
State-Driven Testing of Distributed Systems

Domenico Cotroneo, Roberto Natella, Stefano Russo, Fabio Scippacercola
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Abstract. In distributed systems, failures are often caused by software
faults that manifest themselves only when the system enters a particu-
lar, rarely occurring system state. It thus becomes important to iden-
tify these failure-prone states during testing. We propose a state-driven
testing approach for distributed systems, able to execute tests in hard-
to-reach states in a repeatable and accurate way. Moreover, we present
the implementation and experimental evaluation of the approach in the
context of a fault-tolerant flight data processing system. Experimental
results confirm the feasibility of the approach, and the accuracy and
reproducibility of tests.
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1 Introduction

Distributed computing systems are today adopted in many business- and safety-
critical domains, such as air traffic control, healthcare, and e-banking systems.
In these contexts, it is mandatory to perform rigorous verification and validation
activities to assure that distributed systems are highly dependable.

As a matter of fact, distributed systems tend to fail in subtle ways. These
failures can be caused by software faults that manifest themselves only when the
system enters a particular, rarely occurring system state [1,2,3]. Failure-prone
states often evade testing since they only occur for specific sets of events and
inputs (workload), as showed in several studies on testing of distributed systems,
including filesystems [4,2], DBMSs [5], and multicast and group membership pro-
tocols [2,6,7]. Thus, identifying these states during testing is a challenging prob-
lem. This problem is exacerbated by the non-determinism of distributed systems,
the need for minimal instrumentation of the system, and the presence of Off-The-
Shelf (OTS) components whose internals are unknown. Past studies have mainly
focused on exercising the system using synthetically generated workloads [8,9], or
using workloads derived from performance benchmarks [5,10,11]. Nevertheless,
these approaches are not effective at covering rare (hard-to-reach) states. Other
approaches generate a workload from stochastic or non-deterministic models of
the system, but do not scale well for complex systems [12,13].

In our previous paper [14], we proposed a workload generation technique that
automatically drives the system’s state towards the hard-to-reach states. In this



2 D. Cotroneo, R. Natella, S. Russo, F. Scippacercola

paper, we integrate this technique into a state-driven testing approach able to
execute tests in hard-to-reach states, in a repeatable and accurate way. It does
not rely on a detailed model of the system in terms of probabilities or time,
and is suitable for testing the actual implementation of complex, OTS-based,
distributed systems. Moreover, we present the implementation and experimental
evaluation of the approach in the context of a fault-tolerant flight data processing
system. The evaluation shows the feasibility of the approach and its ability to
perform accurate and reproducible tests in the correct global state.

The paper is organized as follows. Section 2 presents past work on state-
driven testing of distributed systems. Section 3 provides basic concepts and
assumptions, and Section 4 describes our approach. Section 5 and 6 presents the
experimental evaluation. Section 7 closes the paper.

2 Related work

Studies on the verification of distributed systems can be classified into two broad
classes: analytical-simulation studies and experimental ones. Experimental stud-
ies, in which our work is included, assess the actual implementation of a system
by executing it. They include, for instance, fault injection methods, which assess
fault tolerance mechanisms and algorithms through the deliberate injection of
faults in the actual system or in a prototype [6].

In experimental studies, model-based testing (MBT) approaches are com-
monly adopted for generating test cases from a formal description of the system
[15]. For instance, conformance testing and FSM-based testing approaches gen-
erate test cases aimed at covering the states of the model and at assuring that
the system evolves as described by the model. Early approaches adopted graph-
searching techniques to identify inputs able to drive the system along a given
path in the state model [16]. Later approaches [12,13] extended these approaches
to drive the system state in spite of random factors that change the system state
in unpredictable ways. Nevertheless, the application of these approaches in com-
plex systems is limited by scalability issues due to state space explosion, the
need for a detailed model of the system, and by restrictive assumptions they im-
plicitly make about the system: for instance, they only consider “stable” states,
in which the system waits for inputs or events [17].

For these reasons, fault injection approaches do not rely on a system model to
generate a workload. Some of them assess dependability by adopting a workload
representative of the real workload that will be experienced during operation
[5,10,11], in a similar way to performance benchmarks. In other cases, synthetic
workloads are randomly generated, according to a high-level workload specifica-
tion provided by the tester [18], for instance in terms of input probability dis-
tributions [8,19]. Moreover, most fault injection studies randomly inject faults
during an experiment, repeating this process several times [20,21,7]. In these
studies, the tested system states are limited to those exercised by the considered
workload, and testers must manually tune the workload in order to bring the
system in “hard-to-reach” states, from which they can perform tests. Moreover,
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random injection can require a significant number of experiments to “hit” the
system at hard-to-reach states.

More advanced fault injection approaches trigger the injection when a spe-
cific events occur in the system [22,23,2], and perform an a-posteriori state-based
sampling of experiments to compute dependability measures [24,2]. For instance,
Loki [2] considers the global state of a distributed system for triggering fault in-
jection: to assure that a fault has been injected in a desired state, it performs an
off-line analysis of execution traces and repeats the experiment if the injection
has been triggered in a wrong state. These approaches still rely on a workload
provided by the tester, either hand-written or using a representative workload,
which does not assure that all important states are covered during testing. Com-
pared to these works, our approach actively tunes the workload in order to cover
a specific state specified by the tester, thus complementing experimental assess-
ment approaches such as Loki. In our preliminary work [14], we discussed the
issues behind state-driven workload generation in distributed systems, and first
proposed the use of genetic algorithms to this aim. In this study, we integrate
this technique in a comprehensive approach for fault injection testing.

3 Basic concepts and problem statement

In the design of our approach for state-driven testing, we make practical assump-
tions about the architecture of the distributed system (DS) under evaluation. We
consider DSs in which a set of services is exported by a frontend process, masking
the complexity of the system to its users (Fig. 1). A client sends requests to the
frontend process by means of one or more messages, the frontend interacts with
the other processes of the DS and, once the computation has finished, replies
to the client. In this context, a workload W consists of a set of service requests
generated during an execution. This view of DSs applies to several systems,
including orchestrated web services and three-tier web applications.
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Fig. 1. The distributed system under test.

In state-based testing of DSs, the workload is adopted to bring the system in
a global state defined by the tester (target state), in order to let him to perform
a test right after the DS has reached the target state, for instance by submitting
a set of inputs or by injecting a fault while the system is in the target state. The
aim of State-Driven Workload Generation (SDWG) is to search for a workload
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W such that the likelihood that the system under test (SUT) spends at least a
period τ in the target state is high enough to allow the accurate and reproducible
test execution in the desired state. The τ period includes the time for allowing
a Test Executor (TE) program to notice (by collecting event logs) that the DS
has entered the target state during the experiment, and to perform the test after
the state has been reached: for instance, in a fault injection experiment, the TE
(e.g., a fault injection tool) will require a small amount of time to corrupt a
message or to kill a process [22,2].

The state of an individual process in the DS is referred to as local state,
whereas the global state of the DS, denoted with s ∈ S, is the union of all the local
states. The target state or, more in general, the set of target states SG, is a subset
of the global states in which the tester aims to perform a state-driven test. Local
and global states of the DS, and target states, should be defined by the tester
before generating state-driven tests. We refer as the system model to a high-level
specification (using a formalism such as Finite State Machines (FSM) or Petri
Nets (PN)) by which the tester describes the set of global states, including the
target states. The tester should define the system model on the basis of system
requirements and its high-level design. The model should account for the state of
local resources and the state of computation at each process, in addition to the
testing goals. The model can be specified using well-known formalisms such as
Finite State Machines (FSM) or Petri Nets (PN). Using the system model, the
tester can focus workload generation on those target states that are important for
testing. For instance, to test the effectiveness of a deadlock detection mechanism
in a distributed DBMS, the system model should reflect the contents of the lock
table and distributed transactions. The target state can be expressed in terms of
markings of a PN, e.g., in terms of number of tokens in places that represent the
ongoing execution of a transaction. More detailed examples of high-level system
models adopted for fault injection testing of a distributed filesystem and a group
membership protocol are provided respectively in [4,25].

For SDWG, we only require a relatively simple model that reflects the soft-
ware under development at a high-level of abstraction, which should not neces-
sarily provide details about low-level hardware and software layers of the sys-
tem (e.g., OS, middleware). In particular, we do not require the system model
to characterize the time and the probability of events in the system, but only
the relationship between events and states: time, including communication and
computation delays, can be unfeasible to characterize even in a probabilistic
way, especially for complex distributed systems with third-party and OTS com-
ponents, whose internals are unknown. Since the time of events are unknown,
transitions in the system model are not timed, and only express the relationship
between events and the state of the DS (according to [15], it is an untimed,
non-deterministic and operational model). In our approach, the system model
is used after the execution of the workload to obtain, from raw event logs of
an execution, the sequence of states that the system has followed during the
execution, and refine the workload based on this feedback.
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4 A State-driven testing approach

We are proposing an MBT approach composed by two phases, namely the work-
load search phase and the testing phase. The workload search phase is only
briefly summarized in the following because it has been the focus of our previ-
ous work [14], while the testing phase is the main topic of this section. Fig. 2
shows the overall approach: the tester first searches a workload, using the Work-
load Generator (WG) [14], then performs the actual testing of the SUT using
the workload W found in the previous phase. To find W , the WG applies “can-
didate” workloads to the system, and evaluates whether such workloads bring
the system in the target state. The WG determines if the system reached the
target state collecting the system events during the execution, e.g., messages and
outputs produced by processes, and analyzing them after the events have been
“translated” into the history of global states traversed by the system.

In the testing phase, the tester links his module, the Test Executor, to the
WG: the TE is responsible for executing tests, e.g., it may be deputed to inject a
fault and to observe its effects on the SUT. The WG supplies again the workload
W to the system, but here, during runtime, it triggers the Text Executor when
it notices the occurrence of test triggering conditions (e.g., a specific sequence
of messages sent within the system). These conditions are defined by the WG
such that the likelihood that the test is performed in the target global state is
maximized. This likelihood represents an evaluation of the accuracy and repro-
ducibility of the test when using a given workload. Test reproducibility allows
their re-execution after applying a fix, given that the fix does not impact the sys-
tem model or the execution of W . The likelihood is evaluated by the WG during
the workload search phase, so the search can be stopped when it is high enough.
Moreover, after the execution of a test, the WG framework checks whether the
experiment has been conducted in the correct global state, in order to assure the
correctness of results. The test is repeated in the unlikely case that the state of
the test was not the desired one.
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Fig. 2. Workflow of a test using the proposed approach.
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4.1 The workload search phase

In the workload search phase (described in detail in [14]), the WG interacts
with the DS under test in a closed-loop configuration. It exercises the DS with
a workload, analyzes its behavior, and modifies the workload until a specified
target state is reached. In this loop, the WG alternates an on-line phase, in
which the DS is executed, and an off-line phase, in which the behavior of the
DS is analyzed. The distinction between the off-line and on-line phases allows to
reduce the intrusiveness of the WG, since only minimal information is collected
during the on-line phase, and most of the processing for analyzing the system
evolution and computing the workload occurs off-line. In the on-line phase, the
WG executes for a fixed time period the DS with a candidate workload W .
Then, in the off-line phase, the WG analyzes the behavior of the system through
event logs collected during execution, and evaluates whether the target state has
been reached. The off-line phase adopts a Petri Net system model (Section 3)
to obtain, from raw event logs of an execution, the sequence of states that the
system reached during the execution, and how much time has been spent at
each state. Candidate workloads are iteratively generated and executed until
the target state is reached with a given probability and for a given sojourn time.

Local events are collected at each process of the DS, timestamping them using
local clocks. When the experiment is over, an off-line synchronization algorithm
is executed to align the events of an execution on a single global timeline [2,26].
Off-line synchronization was preferred over on-line synchronization approaches,
such as NTP, since on-line synchronization protocols exchange packets during
the execution of the system and can thus interfere with its evolution. For each
event, the algorithm estimates a lower and an upper bound of its timestamp,
representing the uncertainty interval of the event. We showed in [27] that, when
a PN system model is adopted, the global state of the system can be exactly
identified in those periods where uncertainty intervals do not overlap.

A workload W leads the SUT to traverse one or more global states sk ∈ S,
and sojourns in each of them for a finite time dk > 0. The behavior of the SUT
under a workload W is evaluated from a set of executions. The sequence of all
the states traversed by the system in an execution under the workload W forms
an execution report ri ∈ RW , where each state traversal is denoted with (sk, dk).

The WG adopts a workload configuration wc ∈ Wc to represent workloads;
wc is a vector of parameters, representing the frequency and the type of requests
to be sent, i.e., the workload to be generated. The tester should specify, for each
parameter, a discrete set of allowed values (e.g., values uniformly distributed
within a range). The WG explores, with the WL Navigator component, several
combinations of such parameters to find a combination able to reach the target
state. The parameters represent the periodicity of the messages exchanged with
the DS and other customizable factors, such as the delays to introduce in the
processes for increasing the likelihood of sojourning in the target state for long
enough. The WL Navigator makes use of a Genetic Algorithm (GA) to search
for a suitable wc. It starts from a random configuration, and then generates new
candidate workloads by randomly mutating and combining candidate solutions
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from a previous iteration, by replacing a parameter value of an existing solution
with (i) another value from the set of allowed values, or (ii) a value of the same
parameter taken from another workload. The quality (fitness) of wc is evaluated
using a fitness function, which takes into account the “distance” between the
tentative solution and the target states, and the “continuity” of periods spent
in the target state. Based on wc, the WG generates the actual workload W , by
acting as a client of the SUT using a WL Feeder component.

4.2 The testing phase

After the workload search, in which a state-driven workload has been found, the
system is actually tested using the selected workload. During a test (Fig. 2),
events logs are still collected, and they are analyzed at run-time to trigger the
Test Executor when the WG notices that the SUT has reached the target state.
However, due to delays in the transmission of events and to the lack of clock syn-
chronization, the test could be triggered in a global state that is different than
the desired target state. In order to avoid incorrect experiments, we perform off-
line synchronization after the test, analyze the execution report, and evaluate
whether the test has been triggered in the correct global state. If the execution
report points out that the test was triggered in an incorrect or undetermined
state, the experiment is discarded and must be repeated. This “optimistic” ap-
proach is based on the observation that if the system sojourns in the target state
for long enough, it is likely that the test will triggered in a correct global state,
which is also assumed by other testing and fault injection tools for distributed
systems such as the Loki [2]. Therefore, we can expect that tests will be correctly
triggered most of times, and that only a few experiments will be discarded, as
the WG seeks for a workload that maximizes the sojourn time in the target
state. In any case, the off-line analysis assures that incorrect experiments are
discarded and do not affect the evaluation of the system.

An important issue that we noticed in a preliminary implementation of our
approach is that, even if the workload brings the SUT in the target state for
a long enough time, it often happens that, during the same execution, the DS
enters the target state only for short periods: in such cases, the test would be in-
correctly triggered since the system leaves the target state during the execution
of the test. In other terms, during an execution, there can be many state traver-
sals shorter than the required τ , and only a few traversals longer than τ , where τ
is the time required for the execution of the test (see Section 3). To mitigate this
issue and to improve the likelihood of triggering the test in the desired global
state, we adopt the following test triggering mechanism: we avoid (incorrect)
triggering when a target state is traversed only for a short time, by raising the
trigger only when a triggering-delay θ has been elapsed since the system entered
in the target state. Figure 3 shows an example of the whole process, based on a
hypothetical system model with two places and two transitions. The test trigger
specification consists of the following conditions: (i) the place p2 should have
at least one token, and (ii) the first condition should hold for at least a delay
θ∗. During the testing phase, the WG collects events and updates its internal
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representation of the global state. When an event happens, a message is sent to
the WG, which updates the system state and checks if the target state (e.g., the
marking 〈p1 = 0, p2 = 1〉) has been reached. If so, the θ-delay starts, and the
test is triggered only after θ is elapsed. Therefore, traversals of the target states
shorter than θ∗ will be filtered out. The delay θ is selected by the WG as follows,
by maximizing the probability of correct test execution. A test is correct (i.e.,
triggered in the correct global state) if, after the SUT has reached the target
state and remains in that state for a period θ, it does not change state for an
additional period τ to allow the Test Executor to perform the test. We estimate
the probability of test success ptsSG,τ (θ) by:

ptsSG,τ (θ) = Pr (dk ≥ θ + τ | dk ≥ θ ∧ sk ∈ SG) ·
· Pr (∃ek = (sk, dk) ∈ rw : dk ≥ θ ∧ sk ∈ SG) (1)

where the first factor of the product represents the probability to stay in the
target state sk for θ + τ given that the triggering delay has been elapsed, and
the second factor represents the probability that the workload will bring the
system in target state for a long enough period at least once during the ex-
periment. These probabilities can be empirically estimated from the execution
reports collected during the workload search. The value of the triggering-delay
θ∗ is selected by the WG by maximizing the pts:

θ∗ = arg max
θ∈[0;θmax]

ptsSG,τ (θ) (2)
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Fig. 3. Test triggering based on event logs and on a triggering delay.

5 Case study

We implemented and evaluated our approach within the Flight Data Processing
System (FDPS) described in [14], and here summarized. FDPS is a distributed
software developed in C++ which uses CARDAMOM, a fault-tolerant CORBA-
compliant middleware. It is a part of an Air Traffic Control (ATC) system, in
charge of managing and keeping up-to-date Flight Data Plans (FDPs).

The architecture of FDPS (Fig. 4) is composed by a Façade component,
which acts as the frontend of the system and is replicated by the CARDAMOM
Fault-Tolerance (FT) Service, and by a set of three Processing Servers (PSs),
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managed by the Load-Balancing (LB) Service. Service requests are delivered to
the Façade by the middleware: the Façade forwards requests to a specific PS
according to a round robin scheduler; once the requests are completed, they are
sent back to the Façade, which disseminates the updated FDP through a Data
Distribution Service (DDS) and replies to the clients.
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Fig. 4. The FDPS case study.

Requests are associated to a specific flight track, which is identified by an
FDP-ID number: for each FDP-ID, the Façade dispatches no more than one
request at time towards the PSs, and enqueues other requests for the same
FDP-ID until the request under processing has been processed. The state of
requests for each FDP is stored in an FDP Table of the Façade. Because the PSs
are managed with a mono-threaded policy, the middleware in turn enqueues the
requests forwarded to a PS if that PS is busy. The FT Service performs a warm
replication of the Façade process: the FDP Table is checkpointed at each update
and transmitted to backup replicas, which are activated in the case of failure of
the primary replica. In our experimental setup, the application is installed on a
LAN of RHEL Linux PCs connected through a 100Mbps Ethernet network; the
FDPS deploys 3 Processing Servers, one active Façade and one backup Façade
replica. The hosts adopted for the experiments were configured by disabling
services that could interfere with the FDPS and the WG. In particular, we had
to disable the NTP synchronization service, which modifies the system clock and
can affect our synchronization algorithm [14].

In a previous study [3], we adopted fault injection to assess the fault toler-
ance of the warm replication mechanism implemented in the FDPS based on
the CARDAMOM FT Service. The warm replication mechanism should copy
the state of the FDP Table to a backup replica, and its effectiveness can be
affected by the amount of data that has to be copied to the backup replica (i.e.,
the number of requests enqueued by the Façade) and by requests sent to PSs
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(both under processing and enqueued by the middleware). In this case study, we
perform fault injection experiments in different states of the FDPS, by taking
into account the number of requests enqueued by the Façade and sent to PSs.
We include in the system model of the FDPS (and thus in the definition of the
global state) the number of requests enqueued at the Façade and at each PS. The
system model, described in [28], was not included here due to space constraints.

In this experiment the workload configuration wc has a pair of parameters for
each FDP-ID i, namely Tmi and Di: the first one specifies the period between
two consecutive requests sent by the client for the i-th FDP-ID; the second
one represents a delay that is introduced in the PSs during the processing of
requests for the i-th FDP-ID. The WL Feeder generates a stream of requests
for each FDP-ID according to wc. These parameters are communicated by the
Workload Navigator to the Workload Feeder through a UNIX shared memory,
whereas the Feeder transmits the delays Di to the Processing Servers in the
request messages. Fig. 4 also includes the implementation of our state-driven
testing approach in the FDPS (the shaded boxes in the figure). The Loggers are
small libraries linked to FDPS processes; the CORBA objects were instrumented
to collect application events by invoking Loggers, which in turn send event logs
to the WL UtilAgents using UNIX message queues. We log events that represent
transitions in the system model. In particular, we log the invocation of CORBA
methods (by invoking the Logger at the beginning of the CORBA method),
and the accesses to request queues (e.g., by invoking the Logger when a private
method for enqueuing requests is called). Event logs are processed by the WG
(both during the search and the testing phases), which are translated into a
sequence of global states: for instance, when a client request for the FDP #1 is
received, a new global state is added in the sequence of global states, with A1 = 1
in the marking of the PN (see [28]). As an alternative to instrumenting the SUT,
the events required by the system model can be obtained by system logs, if
available. The WL UtilAgents are processes that perform all the tasks required
by the Workload Generator, such as log collection and off-line log analysis, and
by the Test Executor, such as triggering a test. For instance, in our experiments
we used the WL UtilAgent to inject faults in the Façade. We adopted the process
crash as fault model, which is often adopted to evaluate the fault tolerance of
distributed systems [2,7]. In our setup, the Test Executor is a process that forces
a process crash, by killing the Façade process using UNIX signals. It is important
to note that our approach can be adopted for injecting arbitrary fault models,
depending on the type of system and on evaluation goals.

In the search phase, we configured the fitness function ([14], eqq. 4, 5) with
parameters α = 10.4 and ε = 24. A workload configuration wc represents an
individual for the genetic algorithm, with 2 · #FDPs chromosomes (i.e., the
parameters Tmi and Di). At each iteration, the GA generates a new population
of individuals (where each population consists of 8 individuals) from an old
population, by repeatedly applying the following two rules:

– two individuals are randomly selected, with a probability based on their
fitness; with probability c = 90% (crossover rate), the two individuals are
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split in two parts (at a random point of the vector) and mixed (crossover),
thus obtaining a new pair of individuals;

– with probability m = 35% (mutation rate), each parameter of the newly
generated individuals are replaced (mutation), by randomly selecting a new
value according to a normal distribution centered around the old value.

6 Experimental evaluation

We conducted a set of fault injection experiments on the FDPS, in order to
evaluate the feasibility and effectiveness of the approach. In these experiments,
we evaluate the ability and the speed of the WG to bring the system into a given
target state, and the ability to correctly trigger fault injection while the system
is in the target state. The target states are defined using a set of constraints, that
is, conditions that the global state needs to satisfy: in the case of a system model
based on Petri nets, the target states are represented by a set of conditions on the
marking of the Petri net. If several global states satisfy the constraints, they are
considered equally useful from the perspective of testing the DS. The Workload
Generator is adopted for bringing the system in three different targets states,
where each experiment introduces an additional constraint to the constraints of
the previous experiment. Introducing additional constraints makes the search for
a workload increasingly difficult, since each constraint reduces the set of target
states. The experiments are defined as follows:

Experiment #1: The workload should bring the distributed system into a
global state in which two out of three PSs are busy, and one out of three PS
is idle. This condition is expressed by a constraint stating that the sum of
tokens in the places WRKi (where WRKi = 1 if the i-th PS is busy, and 0
otherwise [28]) should be exactly 2:

3∑
i=1

WRKi = 2 (3)

Experiment #2: In addition to the previous constraint (Equation 3), the
workload should bring the system into a global state such that the Façade
should have enqueued at least 6 and at most 30 requests in its FDP Table
(Equation 4). Both constraints should hold at the same time in order to
reach the target state. The second constraint states that the sum of tokens
in the places Aj , representing the number of requests in the FDP queue j
(with six FDP queues in total) [28], should be between 6 and 30 tokens:

6 ≤
6∑
j=1

Aj ≤ 30 (4)

Experiment #3: The set of target states is further restricted, by (i) including
the constraint of experiment #1 (Equation 3), (ii) replacing the constraint
of Equation 4 with the more restrictive condition of Equation 5, and (iii)
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adding the condition that there should be at least one request enqueued by
the PSs (Equation 6). All three constraints should hold at the same time in
order to reach the target state. Equation 5 states that each FDP queue j
should have between at least 1 and at most 5 enqueued requests (instead,
Equation 4 disregards how enqueued requests are distributed across FDP
queues); in Equation 6, tokens in the place BF represent requests enqueued
by the middleware for the PSs, which should be more than zero [28]:

1 ≤ Aj ≤ 5 , j = 1, 2, . . . , 6; (5)

BF > 0 (6)

It is important to note that, even though the first and the third constraints
(Equations 3 and 6) appear to be contradictory, it is in fact possible to satisfy
them at the same time. These constraints state that there should be an idle
Processing Server, while the other two PSs should be busy and have requests
enqueued for them, i.e., the enqueued requests should not be forwarded to
the idle PS. This condition is actually possible since the request scheduler
selects the PS for an incoming request on a round-robin basis, regardless of
whether the selected PS is busy and whether there are idle PSs. Therefore,
this condition is hard-to-reach, but possible.

We imposed a minimum sojourn time in the target state of τ = 0.3s, which
is large enough to allow our Test Executor module to be triggered and to kill the
Façade process. We fixed the number of FDP-IDs to six, and set the domains for
the parameters of the workload configuration ranging from 500ms to 5s, with a
step of 500ms. Finally, we set |RW | = 3.

In Fig. 5, we depict the sojourn time in the target state attained by generated
workloads. At each iteration of the genetic algorithm, a generation (i.e., set
of solutions) is obtained by mutating and combining solutions from the best
solutions of the previous generation (on the basis of the fitness function). We
evaluated, for each generation, the sojourn time attained by the best solution
of each generation. In every experiment, the WG was able to find a workload
able to bring the system into the target state for an uninterrupted time period
of at least 1.5s; the convergence to a “good” solution was very quick in the case
of experiments #1 and #2, and in the case of experiment #3, which imposed
more restrictive constraints to the target state, the algorithm converged after 14
iterations, which were executed in about 3 hours.

For each experiment, we selected the workload with the highest uninter-
rupted sojourn times across all generations of the search, and then we used that
workload for fault injection experiments.

The table 1 shows the probabilities of correct test execution and compares
them with the estimations obtained by ptsSG,τ (θ∗) (eq. 1). The probabilities of
correct test executions has been obtained by performing 100 fault injection ex-
periments on the system for each target state, and by evaluating whether faults
where injected in the correct global state: most of fault injection experiments
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Fig. 5. Sojourn time of the best solution at each generation of the genetic algorithm.

were correctly performed, with a probability of correctly reproducing the exper-
iment of 60% in the worst case. In every case, the estimated probability of test
success was close to the probability actually experienced during experiments,
with a difference less than 10%. Since the probability of test success is high, it
is likely that the test is performed in the correct state on the first try, or after a
small number of repetitions.

Table 1. Probability of injecting a fault in the correct global state.

Exp. #1 Exp. #2 Exp. #3

Experimental test success probability 82.6% 82.9% 57.1%
Predicted test success probability 92.2% 75.0% 60.0%

We analyzed the overhead of our WG approach on fault injection experi-
ments, by evaluating the performance loss due to our instrumentation. The only
instrumentation we introduced was the logging of events in the FDPS, and the
collection of these events in order to trigger the injection of faults. Fig. 6 shows
the average response time of the FDPS over 20 executions, at different rates of in-
put requests, when logging and collection are disabled and enabled, respectively.
The increase of the request completion time is 4% in the worst case, and is less
significant at higher rates of input requests. Therefore, the performance overhead
incurred during execution with instrumentation can be considered negligible,
meaning that the program behavior remains realistic during an experiment.

7 Conclusion

The global state is a major concern in the verification of a distributed system.
State-driven testing of distributed systems proves to be challenging due to system
complexity, the use of OTS components, the clock drift and the non-determinism
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of distributed systems. We proposed an approach for state-driven testing of com-
plex distributed systems, that automates the search for a state-driven workload,
and perform tests in a desired global state with probabilistic guarantees.
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