The failure occurred randomly depending on the state of 
memory, because the bit variable was not explicitly initialized to zero by the ATM software. 

- Recovery action: The failure could be recovered by restarting the ATM software, and was ultimately fixed by 
initializing the bit variable. 

 

B. Classification of Mandelbugs 
In our analysis of the eleven IT projects, we found a total of 38 Mandelbugs. We recognized that these Mandelbugs can be 

grouped into classes, which are summarized in Table I. An example of a Lag-type Mandelbug is represented by Bug #1 described 
above, where a timing issue caused an inconsistent state of the pipeline, and the failed request could be performed successfully 
after a few retries. Bugs #2 through #5 are examples of aging-related Mandelbugs, where Bug #2 and Bug #3 were dealt with by 
cleaning up system resources, while Bug #4 required a reconfiguration of a system parameter to resume operations. Bug #5 and 
Bug #6 were resolved after the root cause had been identified, but only after an initial downtime. 

 
Table I 

Classification of Mandelbugs (extended from Table I of [43]) 
Type of Mandelbugs Explanation No. of Bugs 

Aging: 
Failure rate increases or performance degrades over time, e.g., due to resources being 
depleted. 

 

• Memory Leak Memory allocations and objects not released even if not required. 3 

• Cursor Leak Open database cursors not closed. 2 

• TCP Aging Degraded performance after a certain number of Transmission Control Protocol (TCP) 
connections have been opened. 

1 

• Numeric Overflow Numeric quantity like a sequence number overflowing. 1 

• Fragmentation Performance degradation due to creation of holes in database files with frequent inserts and 
data purging. 

1 

• Memory Trampler Shared data structures corrupted by a participant process. 1 



	
  

	
  

• Network Equipment Network switch or router malfunctions such as randomly garbling some bits or sending 
duplicate packets occur at an increasing rate. 

2 

Race Condition Sequence of access changes due to concurrency and no proper synchronization primitives. 5 

Lag 
The state of a given component is out of sync with another for a small period of time, usually 
because of asynchronous processing. 

7 

Overload 
Component failure or very poor performance due to a surge in workload for a small period of 
time. 

2 

Limit 
Failure when a limit is reached such as the maximum amount of memory allocated or when 
load increases beyond a certain configured threshold without aging. 

5 

Timeout 
A transaction or a session or a TCP connection times out causing a user request to be 
rejected. 

4 

Abort 
Normal operations resume when a given request being processed is aborted. Reason for the 
request to hold up system processing may not be known. 

2 

Retry Reason for failure unknown, but retrying the operation succeeds. 1 

Uninitialized Bit Malfunction due to assumption that un-initialized bit is set to zero. 1 

 

C. Recovery methods 
From the descriptions of the 38 Mandelbugs analyzed, we identified the recovery actions adopted to handle them. These 

recovery actions can be grouped into a few categories, which are representative of actions taken by IT operations staff to reduce 
unplanned downtime in business-critical applications. In our experience, these recovery actions are also adopted outside of these 
eleven IT systems. The four approaches most frequently employed to recover a system in the wake of a failure caused by 
Mandelbugs are as follows1.  

• Restart: This recovery action restarts a software component or service, which may require a few seconds, and which can 
only affect the transactions that the restarted component was processing. Moreover, this recovery action can be automated 
using IT management systems [44], [45]. In our experience, most failures due to aging- and non-aging-related 
Mandelbugs can be recovered with a software restart. 

• Reboot: This recovery action involves the reboot of a hardware or virtual machine, and can require a few minutes to 
complete. This action is necessary when the failure involves system-wide resources (e.g., a shared data structure), for 
which a simple component or service restart does not suffice. 

• Reconfigure: This recovery action changes a parameter of the hardware, virtual machine, or application before 
performing a restart or a reboot. The change of parameters often increases limits for system resources or timeout values, 
or involves a cleanup of system resources to improve performance. The Abort-type Mandelbug listed in Table I 
constitutes a special case: here, reconfiguration involves the removal of the currently-processed request. Reconfiguration 
can require up to several minutes, depending on whether the parameter tuning is done at the application (e.g., increasing 
timeouts of a software service), or at the system level (e.g., increasing memory and storage of a virtual machine, or 
migrating a service to another physical machine with a different hardware), and whether the recovery is supervised by 
automated software management tools. 

• Hot-fix: A hot-fix is a minor change to the source code of the IT system in production, or to the system software (e.g., an 
update of the OS, of the run-time system, and of library code). A hot-fix is created and applied in a short time (up to a few 
hours) without extensive testing of the change. The former type of hot-fix in the source code of the IT system can remove 
the root cause of a failure (e.g., by fixing a bug), or can avoid its effects (e.g., by retrying failing operations); the latter 
kind of hot-fix in system software can also mitigate the effects of Mandelbugs (e.g., by introducing periodic garbage 
collection of OS resources). 

In the case of failures that were not resolved by any of these four methods, a regular bug-fixing process with thorough testing 
and code debugging was needed to avoid the failures. Bug-fixing requires a few days, depending on the complexity of the bug 
underlying the failure. The bug-fix is included in the next software release, along with other changes and new features.	
  

IV. MANDELBUG RECOVERY MODEL 
In our recovery model, we consider an IT system in production, which is comprised of a set of software components 

(application or platform) deployed on underlying hardware or virtual machine technology. It is assumed that (i) software 
components can be restarted, (ii) software components can be reconfigured with different parameter settings such as buffer pool 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For the retry type of bug, the user behavior will come back to normal after a few retries, and nothing needs to be done to the IT 
system. 



	
  

	
  

sizes or sort area sizes in database systems, and (iii) a server can be rebooted either automatically or manually. These assumptions 
are very realistic, and form the basis of the recovery model. 

We depict the failure recovery behavior of an IT system during its operational phase by means of a flowchart, as shown in Fig. 
1, and then explain the flowchart. The flowchart depicts the actions taken for recovery after a failure has occurred. The failure 
may either be detected automatically by the system (which we refer to as automatic detection), usually with enterprise system 
management tools, or it may be detected manually (which we refer to as manual detection). Detection is then followed by an 
investigation about the problem (which we refer to as diagnosis); and, finally, by one or more actions that are selected by 
diagnosis to recover from the failure (which we refer to as recovery actions). Depending on the type of bug that caused the failure 
(Bohrbug or Mandelbug), the recovery process follows one of four different branches of our model. The model distinguishes 
between four types of bugs, as follows.  

• Restart-maskable Mandelbugs: Mandelbugs that can be masked by restarting the software component or service 
affected by the failure. Other recovery actions, such as reconfiguring or rebooting, will also mask the fault, because they 
involve a restart. 

• Reboot-maskable Mandelbugs: Mandelbugs that require a hardware or virtual machine reboot to avoid the re-occurrence 
of failure. 

• Reconf-maskable Mandelbugs: Mandelbugs that require a parameter tuning to avoid the re-occurrence of failure; in this 
case, a simple restart or reboot will not suffice. 

• Bohrbugs, and other types of Mandelbugs: Bugs that cannot be masked by retrying the failed operation after a restart, 
reboot, or reconfiguration. They include Bohrbugs, which consistently manifest themselves when the operation is retried, 
and Mandelbugs influenced by environmental conditions that still persist after a restart, reboot, or reconfiguration. These 
bugs require an in-depth investigation of the issue, and a human intervention to remove the root cause of the failure, such 
as a bug-fix. 

The model includes a distinct branch for each of these four types of bugs. In each branch, the recovery actions described in 
Subsection III.C are attempted (according to some recovery strategy, as discussed later in this section); and, depending on the type 
of bug underlying the failure, these recovery actions lead to different outcomes. For instance, in the case of restart-maskable 
Mandelbugs (leftmost nodes in the flowchart), every recovery action eventually brings the system into a correct state, because 
every action (restart, reboot, reconfiguration, fix) suffices to mask this kind of bug. In the case of Bohrbugs (rightmost nodes in 
the flowchart), only a fix can mask the failure, while the other recovery actions (restart, reboot, reconfiguration) are not beneficial 
for this type of bug, and should eventually be followed by a fix by developers. 

Note that, in the cases of restart, reboot, or reconfiguration-maskable Mandelbugs, a hot-fix suffices to mask a failure, because 
a hot-fix should include a restart or reboot to apply the change, along with a change of parameters in the code for reconfigurations 
(such as resource thresholds and timeouts). A hot-fix thus includes a reconfiguration or a reboot to re-initialize the system and 
mask a failure. Instead, in the case of Bohrbugs, there is a chance that a hot-fix is not enough to correct the bug, and that the 
failure still persists (in the other cases, the restart, reboot, or reconfiguration performed by the hot-fix was enough to assure that 
the failure would not persist, even if the hot-fix is not able to remove the root cause of the problem). Thus, in the case of 
Bohrbugs, a regular bug-fix may need to be developed, tested, and deployed, which may require several days of work. 

Before the recovery actions, we introduce a diagnosis phase, in which either developers or automated tools select a recovery 
action among restart, reconfiguration, reboot, or fix. Then, depending on the bug type, the action can successfully bring the 
system to a correct state, or the recovery action may not be successful, and the system may still exhibit a failure. In the latter case, 
we assume that another recovery action is attempted, by performing another action with both a higher duration and a higher 
likelihood to avoid a failure (e.g., if a restart fails, then a reboot is attempted; rebooting takes more time, but recovers from 
failures due to both restart-maskable and reboot-maskable Mandelbugs). 



	
  

	
  

 
Fig. 1. Flowchart of Recovery after a Failure. 

 

The flowchart allows us to model the different strategies that can be adopted in IT organizations to deal with software failures. 
A first strategy (which can be referred to as diagnosis-based recovery) is to investigate the failure causes, for instance by looking 
at application and OS logs, to diagnose the root cause of the failure, and to perform a recovery action according to diagnosis. The 
diagnosis phase can include the time to collect and analyze failure data, and to decide and approve a recovery action. It is 
important to note that, in our model, the underlying bug type is not known before diagnosis and recovery take place, and that it is 
possible that diagnosis does not select the recovery action best suited to counteract the failure. In other words, there can be cases 
in which diagnosis selects a recovery action that does not succeed, while in other cases the selected action may require more time 
than other, equally effective actions. 

The diagnosis process (including the selection of correct and incorrect recovery actions) is modeled by the probabilities dij, 
which represent the conditional probability of selecting the j-th recovery action given that the failure was caused by the i-th type 
of bug, where i={ 1=restart-maskable Mandelbug, 2=reboot-maskable Mandelbug, 3=reconf-maskable Mandelbug, 4=Bohrbug } 
represents the type of bug underlying the failure, and j={ 1=restart, 2=reboot, 3=reconfigure, 4=hot-fix } represents the selected 



	
  

	
  

recovery action. For example, consider i=2 (i.e., a reboot-maskable Mandelbug caused the failure): the diagnosis will select the 
optimal recovery action (i.e., a reboot, represented by j=2) with probability d22. With probability d21, the diagnosis will select a 
restart, which will not recover from the failure, and will need to be followed by a reboot. And with probability d23+d24, the 
diagnosis will select an action that recovers from the failure, but at an increased cost compared to rebooting. 

This recovery strategy can be further divided into two strategies: manual-diagnosis-based recovery, and automated-diagnosis-
based recovery. In the case of manual diagnosis, a developer or administrator manually examines failure evidence, and then 
selects the most appropriate recovery technique once the type of bug underlying the failure has been diagnosed. This strategy 
requires some time to perform recovery, because the failure process is investigated before starting recovery. However, given that 
the diagnosis is supported by careful analysis and failure evidence, the probability of incorrect diagnosis is negligible. 

In the case of automated diagnosis, a management tool automates the collection and analysis of failure evidence (e.g., logs), 
and the decision of the recovery action to perform [46]. This approach is supported by IT management systems, such as IBM 
Tivoli [45], and HP Business Service Management software [44], which provide extensive monitoring for problem determination, 
and policy-based automation and recovery. It is reasonable to assume that this recovery strategy is quicker than manual diagnosis, 
but that recovery actions can sometimes be erroneous (i.e., for some failures, the management tool may not select an effective 
recovery action, in the case that a policy was not provided by the system administrator for that type of failure). 

Another possible strategy, referred to as escalated recovery, is to first attempt a restart every time a failure occurs, then to 
perform a reboot if restart does not succeed, then a reconfiguration if reboot does not succeed, and finally to debug the failure and 
develop a fix only when every other recovery action fails. With the escalated recovery strategy, there is no diagnosis phase: the 
effects and the root cause of the failure are not analyzed (thus disregarding the nature of the underlying bug), and this strategy 
deterministically selects the same sequence of recovery actions (restart, reboot, reconfigure, fix) at every failure.

The proposed flowchart can be adopted to derive a semi-Markov model [47] for the time to recovery from a failure, which is 
depicted in Fig. 2. Recovery actions can have a generally-distributed duration, with the only assumption that its mean value 
should be finite. The model represents the distribution of the time to recovery from a failure for a generic IT system. We adopted 
this model to derive a closed-form expression of the mean time to recovery (MTTR), which can be used to also compute the 
steady-state availability of a system. It is important to note that the model does not take into account the processing lost due to 
failures, and does not include Mandelbugs (such as the Retry type) for which a retry on the part of the user will make the failure 
disappear with a high probability; the model should not be interpreted from the user’s viewpoint, but from the system’s viewpoint. 
It must also be noted that the model is focused on failure recovery strategies, rather than failure prevention strategies, such as 
software rejuvenation; while the model takes into account aging-related failures, the interactions between failure recovery and 
software rejuvenation would make the model significantly more complex, shifting it from its main focus, and are thus left for 
future research. 

 
Figure 2. Time to Recovery Distribution of a Failure. 
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An important aspect of the model is that the proportion of bug types remains the same across failures. The two factors that 
may contribute to variations of the bug type proportions are (i) fixes that remove bugs underlying failures; and (ii) new releases of 
the software, which can contribute to new bugs. We model this phenomenon with proportions that do not vary with new releases. 
This assumption is supported by field failure studies [7], [25], which have observed that the proportion between Mandelbugs and 
Bohrbugs stabilizes around a constant value once a project has matured, due to the gradual removal of old bugs during the project 
lifecycle on the one hand, and the introduction of new bugs with new releases of the project on the other hand. While this choice 
may not be fully accurate for some systems, this being one of the first models dealing with the specifics of recovering from 
Mandelbugs, we wished to keep the model simple. Moreover, for large, complex systems, it would be reasonable to represent the 
model as one for steady-state operations that include software release management. 

From the time to recovery distribution diagram shown in Fig. 2, we obtain the following closed-form solution of MTTR.  

                  (1) 

  

V. MODEL ANALYSIS AND INFERENCES 
We adopt the proposed model to analyze and compare recovery strategies, and to evaluate trade-offs and key factors that 

impact on the effectiveness of failure recovery. Our analysis is organized according to the following research questions.  

1) Which recovery strategy is most effective? We analyze mean time to recovery and steady-state (un)availability in several 
scenarios, by considering different recovery strategies, namely (i) manual-diagnosis-based recovery, (ii) automated-diagnosis-
based recovery, and (iii) automated escalated recovery. Moreover, we perform the analysis on different types of systems with 
different bug proportions, including (i) high-complexity, low-level systems with a high percentage of Mandelbugs; (ii) 
intermediate-complexity systems; and (iii) lower-complexity systems with a high percentage of Bohrbugs. 

2) Which factors have the highest impact on failure recovery, and need to be optimized to improve availability? Because 
several factors are involved in failure recovery, as represented by the parameters and steps in the proposed flowchart, we are 
interested in identifying the ones that are most influential on recovery. Knowing them will enable developers to tune failure 
detection, diagnosis, and recovery actions; moreover, setting up automated recovery actions (such as reconfiguration) can have a 
cost, and increase the complexity of a system, so practitioners could be interested in analyzing the trade-off between the cost and 
the effectiveness of these actions. 

A. Model parameters 
In this study, we analyze the recovery model using parameters that were selected to appropriately reflect IT systems in 

operation. Most of the parameters can be set by developers and IT operations staff to reflect their real-life experience, such as the 
average time to perform a restart and to reboot (depending on OS, middleware, and virtual machine technologies adopted in the 
system), and the average time needed for failure detection (depending on user-defined parameters such as timeout values). 
Instead, it is difficult for developers and IT staff to estimate parameters related to the probability and types of failures, given that 
failures are relatively rare events, and that the amount of measured data on failures is often limited. Unfortunately, in the IT 
industry, there are no standard values available due to a lack of publications, and a lack of data sharing. Therefore, we set the 
model parameters on the basis of quantitative data from the scientific literature, when available, and on our experience with 
failure recovery in IT systems, including the eleven projects discussed in Section III. The model parameters are shown in Tables II 
through IV, and are discussed in the following in this section. An advantage of our recovery model, and of the MTTR analysis, is 
that it does not rely on the mean time to failure (MTTF) due to Mandelbugs, which would be difficult to estimate. We also point 
out that, even if parameters may vary across projects, the model proposed in this paper is generic, and it allows practitioners to 
easily tune its parameters according to their specific projects. 

An important aspect of our analysis is the proportion of the types of failures, because the effectiveness of a recovery action 
depends on the bug that caused a failure. Developers can obtain this kind of information by leveraging issue tracking and 
management tools (and other field failure data sources) for the system under analysis, or similar systems within the IT 
organization, from which developers can know which are the most common failures and their underlying root causes. In [25], we 
have presented an example of such an analysis based on problem reports, in which we examined Mandelbugs and Bohrbugs in 
popular open-source software projects that are often adopted in business-critical contexts. 
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Table II 
Explanations of Common Input Parameters and Their Values 

Parameter Explanation Value 

E[Dad] Mean time to automatic failure detection 30 seconds 

E[Dmd] Mean time for manual failure detection 5 minutes 

E[Drs] Mean time for restart of software component or service 10 seconds 

E[Drb] Mean time for reboot of hardware server or virtual machine 1 minute 

E[Drc] Mean time for reconfiguration of software component or service 5 minutes 

E[Dhf] Mean time to carry out hot-fix 30 minutes 

E[Dbf] Mean time to carry out bug-fix 1 day 

pad Probability of automatic failure detection 0.9 

p4hf Probability of correct hot-fix 0.9 

 

We base the parameters of the recovery model on our previous empirical analysis of bugs [25]. In that study, we performed an in-
depth analysis of the nature of bugs, including whether bugs were influenced by the timing or sequencing of inputs or operations, 
or by the environment, whether they involved resource leaks, etc. This information provided us with estimates of the relative 
proportions of Bohrbugs and of Mandelbugs in these projects. In particular, the empirical analysis showed that the presence of 
Mandelbugs is influenced by the size, the domain, and the technology of a given project [25]. We found (on the basis of the 
density of bugs per lines of code, of the software architecture, and of software complexity metrics) that three different scenarios 
are possible: 

• high-complexity software, with a significant share of Mandelbugs (~40.2%), affecting hardware- and OS-related software 
such as the Linux kernel and the MySQL database management system; 

• medium-complexity software, with ~17.7% Mandelbugs, such as the Apache HTTPD Server; and  

• low-complexity software, with a relatively lower percentage of Mandelbugs (~7.5%), such as the Apache AXIS project. 

Then, for each of these scenarios, we divided the proportion of Mandelbugs into three parts (respectively, the sub-proportions 
of restart-maskable, reboot-maskable, and reconf-maskable Mandelbugs). To this end, we analyzed the Mandelbugs in the eleven 
IT systems discussed in Section III, to identify how many Mandelbugs could be recovered using the three recovery actions 
(restart, reboot, and reconfiguration). From this analysis, we estimated the percentage of Mandelbugs that are restart-maskable, 
reboot-maskable, and reconf-maskable Mandelbugs. Table III summarizes the resulting proportions of bug types for each of the 
three scenarios. We observe a good proportion of cases where a simple restart suffices (usually true for several aging-related 
bugs), and a smaller proportion of bugs for which a reconfiguration is enough (like the overload, limit, timeout, and abort type of 
bugs), or which belong to the reboot category (true for some cases of aging, specially OS-related, and also true as a last resort 
before venturing out to a bug-fix). 

Table III 

Explanations of Input Parameters and Their Values for Three Complexity Scenarios 

Param Explanation 
High-complexity 

(share of Mandelbugs: 40.2%) 
Medium-complexity 

(share of Mandelbugs: 17.7%) 
Low-complexity 

(share of Mandelbugs: 7.5%) 

p1 
Probability of restart-
maskable Mandelbug 0.2644 0.1166 0.0496 

p2 
Probability of reconf-
maskable Mandelbug 0.0635 0.0280 0.0119 

p3 
Probability of reboot-
maskable Mandelbug 0.0740 0.0327 0.0139 

p4 Probability of Bohrbug 0.5981 0.8227 0.9246 



	
  

	
  

 

As for diagnosis, we selected model parameters to reflect the three recovery strategies discussed in Section IV. The parameters 
related to diagnosis, which are summarized in Table IV, were selected as follows.  

• Manual diagnosis-based recovery: In this case, the recovery is overseen by a human operator, who always selects the 
best recovery option (with a negligible probability of wrong diagnosis), while taking a longer time. For this strategy, the 
probability dij of selecting the j-th recovery action, given that the failure is caused by the i-th bug type, is dij=1 iff i=j (i.e., 
the selected recovery action j matches the bug type i), and dij =0 otherwise. For instance, for reboot-maskable bugs, d22=1, 
while d21=d23=d24=0. 

• Escalated recovery: In this case, a restart is always used as the first recovery action on the occurrence of a failure, 
regardless of the type of bug actually causing the failure. Thus, we have di1 =1 (i.e., the first recovery action, a restart, is 
always selected), and di2=di3=di4=0, for every bug type i. 

• Automated diagnosis-based recovery: In this case, an automated tool attempts to determine the best recovery action 
depending on the type of bug causing the failure. The diagnosis automatically selects a recovery action in a short time, but 
in some cases the selected recovery action may not be the optimal one (i.e., either the action is not sufficient to recover 
from the failure, thus requiring a new action to recover; or the action is more costly than the one that would have sufficed 
to recover from the failure). For this strategy, we assume that the diagnosis of failures is accurate, but not perfect; 
according to experimental data from a previous study on automated diagnosis techniques [46], the correct recovery action 
is selected in 95% of the cases. Thus, we have dij =0.95 iff i=j, and dij =0.05/3=0.016 otherwise (this latter value is chosen 
to ensure that di1+di2+di3+di4=1, for every bug type i).	
  

Table IV 
Explanations of Input Parameters and Their Values for Three Diagnosis Scenarios 

Param Explanation Manual 
diagnosis 

Escalated 
recovery 

Automated 
diagnosis 

E[Ddg] Mean time for failure diagnosis 30 minutes 1 second 1 second 

d11 probability of diagnosing restart, given a restart-maskable Mandelbug 1 1 0.95 

d12 probability of diagnosing reboot, given a restart-maskable Mandelbug 0 0 0.0167 

d13 probability of diagnosing reconfiguration, given a restart-maskable Mandelbug 0 0 0.0167 

d14 probability of diagnosing a hot-fix, given a restart-maskable Mandelbug 0 0 0.0167 

d21 probability of diagnosing restart, given a reboot-maskable Mandelbug 0 1 0.0167 

d22 probability of diagnosing reboot, given a reboot-maskable Mandelbug 1 0 0.95 

d23 probability of diagnosing reconfiguration, given a reboot-maskable Mandelbug 0 0 0.0167 

d24 probability of diagnosing a hot-fix, given a reboot-maskable Mandelbug 0 0 0.0167 

d31 probability of diagnosing restart, given a reconf-maskable Mandelbug 0 1 0.0167 

d32 probability of diagnosing reboot, given a reconf-maskable Mandelbug 0 0 0.0167 

d33 probability of diagnosing reconfiguration, given a reconf-maskable Mandelbug 1 0 0.95 

d34 probability of diagnosing a hot-fix, given a reconf-maskable Mandelbug 0 0 0.0167 

d41 probability of diagnosing restart, given a Bohrbug 0 1 0.0167 

d42 probability of diagnosing reboot, given a Bohrbug 0 0 0.0167 

d43 probability of diagnosing reconfiguration, given a Bohrbug 0 0 0.0167 

d44 probability of diagnosing a hot-fix, given a Bohrbug 1 0 0.95 



	
  

	
  

 
Table V 

Nine Cases Obtained from the Three Complexity Scenarios and the Three Diagnosis Scenarios 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 

Complexity scenario High High High Medium Medium Medium Low Low Low 

Diagnosis scenario  Manual 
diagnosis 

Escalated 
recovery 

Automated 
diagnosis 

Manual 
diagnosis 

Escalated 
recovery 

Automated 
diagnosis 

Manual 
diagnosis 

Escalated 
recovery 

Automated 
diagnosis 

 
 

Overall, the considered scenarios and recovery strategies lead to a total of nine cases: the combinations of three recovery 
strategies, and of three alternative bug type proportions. They are listed in Table V. 

The manual diagnosis can take a significant amount of time, even in business-critical systems. We have seen diagnosis times 
of up to 30 minutes before arriving at a conclusion of what needs to be done. The diagnosis in some cases includes a delay for 
gathering experts from system, application, and technology areas together. Instead, automated diagnosis is based on recovery 
policies, and can be completed in a matter of seconds. 

As for detection, the IT operations staff of business-critical systems must automate most of the failure detection and recovery 
procedures for all the known types of failures. Our conservative estimate (based on our experience with IT systems, as discussed 
in Section III, and on a previous experimental study [48]) is that 90% of the failures are detected automatically. Automatic failure 
detection would happen within seconds, using IT management tools that periodically check the system health. In the case that a 
failure is manually detected, the IT staff often notices failure symptoms by monitoring system resources, or are warned by 
customer complaints, and failure detection can take up to a few minutes. 

As for automated recovery, restarting a software service or its components often takes a few seconds, while rebooting takes a 
few minutes. In our experience, rebooting Windows, Unix, and Linux servers requires from two to fifteen minutes. 
Reconfiguration requires from a few seconds to several minutes, depending on whether it is followed by a restart (with new 
parameter values) or by a reboot (possibly after a migration to a new machine). A hot-fix can take from a few minutes to two or 
three hours, while a regular bug-fix, which requires rigorous testing, can be applied within a few days if it is immediately 
released; or, depending on the severity of the bug, it can take a week or more if it is distributed with the next release of the 
software. 

 

B. Results 
We compute the MTTR using the input parameters as shown in Tables II, III, and IV. Moreover, we computed steady-state 

unavailability (SSUA) using [49] 

SSUA = !""#
!""#!!""#

 .   (2) 

 

Table VI lists the mean times to recovery obtained for all nine cases based on our parameter settings; these values are also 
depicted in Fig. 3(a). As steady-state unavailability depends on the mean time to failure, which is difficult to estimate, Fig. 3(b) 
shows how SSUA varies for different values of MTTF. Of course, the respective steady-state availability can easily be calculated 
by subtracting SSUA from one. It is important to note that, in business-critical applications with high-availability requirements, a 
downtime of even a few minutes can have a significant cost and cause noticeable service disruptions. Therefore, although the 
values of MTTR in Table VI and Fig. 3(a) are in the same order of magnitude, the differences between the cases analyzed can be 
very important for IT system operators and users. 

 
 

Table VI 
Mean Time to Recovery for the nine cases 

 

 
High-complexity systems Medium-complexity systems Low-complexity systems 

Manual 
diagnosis 

(Case 1) 
Escalated 
recovery 
(Case 2) 

Automated 
diagnosis 
(Case 3) 

Manual 
diagnosis 
(Case 4) 

Escalated 
recovery 
(Case 5) 

Automated 
diagnosis 
(Case 6) 

Manual 
diagnosis 
(Case 7) 

Escalated 
recovery 
(Case 8) 

Automated 
diagnosis 
(Case 9) 

MTTR (Hours) 2.2591 1.8224 1.7660 2.9060 2.4915 2.4119 3.1996 2.7952 2.7050 

 



	
  

	
  

	
  
(a) Mean time to recovery (MTTR).	
  

 
(b) Steady-state unavailability (SSUA) as a function of MTTF. 

Fig. 3. MTTR, and SSUA for the nine cases considered in this study.  

Note that the impact of failures and of recovery strategies depends on the specific IT system considered, and may vary for 
different systems with different parameters (e.g., different proportions of Mandelbugs, and different MTTF). While the scope of 
the results is limited to the considered scenarios, the adoption of failure data from real-world projects makes these scenarios 
representative of many IT systems, and allows us to make the following observations.  
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Observation 1: Manual failure diagnosis is less effective than escalated recovery. In all the considered systems (high, medium, 
and low complexity), escalated recovery has a mean time to recovery lower than manual diagnosis. This difference indicates that 
the gain of automatically recovering from Mandelbugs through restarts, reboots, and reconfigurations is higher than the penalty 
due to useless restarts, reboots, and reconfigurations attempted in the presence of Bohrbugs. Even if Bohrbugs are the majority of 
bugs (~60% or more in the considered scenarios), the automated recovery actions can avoid, at least in some cases, to perform a 
full problem diagnosis and bug-fixing, thus saving significant effort while increasing the availability of the IT system. As shown 
in Fig. 4, the main factor impacting the manual diagnosis is the time required to perform the manual problem determination. To be 
as effective as escalated recovery, the manual problem determination should be performed in less than 5 minutes. However, in the 
experience of the authors, more than 5 minutes is often required to determine a problem, and the quickest solution is to attempt an 
escalated recovery and to mask the failure; only in the case that the problem persists is an in-depth investigation of the root cause 
of the problem necessitated. 

 
Fig. 4. MTTR of manual diagnosis compared to escalated recovery (in high-complexity software), for different values of the mean time to problem diagnosis. 

Observation 2: Automated diagnosis is better than manual diagnosis, but it is not substantially more effective than escalated 
recovery. This result may appear not to be intuitive, because the reader could expect that automated diagnosis makes a quick and 
optimal use of automatic recovery actions, thus providing even better results than escalated recovery. Nevertheless, the gain from 
automated diagnosis tends to be limited. Even if the mean time to recovery of each strategy depends on the particular system on 
which it is applied, the relative effectiveness of the three recovery strategies seems consistent across all the considered systems. 
This result emphasizes that the adoption of automatic recovery strategies should be carefully evaluated before putting them in 
production. In particular, the factor that affects the usefulness of automated diagnosis is the probability of mistaken diagnosis. If 
the probability of mistakes is high enough, then automated diagnosis can trigger useless recovery actions (e.g., reboot a system 
when a reconfiguration is necessary); or, even worse, can trigger recovery actions more costly than necessary (e.g., require the 
intervention of IT administrators or developers when a restart would have sufficed to recover from the fault), increasing the 
overall cost of recovery and reducing availability. A high mistake rate can thus make automated diagnosis not worth the additional 
complexity that it would bring, or can even make it counterproductive. Therefore, it should be adopted only when developers can 
assure a high accuracy of diagnosis policies. For instance, as can be seen from Fig. 5, in the case of high-complexity systems, the 
gain from automated diagnosis becomes less substantial when the probability of correct diagnosis approaches 50%, and automated 
diagnosis is even counterproductive below that percentage. If accurate diagnosis cannot be assured, then escalated recovery is the 
best strategy due to the very quick speed of automated recovery actions such as restarts, reboots, and reconfigurations. This result 
suggests that IT administrators and developers should perform tests for the accuracy of diagnosis to gain such confidence, for 
instance by means of fault-injection tests. 



	
  

	
  

 
Fig. 5. MTTR of automated diagnosis compared to escalated recovery (in high-complexity software), for different values of the probability of correct 

diagnosis. 

Note that, even if the MTTR is higher for low-complexity systems, this condition does not imply that they are necessarily less 
available than high-complexity ones. The MTTR for low-complexity systems is higher because most of the failures are caused by 
Bohrbugs; thus, fewer failures can be masked by automated recovery actions (restart, reboot, reconfiguration), while a higher 
proportion of them require bug-fixes, which tend to take a much longer time. However, (un)availability is a function of both 
MTTR and MTTF. As can be seen from Fig. 3(b), low-complexity systems can have a higher availability than high-complexity 
ones if their MTTF is high enough. For instance, consider a high-complexity system with escalated recovery, and a MTTF of 
1000 hours; from Fig. 3(b), it can be seen that a low-complexity system with escalated recovery attains a lower SSUA than this 
high-complexity system if its MTTF exceeds 1545 hours. 

To get more insights into the recovery process, we performed a parametric sensitivity analysis of the model. Sensitivity 
analysis is a method to determine factors that are most influential on model results. It can be used to find recovery or availability 
bottlenecks in the system, and to thus guide improvement and optimization. Parametric sensitivity analysis is performed by 
computing the elasticity of each parameter. Here, elasticity represents the percentage change in MTTR (or SSUA) that results 
from a percentage change in the respective parameter. This measure provides a uniform way to compare the impact of different 
parameters with different measurement units. The elasticity of MTTR with respect to a parameter p can be computed from the 
partial derivative with respect to that parameter: 

Elasticity!""#(𝑝𝑝) =
!

!""#(!)
MTTR!(𝑝𝑝) . (3) 

The elasticity of SSUA can be computed in a similar way to MTTR. Using the chain rule on the derivative of SSUA, its 
elasticity can be expressed as  

Elasticity!!"#(𝑝𝑝) =
!

!!"#(!)
SSUA!(𝑝𝑝) = !

!""#(!)
MTTR!(𝑝𝑝)(1 − SSUA(𝑝𝑝)). (4) 

To compute elasticity, we fix all parameters to their default values (shown in Tables II through IV), and compute the partial 
derivative (with respect to the parameter p under evaluation), and the MTTR and SSUA functions. We considered all parameters 
from Tables II through IV, except the bug proportions (for which we are considering three scenarios, based on quantitative field 
failure data) and the diagnosis parameters dij (because they are imposed by the recovery strategy, and we have discussed them 
previously). 

Using the above equations, we compute the elasticity for each parameter as shown in Table VII. The ranking of parameters is 
ordered according to the absolute value of elasticity, and the ranking is shown in brackets. Because SSUA is very close to 0, the 
elasticity of MTTR is very similar to the elasticity of SSUA, and the rankings with respect to MTTR are always the same to the 
rankings with respect to SSUA, for all parameters and all nine cases. Therefore, Table VII only shows elasticity values for MTTR. 
A positive elasticity indicates that an increase of a parameter causes an increase in MTTR, whereas a negative elasticity indicates 
that, if a parameter value increases, MTTR decreases.  

 

 



	
  

	
  

Table VII 
Elasticity of MTTR with respect to model parameters (and their rankings in brackets) 

 
 (a) High-complexity software systems 

Parameter Case 1 (Automated 
diagnosis) 

Case 2 (Escalated 
recovery) 

Case 3 (Manual 
diagnosis) 

pad -3.3199e-02 (5) -4.1154e-02 (4) -4.2469e-02 (4) 

p4hf -5.7186e+00 (1) -7.0887e+00 (1) -7.3152e+00 (1) 

E[Dad] 3.6888e-03 (6) 4.5726e-03 (7) 4.7188e-03 (6) 

E[Dmd] 3.6888e-03 (7) 4.5726e-03 (8) 4.7188e-03 (7) 

E[Ddg] 2.2133e-01 (3) 1.5242e-04 (10) 1.5729e-04 (10) 

E[Drs] 3.2513e-04 (10) 1.5242e-03 (9) 4.1443e-04 (9) 

E[Drb] 4.6819e-04 (9) 6.7271e-03 (6) 8.3250e-04 (8) 

E[Drc] 2.7311e-03 (8) 3.0734e-02 (5) 5.1079e-03 (5) 

E[Dhf] 1.3237e-01 (4) 1.6409e-01 (3) 1.7125e-01 (3) 

E[Dbf] 6.3539e-01 (2) 7.8763e-01 (2) 8.1280e-01 (2) 

 
(b) Medium-complexity software systems 

Parameter Case 4 (Automated 
diagnosis) 

Case 5 (Escalated 
recovery) 

Case 6 (Manual 
diagnosis) 

pad -2.5809e-02 (5) -3.0102e-02 (4) -3.1096e-02 (4) 

p4hf -6.1150e+00 (1) -7.1322e+00 (1) -7.3677e+00 (1) 

E[Dad] 2.8676e-03 (6) 3.3447e-03 (7) 3.4551e-03 (5) 

E[Dmd] 2.8676e-03 (7) 3.3447e-03 (8) 3.4551e-03 (6) 

E[Ddg] 1.7206e-01 (3) 1.1149e-04 (10) 1.1517e-04 (10) 

E[Drs] 1.1150e-04 (10) 1.1149e-03 (9) 1.4462e-04 (9) 

E[Drb] 1.6056e-04 (9) 5.9090e-03 (6) 3.9789e-04 (8) 

E[Drc] 9.3661e-04 (8) 2.8609e-02 (5) 2.6173e-03 (7) 

E[Dhf] 1.4155e-01 (4) 1.6510e-01 (3) 1.7118e-01 (3) 

E[Dbf] 6.7945e-01 (2) 7.9247e-01 (2) 8.1864e-01 (2) 

(c) Low-complexity software systems 

Parameter Case 7 (Automated 
diagnosis) 

Case 8 (Escalated 
recovery) 

Case 9 (Manual 
diagnosis) 

pad -2.3441e-02 (5) -2.6832e-02 (5) -2.7726e-02 (4) 

p4hf -6.2421e+00 (1) -7.1451e+00 (1) -7.3833e+00 (1) 

E[Dad] 2.6045e-03 (6) 2.9813e-03 (7) 3.0807e-03 (5) 

E[Dmd] 2.6045e-03 (7) 2.9813e-03 (8) 3.0807e-03 (6) 

E[Ddg] 1.5627e-01 (3) 9.9377e-05 (10) 1.0269e-04 (9) 

E[Drs] 4.3053e-05 (10) 9.9377e-04 (9) 6.4677e-05 (10) 

E[Drb] 6.1996e-05 (9) 5.6670e-03 (6) 2.6913e-04 (8) 

E[Drc] 3.6164e-04 (8) 2.7980e-02 (4) 1.8794e-03 (7) 

E[Dhf] 1.4449e-01 (4) 1.6540e-01 (3) 1.7116e-01 (3) 

E[Dbf] 6.9356e-01 (2) 7.9390e-01 (2) 8.2036e-01 (2) 

 

The ranking of elasticities shows the following observations.  



	
  

	
  

Observation 3: The probability of correct hot-fix is the most influential parameter. It is critical to avoid an incorrect hot-fix 
that requires a subsequent bug-fix. This result is true because, if an IT system goes to the bug-fix step, then it takes much more 
time for it to recover. In all the nine cases, the probability of correct hot-fix was ranked first, with elasticity higher than for the 
other parameters by orders of magnitude. Thus, it is important to optimize this parameter, by paying as much attention as possible 
when applying hot-fixes to recover from failures. Even if improving this probability increases the duration of hot-fixing, the 
impact of a wrong hot-fix on MTTR and SSUA would be significantly higher. Thus, it is worth spending additional time to assure 
the correctness of hot-fixes. Of course, full bug-fixes cannot be avoided in all cases, because this case also depends on the 
complexity and on the severity of bugs, but avoiding bug-fixes when not strictly required is beneficial to availability. 

Observation 4: The probability of automated failure detection has a noticeable influence. After hot-fixing and bug-fixing time, 
this parameter was consistently ranked as one of the most influential. This parameter is important because failure detection is a 
prerequisite for all types of recovery actions, and has to be performed regardless of the actions that will be undertaken once a 
failure has been noticed. Thus, avoiding delays between the occurrence of a failure and its discovery enables a quick recovery, 
and reduces unavailability. This parameter can be optimized by adopting advanced IT management systems that provide facilities 
for precise monitoring of system resources, processes, and services; and can automatically discover anomalies through failure 
detection policies provided by system administrators. 

 
VI. CONCLUSION 

In this paper, we have first introduced the practical cases, types of Mandelbugs, and methods for recovering from failures 
caused by Mandelbugs. Then, we have presented a recovery model using a flowchart, and we have developed a semi-Markov 
model based on the flowchart to derive the closed-form solution of MTTR for an IT system. The model is meant to be simple, and 
easy to use by practitioners. Finally, we adopted the model to evaluate the relative value of recovery actions and strategies, by 
considering nine representative scenarios, based on failure data from this study, and from previous ones. The analysis of the 
model showed that the model is useful for comparing different recovery strategies, for obtaining insights about when a strategy is 
most effective, and for identifying critical parameters. Parametric sensitivity analysis was performed by computing the elasticity 
with respect to each parameter, to determine the parameters that have the highest impact on recovery from failures due to 
Mandelbugs, and that should thus be optimized by IT administrators and developers. Future work in this area includes 
investigating the possible interactions between reactive approaches (e.g., the failure recovery strategies analysed in this work) and 
proactive approaches (e.g., software rejuvenation), which are aimed at preventing failures before their occurrence, to support the 
tuning of such proactive approaches towards optimizing system availability. 
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