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Abstract—Assessing dependability of complex software systems
through fault injection is an elaborate process, since their fault
tolerance is influenced by the state in which they operate. This
paper focuses on the definition of state-driven workloads in fault
injection experiments, that is, workloads that bring a system in
a given target state to be evaluated. We discuss a framework for
the automated generation of state-driven workloads, and provide
a preliminary evaluation in the context of the Linux 2.6 OS.
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I. INTRODUCTION

Fault injection, that is, the deliberate introduction of faults
into a system, is an approach for providing evidences that
a system is tolerant to faults in the environment and in the
system itself. The increasing complexity of software systems
makes fault injection an elaborate process, since these systems
can operate in several different conditions, namely states,
which have influence on their dependability. The importance of
the state for dependability assessment purposes is emphasized
by several studies on dependability assessment of stateful
complex systems, such distributed filesystems [1], DBMSs [2],
and multicast and group membership protocols [3], [4], [5]. In
fact, when complex software systems are evaluated both the
activation and manifestation of faults, as well as the ability
of the system to tolerate them, depend on the system state,
such as the current step of a numerical algorithm or of a
distributed protocol [6], [7], [8]. For instance, this is the case of
Mandelbugs [9], that is, a class of software faults that manifest
themselves depending on the system state and on complex
interactions with the hardware, the OS and other software in
the system. Therefore, fault injection experiments have to be
carefully planned by including the system state [10].

To take into account the state, a fault injection experiment
should adopt an appropriate workload, which is the set of
requests that are being submitted to the system when a fault is
injected. A state-driven workload, i.e., a workload that brings
the system in a given state during the experiment, is important
to assure the significance and the efficiency of experiments, by
avoiding faults that do not actually manifest themselves and
by covering every state in which fault tolerance mechanisms
need to be tested.

The generation of workloads for complex software systems
is an open issue. Past studies proposed the generation of
synthetic randomly-generated workloads (e.g., random CPU

and I/O operations) according to a given distribution [11], [12],
but this approach does not allow to bring a system into certain
states that can be hard-to-reach, which therefore cannot be
exercised and analyzed. Other fault injection approaches rely
on hand-written workloads developed by testers [13], [14],
[10], [15]. However, complex software systems are difficult to
control since the relationship between the workload and states
is complex and non-deterministic, due to the effect of random
factors such as process scheduling and I/O delays. Therefore, it
is still a difficult and time-consuming task to define a workload
that brings the system in a desired state.

This paper is a first step towards the automated generation of
state-driven workloads in complex software systems, which is
an open research issue. We discuss a general framework for the
purpose, and present a preliminary experiment on a complex
system. The proposed framework is based on a closed-loop
paradigm: a workload generator explores the space of possible
workloads, and a positive feedback is provided to the workload
generator if the system is approaching the target state, until
the system converges to this state. The approach is fully
automated, as it is only based on the feedback it receives from
the controlled system, and does not rely on a priori knowledge
about the relationship between workloads and states. The
feasibility of the approach and its ability to reach a target
state were evaluated in a preliminary case study, in which the
workload generator is adopted to control the state of the Linux
2.6 SMP scheduler.

The paper is organized as follows. Section II discusses
relevant fault injection techniques and tools for stateful soft-
ware systems. Section III describes the proposed state-driven
workload generation framework, which is further detailed
in Section IV. Section V discusses a case study and some
preliminary results. Section VI concludes the paper.

II. RELATED WORK

Dependability attributes of stateful systems have been stud-
ied in fault injection studies since a long time. For this reason,
theoretical frameworks have been proposed in past works to
make the fault injection process systematic. In [16], [17],
[18], formal testing approaches for fault-tolerant systems are
proposed, based on state models that describe the expected
behavior with respect to normal inputs and faults (e.g., com-
munication or memory faults). The model is used to generate
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and monitor events for testing the actual implementation of
the system, and to assess the coverage of the tests. The role
of the system state was also emphasized by [19], in which
faulty inputs are injected at the interface between drivers and
the OS. It is showed that if faults are injected at different
times during a sequence of interface function calls, then a
higher number of vulnerabilities is discovered than injecting
at the first occurrence of the target function call.

Tools have also been developed to aid testers in fault
injection experiments in stateful systems. FTAPE [11], [12],
a tool for injecting CPU, memory, and I/O faults in fault-
tolerant computers, provides support for generating synthetic
stressful workloads, based on the observation that a stressful
workload is able to increase the percentage of injected faults
that are activated and that propagate through the system, and
thus are useful to assess the system response to faults. Faults
are injected when the stress level of CPU, memory, or I/O (i.e.,
CPU utilization and memory and I/O throughput) are higher
or lower than a threshold. To control the system state, FTAPE
spawns a set of one or more processes that are CPU-intensive
(by performing arithmetic operations), memory-intensive (by
performing sequential reads and writes to large memory areas),
and I/O-intensive (by repeatedly performing file opens, reads,
writes, and closes), and lets testers to specify the distribution
of CPU, memory, and I/O operations.

The ORCHESTRA tool [13], [20], aimed at testing dis-
tributed real-time systems, adopts a script-driven probing
approach, in which messages exchanged by a process are
intercepted and analyzed by a protocol fault injection layer
(PFI) in the OS kernel, which identifies the current state of the
protocol under test and corrupts/delays messages to perform
fault injection. In order to track the protocol and to trigger fault
injection, the PFI layer executes a script program provided
by the tester, which describes the protocol under test using
a state machine specification. In a similar way, the FCI fault
injection framework for grid computing systems [15] provides
a language specifically developed for specifying fault injection
scenarios, which is used by the tester to describe commands to
be sent to processes in the system (e.g., for stopping, halting,
or resuming process execution) and guard conditions that
trigger commands. NFTAPE [14] is a portable fault injection
tool for distributed systems (i.e., it allows to easily customize
fault injection for different systems and fault models), which
introduced the concept of LightWeight Fault Injector, i.e., a
small program running in the target system that is invoked by
a remote controller to inject a fault, and that embeds the logic
needed to implement a fault model for a given target platform.

The Loki tool [10] addressed the important problem of
performing fault injection based on the global state, i.e.,
the condition that triggers fault injection is based on several
nodes of the distributed system. Due to the problem of clock
synchronization at each node and to message delays, a fault
may be injected in a global state that is different than the
desired target state. To mitigate this problem, Loki performs
an off-line analysis of execution traces in order to discard
experiments in which fault injection is likely to have been

triggered in a wrong state.
A limitation of the tools mentioned above is that the

workload has to be manually tuned in order to bring the system
in a desired state. In the case of FTAPE, the tester selects the
distribution of CPU, memory, and I/O operations generated
by the synthetic workload. In the case of other tools, such as
ORCHESTRA, FCI, NFTAPE, and Loki, the tester specifies
a fault injection scenario by means of state machines, which
are used by the fault injection tool to track the current state
and trigger a fault when a desired state is reached. These
approaches assume that the system is excited by a workload
able to bring the system in the target state. However, devising
such a workload is a tricky task for complex systems, since
the tester has to carefully define the timing and the order of
messages or inputs to be sent to the system. This problem
is further complicated by the inherent non-determinism of
complex systems, which makes difficult to bring the system
in the target state and does not assure a correct execution of
the fault injection experiment. This paper represents a further
step towards solving this research problem.

III. OVERVIEW

Our framework for workload generation is composed by
three subsystems, namely: (i) the System Under Test (SUT),
which is the target of the experimental dependability evalua-
tion, (ii) the Workload Generator (WG), which submits inputs
to the SUT in order to provide a workload and monitors its
behavior, and (iii) a Fault Injector (FI), which is adopted
to inject faults into the SUT. The problem considered in
this paper, namely state-driven workload generation, can be
formulated as follows: given an initial state s0 of the SUT, and
a goal state sg in which an experiment has to be performed,
the WG has to find a sequence of actions that drives the SUT
from s0 to sg . To this purpose, the WG and the SUT are put
in a closed-loop configuration (shown in Fig. 1), in which the
WG sends inputs to the SUT and collects information about its
state. When the SUT is in the target state sg , the WG triggers
the FI, and then the fault injection experiment is performed.

SUT	  WG	  

FI	  
a fault is injected 
into the SUT 

when the target 
state is reached, 
a fault is triggered 

collects state 
information 

submits 
inputs 

Fig. 1: Overview of the workload generation framework.

The WG evaluates how the SUT is behaving by computing
a feedback function D based on state information. An increase
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of the feedback value means that the action at has driven the
SUT to a state “close” to the goal state; otherwise, the function
decreases. Actions to be performed by the WG may consist
in messages or commands sent to the SUT, or in variations
in the rate or type of inputs generated by the WG. The WG
aims to find a sequence of actions s =< a1 . . . at >∈ S that
brings the SUT as close as possible to the goal state, i.e., after
performing the actions in s, D reaches a peak value at time t:

s = arg maxŝ∈SD(t) . (1)

An example of stateful system in which such a framework
could be deployed is represented by a File System, since
several past studies on fault injection and robustness testing
have investigated dependability of File Systems with respect
to faulty disks or applications [1], [21], [22]. In this kind
of system, the state could include aspects related to I/O
transactions, such as the amount of cached data that still has
to be flushed to disk and the available disk bandwidth. A
dependability analysis of a File System could aim to assess the
probability of persistent data corruption due to faults, which
in turn depends on the state of the system (e.g., the amount of
cached data). In order to bring the File System in a given target
state, the Workload Generator should perform I/O operations
or instantiate new I/O-bound processes until the target is
reached. Tuning a state-driven workload in such a scenario
can be a tricky task due to complex interactions between
the File System, other OS subsystems, user applications, and
I/O devices, and automated workload generation is useful to
relieve the tester of this task.

IV. THE PROPOSED FRAMEWORK

In this section, we will give a description of the framework
focusing on its key elements: (i) state modeling, (ii) actions,
(iii) reward function, (iv) search algorithm. The framework
is meant to be tailored to the specific SUT, by using an
appropriate definition of these elements. We discuss how these
aspects should be defined by the tester, and will provide an
example in the next section. These elements are orchestrated
by the loop shown in Algorithm 1, which takes as inputs
the target state sg . Furthermore, the tester can choose a
search algorithm to update the command sequence S, and
a tolerance value ε that represents the stop condition of the
search algorithm.

Algorithm 1 WGMAINLOOP(sg ,ε)

1: while D(sg)−D(sc) ≥ ε and T ≤MAX TIME do
2: update the action sequence S
3: apply the last action in sequence S on the SUT
4: update the current state sc
5: end while

A. State

The problem of the state definition is of paramount impor-
tance in our framework, and it is strictly dependent on the

SUT. The framework is aimed at complex and ”black-box”
systems, for which a detailed knowledge about its internals
is not available. Therefore, we consider as ”state” a vector of
variables that reflect the state of a subset resources or data
structures in the system that are relevant for the dependability
and performance of the SUT. Since several studies on field
failure data have shown that fault activation and propagation
is influenced by stress conditions [23], [24], the definition
of state may include the usage of internal resources such as
buffers, queues and communication channels, and performance
measures such as the throughput of the system [25]. Moreover,
the state can be defined based on the objectives of the
fault injection and from the requirements of the system. For
instance, in [9] fault injection is adopted in the context of a
fault-tolerant distributed system based on a warm-replication
mechanism to copy the state of a process to a backup replica:
in this scenario, the evaluation of fault tolerance takes into
account the number of requests in the queues of the process,
which affects the amount of data that has to be copied to
the backup replica and ultimately on the effectiveness of fault
tolerance, and it is included in the state.

B. Actions

In general terms, actions are changes in the workload gen-
erated by the WG. They may consist in individual messages
or commands sent to the SUT, or may represent parameters
of a synthetic workload (as in the case of FTAPE [11]). The
choice of the set of actions to adopt is dependent on the SUT,
since the workload exercises the system through its interface to
users and to other systems. Moreover, the definition of actions
is also affected by the state definition, since the actions should
be able to modify the state of the SUT. For instance, in the
case of a web server, actions may change of the rate and kind
of HTTP requests [26].

C. Feedback function

The WG selects actions to be performed on the basis of the
feedback from the SUT, by means of the feedback function D.
This function embeds the fact that a command that drives the
system in a state st close to sg gives a positive feedback; the
function assumes its maximum value in st = sg . The function
should compute a scalar value that could be analyzed by the
search algorithm, by accounting for the current value of state
variables and their target value. For instance, if the WG aims
to maximize the throughput of the system during the test, the
function could return the current throughput. If more than one
state variable is involved, the feedback function could compute
a weighted sum of the factors that have to be tuned by the WG.

D. Search Algorithms

The core of the WG is based on search algorithms. In fact,
the workload generation problem is an optimization problem
in a discrete space, since the action space is typically discrete.
It is known that this problem is NP-hard, therefore the search
algorithm should be based on some kind of heuristic. The
choice for the action to perform is based on the values returned
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by the D function. If the last actions provided an increase of
the D function (e.g., D(st)−D(st−1) > 0 for the action per-
formed at time t), then the algorithm should take into account
those actions to build the action sequence S; otherwise, the
search algorithm could consider to discard that action in the
sequence, and to try a new action. The tester can adopt well-
known algorithms in the fields of combinatorial optimization
and artificial intelligence, such as simulated annealing, genetic
algorithms, and A*.

V. EVALUATION

In this section we illustrate the proposed workload gener-
ation framework in the context of a case study and provide
a preliminary evaluation. We consider a scenario of a fault
injection campaign targeting a Linux-based system, in which
experiments have to be performed when the CPU and I/O
usage (which represents the state of the system) is equal to
a given value. CPU and I/O are exercised by a synthetic
workload consisting of CPU-bound and I/O-bound processes,
which stress the system through the OS interface. Several fault
injection studies were conducted in scenarios similar to ours
[27], [11], [12]. In order to control CPU and I/O usage, the WG
instantiates CPU-bound and I/O-bound processes, and tunes
the number and type of processes using a search algorithm (see
Section IV). We evaluate the ability of the proposed framework
to find the best mix of CPU-bound and I/O-processes for
reaching a desired level of CPU and I/O usage.

A. System under test

The SUT consists of the Linux OS running in a quad-
cpu system. The state of this system (the average utilization
of CPU and I/O) can be controlled by spawning synthetic
processes that perform CPU- and I/O-intensive operations.
However, it is tricky to tune the relative amount of CPU and
I/O operations that brings the average CPU and I/O usage to a
desired level, since there is a mutual relationship between CPU
and I/O operations. In fact, I/O-bound processes often require
to use the CPU for short time periods, in order to prepare I/O
commands and to send or to retrieve data; therefore, CPU-
bound processes may delay I/O-bound processes and affect
I/O usage, and I/O-bound processes contribute to CPU usage.
CPU and I/O usage is mainly affected by the process scheduler
of the OS, which selects the order in which CPU- and I/O-
bound processes are executed.

In order to evaluate the proposed framework, we adopted
Linsched [28], a simulator of the Linux OS in multi-cpu
environments. It is important to note that Linsched is based
on the actual source code of the Linux kernel (v. 2.6.35),
and that it allows to simulate process execution with high
accuracy. In particular, Linsched includes the whole source
code of the Linux process scheduler, namely the Completely
Fair Scheduler (CFS) [29], and allows to evaluate the effect
of process scheduling on CPU and I/O usage. Fig. 2 shows
the scenario considered in our experiments, which consists
of 4 CPUs and an I/O device each associated with a process
queue. The system state is defined by two variables, that is, the

average number of processes in CPU queues (runqueues) and
in the I/O queue respectively. In order to control the system
state, the WG generates CPU bound and I/O-bound processes,
which are allocated to a CPU by a load-balancing algorithm
in the Linux kernel, and each CPU is managed using the CFS
algorithm. When a process performs an I/O operation, it is
moved in the I/O queue, which is managed using a First-In-
First-Out algorithm. The complex relationship between CPU
and I/O usage can be seen in Fig. 3, which shows the average
length of each queue as a function of the number of CPU
bound and I/O-bound processes: these functions are non-
linear, and where one of the functions increases, the other
one decreases.

CPU 1 

CPU 2 

CPU 3 

CPU 4 

I/O 

Average number of ready 
processes (CPU usage) 

Average number of blocked 
processes (I/O usage) 

Processes 
generated 
by the WG 

Fig. 2: Execution scenario.

B. Instantiating the WG framework

Following the proposed framework, we have defined the
state s as a vector of two components: (i) the average number
of the processes in the runqueues (ii) the average number of
processes in I/O queue. The function D is defined as:

D(st) = −||st − sg||

where ||.|| is the euclidean norm between the state vectors
st and sg . The processes that can be generated by the WG
are of three types, as shown in TABLE I. The first column
is the process type, that can be CPU-bound, I/O-bound or
Mixed; the second and the third column provide the average
time that a process of each type spends in the running state
(i.e., it is using the CPU) and in the blocked state (i.e., it is
waiting for the completion of an I/O operation), respectively.
The WG starts its execution using a process set filled with n1

CPU-bound processes, n2 I/O-bound processes, and n3 Mixed
processes (we assume n1 = n2 = n3 = 10 as initial value)
and we have set ε to 0.4. The actions of the WG consist in
increasing or decreasing (by one, five, or ten) the number of
processes of each type (n1, n2, and/or n3). For every action a
in the action set A, we refer to the action opposite to a as a′,
which removes the effects of a. In the case that such actions
are not available or applicable for the target system, the WG
should at each iteration (i) reset the system state, and (ii) apply
the whole sequence S. Finally, we have chosen the Simulated
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Fig. 3: Average length of CPU and I/O queues in function of the number of CPU- and I/O-bound processes in the system.

Annealing [30] as search algorithm (Algorithm 2), which is
executed in the context of the WG main loop (Algorithm 1).
It randomly chooses an action, and evaluates D in the new
state sn. If the action produced an increase of D compared to
the previous state, then the action is appended to the action
sequence. If D decreases, then the action is not included in
the sequence and the system is reverted to its previous state
using the action a′. However, the algorithm may still include
action a in the sequence and remain in the state sn (even if D
decreased) with probability e−∆E/T (decreasing with time).

Algorithm 2 SIMULATEDANNEALING(sc)

1: a← random select(A)
2: do a on SUT and get the next state sn
3: ∆E ← R(sn)← D(sn)−D(sc)
4: if ∆E < 0 and random(1− e−∆E/T ) then
5: do a′ on SUT
6: end if

TABLE I: Process types instantiated by the WG.

Type Mean CPU time Mean I/O time

CPU-bound processes 200 ticks 20 ticks

I/O-bound processes 5 ticks 20 ticks

Mixed processes 20 ticks 20 ticks

C. Experimental results

In our experiments, we evaluated the framework using 9
different goal states, by selecting different realistic conditions
in which the SUT could be operating. The target values for the
average length of CPU queues were respectively low = 10,
medium = 50, and high = 100. In a similar way, the
target values for the average length of the I/O queue were
respectively low = 10, medium = 50, and high = 100. At
every iteration of Algorithm 1, the system is simulated for 10

seconds, and the state of the system is collected by computing
the average number of ready and blocked processes. We
evaluate the number of iterations for reaching the goal state.

In every experiment, the WG reached the target state. The
distance from the target state approaches to zero in at most 250
iterations, as shown in Fig. 4. The worst case is represented
by the target state (100, 100), which is the state farther from
the initial state (i.e., the state obtained using the initial mix
of processes n1, n2, and n3). It could possible to improve the
speed of convergence using a different initial mix of processes.
For instance, a tester could consider a set of several random
process mixes, and the Workload Generator can choose as
initial mix the one that is closer in the state space to the
target state. It is important to note that this is a general
problem of search and optimization algorithms. Figure 5 shows
how the search algorithm moves towards the target state. The
oscillations are due to the random choices made by the search
algorithm, which in the long term brings the system in the
target state (the filled dot in the figure).

VI. CONCLUSION

In this paper, we discussed a framework for automatically
generating a workload to reach a target state defined by the
tester. In this framework, a Workload Generator interacts with
the System Under Test in a closed loop, to iteratively search
for a sequence of actions that brings the System Under Test
in the target state. The framework has been evaluated in a real
complex system, namely the Linux 2.6 OS scheduler. From the
results, we found that the Workload Generator is able to reach
the target state in every experiment in a reasonable number
of iterations. Future work in this area can be focused on the
application of the approach to other systems, with the aim
of evaluating and improving its effectiveness and portability.
Another area worth of investigation is the adoption of the
framework in the context of dependability benchmarking.
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Fig. 4: Speed of convergence of the Workload Generator.
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Fig. 5: State space explored by the Workload Generator.

within the framework of ”POR Campania FSE 2007-2013”
and ”Iniziativa Software CINI-Finmeccanica”.
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