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Abstract—The assessment of operating systems robustness with
respect to unexpected or anomalous events is a fundamental
requirement for mission-critical systems. Robustness can be
tested by deliberately exposing the system to erroneous events
during its execution, and then analyzing the OS behavior to
evaluate its ability to gracefully handle these events. Since OSs
are complex and stateful systems, robustness testing needs to
account for the timing of erroneous events, in order to evaluate
the robust behavior of the OS under different states. This paper
presents SABRINE (StAte-Based Robustness testIng of operatiNg
systEms), an approach for state-aware robustness testing of OSs.
SABRINE automatically extracts state models from execution
traces, and generates a set of test cases that cover different OS
states. We evaluate the approach on a Linux-based Real-Time
Operating System adopted in the avionic domain. Experimental
results show that SABRINE can automatically identify relevant
OS states, and find robustness vulnerabilities while keeping low
the number of test cases.

Index Terms—Robustness Testing; Fault Injection; Operating
Systems; Linux kernel; Fault Tolerance; Dependability Bench-
marking

I. INTRODUCTION

Operating Systems (OSs) are the core of a wide range
of software systems with which we interact in our every-
day life, ranging from embedded systems to large critical
infrastructures. OS failures are a major concern, as they can
potentially compromise all the applications running on it and
the mission of the overall system [44], [LL], [29], [28], [4],
[37]. Given that an OS can execute under a large variety of
scenarios, facing unexpected and erroneous conditions that can
arise from its working environment (including the hardware,
applications, users and other systems), it is expected that the
OS operates robustly even in such conditions. Therefore, it is
of paramount importance, especially in the context of mission-
critical systems, to assess the robustness of OSs with respect
to such unexpected conditions (e.g., an invalid input), that is,
its ability to gracefully handle these anomalous events and to
avoid catastrophic consequences, e.g., an OS crash [20].

Robustness testing consists in executing a software system
in the presence of unexpected events (e.g., invalid or untimely
inputs) that are deliberately introduced (“injected”) during the
test. Several approaches have been proposed, but robustness
testing of OSs is still an open challenge. Most of robust-
ness testing approaches rely on a formal description of the
software (e.g., Timed Input/Output Automata) for identifying
unexpected events to inject, the states in which to inject and the

expected responses of the system to events [14], [2], [30], but
these approaches do not scale well for OSs, given that OSs can
be very large and complex (up to millions of lines of code), and
that their source code and/or expertise on their internals may
not be available. Alternative proposals are instead based on
black-box approaches [28]], [1]], [24], in which OS robustness
test cases are devised from the analysis of the input domain
of OS interfaces (e.g., the system call interface). However,
these approaches neglect the state of the OS at which an
anomalous event is injected, by injecting at random times, or
require extensive manual analysis in order to define when to
perform the injection. These limitations affect the efficiency
of robustness testing, since they can reduce the number of
robustness vulnerabilities that are found, and increase the
number of experiments to perform.

In this paper, we propose an approach for state-aware
robustness testing of OSs, namely SABRINE (StAte-Based
Robustness testlng of operatiNg systEms). SABRINE improves
the efficiency of robustness testing, by performing exactly one
robustness test for distinct states of the OS, thus avoiding
superfluous experiments (i.e., experiments that inject a fault
in the same OS state), and increasing the likelihood to find
robustness vulnerabilities (by covering more OS states than
a random approach). SABRINE does so by automatically
extracting behavioral models from execution traces of the
target system, and by generating a distinct robustness test
case for each state of the behavioral model of the system. We
evaluate the approach on a Linux-based Real-Time Operating
System adopted in the avionic domain. Experimental results
show that SABRINE can automatically identify relevant OS
states, and find robustness vulnerabilities while keeping low
the number of test cases.

The paper is structured as follows. Section [l provides an
overview of studies on robustness testing of OSs. Section
presents the SABRINE approach. Section describes the
case study on which we applied the proposed approach,
and Section [V] reports and discusses experimental results.
Section [VI] concludes the paper.

II. RELATED WORK

Several studies approached the problem of robustness test-
ing of operating systems, from different points of view. One of
the earliest study has been presented in [34], which evaluated
the robustness of UNIX utilities in the presence of random



inputs (“fuzzing”). Two tools, respectively Fuzz and ptyjig,
were proposed to submit a random stream of data to the
target through the standard input and through the terminal
device. The study found that a significant number of utility
programs on three UNIX systems (between 24% and 33%) is
vulnerable to invalid inputs, causing process crashes or stalls.
A subsequent experiment [35] found that the same utilities
were still sensible to a significant part of faults found in [34]]
5 years later. These studies highlighted that robustness can be
a serious concern even for mature, widely-adopted software.

Even if the fuzzing approach is simple to implement and can
reveal robustness problems, its efficiency was questioned by
some studies, since it relies on many trials and “good luck”.
In [17]], it is pointed out that most of unstructured random
tests only test the input parsing code of the program, and do
not stress other software functions. RIDDLE [17], a tool for
robustness testing of Windows NT utilities, extends fuzzing
with erroneous inputs generated by a grammar that describes
the format of inputs like a Backus-Naur form. These erroneous
inputs (random and boundary values) are syntactically correct,
and able to test more thoroughly the target program.

In order to improve the efficiency of robustness testing, sub-
sequent studies investigated the data-type based error injection
approach, which focuses on invalid inputs that tend to be more
problematic than other to be handled. Such an approach was
proposed in [11], [28] (the BALLISTA tool) for evaluating the
robustness of commercial OSs, with respect to their ability
to handle invalid inputs from faulty user-space programs to
the system call interface [21]. Each robustness test consists
of a system call invocation with a combination of both valid
and invalid parameters. For each group of system calls and
each data type, these studies define a set of invalid input
values (e.g., closed or read-only files, and NULL or wrong
pointers to memory areas). Examples of invalid inputs, using
a data-type based approach on three data types, are provided
in Table |l The test outcome is determined by recording
the error code returned by the system call (e.g., to identify
whether the error code reflects or not the invalid input, or an
error code is not returned at all), and by monitoring system
processes using a watchdog process (e.g., a failure occurs if a
process unexpectedly terminates during the experiment, or it
is stalled). Test outcomes are classified by severity according
to the CRASH scale: a Catastrophic failure occurs when the
failure affects more than one task or the OS itself; Restart or
Abort failures occur when the task launched by BALLISTA is
killed by the OS or stalled; Silent or Hindering failures occur
when the system call does not return an error code, or returns
a wrong error code. These studies found severe robustness
vulnerabilities in several commercial OSs, which were due
mainly to illegal pointer values, numeric overflows, and end-
of-file overruns [28]].

Robustness testing of OSs has also been focused on de-
vice drivers, since they are usually provided by third party
developers and represent a major cause of OS failures [6],
[15]. The robustness of the Driver Programming Interface,
DPI, of OSs has been targeted in [1] and [12], in which

invalid values are generated by faulty device drivers when they
invoke a function of the OS kernel: in [1], invalid values are
introduced using a data-type based approach, while in [12],
the code of device drivers is mutated (by artificially inserting
bugs) to cause a faulty behavior. Johansson et al. [24], and
Winter et al. [47] later, compared the bit-flipping, fuzzing, and
data-type based approaches with respect to their effectiveness
in detecting vulnerabilities in the DPI of Windows CE, and
the efforts required to setup and execute experiments. They
found that bit-flipping is the approach most effective at finding
vulnerabilities, but it incurs a high execution cost due to the
large number of experiments, thus providing a low efficiency,
while the other approaches are more efficient but incur in
a higher implementation cost (e.g., in the case of the data-
type based approach, the user has to define exceptional values
for each data type). From all these studies, OSs result to be
more vulnerable to device drivers than to applications, since
developers tend to omit checks in the device driver interface
to improve performance, and because they trust device drivers
more than applications. Other works assessed the robustness
of OSs with respect to hardware faults (e.g., CPU and disk
faults), by corrupting OS memory image [18]], [5], and with
respect to synchronization faults in kernel code [9], [39].

All these approaches neglect the system state, or they rely
on a representative workload to exercise the system and bring
it to relevant states before a robustness test. A relevant example
is represented by dependability benchmarks [26], [25], [27],
which have been proposed for comparing the robustness
of different OSs. These dependability benchmarks evaluate
robustness while the target OS is under different working
conditions (i.e., state): they define realistic scenarios in which
the OS is part of a database server system or mail server
system, and the system is exercised using a representative set
of user requests. System call inputs generated by user-space
applications (e.g., the DBMS or the mail server processes)
are intercepted and replaced with invalid ones, by using
respectively data-type based values, random values, and bit-
flips (i.e., a correct input is corrupted by inverting one bit).

The influence of OS state has been investigated in recent
work on testing device drivers [23]], [43]. In [23], the concept
of call blocks is introduced, based on the observation that
device drivers issue recurring sequences of function calls (e.g.,
when reading a large amount of data from a device). Therefore,
Johansson et al. [23] improved the efficiency of robustness
testing by focusing on call blocks (i.e., repeating subsequences
of OS function calls), instead of injecting invalid inputs at
random time. Call blocks are identified by the tester through
a manual analysis before performing robustness tests. Sarbu
et al. [43] proposed a state model for testing device drivers of
Microsoft Windows OSs, using a vector of boolean variables.
Each variable represents an operation supported by the device
driver: at a given time t, the ¢-th variable is true if the driver
is performing the i-th operation. They found that the use of
a state model can reduce the number of tests. Prabhakaran
et al. [40] proposed an approach for testing journaling file
systems, which injects disk faults at specific states of file



TABLE I
EXAMPLES OF INVALID INPUT VALUES FOR THE THREE DATA TYPES OF THE write(int filedes, const void *buffer, size_t nbytes) SYSTEM CALL.

File descriptor (filedes) |

Memory buffer (buffer) |

Size (nbytes) |

FD_CLOSED BUF_SMALL_1 SIZE_1
FD_OPEN_READ BUF_MED_PAGESIZE SIZE_16
FD_OPEN_WRITE BUF_LARGE_512MB SIZE_PAGE

FD_DELETED

BUF_XLARGE_1GB

SIZE_PAGEx16

FD_NOEXIST

BUF_HUGE_2GB

SIZE_PAGEx16plus1

system transactions. In [8]], we conducted a preliminary study
on the impact of the OS state on OS failures and on the code
coverage achieved by robustness tests at system calls.

All these studies showed that the OS state has an important
role in testing such complex systems; however, they require
knowledge about OS internals, and a manual analysis to define
state models in which to inject faults. The objective of this
paper is to overcome this limitation, by automatically inferring
state models to use in robustness testing.

III. ROBUSTNESS TESTING APPROACH

Our approach for robustness testing has been designed to
perform the injection of faults in the OS, by taking into
account the state of the OS during the injection. The state
can affect how an event impacts on the OS and the ability
of the OS to robustly handle its occurrence. We assume that
the tester has little knowledge about the inner workings of the
OS, since OSs are typically provided by a third-party and it
would be unfeasible to manually analyze them to understand
in-depth their complex behavior. Therefore, we identify the
states of the OS through a black-box approach: we analyze
the sequence of events produced by the OS (observed at its
interfaces) during its execution, based on the idea that the
history of events at OS interfaces reflect the state of the
OS. Test cases should run at distinct sequences of events in
order to cover different states of the OS and to efficiently
perform robustness testing (i.e., avoiding that several tests
impact the same state, wasting testing efforts and time). We
identify OS states using behavioral model mining techniques.
These techniques have been adopted for automating several
software engineering tasks, including specification mining [3l],
automated debugging [10], and reverse engineering [46]. To
the best of our knowledge, this is the first work that tailors
these techniques for robustness testing of OSs.

The SABRINE approach automates collection and analysis
of OS events, to identify interesting sequences of events in
which to inject faults. The process consists of 5 phases (Fig.[I):

1) Behavioral Data Collection: Before performing robust-
ness testing, the system is executed and profiled under
fault-free conditions. This phase collects data about
the OS behavior, in terms of interactions between OS
components at run-time.

2) Pattern Identification: Behavioral data is preprocessed,
by dividing them in sequences. Each sequence is a
set of interactions that occur during the execution of

an individual system call or interrupt request. Identical
sequences are grouped together, and represent a pattern.

3) Pattern Clustering: Patterns that are similar (even if
they are not identical) are further grouped together,
using a clustering algorithm. This phase is important
for obtaining a compact and efficient set of robustness
test cases.

4) State Model and Test Suite Generation: For each
cluster obtained from the previous phase, a behavioral
model is generated. A behavioral model consists of a
set of states interconnected by events. Robustness test
cases are generated for each model, in which faults are
injected in specific states of the model.

5) Test Execution: Each test executes the system under
the same working condition of the first phase. During
execution, behavioral data is collected and analyzed at
run-time, and a fault is injected when the OS reaches a
given state of the behavioral model.

We first define some basic concepts in Section [[II-A] then
we discuss in detail each phase in the following sections.

A. Definitions

In our approach, we distinguish between the different com-
ponents that form an OS. A component is a subsystem of
the OS that is responsible for managing a resource or for
providing a set of services, such as memory management,
I/O management, and process scheduling. Each component
provides an interface to other components, that is, a set of
functions that are invoked to request a service. Applications
can require a service to the OS by performing a system call,
which in turn triggers one or more components that interact
in order to implement the OS service (Figure [Z). Additionally,
component services can be invoked by interrupt requests
coming from the hardware, and by kernel tasks, i.e., processes
that execute in kernel space and that can directly interact with
OS components. Several system calls, interrupt requests and
kernel tasks can be executed in parallel (by alternating on the
same CPU, or by running concurrently on different CPUs).
The applications that run on top of the OS and exercise it are
referred to as the workload.

We test OS robustness against service failures of a compo-
nent. A service can fail, for instance, due to the exhaustion
of a resource, or due to a hardware fault in a device or a
defect in an OS component. In case of a failure, the function
that has been invoked typically returns an error code to notify
that a service cannot be provided. A service failure may cause
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Fig. 2. System overview.

a non-robust behavior, such as an OS crash, when it is not
correctly handled by the OS code that invokes the service. In
such a case, the OS is considered vulnerable to that service
failure, and a robustness vulnerability has been found, which
may require to fix the OS in order to make it robust against
the service failure (e.g., by retrying the failed operation, or
switching to a degraded mode of service). To test robustness,
we force a service failure (also referred to as faulr) while the
system is exercised with a workload, that is, by forcing the
called function (representing the service) to return an error
code, and analyzing the system reaction to the service failure.

In particular, given that the same service can be requested
by several OS components, we focus on service invocations
performed by one specific target component at a time. For
instance, the target component can be represented by a new
component under development, such as a device driver to sup-
port new hardware, or a new filesystem component. To identify
the states of the target OS component, we log interactions at
its interfaces with other OS components (dashed arrows in
Figure [2). The target component may be invoked by another
component (input interaction), or the target component may
invoke another component (output interaction). An interaction
with a function that can fail (e.g., a function for resource
allocation), and in which a failure can be injected, is referred
to as injectable interaction (see Figure [3). We both consider
the case in which an injectable interaction is direct, that is, the
injectable function is invoked by the target component, and the
case in which the injectable interaction is indirect, in which
the injectable function is invoked by another component on

behalf of the target component (i.e., the function is invoked
to provide a service to the target component). We include
indirect interactions in our robustness tests since the fault may
propagate to the target component and trigger its robustness
vulnerabilities.

ﬁfault
Component Y —
output injectable % :an error code KEY
interaction interaction } *is returned
. . function A
Target \‘b \‘, invocation |
Component input return
Interaction the fault propagates| from H
time function
Component X

Fig. 3. Interactions among OS components.

B. Behavioral Data Collection

In this phase, the OS is executed using a workload, without
injecting faults. The workload is selected by developers and
testers before performing robustness testing. In a similar way
to performance benchmarks, the workload reflects the context
in which the OS will be adopted (e.g., web applications,
DBMSs, ...), and it affects the way the OS is exercised
during the tests (e.g., a DBMS-oriented workload stresses
storage-related services) and its behavior under unexpected
events. During the workload execution, we monitor compo-
nent interactions (Figure @, and derive state models for the
target component on the basis of its interactions with other
components. As discussed later, state models are based on
input, output, and injectable interactions that involve the target
component.

Component interactions are monitored through static (i.e.,
hard-wired in the kernel source code) or dynamic probes (i.e.,
inserted at run-time) located at the interfaces of components.
A probe consists of a small piece of code (e.g., a breakpoint)
that is inserted in a given code location, and that triggers a
handler routine when executed. In turn, the handler collects
information and restores kernel execution. For tracing input
interactions, we probe the interface of the target component,
storing information (as described in the next section) about
the component that invokes the target. For tracing output and
injectable interactions, we probe the interfaces of components
that are invoked by the target component, storing information



about the invoked component. Probing at component interfaces
represents a practical solution for most of modern commod-
ity OSs, since they often provide tools that allow to insert
static and/or dynamic probes in kernel code and monitor its
execution with a low overhead, such as DTrace for Oracle
Solaris [33], SystemTap for Linux [22], and DebugView for
Microsoft Windows [42]. Data from probes are transferred to
an external computer through a serial port, which is typically
adopted for debugging purposes since the serial port driver has
minimal interactions with other OS components, thus limiting
interferences on OS execution due to monitoring.

When collecting behavioral data, we take into account that
component interactions may vary between different work-
load executions due to random factors: for instance, some
interactions may appear in a different order or not appear
at all, depending on the timing of I/O events and process
scheduling. As a consequence, such random factors can affect
the definition of robustness test cases, since some OS states can
be missed during an individual workload execution. For this
reason, we repeat the execution of the workload several times
during this phase: by doing so, we are able to include sets of
interactions even when they do not occur at every execution,
and to generate robustness test cases that also cover them,
leaving uncovered only very rare interactions.

C. Pattern Identification

The output of the previous phase consists of an interac-
tion log, in which interactions among components appear in
sequential order (i.e., ordered by their timestamp). The log
is divided into sequences, where each sequence is a set of
events that occur during the execution of an individual system
call, interrupt request, or a kernel task. Two executions of the
same system call represent two distinct sequences, but they
can produce different sets of interactions, depending on the
state of the system. By dividing the log into sequences, we
discriminate subsets of interactions that repeat identically (in
this phase) or are similar (in the next phase), in which it is
likely that the target has assumed the same states. Identical
sequences are grouped together, forming a pattern.

To extract sequences, we log the following information for
each interaction between the target and other components:

o Operation ID: A string identifier of the operation (sys-
tem call, interrupt request, or kernel task) that is being
serviced at the time of the interaction.

« Execution ID: An integer that identifies a specific exe-
cution of a system call, interrupt request or kernel task.
Each time that an operation starts, a new execution ID is
generated, and all the interactions produced during this
operation will be identified by this value. If a system call
is started while the same system call is already executing
(e.g., by a different process on a different CPU), the
interactions of the new execution have the new execution
ID, while the interactions generated by the other one are
still denoted by the previous execution ID.

o Trace ID: An integer that identifies a specific execution
of the whole workload. Since the workload can be

executed several times, and more than one workload
execution can appear in the same interaction log, the
interactions of each workload execution are denoted by
a specific trace IDs.

Moreover, each logged interaction contains the following
information:

o Called function: In the case of input interactions, it is
the name of the function of the target invoked by another
component. For output and injectable interactions, it is
the name of the function invoked by the target in another
component.

« Call point: The code location in which the function is
invoked (e.g., the address in the executable code of the
instruction that invokes the function).

CALLED CALL

INT.  OPERATION
D FUNCTION POINT

TYPE
— —

EXEC. TRACE
DD

oUT, pdflush, 428,
INJ, pdflush, 428,
INJ, pdflush, 428,
IN, close, 491,

, 11_rw_block,

, kmem_cache_alloc,
» kmem_cache_alloc,
, reiserfs_file release,

flush_commit_list:1£3eb

flush_commit_list:1£3eb 1

flush_commit_list:1£3eb
fput:cOl8efda

1
1
1
1

INJ, pdflush, 428, 1, generic_make_request,
ouT, pdflush, 428, 1, _ find_get_block,

flush_commit_list:1f3eb
flush_commit_list:1£f3cc

IN, close, 503, 1, reiserfs_file_release, __ fput:cOl8efda 12

Fig. 4. Example of interaction log and pattern identification.

Figure [] shows an extract of the interaction log from
the case study that we will consider in this work. The first
sequence in the example (highlighted in light gray) is identified
by the triple (pdfiush,428,1), in which there are two output
interactions (denoted by “OUT”) and two injectable interac-
tions (denoted by “INJ”), and all of them are invocations made
by the flush_commit_list function of the target component
(a filesystem). This sequence is interleaved with two other
ones, identified by (close,491,1) (white background) and
(write, 486, 1) (dark gray background) respectively. This in-
terleaving occurred since pdflush (a kernel task) has been sus-
pended while executing kmem_cache_alloc, which performs
memory allocation and can preempt a task when this operation
takes a long time (e.g., an I/O operation is required in order
to free memory). The other two sequences are generated by
the workload invoking the close and write system calls, which
in turn trigger input interactions with the target component
(denoted by “IN”). When the third sequence performs its
second memory allocation, a workload process is preempted
in favor of pdflush, which continues the first sequence. The
same sequence of interactions can repeat identically in the
log, with a different identifier: this is the case of the sequence
identified by (close,503,1) (a sequence containing only one
interaction), which is identical to the sequence identified by
(close, 491, 1). These sequences represent two instances of the
same pattern (number 2), and only one instance per pattern is
considered in the subsequent phases.

1 (cont.)



D. Pattern Clustering

The execution of the OS typically leads to patterns that
are not identical, but differ for a few interactions, or there
is a small variation in the order of the interactions. In other
words, several patterns tend to be very “similar”. Small vari-
ations in the sequences are unavoidable, and are due to non-
deterministic factors that can affect OS execution. Figure [3]
shows two similar patterns related to the write system call
(for the sake of readability, only the called function is showed
for each interaction). The patterns p; and ps exhibit almost the
same number and sequence of interactions, aside from three
interactions (gray background) which appear only in po. These
interactions, in this specific case, represent the allocation of
additional memory when metadata are written to the disk.

PATTERN 1 PATTERN 2

ext3_dirty inode
journal_start

kmem cache_alloc
__getblk

journal get write access

ext3_dirty inode
journal_start

kmem cache_alloc
__getblk
journal_get write access

journal dirty metadata journal dirty metadata

__brelse
journal_stop

__brelse
journal_stop

Fig. 5. Example of similar patterns.

However, generating one behavioral model for each indi-
vidual pattern would lead to an excessive number of models
and, as discussed later, to superfluous robustness test cases.
Therefore, before generating behavioral models, we group
together similar patterns, thus obtaining clusters of patterns.
Each cluster represents a specific “mode of operation” of the
target component, where the patterns in a given cluster only
differ with respect to a few interactions. To perform clustering,
we first measure the similarity among all pairs of patterns
using a similarity function, and then we cluster patterns that
are similar with a clustering algorithm.

A similarity function is a quantitative way to express the
similarity between two sequences, and it is used in several
applications, such as the processing of biological sequences. In
our case, we compare sequences of interactions, in which each
interaction (i.e., a pair { called function, call point )) represents
an element of the sequence. Two main approaches exists in
the literature for evaluating similarity, which respectively (i)
only consider which elements appear in each sequence, and
evaluate the number of elements that appear in both sequences
(set-based similarity functions), and (ii) consider the ordering
of elements while comparing common elements between the
sequences (sequence-based similarity functions) [19]. In our
approach, we measure the similarity between patterns with a
sequence-based function: two sequences of interactions with
different orderings may reflect different states of the system,
and should be regarded as dissimilar.

Sequence-based functions are based on “alignment” algo-
rithms, in which the elements of the sequences are placed

side by side in order to maximize the number of matches, and
minimizing the number of gaps and mismatchesﬂ With the
Smith-Waterman algorithm [13], we compute an alignment
score for each pair of patterns p and ¢ according to the
following dynamic programming formulation:

Foj=—j*g , Fio=—ixyg
Fi_1 -1+ sim(p;, q;)
o
R
0

—n  otherwise

sim(pisa;) = {

In this set of equations, p; and g; are the i-th and j-th element
of patterns p and ¢, respectively, with ¢ € [1,..., N]| and
j € [l,..,M], and N and M are the lengths of patterns
p and q. F is the scoring matrix, where the value F;; is
the score of the best alignment between the initial segment
pi1...; of p up to p; and the initial segment ¢;. ; of ¢ up to
qj, which is calculated recursively from Fj_q ;, Fj ;_1, and
F;_1,j—1 [13]. The constants g and n are the score penalty
for gaps and mismatches, while m is a score reward for
matches. Common choices are g =1, n =2, and m =g+ n
[19]. The highest value of F', that is Fy ps, represents the
score of the best possible alignment. For instance, the pat-
terns p; and p, showed (aligned) in Figure [5] have score
SW(p17p2) = Wmatch *m + Wmismatch * 1N+ Wgap *g =
(8) % (+3) + (0) * (=2) + (3) * (—1) = 21, where the W's are
the number of matches, mismatches and gaps, respectively.
For each pair of patterns, we compute the SW score, and
collect this score into a cell of a matrix, named Similarity
Matrix (SM), which expresses quantitatively the degree of
similarity among all pairs of patterns. The score of each pair
is normalized using the length of the longest pattern in each
pair, since patterns in our context have variable length, which
would otherwise affect the evaluation of pattern similarity.
We group together similar patterns using a spectral clus-
tering algorithm [45]]. Spectral clustering groups a set of
elements on the basis of their similarity matrix, and has
recently emerged as an effective and computationally-efficient
clustering approach. A spectral clustering algorithm interprets
input elements as the nodes of a graph, and the similarity
score of each pair of elements as the weight of the connection
between two nodes. Then, elements are clustered into k
groups, by performing k cuts in the graph, each group includes
the nodes that are still connected after the cuts. The idea
behind spectral clustering is that cutting “weak” connections
splits the graph into partitions of elements that are “strongly
connected” and thus very similar each other. The weights
of cuts in the graphs are closely related to the spectrum of

"When the elements at a given position of a pair of patterns are the same,
we say that there is a match; otherwise we say that there is a mismatch. A
gap, instead, consists in introducing a special symbol to fill the vacuum due
to the different lengths of the two sequences.



the graph, that is, the eigenvalues Ay,..., A, of the graph
laplacian matrix L derived from SM [7]. By processing L on
the basis of its eigenvectors, spectral clustering obtains k cuts
and, in turn, k clusters. To select the number k& of clusters,
we use the eigengap heuristic [45], which chooses k such
that all Aq,..., \; eigenvalues of L are very small and Ay
is relatively large. Intuitively, if the first k eigenvalues are
very small, then the algorithm can split the graph into k parts
without separating strongly-connected nodes.

E. Behavioral Modeling and Test Suite Generation

At this point, the initial interaction log, through pattern
identification and clustering, has been turned into clusters of
sequences. From each cluster, we infer a behavioral model
in the form of a finite state automata (FSA). We based
our robustness test generation approach on the kBehavior
mining algorithm [32], [31]. This algorithm incrementally
infers FSAs from execution traces, which in our case con-
sist of sequences of component interactions. The algorithm
starts with an empty automata (e.g., only one state with no
transitions), examines the first pattern and generates an FSA
whose transitions are labeled with an interaction (i.e., a pair
(called function, callpoint)). If the cluster contains more
than one pattern, they are subsequently provided as input to
the mining algorithm, one at at a time. Each time that a new
pattern is provided, the algorithm augments the FSA with new
transitions and states, in order to reflect both the new patterns
and previous ones. This process is repeated for each cluster,
leading to an FSA for each cluster (as showed in Fig. [I).

A set of robustness test cases is derived from each FSA.
SABRINE identifies transitions of the FSA that represent
an injectable interaction, i.e., an invocation of a function in
which a failure can be injected. Then, SABRINE automatically
generates a test case for each injectable interaction present in
the FSA. More specifically, given a state S with an outgoing
transition ¢ such that ¢ is an injectable interaction, a robustness
test case is generated for the couple (S,¢). The test consists
in forcing a failure of the function when the system reaches
the state S and the injectable function is invoked. The state
S represents the context in which the function can be invoked
and can fail. This approach allows SABRINE to cover each
different context in which the injectable function is invoked,
and to improve the efficiency of robustness tests.

Figure [6] provides an example of how robustness test cases
are obtained from behavioral models. It depicts the FSA
generated from the two patterns in Figure [3] (for brevity, only
the called function is showed at each transition in the figure).
States from O to 5, and states from 6 to 8 are connected by
interactions that appears in both patterns, while states 5 and 6
are connected by two different sets of transitions. This occurs
since the two patterns share most of their interactions, but
one of them performs contains additional memory allocations,
and the mining algorithm inserted new states and transitions
corresponding to these interactions. Assuming to inject failures
at the invocations of the kmem_cache_alloc memory allocation
function, SABRINE generates 3 robustness test cases from the

FSA. The example also points out the importance of cluster-
ing on the generation of test cases. The first invocation of
kmem_cache_alloc, which appears in both patterns of Figure[3]
is performed in the same context in both patterns. By using
only one FSA for representing both patterns, the occurrences
of the first kmem_cache_alloc invocation are collapsed into
only one transition in the FSA, the one between states 2
and 3. In this way, we reduce the number of robustness test
cases (only one test is performed for each transition with an
injectable interaction), while still covering relevant states of
the system, thus improving the efficiency of robustness testing.
A similar reduction is obtained when the kmem_cache_alloc is
performed in a loop: in such cases, since the same interactions
are repeated several times, the mining algorithm translates
these interactions into a loop in the FSA, and only one test
case is generated for that injectable interaction.

FE. Test Execution

Robustness test cases are translated in fest programs that are
then executed to inject service failures in the different states of
the OS. In a similar way to the “Behavioral Data Collection”
phase (Subsection [[II-B]), the test program collects interaction
sequences at run-time using kernel probes, and keeps track of
the current state of the target component. If the test program,
in the current state, observes the interaction specified in the
FSA, it transits to the new state. If the observed interaction
it is not the expected one, the target program transit to the
initial state. When the system reaches the target state .S, the
target program injects a service failure during the injectable
interaction. After the injection, the OS behavior evolves freely.

IV. CASE STUDY

To illustrate the use of the SABRINE approach, we consider
an OS developed in the context of a pilot R&D project,
in conjunction with the Finmeccanica s.p.a. industrial group.
The goal of the project is to develop a reliable Linux-based
Real-Time Operating System (RTOS), namely FIN.X-RTOS
to adopt in software systems for avionic applications. In
particular, in order to ease the certification of systems based on
FIN.X-RTOS, the OS needs to be accompanied by evidences
(e.g., test artifacts) showing the compliancy to the recommen-
dations of the DO-178B safety standard [41]]. The original
Linux kernel has been enhanced in FIN.X-RTOS by providing
hard real-time and scalability on multi-core architectures, and
removing unnecessary parts. The requirements of the standard
at level D (to be followed for software whose anomalous
behavior would cause “a minor failure condition” for the
aircraft) have been fulfilled. At the time of writing, FIN.X-
RTOS is being tested with additional verification activities
according to the requirements of level C (for software that
may cause “a major failure condition” for the aircraft), which
demand to test the robustness of the software against abnormal
inputs and conditions. An example of requirement from the
standard is to “provoke transitions that are not allowed by the
software requirements” [41]].
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We applied the SABRINE approach to assess the robustness
of a set of I/O-related components against service failures
in the memory allocator of the kernel. We selected memory
allocation failures because most of OS components depend on
this service, and it is a frequent cause of system failures [16].
Kernel developers also perceive memory allocation problems
as a likely cause of OS failures: in fact, the Linux kernel
includes a framework for injecting service failures, which
encompasses memory allocation failures [36]]. Both in our
implementation of SABRINE and in the Linux injection
framework, a failure is injected by forcing a memory allocation
function (kmem_cache_alloc) to return a NULL pointer instead
of a valid pointer to the newly allocated memory. While
the Linux framework injects failures at a random time, the
SABRINE approach selects the time in which to inject based
on the state of the target component. We compare both these
approaches in our experiments. It is important to note that the
SABRINE approach is not limited to the kmem_cache_alloc,
since several other injectors, both in the literature [17], [28]
and among practitioners, also force the failure of a kernel
function to test robustness. For instance, the Linux kernel fault
injection framework also allows to emulate disk I/O errors by
forcing the failure of functions for block I/O management [36].

The relationships between I/O-related components in the
kernel are showed in Figure In this architecture, I/O system
calls (e.g., writes) first pass through the Virtual File System,
which provides generic services for implementing file systems,
and forwards a file operation to the specific filesystem that
manages the file (e.g., EXT3, ReiserFS, ...). The file system
can issue an I/O operation to the Block I/O Layer, which
provides generic services such as scheduling of I/O requests
and caching of disk data. In turn, the Block I/O Layer forwards
requests to a device driver, which manages the disk device. All
these components use the memory allocator for dynamically
allocate memory, such as for storing file metadata and for
temporary I/O buffers. The target components are represented
by thick boxes in Figure [/| and include two widely-adopted
file systems (EXT3 and ReiserFS) and a device driver (the
SCSI subsystem). We adopt the Apache HTTPD web server
to exercise the OS, using the httperf performance testing tool

to generate web requests [38]. Experiments were executed in a
virtual machine environment, and were fully automated using
programs running on the host machine. A SystemTap program
[22] collects behavioral data. FSA models are created with the
kBehavior algorithm [32], [31]], and automatically translated
in test programs implemented in the SystemTap language.
Behavioral data and error messages from the OS are collected
using virtual serial port connections. In the case of an OS
crash, we collect information including the type of exception
(e.g., illegal memory access), the code location, the contents
of the stack and of CPU registers. The virtual machine is
automatically rebooted in case of a crash.
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Fig. 7. Overview of 1/O-related subsystems in FIN.X-RTOS.

V. EXPERIMENTAL RESULTS

This section presents the results obtained by SABRINE in
our case study. Table |lI] provides some basic facts about data
collection and processing, and test generation. We collected an
interaction log for each target component, by running the web



TABLE III
CLUSTERS FOR EXT3.

[ Cluster | Behavior [ Context [ # patterns |
1 gets and sets the file metadata stat syscall 6
2 retrieves and stores in memory the file index block, or updates it on the disk open, unlink syscalls 5
3 copies file contents from disk to a cache, and modifies it write syscall 8
4 copies a small amount of data from a file to a network socket sendfile syscall 10
5 modifies the contents of a file already in the disk cache write syscall 8
6 flushes a small amount of data from the cache to the disk pdflush kernel task 19
7 flushes a large amount of data from the cache to the disk pdflush kernel task 6
8 copies a large amount of data from a file to a network socket sendfile syscall 12
9 updates file metadata to reflect that is has been memory-mapped mmap?2 syscall 5

TABLE I
STATISTICS ON THE BEHAVIORAL DATA COLLECTION AND TEST CASES.

[ [ EXT3 [ ReiserFS | SCSI |

# interactions | 34,784 97,341 27,311
# sequences* 432 239 1,307
# patterns’* 79 57 10
# clusters 9 6 2
# test cases 49 28 10

*involving the kmem_cache_alloc function.

server workload 10 times for each target. For EXT3 and Reis-
erFS, interactions were performed in the context of file-related
system calls, such as open and write, and of the pdflush kernel
thread of the Block I/O Layer, which periodically flushed
cached data to the disk. For SCSI, interactions were initiated
by kernel threads of the Block I/O Layer, which requested
data transfers, and by interrupts from the hardware. Several
thousands of interactions appear in each log. These logs were
divided in sequences, and identical sequences were grouped
into patterns. Since we aimed at injecting service failures of
the kmem_cache_alloc function, we focused our analysis only
on sequences interacting with this function. For EXT3 and
ReiserFS, a non-negligible number of patterns and clusters
was generated, since memory allocations were performed in
many different contexts during filesystem operations. Instead,
even if SCSI produced the highest number of sequences with
kmem_cache_alloc, it exhibited the lowest number of distinct
patterns and of clusters: for this target, memory allocations
performed always at the same code location (i.e., when al-
locating memory for storing a new data transfer command),
leading to repetitive sequences. Consequently, only 2 clusters
are enough to group the patterns of SCSI, while EXT3 and
ReiserFS require 9 and 6 clusters, respectively.

We examined in depth the clusters, in order to understand
the mode of operation represented by each pattern, and to
assess whether clustered patterns are ‘“semantically” similar.
Table provides a description for the clusters of EXT3;
similar interpretations apply to ReiserFS and SCSI clusters,
but we do not show them due to space constraints. Column
“Behavior” provides a brief description of clusters, and column
“Context” details the system calls or kernel task in which these
behaviors were observed. Each cluster represents a distinct
behavior of the file system. For instance, cluster 1 gathers

the patterns representing “get” and “set” operations on file
metadata (e.g., file permissions), which is the case of the stat
system call; clusters 2 and 3 represent the typical behavior of
read and write system calls. For each cluster of each target
component, we derived an FSA, and a set of one or more test
cases for each FSA (Subsection |lII-E).

In order to evaluate the efficiency of SABRINE, we exe-
cuted the robustness test cases generated by the approach, and
compared the results with the ones obtained using the standard
fault injection framework included in the kernel [36]. In the
standard injection framework, allocation failures are injected
randomly: each time kmem_cache_alloc is invoked, it can fail
with a fixed probability P; if a failure is not injected, the
subsequent invocation becomes the next candidate injection.
Moreover, the standard injector allows to inject service failures
when the injectable function is invoked (directly or indirectly)
by the target component (EXT3, ReiserFS, or SCSI) [36]. We
performed 1,000 random injections for each target component;
these experiments took a few days per target component
to complete, therefore 1,000 injections can be considered a
conservative estimate on the number of experiments that a
developer would perform. We set P = 10%, which is the
value suggested by kernel developers in the documentation;
this value avoids that too many injections take place only at the
beginning of the experiment. As for SABRINE, we executed
the number of tests reported in the last row of Table [[I} We
classify the outcome of a test in:

o Kernel Failure: the OS is crashed, or its state is cor-
rupted. To detect state corruptions in the OS, we enabled
several consistency checks introduced by developers in
the kernel code, including checks on stack overflows,
stuck system calls, locks not released, and corruptions
on key kernel data structures. This kind of failures is the
most severe, since they affect the whole system.

o Workload Failure: the web server crashes, exits abnor-
mally, does not reply to requests, or does not execute
correctly the requests. These failures are detected through
the logs of the web server and of the client.

o FS Corruption: after each test, we detect disk corrup-
tions using filesystem check utilities.

o No Impact: neither the OS nor the workload show an
erroneous behavior.



TABLE IV
STATISTICS ON FAILURE DISTRIBUTIONS.
Testing Tech- Target Kernel Fail- Workload FS
nique ‘ ‘ ures Failures Corruptions ‘
EXT3 32.8% 0% 0%
Random ReiserFS 9.6% 65.9% 0%
SCSI 0% 0% 0%
EXT3 22.4% 16.3% 0%
SABRINE ReiserFS | 20.0% 32.0% 0%
SCSI 0% 0% 0%

Table [[V| provides the distribution of failures observed dur-
ing the experiments. Both kernel failures and workload failures
were observed; instead, no memory allocation failure caused
filesystem corruptions, since the kernel tends to crash imme-
diately or to fail gracefully in order to avoid data corruptions.
The SCSI target component was robust to memory allocation
failures, as it never caused failures: by inspecting its source
code, we found that it keeps a pool of previously-allocated
data structures (e.g., data transfer command structure) that
supply memory when the kernel allocator fails, in order not
to lose important disk writes. An important observation is
that, in the case of random testing of EXT3, no workload
failures occurred. Instead, we noticed that, when focusing
error injection in particular states using SABRINE, workload
failures were also observed for EXT3 (16.3%): in these cases,
the web server failed since the injected error prevented the
creation of a temporary file. This kind of failures could occur
only under a specific state of the OS, and emphasizes the
influence of the OS state on robustness testing.

Stack  Kernel function

frame

0 kmem_cache_alloc+0x22/0x110 < a failure occurs here
1 radix_tree_node_alloc+0x35/0xb0

2 radix_tree_insert+0x16e/0x1d0

3 add_to_page_cache+0x65/0x1d0

4 add_to_page_cache_lru+0x1b/0x40

5 mpage_readpages+0x70/0xe0

6 ext3_readpages+0x19/0x20 <« affected EXT3 function
7 __do_page_cache_readahead+0x176/0x210

8 ondemand_readahead+0xbe/0x170

9 page_cache_async_readahead+0x66/0x90

10 generic_file_splice_read+0x4a9/0x630

11 do_splice_to+0x61/0x80

12 splice_direct_to_actor+0x8£f/0x180

13 do_splice_direct+0x3b/0x60

14 do_sendfile+0x187/0x240

15 sys_sendfile64+0x77/0xa0

16 sysenter_past_esp+0x5f/0x91

Fig. 8. Call stack of a robustness vulnerability.

It is important to note that Table does not provides an
indication of the efficiency of robustness testing in terms of
unique robustness vulnerabilities found, as many failures are
due to the same vulnerability. By analyzing memory dumps,
we concluded that OS crashes were caused by two robustness
vulnerabilities in the kernel code. For instance, Figure@] shows
the case of a memory allocation in radix_tree_node_alloc that
causes the corruption of data structures when the allocation
fails and, in turn, the failure of the OS component calling the
function. This vulnerability emerges when the file system is
retrieving data from the disk to its cache in the main memory
when a memory allocation fails, as in the case of cluster 3

in Table Table |V| provides the percentage of random tests
able to reveal each robustness vulnerability: this percentage
can be very low, as the case of __ger blk in ReiserFS (two
cases out of 1,000 random tests trigger the vulnerability).

TABLE V
PERCENTAGE OF RANDOM INJECTION TESTS THAT TRIGGER EACH
VULNERABILITY.

[ Vulnerability [ EXT3 | ReiserFS |
__get_blk 29.0% 0.2%
radix_tree_node_alloc 3.8% 9.4%

TABLE VI
PROBABILITY TO REPRODUCE A ROBUSTNESS VULNERABILITY IN
SABRINE.

[ Vulnerability [ EXT3 | ReiserFS |
__get_blk 68.8% 100%
radix_tree_node_alloc | 77.7% 100%

In our experiments, SABRINE was able to detect both the
two vulnerabilities, with a high efficiency. For each vulnerabil-
ity, SABRINE generated several test cases able to detect it, by
injecting in states where the vulnerability could be triggered.
The SABRINE approach identified the same vulnerabilities of
random testing, but only a relatively small set of robustness
test cases was required to find them (77 test cases in total).
Moreover, a vulnerability can be easily reproduced once a test
case of SABRINE can detect it. By repeating 10 times the
execution of SABRINE test cases, almost every OS crashes
repeated identically: Table [V provides the average probability
of repeating an OS crash. Instead, it is difficult to reproduce
failures using random injections, since the state of the system
at the time of the injection plays an important role in triggering
vulnerabilities, but it is neglected in random injections. The
dramatic reduction of the number of test cases and the ability
to easily reproduce OS failures increase significantly the
efficiency of robustness testing.

VI. CONCLUSION

In this paper, we proposed and evaluated SABRINE, a state-
aware robustness testing approach for OSs. SABRINE can
efficiently and automatically generate robustness test cases for
distinct states of the OS. The approach does not require the
tester to know OS internals, as it infers behavioral models
automatically. The overall approach was applied to a Linux-
based RTOS used in the avionic domain. For this OS, we tested
the robustness of three subsystems against memory allocation
failures. Results clearly showed that the state of the OS plays
an important role in robustness testing, and that robustness
vulnerabilities can be detected with a small number of tests.
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