Fault Injection for Software Certification

Domenico Cotroneo and Roberto Natella
Unwversita degli Studi di Napoli Federico II and Critiware s.r.l.

http://www.critiware.com

Abstract

As software becomes more and more pervasive and complex, it is
increasingly important to assure that a system will be safe even in
the presence of residual software faults (“bugs”). Software Fault In-
jection consists in the deliberate introduction of software faults for
assessing the impact of faulty software on the system and improving
fault-tolerance. Software Fault Injection has been included as a recom-
mended practice in recent safety standards, and it has therefore gained
interest among practitioners, but it is still unclear how it can be ef-
fectively used for certification purposes. In this paper, we discuss the
adoption of Software Fault Injection in the context of safety certifica-
tion, present a tool for the injection of realistic software faults, namely
SAFE (SoftwAre Fault Emulator), and show the usage of the tool in
the evaluation and improvement of robustness of a RTOS adopted in
the avionic domain.

Keywords: Software Fault-Tolerance; Fault Injection; Software De-
pendability Assessment; Software Faults; Safety Certification; SW-
FMEA; Software RAMS; SAFE tool

Contact info:

Email: roberto.natella@unina.it, cotroneo@unina.it

Postal address: Universita degli Studi di Napoli Federico II, diparti-
mento DIETI, Via Claudio 21, ed. 3, 80125, Naples, Italy

Phone: +39 081 676770

Faz: +39 081 676574

IEEE Security € Privacy, special issue on Safety-Critical Systems: The Next Generation,
vol. 11, no. 4, pp. 38-45, July/August 2013, http://dx.doi.org/10.1109/MSP.2013.54

http://www.critiware.com
http://dx.doi.org/10.1109/MSP.2013.54

1 Introduction

We are witnessing the increasing importance of software in safety-critical
applications, and the increasing demand for techniques and tools for assuring
that software can fulfill its functions in a safe manner. At the same time, the
occurrence of severe software-related accidents emphasizes that engineering
safe software-intensive systems is still a hard task [I]. Unfortunately, our
ability to deliver reliable software, through rigorous development practices
and processes for preventing defects and V&V activities for removing them,
is behind the growing complexity of software and the shrink of development
budgets. As a result, we should expect that assuring low-defect software
will become more and more unfeasible in the near future.

The recent “unintended acceleration” issue in Toyota cars is an example
of how difficult can be to prevent and to deal with software faults (also re-
ferred to as defects or “bugs”). Toyota cars equipped with a new electronic
throttle control system (ETCS-i), made up of several thousands of lines of
code, had a significantly high rate of “unintended acceleration” events, lead-
ing Toyota to recall almost half a million new cars. The U.S. NHTSA scru-
tinized the design and implementation of the system with the assistance of
a team from NASA highly experienced in the application of formal methods
for the verification of mission-critical systems. Even if they adopted a range
of verification techniques, including static code analysis, model checking,
and simulations, the cause of unintended acceleration remained unknown.
Unfortunately, verification techniques cannot support conclusive statements
about the safety of software.

In addition to perform rigorous development and verification to reduce
the number of defects, we need to assure that the system can gracefully han-
dle residual software faults that are hidden in the system, since experience
showed that they cannot be avoided. In this paper, we consider a strategy,
based on the injection of software faults, for gaining confidence that residual
software faults cannot cause severe system failures, like the unintended ac-
celeration in the throttle control system, and for improving the tolerance of
the system to faulty software. Fault injection is the process of deliberately
introducing faults in a system in order to analyze its behavior under faults,
and to measure the efficiency of safety mechanisms [2]. In particular, Soft-
ware Fault Injection (SFI) emulates the effects of residual software faults
[3,], to evaluate the effectiveness of software fault tolerance mechanisms,
such as assertions and exception handlers [5 [6], [7].

We discuss in this paper how Software Fault Injection can be adopted
in the context of safety certification, by complementing other design and

verification activities. Although safety standards suggest or recommend the
adoption of fault injection, it is still unclear how Software Fault Injection
can be effectively used for certification purposes, as safety standards do not
provide detailed information about how to perform fault injection. More-
over, techniques and tools for Software Fault Injection have matured in the
last decade, and practitioners are still unaware of the potential applications
of Software Fault Injection for safety certification, as we are experiencing
in joint projects with industry. We illustrate an approach and a related
tool for the injection of realistic software faults, namely SAFE (SoftwAre
Fault Emulator), that provides some key advantages for certification pur-
poses since it takes into account fault representativeness. The usage of the
tool is shown in a real-world case study, in which it is applied for evaluating
and improving the robustness of a RTOS adopted in the avionic domain.

2 Software Fault Injection in the context of safety
certification

Safety standards emphasize that software should be validated with respect to
abnormal and faulty conditions. In the case of the recent ISO 26262, fault
injection is explicitly mentioned among methods for unit and integration
testing of software items, for instance by “corrupting values of variables”
or by “corrupting software or hardware components”. The NASA Software
Safety Guidebook (NASA-GB-8719.13) recommends fault injection for as-
sessing the system behavior against faulty third-party software (e.g., COTS).
Even in safety standards that do not explicitly mention fault injection, such
as the DO-178B and DO-178C, which refer more generally to “robustness
test cases”, fault injection is a suitable approach for verifying the robustness
of software, for instance by provoking “transitions that are not allowed by
the software requirements”.

During the development of safety-critical software (Figure , fault injec-
tion serves as a complementary activity for verifying robustness and fault-
tolerance. In particular, fault injection is recommended when the system
adopts measures for detecting the effects of faults and achieving/maintaining
a safe state, referred to as safety mechanisms in the ISO 26262. These
mechanisms are defined by analyzing potential failures of components and
sub-systems through a Failure Modes and Effects Analysis (FMEA) at de-
sign time. In particular, software-intensive systems require Software FMEA
(SW-FMEA) activities specifically focused on software components [8]. SW-
FMEA translates into software safety requirements, to be fulfilled through

rigorous development and verification activities, and by using safety mecha-
nisms to mitigate failures due to residual software faults. A combination of
both these approaches is recommended by safety standards to achieve safety
requirements.

Design phases Test phases

Item integration
and testing

N /

Specification of Verification of
software safety software safety
requirements requirements

System design

Software Software
architectural integration and
- design testing ---

failure modes and
design of safety
mechanisms

Software unit
design and
implementation

Software unit

testing

mode analysis and of
safety mechanisms
through fault injection

1 1
J
1
1 1
1 1
1 1
1 1
‘ 1 1 N
Analysis of software ! ! Verification of failure
1 1
1 1
1 1
1 1
1 1
1 1

Figure 1: Fault injection during software development phases.

If a SW-FMEA points out that a given failure of a software component
may cause severe consequences, a safety mechanism is introduced during the
design phases to let the system tolerate such failures. In this case, Software
Fault Injection can be adopted to force a software component to fail during
tests, and to gain confidence on the effectiveness of the safety mechanism.
Safety mechanisms detect and mitigate at run-time faulty software com-
ponents by introducing “redundant logic” [6]. The effects of faults can be
detected by:

e Comparing the outputs of two or more redundant and “diverse” (e.g.,
implemented by different means) software components that perform
equivalent functions. An error is detected if outputs do not match, by
adopting some voting schema as in the case of the N-version program-
ming approach [5].

e Performing “plausibility” checks on the values produced by a compo-
nent, or on the execution paths followed by the component. Examples
are assertions in the program that point out obvious inconsistencies
between program variables or output values that are outside a range,

and a watchdog timer checking that the software is actually making
progress [7].

Software Fault Injection supports the validation of these mechanisms.
For instance, faults can be injected in a component to evaluate whether
they can propagate to its outputs, and whether checks at its interface can
detect them. Detection triggers recovery mechanisms for mitigating the
effects of faults, such as:

e Mask the fault by performing multiple computations through multiple
“diverse” replicas, either sequentially (e.g., Recovery Blocks) or con-
currently (e.g., N-Version Programming) [5] [6]. Some faults can still
be masked even if replicas are not diverse.

e Bring the system to a safe state, for instance a switch to a degraded
mode of service, by giving priority to a subset of software functions,
or forcing a fail-stop behavior.

Software Fault Injection can provide evidences that recovery is effective
against faulty behaviors, or it can point out situations in which it is not
successful. For instance, developers can assess whether the system is able
to properly provide a degraded mode of service once a software failure has
occurred.

Another potential application of Software Fault Injection is the valida-
tion of SW-FMEA. Software Fault Injection can reveal two kinds of FTAM
(Fault-Tolerance Algorithm or Mechanism) failures |2, [6]: (i) faults in the
implementation of FTAMs (lack of “error and fault handling coverage”), or
(ii) incorrect or incomplete assumptions about failure modes really occurring
in operation (lack of “fault assumption coverage”). FTAM failures of the
second kind are due to wrong assumptions made by the designer of FTAMs
about how software components can fail (e.g., exhibiting fail-stop behavior),
on the basis of a potentially incorrect SW-FMEA. In general, FMEAs cannot
be exhaustive, as some failure modes or effects can be missed. SW-FMEA
is a difficult process, which requires an expert analyst and a detailed knowl-
edge about the system, and as any human activity it is prone to mistakes.
Moreover, software functions are usually more complex than hardware ones,
and software failure modes cannot typically be obtained from datasheets
or field data [§]. After performing Software Fault Injection, developers can
look in detail at FTAM failures, identify those ones caused by incorrect as-
sumptions, and revise the SW-FMEA and the system design accordingly.

Otherwise, if software components fail according to the assumptions, devel-
opers can gain confidence on the validity of SW-FMEA.

In both scenarios, the representativeness of injected faults is an im-
portant concern to support claims about fault-tolerance properties of the
system. That is, fault injection should generate software errors (i.e., an er-
roneous software state) of the same kind of errors that are likely to occur
during operation. For instance, to evaluate the effectiveness of an assertion,
the data that is checked by the assertion should be corrupted; if the injected
corruption is arbitrary and not representative of real data corruptions, then
fault injection could not provide evidence about the likelihood of detecting
data corruptions during operation.

3 From hardware to software fault injection

The use of fault injection to emulate the effects of software faults, namely
Software Fault Injection (SFI), is relatively recent when compared to tra-
ditional fault injection approaches. FEarly Software Fault Injection tools
adopted Software-Implemented Fault Injection (SWIFI) techniques existing
at that time, aimed at emulating the effects of hardware faults by chang-
ing the value corrupting software code or data (e.g., using bit-flips), to also
emulate the effects of software faults [9, 3]. Subsequent approaches corrupt
data at the interfaces of software components, by replacing the parameters
of function invocations with invalid parameters, such as invalid pointers and
boundary values [10, 1], to emulate faulty interactions between compo-
nents. These techniques are useful to point out corner cases in which invalid
data is not correctly handled, but they are not suitable for emulating soft-
ware faults in a representative way since the injected corruptions, such as
bit-flips or boundary values, do not necessarily match the effects of faults
hidden in the system under evaluation. The realism of fault injection is an
important condition for reproducing faulty behaviors that are likely to occur
in operation, and for gaining confidence on FTAM:s.

The injection of realistic software faults can be achieved by introducing
artificial bugs in the target software. This technique produces a faulty ver-
sion of a software component, generating an erroneous behavior when it is
executed. The use of code changes for emulating software faults is supported
by empirical studies, which found that the injection of code changes produces
erroneous behaviors similar to the effects of real software faults [12]. This
way of injecting faults resembles mutation testing, but it has completely
different goals: while mutation testing uses code changes to identify an ad-

equate test suite, Software Fault Injection is meant to validate FTAMs and
to analyze the system behavior in the presence of realistic faulty scenar-
ios. This difference of goals reflects on the approaches and fault models.
Mutation testing studies proposed a large number of mutation operators,
in order to encompass many kinds of faults that can occur during devel-
opment, for assessing the thoroughness of test cases. However, not every
mutation operator is necessarily representative of residual software faults
that escape testing, go with the deployed product, and affect the system
during operation.

Several studies have been focused on the definition of a realistic model of
software faults. The fault model is based on the rigorous analysis of extensive
failure data of both open-source and commercial software systems [4} [13].
These studies observed the same trend in the distribution of faults: “Algo-
rithm” faults are the dominant ones; “Assignment” and “Checking” faults
have approximately the same weight; “Interface” and “Function” faults are
the less frequent ones. These data encompass both OS code (e.g., hardware-
management code) and user programs (e.g., compilers, interpreters, desktop
applications), with varying degrees of maturity and number of users. Soft-
ware faults on the field were further classified in [13] in terms of programming
language construct that is either missing, wrong, or extraneous in the faulty
code. The majority of faults belonged to few fault types (Table , which
have a much higher frequency and occur consistently in most of the con-
sidered projects. This set of fault types forms a fault model reasonably
independent from the nature of the program, and is suitable for automated
fault injection, as it details how to manipulate a program to introduce faults,
in terms of programming constructs to be removed or modified. The fault
model also provides several detailed rules, not shown for brevity, describing
the code context in which each fault type should be injected to be realis-
tic: for instance, the removal of an if construct can be injected in those
if constructs that have at most 5 statements, since it is unlikely that an if
construct is lacking for larger groups of statements.

A limitation of these fault types is that part of field faults are not covered,
as they occur only in specific projects: to increase the percentage of covered
faults, the injector would require field failure data about the specific project
under evaluation. Unfortunately, it is very difficult to obtain field failure
data as it requires to put the system in operation for several years. Thus,
the fault model focuses on fault types that are generic and can be adopted
even if field failure data are not available. However, considering that code
changes are able to generate errors in a similar way to real faults [12], the
use of representative fault types can achieve a good degree of realism even

if the fault types do not account for every possible fault.

Table 1: Most frequent types of software faults found in the field [13].

Fault type # of faults % of faults
if construct plus statements 71 10.63%
AND sub-expr in expression used as branch condition 47 7.04%
function call 46 6.89%
if construct around statements 34 5.09%
bgn OR sub-expr in expression used as branch condition 32 4.79%
% small and localized part of the algorithm 23 3.44%
> variable assignment using an expression 21 3.14%
functionality 21 3.14%
variable assignment using a value 20 2.99%
if construct plus statements plus else before statements 18 2.69%
variable initialization 15 2.25%
logical expression used as branch condition 22 3.29%
o algorithm - large modifications 20 2.99%
§ value assigned to variable 16 2.40%
B arithmetic expression in parameter of function call 14 2.10%
data types or conversion used 12 1.78%
variable used in parameter of function call 11 1.65%

£
5 variable assignment using another variable 9 1.35%
Total 452 67.66%

In our previous study [14], we evaluated the suitability of this fault model
for safety-critical software since, given the more rigorous testing activities
it undergoes, a different distribution of fault types could hold. Therefore,
we analyzed how testing affects the types of residual software faults in a
Real-Time Operating System (RTOS) adopted in space applications. We
compared the distribution of injected faults with the distribution of faults
obtained after removing faults detected by test suites. As expected, test
suites were very effective in this safety-critical software, as only a minority
of injected faults escaped testing. A key finding was that the distribution
of fault types is not affected by test suites, i.e., the relative proportions of

fault types before and after testing are the same. Instead, testing affects
the distribution of faults across code locations (e.g., files and functions).
Therefore, to adopt these fault types in safety-critical software, we need to
tune the code location in which faults are injected to achieve fault repre-
sentativeness. These findings have driven the development of the SFI tool
discussed in this paper.

4 SoftwAre Fault Emulator

The SoftwAre Fault Emulator (SAFE) is a tool for supporting the auto-
mated analysis of software FTAMs and failure modes through Software Fault
Injection, which has been originally developed in the context of academic
research and has then evolved into a mature fault injection suite. The tool
can perform the injection of software faults into C and C++ software, ac-
cording to the fault model described above. Differing from previous SFI
tools that inject bit-flips or invalid values [3}, 10} [7, 11], SAFE emulates soft-
ware faults by adopting an representative fault model, which is required in
order to provide sound evidence that a system will be fault-tolerant during
operation.

The fault injection approach closest to ours, which injects the fault types
of Table|[l] by mutating the source code of the target software, is represented
by the G-SWFIT technique [13], which mutates the binary code of the target.
In our previous work [15], in the context of the European project “Critical-
Step” (www.critical-step.eu), we compared an industrial implementation
of G-SWFIT with our technique. The study pointed out strengths and
limitations of these techniques: binary-level injection works in the absence
of source code, but the mutation of binary code is often inaccurate, and
difficult to implement and to perform correctly. The SAFE tool has been
improved in the context of this project, and it is now mature enough to
handle very large fault injection campaigns in complex real-world software.

The tool supervises all the phases of fault injection and allows their
automated execution. The workflow consists of the following phases:

1. Code analysis: The tool analyzes the code of the target software, to
identify code locations where faults can be injected. The code is first
transformed into an abstract representation (in the form of an abstract
syntax tree), which is then analyzed to identify which constructs in the
program fulfill the rules of the fault model and are suitable for injecting
realistic faults.

www.critical-step.eu

2. Fault generation: For each fault identified in the previous phase, the
fault is actually injected and a faulty version of the software is obtained
(Figure . During this phase, the user can select a subset of faults to
inject, by configuring a filtering criteria. Possible criteria are to inject
only a subset of fault types, and to inject only in a subset of code
locations, for instance to inject faults only in the parts of the software
that are deemed most defect-prone according to software complexity
metrics [14].

3. Test execution: A test is executed for each faulty version of the soft-
ware generated during the previous phase. At each experiment, the
tool: cleans residual errors from a previous experiment by stopping the
system, starts the target system with a new fault, executes a workload,
shuts down the target system after a fixed time, and collects failure
data. Since these operations are system-specific, the tool allows the
user to customize them using a scripting language (Figure . Failure
data can be collected at the end of an experiment, after the occurrence
of a failure, such as a dump of memory and of CPU registers, and er-
ror logs generated by the system. Collecting post-mortem data avoids
introducing excessive overheads in the system execution, which is es-
pecially important in real-time systems. If necessary, the tester can
perform an additional in-depth analysis of experiments that exhibited
FTAM failures by collecting and analyzing execution traces of the sys-
tem (e.g., address and data signals produced during an experiment).
To have acceptable overheads, the collection of execution traces should
be performed using a hardware debugger, which can be integrated with
SAFE if it provides interfaces to external programs.

4. Result analysis: Experimental data are analyzed in order to provide
the user with information about failure modes and FTAMs. The tool
eases the analysis of data through user-defined scripts, which evaluate
specific properties of the system. For instance, the user can instruct
the tool to evaluate whether the program corrupted data, by compar-
ing experimental data with data obtained from fault-free experiments
(golden runs), and whether safety mechanisms were able to detect and
to recover from the fault.

The costs of fault injection, given the size of current software systems,
are a primary concern. There are three factors that affect the cost of a fault
injection campaign: the time to setup a fault injection testbed; the time to
run experiments; the time to analyze the experimental data.

10

(a) Selection and preview of faults to inject.

- Software Fault injection GUI BE)
File About
Create Fault Compile Fault | Tests | Results
SFAULTYDIR [/home/robertn/demo/faults][_ COMPILED PATCH
Name Type
$SAVEDIR [/home/roberm/demo/save ey T tg3._OMVAE_606.palch OMVAE
STIMEOUT (in second) (180 BN [] tg3.i_OMVAE_607.patch OMVAE
5l $BINARY 3 [J tg3._OMVAE 608.patch OMVAE
inal
D, - - 4 [tg3.l_OMVAE_609.patch OMVAE
Jusr/src/linux-2.6.20/drivers/net/tg3.ko 5 [tg3.LOMVAE_60.patch OMVAE
6 [tg3.i_OMVAE_610.patch OMVAE
7 [tg3._OMVAE 611patch OMVAE
18 [tg3. OMVAE 612.patch OMVAE
s 9 O tg3. OMvAE 613.patch OMVAE
Startup | Handle Timeout | Clear Test Bed | Save Result | Run Test | 10 [tg3i_OMVAE 614.patch OMVAE
200f [-e SKILL] 11 [J tg3._OMVAE 615.patch OMVAE
21 then 12 [J tg3. _OMVAE 616.patch OMVAE
22 mv SKILL $RESULTDIR 13 [tg3._OMVAE_617.patch OMVAE
;3 f 14 [tg3.i_OMVAE_618.patch OMVAE
25 mv $5TDIO SRESULTDIR 15 [] tg3.i_OMVAE_619.patch OMVAE ~
26 my $STDERR $RESULTDIR i
b Deselect Update List T
28 my STESTDIR/Remu_serial_output.txt SRESULTDIR COMPILED PATCH | FILTERI
29
Start Tests]

]

(b) Setup of fault injection experiments.

Figure 2: SAFE tool.

The setup of a fault injection testbed requires some manual effort. Since
fault injection is supported by tools, most of the setup effort consists in
integrating a fault injection tool into the system under evaluation. In the
case of the SAFE tool, the setup consists in developing a set of scripts,
which provide the commands for performing a specific operation on the
target system. For instance, a script is devoted to start the execution of the

11

= Software Fault Injection GUI (21X
File About
Create Fault| Compile Fault | Tests | Resuits |
$ROOTDIR [Jusr/sre/linux-2.6.20][] PATCH LIST
Name Type
senuere{fomekerienofiaie I
$BINARY W tg3.i 733 patc
Binary a ode Orginal code
- . 8844 tw32(MAC_MODE, mac_mode); tw32(MAC_MODE, mac_mode); [~]
Jusrfsre/linux-2.6.20/drivers/net/tg3.ko| ggqs - - - -
8846 else else
8847 return -EINVAL; return -EINVAL;
8848
8843 err = -EIO0; err = -EIO;
8850
8851 tx len = 1514; tx len = 1514;
8852
8853 if (Iskb) if (Iskb)
= = 8854 return -ENOMEM; return -ENOMEM;
Add Binary | Remove Binary 8855
Compress 8856 tx_data = skb_put(skb, tx_len); tx_data = skb_put(skb, tx_len);
b Compile Command 8857 memcpy (tx_data, tp->dev->dev_addr, 6); memcpy (tx_data, tp->dev->dev_addr, 6);
P 8858 memset(tx data + 6, @x@, 8); memset(tx data + 6, @x@, 8);
8859
8860 tw32(MAC_RX MTU SIZE, tx_len + 4); tw32(MAC_RX MTU SIZE, tx_len + 4);
8861
b Clean Command 8862 for (i =14; i < tx len; i++) for (i =14; i < tx len; i++)
8863 tx_data[i] = (u8) (i & exff); tx_data[i] = (u8) (i & exff);)
Ra64 | (o)
a [D)

target system, which may require to start an emulator or to send commands
to a board through a serial or USB connection. These scripts are typically
simple and small.

The time to run experiments is, in our experience, the largest share of
a fault injection campaign. The campaign duration is mainly determined
by the number of faults that are injected into the system, which depends
on the size of the system and typically ranges from hundreds to hundreds
of thousands of faults. In turn, the fault injection campaign requires from
some hours to a few days to execute. Various approaches were proposed for
speeding up test execution, by selecting a subset of faults to inject (among
the many faults that can be potentially injected) to reduce the number
of experiments and achieve confidence on the results. In our previous work
[14], we proposed a heuristic that improves the representativeness of injected
faults and reduces the number of experiments, by filtering out up to 70%
percent of faults. When the evaluation is focused on a specific part of the
system (e.g., a specific assertion), the tester should perform a further fault-
filtering step in order to focus fault injection on code related to the specific
part under evaluation. For instance, to assess a specific procedure, faults
should be injected in those procedures interacting with it. The SAFE tool
allows the user to customize which faults are injected.

Experimental data can be used for: (i) the quantitative analysis of
FTAMs in terms of coverage factors and of timing distributions, and (ii)
the analysis of root-causes behind FTAM failures, in order to provide feed-
back for the design and implementation of FTAMs. The former consists in
summarizing, in statistical terms, the outcomes of experiments according to
user-defined predicates (i.e., a concise specification of properties that must
hold in the presence of faults, which are derived from safety requirements
defined during design phases (Figure ; for instance, a railway signaling
system should never allow two trains to cross in the same section. The
analysis of predicates over experimental data can be automated in SAFE
through user-defined scripts. Quantitative results are also useful to support
stochastic modeling and evaluation of the system [2]. In the latter, devel-
opers look in-depth at a subset of fault injection experiments that caused
FTAM failures, in a similar way to debugging a program by looking at failed
test cases.

As a case study, we present some experimental results from a pilot R&D
project, in conjunction with the Finmeccanica industrial group. Goal of the
project is to develop a Linux-based RTOS (FIN.X-RTOS), to be adopted in
avionic applications, accompanied by evidences (e.g., test artifacts) showing
the compliancy to the recommendations of the DO-178B safety standard, in

12

order to ease the certification of systems based on FIN.X-RTOS. The original
Linux kernel was enhanced in FIN.X-RTOS by providing real-timeliness and
scalability for multi-core architectures and removing unessential parts. At
time of writing, requirements of the level D standard were fulfilled, and
additional verification activities are being performed according to the more
stringent requirements of level C, which demand to test the robustness of
the software against abnormal inputs and conditions.

In particular, we focus on robustness evaluation of the FIN.X-RTOS
kernel against faulty conditions caused by device drivers (Figure [3)). Device
drivers are not part of the FIN.X-RTOS kernel, since they often need to be
developed ad-hoc, or obtained from a third-party hardware-specific Board
Support Package (BSP), when FIN.X-RTOS is integrated into a wider sys-
tem. Unfortunately, kernel code tends to be vulnerable against faulty device
drivers, since kernel developers often omit checks on the behavior of device
drivers to improve performance, neglecting the risk of faulty drivers. This
threat is exacerbated by the high defect rate in device drivers, and by the
monolithic architecture of FIN.X-RTOS (inherited from the Linux kernel),
where device drivers execute in privileged mode and can affect the whole

0S [11].

Safety-critical system

Applications

2. the device
driver is in an |—|
error state

7
1. a fault is & o % ‘
injected in |— - Device Drivers

the code

3. the error
state propagates
to the kernel

Figure 3: Overview of the robustness testing case study on FIN.X-RTOS.

Software Fault Injection was adopted for assessing the ability of the ker-
nel to prevent error propagation from device drivers to the kernel itself, by
injecting faults in device drivers. The kernel is robust when the effects of
faults are restricted to the faulty device driver; such faults can be tolerated

13

by re-initializing the device driver, or by switching to a secondary device.
When kernel is not able to detect and to prevent error propagation, a faulty
driver can affect shared kernel data or code, and it should be hardened by
applying additional safety mechanisms, such as checks on function parame-
ters or before accessing shared data structures.

Experiments were conducted in an emulated environment, and using
the SAFE tool to orchestrate experiments. We injected faults in device
drivers for three Ethernet network cards (ne2k-pci, rtl8139cp, pcnet32), by
randomly sampling 150 faults to inject for each device driver. We adopted
a network-bound workload running Apache HTTPD on the target system
and a request generator on the host machine. During the experiments, we
collected error messages from the kernel (through a virtual serial port) and
from workload applications, and analyzed these messages to identify whether
a fault propagated to the kernel or to the workload.

In most cases (79.1%), the workload can correctly execute even in the
presence of a faulty driver: in general, this phenomenon is often observed in
fault injection experiments, since the fault may be accidentally masked (e.g.,
an uninitialized or corrupted variable is overwritten later in the program) or
may remain latent during the experiment. However, there were several cases
in which faults affected the kernel (11.3%) or the workload (9.6%). In the
case of workload errors and of driver crashes not propagated to the kernel,
the injected fault caused the unavailability of the network device driver,
thus affecting communication between the server and the clients, and were
successfully detected and signaled by the kernel through return codes of
system calls.

When in our experiments the fault propagated to the kernel, it caused
the stall or the termination of a kernel thread (i.e., a privileged task that
runs in supervisor mode and that executes kernel code), affecting the whole
OS. In general, if an exception occurs (e.g., an illegal memory access) while
executing OS code, the OS tries to recover from the exception by killing
the current task under execution. For instance, when a task invokes an OS
system call, and the system call causes an exception or does not terminate
within a fixed time period, the kernel kills the task (thus terminating the
system call) to allow the execution of other tasks. We found that the excep-
tion handler can kill the current task even when it is part of the OS (i.e.,
a kernel thread), thus affecting the execution of the OS. For instance, a
“missing variable initialization” fault injected in the ne2k-pci driver caused
the kill of the sirg-timer kernel thread, which is responsible for the delayed
execution of kernel functions associated to a timer. In particular, the kernel
thread was executing a timer function mld_ifc_timer_expire, which periodi-

14

cally sends network messages for discovering multicast listeners. In turn, this
function invokes the faulty device driver, which causes an exception since
it accesses to an uninitialized data structure. When the sirg-timer kernel
thread is killed, timer functions in the kernel cannot be executed anymore.
An approach to handle this situation is to modify the exception handler in
the kernel, in order to restart a kernel thread when an exception occurs in-
stead of terminating it; in this way, the kernel could preserve the execution
of other timer functions when a timer functions fails due to a faulty driver.

5 Conclusion

Residual faults are hidden in our software, and they will eventually man-
ifest themselves during operation. This threat will likely get worse as the
complexity of software steadily rises. Software Fault Injection is a means
to assess, before releasing the product, the impact of software faults, and
enables the evaluation and improvement of fault-tolerance. Software Fault
Injection represents a reasonably mature technology for the assessment of
safety-critical software, as it is able to realistically emulate residual software
faults, which is a requirement for trustworthy results, and can be fully auto-
mated, which is important to make it a feasible and cost-effective approach.

Acknowledgments

This work has been partially supported by the CECRIS FP7 project (grant
agreement no. 324334) and by “Embedded Systems in Critical Domains”
national project (CUP B25B09000100007).

About the authors

Roberto Natella is a postdoctoral researcher at the Federico II University
of Naples, Italy, and co-founder of the Critiware S.r.L. spin-off company.
He received the PhD degree in 2011 in computer engineering from the same
university. His research is in the area of dependability assessment of mission-
critical systems, and in particular on software fault injection and on software
aging and rejuvenation. He has been involved in industrial research projects
with companies of the Finmeccanica group (Iniziativa Software). He is a
member of IEEE.

15

Domenico Cotroneo received his Ph.D. in 2001 from the Department of
Computer Science and System Engineering at the Federico II University
of Naples. He is currently associate professor at the same university. His
main interests include dependability assessment techniques, software fault
injection, and field-based measurement techniques. Domenico Cotroneo has
served as program committee member in several scientific conferences on
dependability, including DSN, EDCC, ISSRE, SRDS, and LADC; and he
is involved in several national and European projects in the context of de-
pendable systems. He is a member of IEEE.

References

[1] N. Leveson, “Role of software in spacecraft accidents,” J. Spacecraft
and Rockets, vol. 41, no. 4, pp. 564-575, 2004.

[2] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Mar-
tins, and D. Powell, “Fault Injection for Dependability Validation: A
Methodology and Some Applications,” IEEE Trans. on Software Engi-
neering, vol. 16, no. 2, pp. 166—-182, 1990.

[3] J. M. Voas and G. McGraw, Software Fault Injection: Inoculating Pro-
grams Against Errors. John Wiley & Sons, Inc., 1998.

[4] J. Christmansson and R. Chillarege, “Generation of an Error Set that
Emulates Software Faults based on Field Data,” in Proc. Intl. Symp.
on Foult-Tolerant Comp., 1996, pp. 304-313.

[5] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Definition and
analysis of hardware-and software-fault-tolerant architectures,” Com-
puter, vol. 23, no. 7, pp. 39-51, 1990.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IFEFE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11-33, 2004.

[7] M. Hiller, A. Jhumka, and N. Suri, “EPIC: Profiling the propagation
and effect of data errors in software,” IEEFE Transactions on Computers,
vol. 53, no. 5, pp. 512-530, 2004.

[8] P. Goddard, “Software FMEA techniques,” in Proc. Annual Reliability
and Maintainability Symposium, 2000, pp. 118-123.

16

[9]

[10]

[11]

[12]

[13]

M. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,”
IEEE Computer, vol. 30, no. 4, pp. 75-82, 1997.

P. Koopman and J. DeVale, “The exception handling effectiveness of
POSIX operating systems,” IEEE Transactions on Software Engineer-
ing, vol. 26, no. 9, pp. 837848, 2000.

A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the Impact
of Faulty Drivers on the Robustness of the Linux Kernel,” in Proc. Intl.
Conf. on Dependable Systems and Networks. IEEE, 2004, pp. 867-876.

M. Daran and P. Thévenod-Fosse, “Software Error Analysis: A Real
Case Study Involving Real Faults and Mutations,” ACM Soft. Eng.
Notes, vol. 21, no. 3, pp. 158-171, 1996.

J. Durées and H. Madeira, “Emulation of Software faults: A Field Data
Study and a Practical Approach,” IEEE Trans. on Software Engineer-
ing, vol. 32, no. 11, pp. 849-867, 2006.

R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, “On Fault Repre-
sentativeness of Software Fault Injection,” IFEE Transactions on Soft-
ware Engineering, vol. 39, no. 1, pp. 80-96, 2013.

D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimen-
tal Analysis of Binary-Level Software Fault Injection in Complex Soft-
ware,” in Proc. Ninth European Dependable Computing Conference,
2012, pp. 162-172.

17

	Introduction
	Software Fault Injection in the context of safety certification
	From hardware to software fault injection
	SoftwAre Fault Emulator
	Conclusion

