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Abstract—The injection of software faults in software components to assess the impact of these faults on other components or 
on the system as a whole, allowing the evaluation of fault tolerance, is relatively new compared to decades of research on 
hardware fault injection. This paper presents an extensive experimental study (more than 3.8 millions of individual experiments 
in three real systems) to evaluate the representativeness of faults injected by a state-of-the-art approach (G-SWFIT). Results 
show that a significant share (up to 72%) of injected faults cannot be considered representative of residual software faults, as 
they are consistently detected by regression tests, and that representativeness of injected faults is affected by the fault location 
within the system, resulting in different distributions of representative/non-representative faults across files and functions.
Therefore, we propose a new approach to refine the faultload by removing faults that are not representative of residual software 
faults. This filtering is essential to assure meaningful results and to reduce the cost (in terms of number of faults) of software 
fault injection campaigns in complex software. The proposed approach is based on classification algorithms, is fully automatic, 
and can be used for improving fault representativeness of existing software fault injection approaches. 

Index Terms—Software Fault Injection, Experimental Dependability Evaluation, Software Reliability, Fault-Tolerant Systems. 
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1 INTRODUCTION

LTHOUGH society is increasingly dependent on 
software, it is a fact that it is practically impossible 
to guarantee that software is perfect, due to the 

many complex functions that software has to perform and 
due to budget and time constraints of the software devel-
opment process. As a result, complex software will even-
tually execute under faulty conditions that have not been 
foreseen during testing [1][2][3][4]. To face this problem, 
it is well known, even recommended by some safety 
standards [6][7], that software developers adopt software 
fault tolerance mechanisms. Examples are masking soft-
ware faults through diversity (e.g., N-version program-
ming, recovery blocks, N self-checking programming) 
[8][9], and detecting a wrong state of the system, in order 
to provide a fail-stop behavior or a degraded mode of 
service (e.g., concurrent error detection, checkpointing 
and recovery, exception handling) [1][10]. In order to as-
sess the effectiveness of fault tolerance mechanisms, it be-
comes important to evaluate the system behavior under 
unforeseen faulty conditions. This can be done by delibe-
rately injecting a fault condition into the system. 

The process of introducing faults in a system in order 
to assess its behavior and to measure the efficiency (cov-
erage, latency, etc.) of fault tolerance mechanisms is re-
ferred to as fault injection [11][12][13]. It is recommended 

by most of safety standards, such as the ISO/DIS 26262 
standard for automotive safety [7], which prescribes the 
use of error detection and handling mechanisms in soft-
ware and their verification through fault injection, and 
the NASA standard 8719.13B for software safety [6], 
which recommends fault injection to assess system beha-
vior in the presence of faulty off-the-shelf software. 

Many fault injection approaches have been proposed 
in the last four decades. As it is generally well accepted 
that simple hardware fault models such as bit-flip or bit 
stuck-at do represent real hardware faults, the first fault 
injection approaches consisted of injecting physical faults 
into the target system hardware (e.g., using radiation, 
pin-level, power supply disturbances, etc). The growing 
complexity of the hardware turned the use of these physi-
cal approaches quite difficult or even impossible, and a 
new family of fault injection approaches based on the 
runtime emulation of hardware faults through software 
(Software Implemented Fault Injection - SWIFI) become 
quite popular. Some examples of SWIFI tools are 
NFTAPE [34], Xception [38], and GOOFI [35]. However, 
all these tools have been proposed for the emulation of 
hardware faults and their potential to emulate more com-
plex faults such as software faults is very limited. 

The use of fault injection to emulate the effects of real 
software faults (i.e., bugs) is relatively recent when com-
pared to the first fault injection proposals. These tech-
niques are referred to as Software Fault Injection (SFI). In 
practice, the injection of software faults consists of the in-
troduction of small changes in the target program code, 
creating different versions of a program (each version has 
one injected software fault). The way faults are injected 
resembles the well-known mutation testing technique 
[14][15][16] but the injection of software faults has com-
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pletely different goals. While mutation testing uses pro-
gram mutations to identify an adequate test suite, Soft-
ware Fault Injection is meant to validate fault-handling 
mechanisms at runtime and to evaluate the way a system 
behaves in the presence of the injected faults 
[12][13][19][20]. This difference of goals reflects on the 
approaches and fault models adopted by SFI. 

A key property of SFI is the representativeness of in-
jected faults. That is, the faultload (i.e., the set of faults to 
be injected in a given software component/system) 
should reproduce the faults that are actually experienced 
in the field (i.e., residual faults), in order to obtain a realis-
tic evaluation of fault tolerance in face of runtime faulty 
conditions. Residual faults are those faults that are over-
looked by rigorous design and testing, and that actually 
affect the mission of the system, as evidenced by recent 
accidents occurred in space missions [4][5]. If the injected 
software faults are not representative of residual faults, 
then it is risky to assert the effectiveness of software fault 
tolerance. This means to carefully selecting fault types 
(“what to inject”) and fault locations (“where to inject”) in 
order to achieve the representativeness of injected faults. 

Unfortunately, in spite of decades of fault injection re-
search, including the more recent advances on the injec-
tion of software faults, the fact is that the accurate emula-
tion of residual software faults through fault injection re-
mains largely unknown. Most recent techniques, such as 
G-SWFIT (Generic Software Fault Injection Technique) 
[17], use a set of fault operators derived from the most 
frequent types of software faults found in field failure 
studies. These proposals focused only on fault types and 
they completely neglected fault locations, in terms of 
modules and/or routines. Given a fault type, existing 
techniques inject it in every module and routine, without 
accounting for the complexity of code in the mod-
ule/routine and testing efforts that have been spent on 
that part of code [3][18]. This is a strong limitation espe-
cially when dealing with complex software systems, for 
the two following reasons. First, injecting defects in every 
location of complex software leads to a dramatic increase 
of the cost of the campaign. For example, the software 
systems considered in this study have tenths of thousands 
of potential fault locations, and injecting faults in all of 
them could make impractical the fault injection campaign. 
Second, even if we want to take on the entire campaign, 
the most important issue is that results could be mislead-
ing. For example, if we aim to measure the fault coverage, 
we should be able to select the subset of experiments that 
represents residual faults, since this measure is related to 
the likelihood of faults to exist in the field [19][20]. Repre-
sentativeness in terms of fault types and fault locations is thus 
a paramount of importance to achieve effective fault injection 
campaigns, in terms of costs and accuracy of results. 

This work proposes a new SFI strategy able to careful-
ly select fault locations to achieve representative fault-
loads. The study is based on an extensive experimental 
campaign (more than 3.8 million individual experiments) 
to evaluate and improve the representativeness, as a func-
tion of fault types and locations, of a state-of-the-art SFI 
technique (G-SWFIT). 

The definition of representative faultloads is accom-
plished performing the following steps. First, we choose 
three real world software systems, including two Data 
Base Management Systems (MySQL and PostgreSQL) and 
a Real-Time Operating System (RTEMS) largely adopted 
in business and safety-critical applications. Second, we 
conduct extensive SFI campaigns using as workload the 
actual test cases adopted by developers, in order to assess 
whether injected faults are representative of residual 
faults or not. The driving idea is that faults disclosed by 
the test cases do not represent residual faults, as they 
would be easily detected and fixed by developers. Third, 
from the results of SFI campaigns we identify the faults 
that are difficult to find by testing and thus worth consi-
dering for SFI, as they are representative of residual 
faults. Fourth, we conduct a statistical analysis on repre-
sentative faults to understand how to define a representa-
tive faultload for a given software. To this aim, we pro-
pose an approach based on classification algorithms and 
software complexity metrics to identify suitable fault lo-
cations for emulating residual software faults. 

This study provides the following key contributions: 
1. It shows that the issue of non-representative faults 

can significantly affect SFI, even using state-of-the-
art techniques, such as G-SWFIT [17]. Considering 
the experiments done in the RTEMS operating sys-
tem, it was observed that non-representative faults 
are the majority of injected faults (72.23%) using 
the G-SWFIT technique. Even if we consider less-
tested and large systems in which the chance of 
faults to escape testing is higher, such as MySQL 
and PostgreSQL, the percentage of non-
representative faults is still noticeable (respective-
ly, 14.57% and 23.13%). 

2. The distribution of faults across components (files 
and functions) reveals that fault representativeness 
is significantly affected by fault locations, thus 
confirming that the careful selection of fault loca-
tions is needed to define realistic faultloads. 

3. It shows that representativeness can be improved 
by using classification algorithms and software 
metrics. This is a novel approach compared to ex-
isting ones that focus on fault types [17][44][29]. 
We evaluated both a supervised (i.e., trained using 
examples) algorithm, namely decision trees, and 
an unsupervised one, namely k-means clustering. 
In particular, we found that the faultload can be 
improved using either the supervised algorithm 
(4.10%-26.08%) or the unsupervised one (2.16%-
16.24%). At the same time, the approach can signif-
icantly reduce the faultload size (filtering out up to 
69.43% of faults), thus reducing the cost and the 
time of SFI campaigns in complex software. 

This work is organized as follows. Section 2 surveys 
fault injection techniques and its relationship with muta-
tion testing. Section 3 presents the experimental evalua-
tion of the representativeness of faults injected by G-
SWFIT on three systems. Section 4 discusses how repre-
sentativeness can be improved and shows that there is a 
clear difference in the distribution of representative/non-
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representative faults across files and functions. This con-
clusion leads to the proposal, in Section 5, of a new fault 
selection approach that improves fault representative-
ness. Sections 6 and 7 summarize and discuss the main 
results of the paper. 

2 RELATED WORK

This section overviews the works that use the insertion of 
software faults in programs such as mutation testing, and 
those that specifically address SFI, including an overview 
of existing approaches and tools and typical scenarios 
where it has been used. Finally, we describe the G-SWFIT 
technique, which is used as reference of a state-of-the-art 
SFI technique in this paper. 

The usefulness of inserting software faults to improve 
software reliability is recognized in many works. There 
are several approaches on how to use software faults dur-
ing or after software development to improve quality of 
software. One approach, mutation testing, focuses on the 
systematic improvement of the test cases to assure that 
most bugs will be detected with the least effort. To this 
effect, programs are modified to include an artificial fault 
to assess the efficacy of the test case to detect it. Another 
approach intercepts the interfaces of modules to change 
the data being passed. This approach, robustness testing, 
is based on the idea that these wrong data values might 
be the result of an internal fault in the calling module and 
the goal is to evaluate the ability of the called module to 
handle this unexpected input. A third approach, fault in-
jection, modifies programs by inserting an artificial fault 
to observe the behavior of the target programs in pres-
ence of faults, to validate fault tolerance mechanisms and 
to perform dependability benchmarking. In the following 
we review the fundamentals of these three approaches. 

2.1 Mutation testing 
Mutation testing is a well-known technique for software 
quality improvement used during the software develop-
ment phase. The main goal is to improve the ability of test 
cases to detect faults while maintaining testing time as 
low as possible [14][15][16]. This approach evaluates the 
effectiveness of test cases (namely, the mutation adequacy 
score) by executing tests with versions of the program in 
which a small “faulty” change has been introduced. These 
faulty changes can be manually inserted (hand-seeded 
faults) or can be automatically generated (mutants) using a 
set of mutation operators (i.e., rules followed for introduc-
ing changes in the code). Test cases are then defined such 
that they detect as many of the injected faults as possible. 
The adequacy of test cases is evaluated by measuring the 
ratio of faulty versions that have been “killed” (i.e., the 
output differs from the original program for at least one 
test case). The effectiveness of mutation testing to find 
real faults is based on the observation (referred to as the 
“coupling hypothesis” [15]) that test cases able to detect 
simple faults (such as the faults typically injected in muta-
tion testing) are sensitive enough to detect more complex 
faults. Empirical studies confirmed that mutants are suit-
able for estimating the fault detection ability of test cases, 

and that automatically-generated mutants are an accurate 
and more practical support compared to hand-seeded 
faults [21][22]. Moreover, mutation testing can significant-
ly improve software reliability [23]. 

There are issues that make this approach costly, and 
that have been investigated since its birth (a thorough 
survey is presented in [24]). The foremost issue is the 
large number of experiments required to run each test 
case on each mutant. This is due to the large number of 
mutants that can be generated from a program, since mu-
tation operators encompass many language constructs 
that can be potentially affected by defects (e.g., “constant 
replacement” [16]). 

It has been found that mutants can be reduced while 
preserving testing effectiveness. The state-of-the-art of 
this problem is the selection of a sufficient set of mutation 
operators. This can be achieved by omitting the mutation 
operators that generate most of the mutants [25][26], or by 
only including operators that are considered the most ef-
fective [27]. A Bayesian selection approach has been re-
cently proposed, that iteratively prioritizes mutation op-
erators with respect to their ability to produce “hard-to-
kill” mutants, which make necessary to extend the test 
suite and thus can improve testing effectiveness [28]. 
Other approaches randomly select a subset of mutants 
(mutation sampling), or remove mutants that are detected 
by similar inputs (mutation clustering) [24]. “Hard-to-kill” 
mutants do not aim to emulate residual faults such as the 
ones studied in our work: while mutants are concerned 
with the improvement of test suites, SFI aims to emulate 
faults that escape the actual test suites adopted in real sys-
tems, which are the result of the testing techniques actual-
ly adopted by developers and of the amount of efforts 
devoted to software verification. Representative faults are 
not meant to enhance test suites by including more test 
cases able to detect them, but to reproduce the faults that 
are missed by testing in real projects. 

2.2 Software fault injection 
Software Fault Injection is a kind of what-if experimenta-
tion. The target is exercised with a given workload (ideal-
ly, one representative of  the operation scenario of the 
target) and faults are inserted into specific software com-
ponents of the target system. The main goal is to observe 
how the system behaves in the presence of the injected 
faults, considering that these faults reproduce plausible 
faults that may affect a given software component of the 
system during operation. SFI is used in several (typically 
post-development) scenarios: to validate the effectiveness 
and to quantify the coverage of software fault tolerance, 
to assess risk, to perform dependability evaluation 
[11][12][13]. The application scenario constitutes the first 
difference from mutation testing and software fault injec-
tion: the former is used mainly during software develop-
ment and is focused on test cases, while the latter is most-
ly used in post-development scenarios and has a strong 
requirement of fault representativeness. Since SFI is con-
cerned with the analysis of the system behavior during 
operation, the conduction of experiments closely emu-
lates the real operational scenario of the target system. In-
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stead of a test set, a workload representative of opera-
tional usage is used. Moreover, fault representativeness is 
a chief concern, in the sense that faults should emulate the 
residual faults that go with the deployed system. 

The relevance of fault representativeness can be at-
tested by looking at how SFI has been used in past stud-
ies. In [29], a write-back file cache is designed to be as reli-
able as a write-through file cache. In order to validate this 
requirement, several kinds of software fault are injected 
in the OS. In [30], SFI has been adopted to evaluate 
whether the PostgreSQL DBMS exhibits a fail-stop behav-
iour in the presence of software faults. The study found 
that the transaction mechanism is effective at preventing 
fail-stop violations (they are reduced from 7% to 2%). These 
claims, and therefore the trust on fault tolerance, are 
based on the assumption that the injected faults emulate 
real faults, which is a best effort assumption in the ab-
sence of any guarantee. SFI was adopted in [31] to charac-
terize four different fault tolerance techniques (N-version 
programming, recovery blocks, concurrent error-
detection, and algorithmic fault-tolerance) and to com-
pare them by populating stochastic reliability models. Again, 
the accuracy of the comparison is intimately related to the 
representativeness of the injected faults. In [31], a de-
pendability benchmark is proposed to evaluate different 
DBMS configurations with respect to operator and soft-
ware faults, in order to aid system administrators; in this 
case, a representative faultload is required to identify the 
best configuration and to make systems comparable. 

2.3 Software fault injection approaches 
Fault injection was initially developed in the context of 
hardware faults (e.g., to emulate faults caused by heavy 
ion radiation). Traditional fault injection techniques can 
emulate transient and permanent hardware faults using 
simple bit-flip or stuck-at models. The need for SFI arose 
with the emergence of software faults as a major cause of 
system failures [1], leading to the development of several 
SFI approaches. The realistic emulation of residual soft-
ware faults by fault injection is difficult and it still 
represents an open issue. In fact, the problem of emulat-
ing residual software faults is intrinsically difficult and 
even sophisticated fault injection tools (e.g., NFTAPE [34] 
and GOOFI [35], or commercial tools such as Xception 
[38]) only emulate accurately hardware faults [45][46]. 
Software faults are more complex than the simple models 
used to emulate hardware faults, and the applications 
scenarios of fault injection requires the use of faults repre-
sentative of the residual ones existing in the field. 

The injection of software faults has been addressed us-
ing different methods.  Most of them are based on indi-
rect approaches, that is, they emulate the possible effects of 
software faults instead of injecting actual software faults. 
These approaches can be classified according to what is 
actually injected, namely data errors or interface errors. 

Data errors are erroneous data injected in the running 
program causing deviations from the correct system state 
[11]. This is in fact an indirect form of fault injection, as 
what is being injected is not the fault itself but only a pos-
sible effect of the fault (i.e., errors [33]). Fault injection 

tools based on data error injection are FIAT [36], FER-
RARI [37], NFTAPE [34], GOOFI [35], and Xception [38]. 

The injection of interface errors is another form of error 
injection where the error is specifically injected at the in-
terface between modules (e.g., system components, or 
functional units of a program). This usually translates to 
parameter corruption in functions and API, and it is con-
sidered a form of robustness testing. The errors injected 
can take many forms: from simple data corruption to syn-
tactically valid but semantically incorrect information. 
The following fault injection tools use parameter corrup-
tion: BALLISTA [40], RIDDLE [41], MAFALDA [42], Jaca 
[43], and commercial versions of Xception. 

The representativeness of injected errors (in data or at 
the interfaces) is difficult to assert, as the relationship be-
tween faults and possible corruptions is difficult to estab-
lish. There is some empirical evidence supporting the 
idea that injecting errors and actual faults in the code 
produce different effects in the system [39]. Although the 
relationship between real software faults and errors is not 
clear or direct, error injection has proven to be quite valu-
able for robustness testing. Actually, the representative-
ness of the errors injected is not really an issue in robust-
ness testing, as the goal is to find weaknesses in compo-
nents and this technique has been successfully used to 
uncover weaknesses in several software systems [40]. 

Concerning the accuracy of the effects and behavior in 
the target, the best approach to inject software faults is 
then the insertion of the actual faults in target code, in a 
similar way as mutation testing. However, contrary to 
mutation testing, and because fault injection is meant for 
the post-development operations scenario, we are not in-
terested in all faults that are syntactically correct; instead 
we are interested only in those that are representative of 
faults that elude testing and do exist in the field.  

Following this notion, more recent SFI approaches 
change the code of the target component to introduce a fault, 
which is naturally the closest form of having the fault 
there in the first place. However, this is not easily 
achieved as it requires to know exactly where in the tar-
get code one might apply such change, and knowing ex-
actly what instructions should be placed in the target 
code, especially if this is done at the binary-code level 
(which makes sense given that in post-development sce-
narios source code may not be available). Several works 
followed this notion, although with some limitations: Ng 
and Chen [29] used code changes in OS code, based on a 
fault model that does not necessarily apply to other soft-
ware. The tools FINE and DEFINE [44] also use code 
changes, although the fault model is very simple and its 
representativeness is not clear. The problem of represen-
tativeness in SFI was explicitly addressed for the first 
time in [13]. It proposed a set of rules for the injection of 
errors that emulate software faults, based on field data. 
However, the procedure relies on the availability of field 
data on residual faults of the target system, which is nor-
mally not the case. This makes the technique very difficult 
to apply in practice, if not totally impossible. This limita-
tion has been addressed by G-SWFIT, which is analyzed 
in this work and described in the following subsection. 
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2.4 G-SWFIT 
G-SWFIT [17] is a technique for injecting code changes 
based on field data statistics about the frequency of fault 
types. That work used as starting point the fault classifi-
cation proposed by the Orthogonal Defect Classification 
(ODC) [1]. The field data study [17], encompassing 668 
software faults found in 12 widely deployed software sys-
tems, was the basis of a more refined classification 
scheme that fulfilled the requirements of being precise 
enough for automated fault emulation (e.g., for the ODC 
Assignment class of faults, G-SWFIT specifies if the as-
signment is an initialization, and if an expression or con-
stant is involved). G-SWFIT proposes a set of fault emula-
tion operators that allow the injection of realistic software 
faults even when the target source code is not available. 
These fault operators were defined based on the findings 
of the field data study and the knowledge on how source 
code is translated to binary code [17].  

The first important finding was that the systems used 
in [17] (along with an IBM commercial OS [13]) follow a 
similar distribution of ODC fault types. This result makes 
SFI feasible when field data is not available for the target 
system (as in the case of third-party software), since a ge-
neric fault distribution can be adopted. Moreover, the 
field study pointed out that most of the software faults 
found in the field belong to the small set of fault types 
shown in Table 1, and that other fault types are rarely 
found in the field. These fault types have to be taken into 
account to avoid non-representative faults and to reduce 
the experiment time and to obtain accurate results. 

TABLE 1. 
MOST FREQUENT FAULT TYPES OCCURRING IN THE FIELD [17]. 
Type Description 

MFC Missing Function Call 

MVIV Missing Variable Initialization using a Value 

MVAV Missing Variable Assignment using a Value 

MVAE Missing Variable Assignment using an Expression 

MIA Missing IF construct Around Statements 

MIFS Missing IF construct plus Statements 

MIEB Missing IF construct plus Statements plus ELSE Before 
Statements 

MLC Missing AND/OR clause in branch condition 

MLPA Missing small and localized part of the algorithm 

WVAV Wrong Value Assigned to Variable 

WPFV Wrong Variable used in Parameter of Function call 

WAEP Wrong Arithmetic Expression in Parameter of Function 
Call 

G-SWFIT consists in a set of fault emulation operators 
that define code patterns in which faults can be injected, 
and code changes to be introduced, based on the most 
frequent fault types. The proposed fault operators inject 
valid faults in terms of programming language (i.e., 
changed code is syntactically correct). Compared to muta-
tion operators proposed in the literature for the C lan-
guage, the fault emulation operators in G-SWFIT are 
more selective and only encompass faults found in the 
field (12 fault types against 71 mutation operators pro-

posed in [47]). This reflects the fact that mutation opera-
tors inject many kinds of fault that can occur before and 
during coding and are used to assess the thoroughness of 
test cases, while fault operators represent faults that es-
cape the whole development process (including testing) 
and are not designed for improving test suites but assess-
ing fault tolerance. Another difference relies in how fault 
operators are defined, since they provide additional rules 
(“constraints”) for selecting fault locations in order to bet-
ter reproduce the fault types observed in the field [17]. 
For instance, compared to the “statement deletion” muta-
tion operator for the C language, the MLPA fault removes 
between 2 and 5 consecutives statements that are assign-
ments or function calls (e.g., control and loop statement 
are not valid fault locations). Another example is 
represented by the MFC fault type, which only affects 
function calls that do not return any value or do not make 
use of the return value. The proposal of fault operators 
that reflect the relative occurrence of software faults is in-
strumental for obtaining a trustworthy evaluation of fault 
tolerance, and for defining standard and widely agreed 
procedures for the comparison of software components, 
such as dependability benchmarks [30][31]. 

3 EVALUATION OF FAULT REPRESENTATIVENESS 

This section presents an evaluation of representativeness 
of the faults injected by G-SWFIT in complex software. 
We analyze the ability of injected faults to escape testing, 
as they should emulate residual faults that escaped test-
ing and that manifest themselves during the operational 
phase. It consists of the following steps: 

1. We apply G-SWFIT to generate faulty versions of 
the systems under study. The targets are mature 
programs that are already well tested and for 
which real test suites are available. 

2. For each injected fault, we evaluate its ability to 
escape testing (since residual faults, which we aim 
at emulating, escape testing by their own nature) 
by running the target with the provided tests 
cases. Each injected fault will cause a number of 
the test cases to fail (i.e., the fault is detected). A 
key aspect here is the fact that we are using the 
same test cases as the development team of the 
target system, in order to gain insights about how 
difficult to detect is a fault. 

3. We evaluate if each injected fault can be consid-
ered representative or not. If the fault is detected 
by many test cases, we can assume that the fault is 
not representative as it is easily discovered by test-
ing. If the fault is not detected by most of the test 
cases, then we can assume that the fault is hard to 
discover and representative of residual faults. 

In the remainder of this section we discuss the details 
and the results of this analysis on three case studies. 

3.1 Systems used in the Case Studies 
The case studies are the MySQL and PostgreSQL DBMSs, 
and the RTEMS Real-Time Operating System. MySQL is 
one of the most used DBMSs, accounting for a large share 
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of installations among IT organizations [48]. PostgreSQL 
is also widely used, including many commercial database 
applications [49]. RTEMS is an open-source RTOS tar-
geted at embedded systems, and it is also adopted in 
safety-critical systems [50]. The three software systems 
considered in our analysis are adopted in real business- 
and safety-critical contexts, and are a potential target for 
fault injection (see also past works on fault injection in 
OSs and DBMSs discussed in Subsections 2.2 and 2.3 
[29][30][31][32][40][41][42][44]). 

TABLE 2. 
THE CASE STUDIES USED IN THIS WORK. 

 LoC Files Functions Test 
Cases 

Statement 
coverage 

MySQL 231,851 223 10,426 469 76.30% 
PostgreSQL 366,844 585 9,863 122 66.39% 
RTEMS 5,863 555 828 151 96.41% 

Software characteristics are depicted in Table 2. State-
ment coverage of test suites was measured using the GCC 
3.4.4 compiler and the GCOV tool [51]. MySQL (5.1.34) is 
made up of more than 230K Lines of Code (LoC) distrib-
uted among 223 files and a little over than 10K functions. 
PostgreSQL (9.0.1) has more than 360K LoC distributed 
among 585 files and nearly 10K functions. RTEMS (4.9.4) 
is not as large as the two DBMSs; however, it is still com-
plex software, and, most important, it is supplied with 
test cases covering more than 96% of the code (running in 
the QEMU x86 emulator [52]). For the DBMSs, we focus 
on the DBMS engine, which is the largest and most im-
portant part of the DBMS (it is in charge of managing 
threads and connections, SQL query parsing and optimi-
zation); other parts are not considered (e.g., client code, 
additional plug-ins). Regarding RTEMS, we strictly focus 
on the kernel code (including task scheduling, time and 
synchronization, memory management), and do not con-
sider library code (e.g., C library, networking). 

All these systems are provided with source code and 
test cases. Test cases are actually adopted by developers 
for automating functional and regression testing, and 
they are augmented as new functionalities are added or 
unknown faults are found. Test cases are grouped based 
on the specific part of the system or functionality under 
test, and we consider only the test cases targeted at the 
part of the systems we focus on. Since many experiments 
are conducted for each test case (one experiment per 
faulty version and test case, see Table 3), we selected a 
sample of 50 test cases for each case study. This sampling 
reduces the time required for experiments, and can still 
provide insights about how difficult is to detect faults. 
Test cases were randomly sampled, and we checked that 
selected test cases were not too similar. Moreover, test 
cases achieve at least 50% of statement coverage for all 
systems. In the case of DBMSs, test cases populate a data-
base and perform several SQL commands with different 
variants; they also test specific functionalities of the 
DBMSs such as triggers and stored procedures. In the 
RTEMS case study, test cases define a set of tasks to exer-
cise real-time scheduling and system calls. All test cases 
provided with the case studies are correctly executed (i.e., 
the system passes the test in no fault is injected). 

TABLE 3. 
INJECTED FAULTS AND EXPERIMENTS FOR EACH CASE STUDY. 

 Faults (faul-
ty versions) 

Number of 
test cases 

Statement 
coverage 

Total expe-
riments 

MySQL 39,539 50 51.12% 1,976,950

PostgreSQL 32,915 50 57.91% 1,645,750

RTEMS 3,962 50 71.52% 198,100

3.2 Experimental Software Fault Injection Setup 
We used an automated fault injection tool to handle the 
experiments of this study [53]. The tool injects software 
faults in a program according to the most common fault 
types (Table 1) found in the field [17]. The tool adopts the 
same fault operators of G-SWFIT, although faults are in-
troduced in the source code instead of the binary code 
(Fig. 1). First, a C pre-processor translates all the C macros 
in a source code file (e.g., “include” directives), producing 
a self-contained compilation unit. A C/C++ front-end 
then analyzes the file and builds an Abstract Syntax Tree 
representation of the code. This representation guides the 
identification of locations where a fault type can be intro-
duced in a syntactically correct manner, and that comply 
to fault type constraints (see Subsection 2.4). The tool 
produces a set of faulty source code files, each containing 
a different software fault (faulty versions). Each faulty ver-
sion is then compiled. 

 
Fig. 1. Process for generating faulty versions of the target system. 

Among the faults generated by the tool, we consider 
faults in the parts of the system exercised by at least one 
test case (i.e., source files that are covered during execu-
tion). This choice reduces the bias of test case selection, 
since we draw conclusions about representativeness of 
faults in the modules that are targeted by the selected test 
cases. Table 3 reports the number of injected faults and 
experiments for each case study. More than 76 thousands 
faults were injected, and a total of 3.8 million experiments 
were performed, which is a very large number when 
compared to experiments typically found in the literature, 
and which brings confidence on the validity of results. 

The experimental setup is shown in Fig. 2. In each ex-
periment, the Test Manager executes a test case on a 
faulty version and collects the test result. Since we are in-
terested in whether the test case is able to detect a given 
fault (i.e., to cause a failure), we only need a simple fail-
ure model (i.e., a pass/fail outcome). DBMS failures are 
the crash of the DBMS, an incorrect answer to an SQL 
query, and the timeout of the test. RTEMS failures are the 
crash of the system or task running, an incorrect output, 
and the timeout of the test case. Experiments were per-
formed on 4 workstations equipped with an Intel Core 2 
Duo 2.4GHz CPU, 4 Gb RAM, and a SATA 3 Gb/s disk. 

p
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Fig. 2. Overview of experimental campaigns. 

3.3 Result Discussion 
We analyzed the number of test cases that were able to 
detect the existence of each fault, in order to identify 
which injected faults can be considered representative. 
We also analyze whether the fault location has been exe-
cuted during a test, by collecting data about statement 
coverage produced by testing tools. Fig. 3 shows exam-
ples of outcomes occurred in our analysis (not related to a 
specific system). The horizontal axis represents injected 
faults (F1, F2, and F3); the vertical axis provides: 

1. the percentage of test cases that activated the fault 
and caused a failure (dark gray); 

2. the percentage of test cases that did not detect the 
fault (i.e., no failure observed), and executed the 
fault location at least one time (light gray); 

3. the percentage of test cases that did not detect the 
fault and never executed the fault location (white). 

Since a faulty version is run against all the 50 test cases 
selected for that system, it can cause a number of failures 
from 0 to 50. For instance, from the figure it can be noted 
that fault F1 is detected by 1 out of 50 test cases, fault F2 is 
detected by 3 out of 50 test cases and its fault location is 
covered by 40 out of 50 test cases, and fault F3 is detected 
by almost all test cases (45 out of 50). 

Fig. 3. Examples of analysis of injected faults with respect to the 
percentage of failed and correctly executed test cases.

The results are shown in Fig. 4 (DBMSs) and Fig. 5 
(RTEMS). Faults are ordered by percentage of failures; 
due to the high number of faults, bars are displayed as 
lines. A significant part of the faults is detected by most of 
the test cases (i.e., by more than 50% test cases): 14.57% 
and 23.13% for the DBMSs, and 72.23% for RTEMS (faults 
on the right side of the axis). These faults should be con-
sidered as non-representative; given that the test suites 
are adopted by developers for detecting faults before a 
release, we can say that faults that easily cause the system 
to fail should not be considered as representative. This 
behavior does not resemble residual faults, which are not 
caught by testing and remain in the released product. 

Conversely, faults that hardly cause any failure are 
much more difficult to detect. Part of these faults (the 
ones under the gray areas) tends to remain undetected 
even if their location is executed many times. They cause 
a failure only when the faulty location is executed under 
specific conditions, which could be easily missed during 
testing. For instance, the failure condition can be related 
to specific values took by input and state variables. The 
remaining faults (the ones under the white areas) are de-
tected only by few test cases since the fault location is not 
executed in most cases. The locations where they reside 
are hard to cover, therefore faults injected there are prone 
not to be detected by testing. These faults can be consi-
dered as representative of residual faults escaping tests. 

 
Fig. 4. Analysis of injected faults in MySQL and PostgreSQL. Key: 1) Faults detected by few tests; 2) Faults detected by most tests.
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Fig. 5. Analysis of injected faults in RTEMS. 

In order to identify more precisely which faults are 
“detected by few test cases” and those “detected by many 
test cases”, we analyzed how the percentage of represent-
ative faults varies with the threshold, i.e., with the percen-
tage of test cases used to discriminate between these two 
cases. The resulting chart is presented in Fig. 6. The hori-
zontal axis represents the threshold value. The vertical 
axis represents the percentage of representative faults de-
tected by a percentage of test cases below the threshold. 

Fig. 6. Percentage of representative faults across threshold values. 

It can be noted that the curves sharply increase when 
the threshold is below 20%, and then stabilize around a 
fixed value. The curves sharply increase again when the 
threshold is over than 90%. This behavior means that in 
the majority of faults is detected by less than 20% of tests 
(these faults can be regarded as representative), or by 
more than 90% of tests. This can be noticed in Fig. 5 and 
Fig. 4. Conversely, only a minority of faults is detected by 
a percentage of tests between 20% and 90%. Therefore, 
faults detected by “few” and “many” test cases can be 
easily identified, that is, the identification of “representa-
tive faults” is negligibly affected by the choice of the thre-
shold. Since there is no further evidence that could sup-
port the choice of a specific threshold, we opted for the 
simplest choice of considering half the number of test case 
sets that we used in our study. Using this threshold, we 

can see that 85.43% of the injected faults in MySQL are 
representative as they are detected by less than 50% of the 
test cases. We can also observe that 76.87% of the faults 
injected in PostgreSQL are representative, and that only 
27.77% of the fault injected in RTEMS are representative. 
The difference between the DBMSs (which have similar 
values) and the RTOS is reasonable: MySQL and Post-
greSQL are similar systems, and their test coverage is also 
similar and not as high as a much smaller system such as 
RTEMS. In fact, RTEMS has a high test coverage, making 
harder to inject representative faults into it. 

3.4 Validation of Fault Representativeness 
The results previously presented are based on the as-
sumption that faults escaping the set of test cases are able 
to represent residual faults that are shipped with the 
software. However, the faults could still be easily de-
tected before release by using other kind of workloads not 
necessarily included in the test cases, since test cases tend 
to assess a specific functionality and not the system as a 
whole. If this were true, the faults that we consider as 
representative would be easily detected by using a more 
complex and comprehensive workload. In order to vali-
date our results, we performed an additional SFI cam-
paign using an implementation of the TPC-C benchmark 
[54] as a workload for the MySQL case study. TPC-C is an 
Online Transaction Processing (OLTP) workload that in-
cludes a mixture of read-only and update intensive trans-
actions that emulate the activities found in OLTP applica-
tion environments. With TPC-C the DBMS is now being 
exercised with a long-running and more demanding 
workload in terms of resources and data manipulation. 

We selected one third of the faults that in the previous 
experiments were detected by at most three test cases. 
They are the faults that are most difficult to detect (they 
seldom cause a failure), therefore we expected that most 
of them will not be detected in this test. We randomly se-
lected 4 samples of injected faults, shown in Table 4. For 
instance, Sample 2 includes a third of the faults that 
caused exactly 2 failed test cases. Each faulty version is 
exercised by the TPC-C workload for 30 minutes. Table 4 
provides the percentage of faults that caused a failure. 
Results show that faults that were difficult to find using 
test suites were also difficult to find using a more stressful 
workload. This result supports the assumption that faults 
avoiding test cases are difficult to find, and the use of test 
cases to decide if faults are representative. 

TABLE 4. 
FAULTS AND FAILURES USING TPC-C.

 Faults in the sample % TPC-C Failures 

Sample 0 (0 failed tests) 3,960 0.96 % 

Sample 1 (1 failed test) 3,775 3.31 % 

Sample 2 (2 failed tests) 993 4.03 % 

Sample 3 (3 failed tests) 480 4.58 % 

All samples 9,280 2.44 % 
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4 IMPROVEMENT OF FAULT REPRESENTATIVENESS

Results of the previous section gave evidence that SFI 
campaigns can be affected by a significant amount of 
faults that are not representative. However, it is not feasi-
ble for practitioners to conduct an analysis as the ones in 
Section 3 to identify which faults are representative for a 
given system. Therefore, we devise a method to identify 
representative faults with no need to perform a prelimi-
nary experimental analysis. In this way, we would be able 
to keep SFI campaigns both feasible and accurate. Since a 
fault being injected is characterized by its type (“what to 
inject”) and by its location (“where to inject”), we assess 
the relationships between these characteristics and fault 
representativeness. These relationships can be exploited 
to identify beforehand which faults are representative. In 
order to understand if representative faults can be identi-
fied by looking at fault types or locations, we analyze i) 
the distribution of representative/non-representative 
faults across fault types, and ii) the distribution of repre-
sentative/non-representative faults across code locations. 

4.1 Representativeness across Fault Types 
Fig. 7 depicts the distribution of representative and non-
representative faults across fault types. If fault representa-
tiveness were influenced by fault types, a difference be-
tween these distributions would be observed. In order to 
quantitatively evaluate if differences are statistically sig-
nificant, we perform a statistical test to assess the null hy-
pothesis H0 that faults follow the same distribution. To this 

aim, we adopt two non-parametric test procedures1 [55], 
namely the Kolmogorov-Smirnov (KS) test, which evalu-
ates if two samples are drawn from the same underlying 
probability distribution, and the Wilcoxon rank sum 
(WRS) test, which evaluates if one of two samples tends 
to have larger values than the other. Table 5 shows the p-
values of the tests, which are the probability that observed 
differences could occur, given that H0 is true. The tests 
confirm that for all systems the distributions are the same 
(i.e., H0 cannot be rejected) with a reasonable degree of 
confidence (e.g., to reject the null hypothesis with a 90% 
significance level, p-values should be lower than 0.1). 
There is no statistically significant difference in the distri-
butions of representative/non-representative faults across 
fault types, therefore fault types do not affect fault re-
presentativeness. This observation can be noticed in Fig. 
9, which shows the percentage of representative faults 
generated for each fault type and case study: there is no 
fault type that, for all three case studies, generates more 
representative faults than every other fault type. 

TABLE 5. 
HYPOTHESIS TESTS ON DISTRIBUTIONS ACROSS FAULT TYPES. 

Null Hypothesis MySQL PostgreSQL RTEMS 

Same distribution across 
fault types (KS) 

0.4333 
(accept) 

0.4889 
(accept) 

0.9950 
(accept) 

Same distribution across 
fault types (WRS) 

0.2602 
(accept) 

0.4025 
(accept) 

0.9310 
(accept) 

1 They were preferred over parametric procedures to not rely on assump-
tions about distributions (e.g., normal distributions with same variance). 

(a) MySQL (b) PostgreSQL (c) RTEMS

Fig. 7. Fault distributions across fault types.

 

(a) MySQL (b) PostgreSQL (c) RTEMS

Fig. 8. Fault distributions across files.
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4.2 Representativeness across Components 
As in the case of fault types, we test if there is a statistical-
ly significant difference in the distribution of representa-
tive/non-representative faults across locations. In particu-
lar, we consider fault distributions across source code 
files and functions of the target systems. Fig. 8 presents 
the fault distributions for each case study. We test the null 
hypothesis H0 that the distributions are the same. Table 6 
presents the resulting p-values. 

TABLE 6. 
HYPOTHESIS TESTS ON DISTRIBUTIONS ACROSS COMPONENTS. 
Null Hypothesis MySQL PostgreSQL RTEMS 

Same distribution across 
files (KS) 

7.2862e-07 
(reject) 

1.1742e-20 
(reject) 

5.1124e-04 
(reject) 

Same distribution across 
functions (KS) 

< smallest 
float (reject) 

< smallest 
float (reject) 

4.0775e-06 
(reject) 

Same distribution across 
files (WRS) 

0.0021 
(reject) 

2.0000e-06 
(reject) 

0.0160 
(reject) 

Same distribution across 
functions (WRS) 

5.7566e-254 
(reject) 

3.8765e-160 
(reject) 

0.0867 
(reject) 

All the p-values obtained for MySQL and PostgreSQL 
are extremely small, and in the case of RTEMS they are 
less than 0.1. Therefore, we can reject the null hypothesis 
with a high confidence degree and conclude that there is 
a significant difference in the distribution of represent-
ative/non-representative faults across components (both 
files and functions). The focus of the next section will be 
the identification of locations more likely to have repre-
sentative faults, in order to focus fault injection on them. 

5 THE PROPOSED FAULT SELECTION APPROACH 

We found in the previous section that there is a relation-
ship between fault representativeness and fault locations, 
and that in some components the percentage of repre-
sentative faults tends to be higher than the percentage of 
non-representative faults. This result is due to complexity 
of the software and its architecture, since fault activation 
and propagation through the system are affected by the 
code surrounding the fault. 

In order to define more representative faultloads and, 
at the same time, to reduce the cost of fault injection cam-
paigns (in terms of number of injected faults), we propose 

an approach for identifying components in which to per-
form the injection campaign, among the set of all compo-
nents belonging to the target system. The approach ana-
lyzes software metrics to decide whether a component is 
appropriate or not for injecting representative faults. It is 
based on binary classification algorithms, where software 
metrics (e.g., size and degree of connection of a compo-
nent) [56] are the classification features. Classification al-
gorithms are useful for making decisions based on com-
plex data (in this case, software metrics), and have also 
been adopted in other software engineering problems, 
such as defect predictors [60] or estimation of software 
development effort [61]. The approach works as follows: 

1. Software metrics are collected for every compo-
nent (files or functions). 

2. A classification algorithm is trained with examples 
(i.e., components for which the percentage of rep-
resentative faults is known); this step is unneces-
sary when using an unsupervised classification al-
gorithm (this aspect is discussed in Subsection 5.4). 

3. The classification algorithm is used to identify 
components where most of the injected faults are 
representative, that will be selected for SFI. 

In the following, we first describe how to characterize 
components, by detailing which components should be 
selected and which metrics can be analyzed for compo-
nent selection (Subsection 5.1). We then define criteria to 
evaluate the effectiveness of the approach, in terms of 
faultload representativeness and size (Subsection 5.2). Fi-
nally, we evaluate two classification algorithms for com-
ponent selection (Subsections 5.3 and 5.4). 

5.1 Characterization of Software Components 
In the context of this study, the objects to classify are 
represented by components. We introduce two classes: 

1. Class "Most Representative" (MR): components 
with high percentage of representative faults. 
These components are thus suitable to be injected. 

2. Class "Least Representative" (LR): the components 
with low percentage of representative faults. Injec-
tions on these components should be avoided. 

There are two possible criteria for dividing compo-
nents between MR and LR. The first criterion is to assign 
to the MR class those components where the percentage 
of representative faults is higher than a fixed threshold; 
the remaining components are assigned to the LR class. 
The second criterion is to divide the components such 
that the MR class includes the components with a percen-
tage of representative faults above the average, and the 
remaining are assigned to the LR class. Fig. 10 shows the 
division according to the latter criterion: it shows the per-
centage of representative faults in each component (com-
ponents are sorted by increasing percentage of represent-
ative faults), and the vertical line separates the MR class 
(components “above the average”, on the right) from the 
LR class (components “below the average”, on the left). 

The latter criterion is adopted in this study to assign a 
class to components rather than using a fixed threshold 
on the percentage of representative faults, which would 
lead to an unbalanced division of the components (in the 

Fig. 9. Percentage of representative faults per fault type.
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case of MySQL functions, any threshold less than 100% 
would lead to a very small LR class), and would not take 
into account that the notion of "high percentage of repre-
sentative faults" is dependent on the case study (e.g., for 
RTEMS, any threshold greater than 0% could be consi-
dered "high", since about 50% of components have 0% of 
representative faults). 

 
Fig. 10. Percentage of representative faults for files and functions in 
the three case studies. The "Most Representative" (MR) components 
are the points of the X-axis on the right of the vertical line (i.e., per-
centage of representative faults above the average), and the "Least 
Representative" (LR) components are those on the left side. 

We obtained 6 datasets (two datasets for each case 
study), which are summarized in Table 7. It reports the 
number of faults in each dataset, and the ratio of 
representative faults in the set. Columns “All” provide 
these data for all components in the dataset; the 
remaining columns are obtained by only looking at 
components of the MR or the LR class, respectively. Since 
the MR class is made up of components that have a per-
centage of representative faults above the average, this 
class has a higher ratio of representative faults than the 

full dataset (e.g., in the case of MySQL/files, 98.51% of 
faults in MR components is representative, against 85.49% 
when all components are considered). MR percentages 
represent an upper bound to the improvement that can be 
gained by perfect component selection, i.e., if all MR 
components could be correctly identified and the others 
are discarded. Additionally, MR components represent a 
subset of the faults, therefore component selection can 
also lead to smaller faultloads. The approach classifies 
components of a target system as either MR or LR (of 
course, the membership of components is unknown 
before a fault injection campaign). 

A set of metrics commonly used by researchers and 
practitioners (Table 8) was selected for analyzing software 
complexity. Lines of Codes and Cyclomatic Complexity 
represent the number of statements and the number of 
paths in a component: they are regarded as indicators of 
complexity since they characterize the size and the 
structure of functionalities implemented in a software 
[18][56][57]. FanIn and FanOut, which count the 
connections between components, provide insights about 
the complexity of the system structure and of the 
information flow among components [56][58]. We do not 
consider other metrics such as Software Science 
(Halstead) and Object-Oriented metrics (e.g., Chidamber-
Kemerer), since 1) metrics tend to be correlated with each 
other, therefore limiting the benefits of considering many 
metrics [56] (although our approach does not prevent the 
inclusion of more metrics), 2) some of them are not 
generic (e.g., they only apply to object-oriented software), 
and 3) they cannot be estimated in the absence of source 
code2, which is often the case of third-party software. 
Metrics were collected using the Understand tool [59]. 

2 The binary code can potentially be used for estimating the size of func-
tions and the dependencies between functions, but it lacks information 
about symbols (e.g., variables) in the source code, which is needed for com-
puting Halstead metrics. We do not focus on how to estimate complexity 
metrics from binary code, since this aspect is outside the scope of this paper. 

Metric Description 
Lines of Code (LoC) The number of executable lines of code in a program. For files, we consider both the average and the total LoC of 

functions in the file. For functions, we consider the number of lines of code of individual functions. 
McCabe's cyclomatic 
complexity 

The number of linearly independent paths through a function. For files, we consider the sum, the average and the 
maximum cyclomatic complexity of functions in the file. 

FanIn and FanOut The count of unique functions that call (or are called by) a given function, either directly, or ultimately, via other 
functions. For files, these metrics are based on the unique functions that call (or are called by) any of the functions 
defined in the file, and exclude calls between functions within the same file. 

TABLE 8.
SOFTWARE COMPLEXITY METRICS.

Dataset Percentage of representative faults Number of faults 
All MR LR All MR LR 

MySQL/Files 85.49% 98.51% 80.65% 39,539 10,708 28,831 
MySQL/Functions 85.49% 100.00% 65.62% 39,539 22,816 16,723 
RTEMS/Files 28.24% 72.10% 0.00% 3,962 1,158 2,804 
RTEMS/Functions 28.24% 82.21% 0.19% 3,962 1,166 2,796 
PostgreSQL/Files 77.08% 95.12% 62.04% 32,915 14,969 17,946 
PostgreSQL/Functions 77.08% 100.00% 51.75% 32,915 17,248 15,667 

TABLE 7.
CHARACTERIZATION OF THE DATASETS (ALL COMPONENTS, MR COMPONENTS, AND LR COMPONENTS).
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5.2 Evaluation Measures 
We introduce a set of measures for assessing the ability of 
the proposed approach to correctly classify components 
and, ultimately, to improve faultload representativeness. 
Since the purpose of our approach is to avoid injecting 
non-representative faults, the primary measure is the per-
centage of representative faults within the faultload: 

 
in particular, we denote with  the 
percentage of representative faults in the faultload using 
the proposed approach, and with  and 

 the percentage computed for the MR 
and LR classes, respectively (see Table 7). In a similar 
way, we evaluate the number of faults in the faultload, 
namely , , and .  

Additionally, we consider measures specifically aimed 
at evaluating classification algorithms, namely precision 
and recall [62]. These measures compare the set of objects 
that should be selected (i.e., the MR class) with the set of 
objects actually selected by the classifier (see Fig. 11). The 
measures are based on the following quantities, that is, 
the number of objects correctly or wrongly classified: 

1. True Positives (TP): Number of MR components 
correctly identified as MR. 

2. False Positives (FP): Number of LR components 
wrongly classified as MR. 

3. False Negatives (FN): Number of MR components 
wrongly classified as LR. 

In turn, precision and recall are computed as follows: 
1. Precision = : Percentage of True 

Positives with respect to the whole set of selected 
components (which includes both TPs and FPs). 

2. Recall = : Percentage of True Posi-
tives with respect to the set of MR components 
(which includes both TPs and FNs). 

 

 
Fig. 11. Measures adopted for assessing classification algorithms. 

Ideally, a classifier should have high precision (as close 
as possible to 1), to keep low the number of non-
representative faults in the faultload (due to False 
Positives), and it should also have high recall (as close as 
possible to 1), to keep low the number of representative 
faults missed (due to False Negatives). Both precision and 
recall are related to the percentage of representative faults 
that can be obtained by filtering components through a 
classifier. The expected percentage of representative 
faults after selection is 
 

 
which is the weighted average between the densities of 
representative faults in MR and LR classes: the higher the 
precision, the closer the average to the MR class. The 
expected number of faults in the faultload after filtering is 

 
It should be noted that  is inflated with 

False Positives when Precision is low. When Recall is low, 
 is low due to False Negatives (i.e., some MR 

components are not recognized by the classifier). 

5.3 Fault Selection by using Decision Trees 
The first algorithm that we adopt for component 
classification is a technique commonly used in data 
mining problems, namely decision trees [62]. A decision 
tree is a hierarchical set of questions that are used to 
classify an element. In our study, questions are based on 
software metrics (for instance "Is LoC greater than 340?"), 
and the components are the elements to be classified. This 
algorithm is a supervised classifier, since it requires to be 
trained with examples in order to classify unknown 
elements. Decision trees have been preferred over other 
supervised classifiers because they are simple to interpret, 
therefore they can provide insights on the relationship 
between complexity metrics and component classes. This 
classifier is provided by most machine learning tools, 
such as the WEKA tool used in this work [62]. 

A decision tree is obtained from a training dataset 
using the C4.5 algorithm [62]. The C4.5 algorithm 
iteratively splits the dataset in two parts, by choosing the 
individual attribute (i.e., complexity metric) and a 
threshold that best separates the training data into the 
classes; this operation is then repeated on the subsets, 
until the classification error (estimated on the training set) 
cannot be reduced anymore. The root and inner nodes 
represent questions about complexity metrics, and leafs 
represent class labels. To classify a component, a metric of 
the component is first compared to the threshold 
specified in the root node, to choose one of the two 
children nodes; this operation is repeated for each 
selected node, until a leaf is reached. 

The performance of decision trees was evaluated on 
the 6 datasets (Subsection 5.1) through cross-validation. 
Each dataset is divided in a training set (one third of the 
data) and a test set (two thirds of the data); evaluation 
metrics (Subsection 5.2) are then computed by classifying 
the components of the test set. Since the dataset split can 
affect the performance of the classifier, we considered 10 
random splits for each dataset. The results of cross-
validation are provided in Table 9. It is worth noting that 
the average precision is higher than 0.6 for every dataset 
(i.e., TPs are more than FPs), therefore we expect that the 
percentage of representative faults is increased in the 
filtered faultload. Moreover, since the recall ranges 
between 0.63 and 0.93, the filtered faultload includes most 
of the MR components (i.e., TPs are more than FNs) and 
therefore most of the representative faults. It should be 
observed that decision trees provide better performance 
on the "functions" datasets than on the "files" datasets 
(with respect to all metrics and case studies), since a 

  (3) 

 
         (2) 

      (1) 
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smaller granularity can enable a more precise filtering 
(e.g., if most of the non-representative faults in a file are 
in a few functions, only these functions can be removed). 

Table 10 provides the faultload size and percentage of 
representative faults when using decision trees. The first 
two columns describe the original datasets (they report 
data from Table 7 for the sake of readability). The last two 
columns describe the expected number of faults and ratio 
of representative faults when a subset of components is 
selected using a decision tree with precision/recall as 
estimated through cross-validation (see Table 9 and Eq. 
(2) and (3)). Faultload representativeness increases in all 
cases (see the column on the right side). The 
improvement is more significant for RTEMS (up to 
26.08%), since the difference between  
and  (Table 7) is more significant in this 
case study (e.g., there are several components with 0% of 
representative faults), therefore the benefit of faultload 
filtering is greater in this case. After filtering, a large share 
of faults is removed from the faultload (between 30.30% 
and 69.43%); at the same time, due to the high recall, we 
are confident that most of the representative faults in the 
initial faultload are still present in the filtered faultload. 

Fig. 12 shows the decision trees that are automatically 
learned using the C4.5 algorithm from the “function” 
datasets. Leafs contain the class labels (MR and LR), along 
with the number of components of the dataset that are 
correctly and wrongly classified by the leaf, respectively. 
By analyzing the structure of the tree, it can be noticed 
that the complexity metrics involved in the classification 
are FanIn, FanOut, and LinesOfCode, and that the 
cyclomatic complexity is not present. This is due to a 
correlation existing between cyclomatic complexity and 
the other metrics, which makes it a redundant metric [56]; 
it can also be an artifact of this particular classification 
algorithm. The FanIn and FanOut seem to be the metrics 
most relevant for discriminating between components: 

1. In the MySQL case study, most of the MR 
components (1,189 out of 1,653) have FanIn lower 
than 62; conversely, several LR components (401 
out of 604) have FanIn greater than 62. 

2. In the PostgreSQL case study, most of the MR 
components (2,041 out of 2,418) have FanIn lower 
than 962; conversely, several LR components (436 
out of 1,539) have FanIn greater than 962. 

3. In the RTEMS case study, most of the MR 
components (110 out of 159) have FanOut lower 
than 15; conversely, several LR components (98 
out of 161) have FanOut greater than 15. 

The relevance of FanIn and FanOut might be explained 
by the higher "exposure" of faults in a component with a 
large number of connections to other components; it is 
thus more difficult to inject “difficult-to-detect” faults in 
these components, and faultload representativeness can 
be improved by looking at these metrics. 

 

 

5.4 Fault Selection by using Clustering 
Complexity metrics can be exploited to select components 
in which to inject faults using a supervised classifier. 
However, a limitation of this approach is represented by 

Fig. 12. Decision trees learned from the "function" datasets. 

FanIn <= 62: MR (1,189 correct, 203 wrong) 
FanIn > 62 
|  LinesOfCode <= 81 
|  |  FanIn <= 195: MR (300 correct, 160 wrong) 
|  |  FanIn > 195: LR (171 correct, 142 wrong) 
|  LinesOfCode > 81: LR (70 correct, 22 wrong) 

(a) MySQL
FanIn <= 962 
|  FanIn <= 93 
|  |  FanIn <= 22: MR (737 correct, 280 wrong) 
|  |  FanIn > 22 
|  |  |  FanIn <= 36: LR (93 correct, 42 wrong) 
|  |  |  FanIn > 36 
|  |  |  |  LinesOfCode <= 21 
|  |  |  |  |  FanIn <= 74: MR (40 correct, 8 wrong) 
|  |  |  |  |  FanIn > 74: LR (3 correct) 
|  |  |  |  LinesOfCode > 21: LR (37 correct, 26 wrong) 
|  FanIn > 93: MR (1,294 correct, 682 wrong) 
FanIn > 962: LR (436 correct, 279 wrong) 

(b) PostgreSQL
FanOut <= 15 
|   FanIn <= 4 
|   |   FanIn <= 0: MR (5 correct, 1 wrong) 
|   |   FanIn > 0: LR (15 correct, 2 wrong) 
|   FanIn > 4: MR (103 correct, 47 wrong) 
FanOut > 15 
|   FanIn <= 813: LR (94 correct, 38 wrong) 
|   FanIn > 813 
|   |   FanOut <= 61: MR (11 correct, 1 wrong) 
|   |   FanOut > 61: LR (3 correct) 

(c) RTEMS

TABLE 9.
PERFORMANCE OF DECISION TREES IN TERMS OF PRECISION AND RECALL (MEAN±STANDARD DEVIATION).

Type of 
component 

MySQL PostgreSQL RTEMS Average 
Precision Recall Precision Recall Precision Recall Precision Recall 

Files 0.63 ± 0.09 0.74 ± 0.14 0.65 ± 0.02 0.68 ± 0.14 0.61 ± 0.11 0.63 ± 0.24 0.63 ± 0.08 0.68 ± 0.18 
Functions 0.77 ± 0.03 0.93 ± 0.04 0.66 ± 0.02 0.87 ± 0.08 0.61 ± 0.07 0.64 ± 0.19 0.68 ± 0.08 0.81 ± 0.17 

TABLE 10.
PERCENTAGE OF REPRESENTATIVE FAULTS BEFORE AND AFTER COMPONENT SELECTION USING DECISION TREES.

Dataset G-SWFIT G-SWFIT + selection using decision trees 
Faultload size % of repr. faults Faultload size % of repr. faults 

MySQL/Files 39,539 85.49% 12,578 (-67.94%) 91.90% (+6.41%) 
MySQL/Functions 39,539 85.49% 27,557 (-30.30%) 92.09% (+6.60%) 
RTEMS/Files 3,962 28.24% 1,211 (-69.43%) 46.87% (+18.63%) 
RTEMS/Functions 3,962 28.24% 1,537 (-61.21%) 54.32% (+26.08%) 
PostgreSQL/Files 32,915 77.08% 15,460 (-53.03%) 82.22% (+5.14%) 
PostgreSQL/Functions 32,915 77.08% 18,096 (-45.02%) 81.18% (+4.10%) 
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the need for a training set, since getting a training set 
would require an experimental analysis similar to the one 
in Section 3. Therefore, a practitioner would need to 
identify representative faults for a subset of components, 
to train the algorithm, and to classify the remaining 
components. To overcome this limitation, we consider an 
unsupervised classifier (i.e., not requiring a training 
phase), namely a clustering algorithm. This approach is 
based on the finding that MR components have low FanIn 
or FanOut and tend to be aggregated below a threshold. 

A clustering algorithm partitions a dataset into subsets 
(clusters) such that data in each subset are similar 
(according to some distance measure). Therefore, it can be 
used to partition the components into two sets, and then 
to select only one subset for fault injection. Two aspects 
need to be defined to adopt this strategy: a distance 
measure, and a criterion for selecting the target cluster. 

Define a distance measure: we define the distance 
measure as the euclidean distance in the space of software 
complexity metrics, in order to discriminate between 
“low” and “high” values of software metrics. In the 
following, we evaluate several combinations of software 
complexity metrics for this purpose; we focus on 
LinesOfCode, FanIn, and FanOut, since they turned out to 
be the most relevant metrics in the previous analysis. 

Define a criterion for selecting the target cluster: a 
clustering algorithm can split the data set in two subsets; 
however, only one subset has to be selected for fault 
injection. Since the MR components are characterized by 
the lowest FanIn and FanOut, we select the cluster in 
which to inject faults by computing the mean value of 
FanIn and FanOut of components in each cluster. We then 
select the cluster with the lowest average FanOut or the 
lowest average FanIn (both criteria were evaluated). 

Among the clustering algorithms proposed in the 
literature, we adopt the Lloyd k-means clustering algorithm, 
which is well known and simple to understand [62]. K-
means clustering identifies k clusters that minimize the 
variance of distance of elements within the same cluster. 
In our approach, we adopt the fixed value k=2 when 
applying clustering (even if the samples could be divided 
in more clusters), since we aim at discriminating between 
only two classes. The algorithm is an iterative procedure. 
It randomly selects k elements (namely centroids), each 
representing the “mean” of a cluster, and assigns the 
remaining elements to the cluster of the nearest centroid. 
The procedure is repeated by computing the means of the 
clusters obtained in the previous iteration, that are used 
as new centroids. It stops when clusters do not change 
between iterations or after a maximum number of 
iterations. The clustering algorithm is executed 10 times, 
by varying the random selection of the initial k elements. 
Data were normalized in the range [0,1] before clustering. 

Table 11 and Table 12 show the performance of k-
means clustering with respect to the three case studies 
with respect to "function" components. We evaluated the 
effectiveness of different sets of metrics and cluster 
selection criteria. The best results (in terms of high 
average and low standard deviation of both precision and 
recall) are obtained when (i) the cluster with the lowest 
FanOut is selected, and (ii) the distance measure is based 
on LoC and FanOut (highlighted in Table 11). It can be 
observed that clustering is close to decision trees in terms 
of precision (respectively, 0.63 and 0.68 in average) and 
recall (0.81 for both decision trees and clustering using 
FanOut and LinesOfCode). Although cluster selection 
using the lowest FanIn still gives good results for MySQL 
and PostgreSQL, FanIn is not effective in the case of 

TABLE 12
PERFORMANCE OF CLUSTERING (MEAN±STANDARD DEVIATION), USING FANIN FOR SELECTING THE TARGET CLUSTER.

Metrics MySQL PostgreSQL RTEMS Average 
Precision Recall Precision Recall Precision Recall Precision Recall 

LoC, FanIn, FanOut 0.70 ± 0.06 0.36 ± 0.42 0.62 ± 0.01 0.45 ± 0.23 0.44 ± 0.00 0.72 ± 0.00 0.59 ± 0.11 0.51 ± 0.31 
FanIn, FanOut 0.68 ± 0.05 0.23 ± 0.35 0.63 ± 0.01 0.46 ± 0.22 0.44 ± 0.00 0.72 ± 0.00 0.58 ± 0.11 0.47 ± 0.31 
LoC, FanOut 0.65 ± 0.00 0.06 ± 0.00 0.62 ± 0.00 0.35 ± 0.07 0.35 ± 0.00 0.14 ± 0.00 0.54 ± 0.14 0.18 ± 0.13 
FanOut 0.65 ± 0.00 0.06 ± 0.00 0.62 ± 0.00 0.34 ± 0.08 0.33 ± 0.00 0.14 ± 0.01 0.54 ± 0.14 0.18 ± 0.13 
LoC, FanIn 0.78 ± 0.00 0.92 ± 0.00 0.66 ± 0.01 0.78 ± 0.07 0.44 ± 0.00 0.72 ± 0.00 0.63 ± 0.14 0.81 ± 0.09 
FanIn 0.78 ± 0.00 0.92 ± 0.00 0.66 ± 0.02 0.80 ± 0.09 0.44 ± 0.00 0.72 ± 0.00 0.62 ± 0.14 0.81 ± 0.10 
LoC 0.74 ± 0.00 0.99 ± 0.00 0.44 ± 0.01 0.05 ± 0.00 0.51 ± 0.00 0.87 ± 0.01 0.57 ± 0.13 0.64 ± 0.43 
Average       0.58 ± 0.13 0.51 ± 0.34 

TABLE 11
PERFORMANCE OF CLUSTERING (MEAN±STANDARD DEVIATION), USING FANOUT FOR SELECTING THE TARGET CLUSTER.

Metrics MySQL PostgreSQL RTEMS Average 
Precision Recall Precision Recall Precision Recall Precision Recall 

LoC, FanIn, FanOut 0.68 ± 0.12 0.77 ± 0.35 0.56 ± 0.10 0.52 ± 0.27 0.71 ± 0.00 0.28 ± 0.00 0.65 ± 0.11 0.52 ± 0.32 
FanIn, FanOut 0.68 ± 0.12 0.76 ± 0.36 0.57 ± 0.08 0.55 ± 0.23 0.71 ± 0.00 0.28 ± 0.00 0.65 ± 0.10 0.53 ± 0.31 
LoC, FanOut 0.74 ± 0.00 0.94 ± 0.00 0.61 ± 0.00 0.63 ± 0.04 0.54 ± 0.00 0.86 ± 0.00 0.63 ± 0.08 0.81 ± 0.13 
FanOut 0.74 ± 0.00 0.94 ± 0.00 0.61 ± 0.00 0.66 ± 0.08 0.54 ± 0.00 0.86 ± 0.01 0.63 ± 0.08 0.82 ± 0.13 
LoC, FanIn 0.46 ± 0.07 0.13 ± 0.20 0.47 ± 0.03 0.23 ± 0.06 0.71 ± 0.00 0.28 ± 0.00 0.54 ± 0.13 0.21 ± 0.14 
FanIn 0.44 ± 0.00 0.08 ± 0.00 0.46 ± 0.04 0.22 ± 0.07 0.71 ± 0.00 0.28 ± 0.00 0.54 ± 0.13 0.19 ± 0.09 
LoC 0.74 ± 0.00 0.99 ± 0.00 0.62 ± 0.00 0.95 ± 0.00 0.51 ± 0.00 0.87 ± 0.01 0.63 ± 0.09 0.94 ± 0.05 
Average       0.61 ± 0.11 0.57 ± 0.34 
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RTEMS (precision is less than 0.50). Instead, FanOut 
turned out to be more useful than FanIn to provide a 
common selection criteria among all the systems. This 
result is due to a correlation existing between FanIn and 
FanOut (i.e., high FanIn and high FanOut tend to occur at 
the same time). Therefore, both FanIn and FanOut are 
effective for the MySQL and PostgreSQL systems, but the 
FanOut metric should be preferred as a generic criterion. 

Fig. 13 shows the distribution of components with 
respect to FanOut and LinesOfCode metrics. The cross 
marks represent the centroids of the clusters. The cluster 
to be selected is the one on the bottom-left corner of the 
plots (lowest FanOut). The high precision and recall of the 
clustering algorithm is due to the density of MR functions 
being higher than the density of LR functions in that 
cluster. In other words, when only the target cluster is 
selected, a high amount of MR functions is retained, while 
several LR functions are avoided at the same time. 

Table 13 summarizes the results of clustering in terms 
of percentage of representative faults and faultload size. 
The clustering algorithm is able to improve the faultload 
representativeness, and the best results are achieved 
when clustering at the "function" granularity (the 
improvement ranges between 4.10% and 16.24%). 
Clustering is almost as effective as decision trees, and it 
does not need to be trained using examples (which can be 
costly to obtain) as it exploits the relationship between the 
FanOut metric and fault representativeness (see Fig. 12). 
Thus, clustering is a valuable approach for improving 
representativeness and reducing experimental effort. 

6 LIMITATIONS

The approach and the results reported in this study are 
based on empirical data, which limit the generality of the 
conclusions. We considered open-source systems, and 
results could not apply to software developed under 
other paradigms. Nevertheless, they are supported by 
commercial organizations, and they were tested using 
best practices also adopted in commercial software, such 
as request/bug tracking for introducing test cases related 
to new features or faults that should be avoided in future 
development. Moreover, the RTEMS system has been 
designed and tested to fulfill the requirements of 
industrial safety standards, for its adoption in space 
applications by the European Space Agency [50]. Due to 
similarities between these systems and industrial ones, 
the results can potentially be extended to other systems, 
which is a direction for future research. 

7 CONCLUSION

In this paper, we analyzed the representativeness of 
injected faults in three complex, real-world software 
systems, and proposed an approach for improving fault 
representativeness. This aspect is important for obtaining 
a realistic assessment of fault tolerance. The SFI technique 
considered in this work, G-SWFIT, aims to achieve fault 
representativeness by emulating the most frequent fault 
types found in operational systems. In this work, we 
study fault representativeness with respect to an 

 
Fig. 13 Scatter plot of MR (non-filled circles) and LR (filled circles) functions in the LoC/FanOut space. Cross marks identify cluster centroids.

TABLE 13.
PERCENTAGE OF REPRESENTATIVE FAULTS BEFORE AND AFTER COMPONENT SELECTION USING CLUSTERING.

Dataset G-SWFIT G-SWFIT + selection using clustering 
Faultload size % of repr. faults Faultload size % of repr. faults 

MySQL/Files 39,539 85.49% 16,159 (-59.13%) 90.47% (+4.98%) 
MySQL/Functions 39,539 85.49% 28,982 (-26.70%) 91.06% (+5.57%) 
RTEMS/Files 3,962 28.24% 1,816 (-54.16%) 36.77% (+8.53%) 
RTEMS/Functions 3,962 28.24% 1,857 (-53.13%) 44.48% (+16.24%) 
PostgreSQL/Files 32,915 77.08% 25,620 (-22.16%) 79.24% (+2.16%) 
PostgreSQL/Functions 32,915 77.08% 17,813 (-45.88%) 81.18% (+4.10%) 
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additional criterion, that is, the ability of faults to escape 
real test suites, which characterizes residual faults that 
affect operational systems and that should be tolerated. 

After analyzing a large set of injected faults and real 
test cases (up to 3.8 million experiments), we concluded 
that the percentage of representative faults ranges from a 
minor share in the case of DBMSs (14.57% and 23.13%) to 
a significant share in the case of a RTOS (72.23%). The 
proposed approach selects a subset of components 
suitable for injecting representative faults, by analyzing 
their complexity and relationships using classification 
algorithms and software metrics. The first considered 
algorithm, decision trees, is a supervised classifier, which is 
trained by providing examples of components to be 
selected. The second algorithm, k-means clustering, is an 
unsupervised classifier, which does not require to be 
trained with examples but relies on the observation that 
suitable components have the lowest FanIn and FanOut, 
as they are less exposed to testing. We found that both 
these algorithms can accurately classify components for 
all the case studies (ranging from small and well-tested to 
large and less-tested software), and that it is possible to 
improve fault representativeness and reduce faultload 
size at the same time. In the light of these results, the 
proposed approach can be regarded as an effective and 
practical means for improving the realism of SFI. 
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