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Abstract. The dependability of a complex distributed system needs
to be assured against the several conditions, namely states, in which it
can operate. Generating a workload able to cover a desired target state
of a distributed system is still a di�cult task, since the relationship
between the workload and states is nontrivial due to system complexity
and non-deterministic factors. This work discusses our ongoing work on a
state-driven workload generation approach for distributed systems, based
on an evolutionary algorithm, and its preliminary implementation for
testing a fault-tolerant distributed system for flight data processing.
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1 Introduction

In order to assess and to improve the dependability of a complex distributed sys-
tem, verification techniques have to inspect those operating conditions, namely
states, that can expose the system to failures.

The relationship between the application states and dependable behavior
was shown in several past studies [1,2,3]. This is particularly important in the
case of fault injection, as revealed by several studies on the assessment through
fault injection of distributed filesystems [4,5], DBMSs [6], and multicast and
group membership protocols [7,8,5]. These studies emphasized that the success
of recovery is influenced by the state of the distributed system. For instance, if
we consider a DBMS that has to guarantee the ACID properties to distributed
transactions, its recovery mechanisms (e.g., the rollback to a previous state)
can be a↵ected by several factors, such as the presence of several transactions
that access to the same resources or that are nested. It is thus evident how a
state-driven workload, i.e., a workload that brings the system in target states
during the analysis, is important to assure the significance and the e�ciency of
experiments, by covering the states where the system has to be tested.

It is well-known that generating a state-driven workload for distributed sys-
tems is a di�cult and time-consuming task, since the relationship between the
workload and states is nontrivial, due to system complexity and non-deterministic
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factors, such as concurrency and network delays. Past studies proposed the gen-
eration of synthetic randomly-generated workloads [9,10], or relied on realistic
workloads derived from performance benchmarks [6,11,12]. Nevertheless, these
approaches are not meant to cover hard-to-reach. Other approaches generate a
workload from stochastic or non-deterministic models of the system, but do not
scale well for complex systems [13,14]. Therefore, the automatic generation of
state-driven workloads is a relevant but still open issue in distributed systems.

This paper discusses our ongoing work on the automatic generation of state-
driven workloads for distributed systems. We propose the use of an agent, which
iteratively explores the space of workloads using an evolutionary algorithm. At
each iteration, the agent modifies the workload and evaluates its goodness, until
the system converges to the target states. To this aim, the approach allows to
specify the desired mean probability of reaching the target state for a specified
amount of time, thus enabling the injection of faults in the target state. The
approach is fully automated and does not rely on a detailed characterization
of the relationship between workloads and states, and can therefore be adopted
for testing the actual implementation of complex distributed systems. We also
discuss a preliminary implementation of the approach for testing a fault-tolerant
distributed system for flight data processing.

The paper is organized as follows. Section 2 discusses previous studies on
state-based and fault injection testing of distributed systems. Section 3 provides
basic concepts and assumptions, and Section 4 describes the proposed approach.
Section 5 describes how the approach has been implemented in a real-world
distributed system, and provides preliminary results. Section 6 concludes the
paper and describes future developments of the work.

2 Related work

While the problem of testing stateful non-distributed systems has been studied
in depth [15], the state-based testing of distributed system poses additional and
still unsolved challenges, in particular in testing the actual implementation of
a distributed system. Studies on the verification of distributed systems can be
classified into two classes: the analytical-simulation studies and the experimental
ones.

Analytical and simulation studies are based exclusively on analytical or be-

havioral descriptions of the system, such as Finite State Machines (FSM), Petri
Nets (PN), and Computational Tree Logic (CTL). They assess properties or
conditions of the system through mathematical proofs, simulations or model
checking methods on models [16]. These approaches require abstract models of
the system, which have to be hand-written by the tester, or extracted from the
system [17]. They are suitable for the verification of the high-level design of the
system (e.g., testing protocols or distributed algorithms), but need to be com-
plemented with experimental approaches in order to test low-level design and
implementation aspects of the system.
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Experimental studies, in which our work is included, exercise and asses the
actual implementation of a system, by allowing to analyze a system during its
execution. They include, for instance, fault injection methods, which assess fault
tolerance mechanisms and algorithms through the deliberate injection of faults
in the actual system or in a prototype [7]. In these studies, the problem of the
state and of workload generation has been approached in several ways.

In some studies, a model of the system is adopted for automatically gener-
ating test cases for the system. For instance, conformance testing approaches
generate test cases aimed at covering the states of the model and at assur-
ing that the system evolves as described in the model. These approaches are
based on a detailed model of the target system, which describes the expected
behavior[18,19,20]. Since in most cases distributed systems are non-deterministic
(i.e., the system may evolve in more than one way given the same inputs, due to
random factors), the model is also non-deterministic. Some approaches, such as
those described in [13,14], generate sequences of inputs able to drive the system
state in spite of random factors, but their application in complex systems is lim-
ited by scalability issues due to the space explosion problem, and by restrictive
assumptions they implicitly make about the behavior of the system (for instance,
they only consider “stable” states, in which the system waits for inputs or events
[18]).

Other studies, including ones on fault injection, do not rely on a system
model to generate a workload, but they assess its performance or dependability
by adopting a workload representative of the real system workload that will be
experienced during operation [6,11,12], in a similar way to performance bench-
marks of non-distributed systems [21]. In other cases, synthetic workloads are
randomly generated, in which the tester provides a probability distribution over
the input space of the system [9,22,23], or provides a high-level description of
the synthetic workload, e.g., using the Synthetic Workload Specification Lan-

guage [24]. In such studies, the system states that are tested are only those ones
exercised by the considered workload, and they do not consider the problem of
tuning the workload in order to bring the system in “hard-to-reach” states. In
particular, many fault injection studies randomly inject faults during an experi-
ment, repeating this process several times and performing a very high number of
experiments [25,26,8], which can be ine↵ective at uncovering vulnerable states of
the system. More sophisticated fault injection approaches trigger the injection
when a specific state of the system occurs [27,28,5]. For instance, Loki [5] con-
siders the global state of a distributed system for triggering fault injection: in
order to assure that a fault has been injected in a desired state, it performs an
o↵-line analysis of execution traces and repeats the experiment if the injection
has been triggered in a wrong state. However, these approaches still rely on a
workload provided by the tester, either hand-written or using a representative
workload, which does not assure that all important states are covered during
testing. Compared to these works, our approach actively tunes the workload
in order to cover a specific state specified by the tester, thus complementing
experimental assessment approaches such as Loki.
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3 Basic concepts and assumptions

According to the traditional definition [29], a Distributed System (DS) is com-
posed by processes, which execute concurrently on a set of nodes, and by a
network, which is the only medium through which the processes interact. Each
process has its own clock and encapsulates some local resources. Local resources
cannot be read or updated by any other process without an explicit request.
Therefore, processes cannot share memory and the interactions among them
only occur through messages exchanged on the network.

In order to design an approach for generating state-driven workloads, we
make some practical assumptions about the architecture of a distributed sys-
tem. We consider distributed systems in which a set of services is exported by a
frontend process, which masks the complexity of the system to its users (Fig. 1).
A client sends requests to the frontend process by means of one or more mes-
sages, the frontend interacts with the other processes of the DS and, once the
computation has finished, replies to the client. This view of DSs applies to sev-
eral systems, including orchestrated web services and three-tier web applications
[29].

More formally, the frontend exports a set of services U = {u
1

, u
2

, . . . , un} by
an interface: each service can be invoked by the clients and it triggers di↵erent
functionalities and actions in the DS depending on the actual values of the
parameters sent in its requests. Without loss of generality, we assume that the
tester defines the sets Mui before the assessment of the target system, where
mi,j 2 Mui is the j-th combination of parameters for the service ui that a client
can invoke on the frontend. A service request for the service ui is a message
produced by the client with parameters mi,j at time t 2 T = {0, . . . , t

max

} of
the experiment, and can be represented by a pair r 2 Mui ⇥ T . A workload is
a set of service requests generated during an execution, and it is a subset W of
the set W ⇤ representing the space of all possible requests that can be submitted
to the system: W ✓ W ⇤ =

S
ui2U{(mi,j , t),mi,j 2 Mui , t 2 T }. In other words,

a workload is an element of the powerset (the set of all subsets) of W ⇤, that is,
W 2 P(W ⇤).

The aim of the Workload Generator (WG) is to select a W 2 P(W ⇤) such
that the DS reaches a target state (or any state from a set of target states),
specified by the tester, during the execution of W . The state of an individual
process in the DS is referred to as local state of the process, whereas the global

state of the DS, denoted with s 2 S, is the union of all the local states. The
state of the process and of the DS is determined by the tester according to some
high-level specification of the system, which takes into account the state of local
resources as well as the state of computations performed by each process. An
example of local state of a process could be down if the process is failed, or
up otherwise; or initializing and waiting for ack to distinguish between
di↵erent states of a computation. The global state of the system is specified by
the tester through a system model. For instance, if we want test the correctness of
a deadlock detection mechanism in a distributed DBMS, the system model and
the global state would reflect the contents of the lock table and the distributed
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Fig. 1. The distributed system architecture considered in this work.

transactions being performed. The system model could be represented using any
formalism, such as Finite State Machines and Petri Nets.

A distributed system is intrinsically concurrent. The rate at which each pro-
cess executes and the timing of the messages exchanged on the network are
unknown. Moreover, the exchange of messages through the network is a↵ected
by several factors, including the delays for accessing to the network and for
transmitting the contents of messages, and the delays introduced by the OS and
by a middleware layer at both the ends of a communication. It follows that it
is often impractical to predict the evolution of a DS, since it is di�cult to pre-
cisely model all the factors that a↵ect the system, especially when the system in
the very complex and includes third-party and o↵-the-shelf hardware and soft-
ware components. Moreover, the same sequence of client requests can produce
di↵erent evolutions of the system due the randomness of these factors.

When an experiment is executed, the workload W causes the system to tra-
verse one or more states, and to sojourn in each of them for a finite time. Let
the execution report be the sequence {en}n2N, where en = (sn, dn) represents
the state sn traversed by the system during its n-th evolution of an execution,
with a sojourn time dn. Let SG ⇢ S be the subset of target states in which the
tester aims to bring the distributed system: the minimum sojourn time ⌧ is the
time required by the tester to evaluate a property of the target system in SG,
and represents a constraint for the WG. The target hit ratio, pSG,⌧ (RW ), applied
on the set of execution reports RW = {r

1

, . . . , rN} obtained from one or more
executions under workload W , estimates the probability that the workload W
brings the system in the target state for a sojourn time greater than ⌧ during
an execution:

pSG,⌧ (RW ) = P{The DS reaches SG for more than ⌧ at least one time when executing W}

=
|{ri 2 RW : 9(sk, dk) 2 ri : (sk 2 SG) ^ (dk > ⌧)}|

|RW | (1)
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where the | · | operator represents the cardinality of a set. For instance, if the
fault tolerance of the DS is being evaluated through fault injection, the DS has
to sojourn in the target state long enough to allow a fault injection tool to
detect the state and to inject a fault before the DS leaves the target state. In
this scenario, pSG,⌧ would represent the likelihood of a correct fault injection
experiment, i.e., the fault is injected while the system is in the desired state.

The problem of generating a state-driven workload consists in searching for
a workload W such that

pSG,⌧ (RW ) > pd , (2)

that is, the likelihood to spend a period ⌧ in the target state is high enough
(i.e., greater that pd) to allow an accurate and reproducible test. The search is
conducted by the tester before performing the desired test. Eq. 2 provides a stop
criterion for the search. Then, the tester supplies again W to the system, and
performs the test when the system reaches a target state (e.g., it performs the
actual fault injection experiment).

4 Proposed approach

The proposed approach is based on a Workload Generator (WG) agent that
interacts with the Distributed System Under Test (DS-UT) in a closed-loop
configuration, as shown in Figure 2. The WG exercises the DS with a workload,
analyzes its behavior, and modifies the workload until a specified target state is
reached.

The WG follows a system model of the DS, which is adopted by the tester to
specify the states of the system, and enables the WG to understand whether a
target state has been reached (i.e., the system model is adopted for computing
the execution reports from the raw events occurred and collected during the
execution).

The WG works iteratively, by alternating at each iteration an o↵-line and
an on-line phase. In the on-line phase, the WG executes the DS several times.
At each execution, it first brings the DS in its initial state s

0

through a reset

operation, it feeds the DS with a workload W , and observes its evolution for
a fixed time period. Then, after the DS has stopped, there is an o↵-line phase
in which the WG analyzes the behavior of the system through logs collected
during execution, and evaluates whether the target state has been reached. If
this was not the case, a new workload is computed and used in the next iteration.
The distinction between the o↵-line and on-line phases allows to reduce the
intrusiveness of the WG on the DS under test, since only minimal information
is collected during the execution of the system, and most of the processing for
analyzing the system evolution and computing the workload occurs in the o↵-line
phase.

We divide the discussion of the proposed approach in three parts: modeling

the system states, monitoring the execution of the DS, and driving the DS by
tuning the workload.



Issues and Ongoing Work on State-Driven Workload Generation 7

DS-UT

Lo
g
g
e
r

Synchronization
Algorithm

System Model

State 
Analyzer

Performance 
Evaluator

WL Navigator

start/stoptarget states

start/reset

system I/O

trace
logs

execution report

feedback

best solution achieved

WL Feeder

WL conf.

Fig. 2. The architecture of the proposed Workload Generator. Dotted lines represent
a relation of dependence, while arrows represent dynamic interactions: striped arrows
represent a control flow; continuous ones denote a data flow.

Modeling

Our approach is based on a system model of the DS under test, which allows
to compute the execution report {(sn, dn)}n2N, and to evaluate how close the
workload brings the system to the target states.

Since the complexity of the system under test is typically very high, we as-
sume that the system model provides an abstract and simplified view of the
system. In particular, we do not require the system model to characterize the
timing of events in the system, but only the relationship between events and
states. As discussed in Section 3, timings in complex distributed systems, includ-
ing communication and computation delays, can be unfeasible to characterize
even in a probabilistic way, since they are tightly depending on each other, and
involve third-party and o↵-the-shelf components, whose internals are unknown.
Moreover, the timing of events also depends on the state of the system and on
its workload (e.g., communication delays depend on the number of processes ac-
cessing the network at a given time): since the workload is iteratively modified
by the WG to drive the DS in the target state, the characterization of delays
would not hold when the workload is changed by the WG.

Petri Nets (PN) are the formalism that we adopt for modeling the DS under
test, as they are a popular formalism that fits well for modeling concurrent sys-
tems. In the system model, transitions are triggered by local events occurring at
the processes of the DS. Since the timings of events are not modeled, transitions
are not timed, but only express the relationship between events and the state
of the DS. The state is represented by the marking of the PN. In our approach,
the system model is used in the o↵-line phase (after exercising the DS using a
workload) to obtain, from raw event logs of an execution, the sequence of states
that the system has followed during the execution.
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Monitoring

The monitoring is realized by the Logger and the Synchronization Algorithm
(Fig. 2). The process for generating an execution report is summarizing in Fig. 3.
Each process of the DS logs the local events, timestamping the records with its
own clock. When the experiment is over, the logs of local events are collected,
and an o✏ine synchronization algorithm, which is described later, performs the
temporal sorting. Then, the State Analyzer obtains a sequence of markings of
the system model, by mapping events in the logs to transitions in the model,
and generates the execution report.

Regarding the synchronization, in order to obtain the evolution of the sys-
tem from the analysis of events, we adopt an o↵-line synchronization algorithm

to align the events of an execution on a single global timeline [5,30]. O↵-line
synchronization has been preferred over on-line synchronization approaches [29],
such as NTP, since on-line synchronization protocols exchange packets during
the execution of the system and can thus interfere with its evolution. O↵-line
synchronization is performed after execution, by correcting the timestamps of
events recorded during the execution. The correction is performed using an esti-
mate of the drift rate of the clocks, which is obtained by analyzing the round-trip
time of a set of messages exchanged before and after the execution. Since the
clock drift rate can only be estimated, the exact timing of an event is unknown;
instead, the o↵-line synchronization algorithm provides, for each occurred event,
a lower and an upper bound for the event on the global timeline, which represent
the uncertainty interval in which the event has occurred. When the uncertainty
intervals of two events are not overlapped, their ordering and the evolution of
the system can be determined. When overlaps occur, the state of the DS is un-
known in the overlapped region of the global timeline. More details about o↵-line
synchronization algorithms can be found in [5,30].
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Fig. 3. The process for issuing execution reports. When the State Analyzer cannot
determine the system state, due to the synchronization accuracy, it assigns the dummy
state S?.
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Driving

In our approach the WL Navigator and the WL Feeder drive the DS in the target
states. The Feeder is the active part of the agent, which interacts with the DS
generating the requests, i.e., the workload. The workload is synthesized by the
Feeder on the basis of a workload configuration wc 2 Wc, which characterize the
timing and the type of requests, either deterministically or statistically, through
a set of parameters. The Navigator is the “smart” part of the agent, which
searches for a proper workload configuration and analyzes the feedback from the
system.

The distinction between Feeder and Navigator eases the search process, as the
number of parameters in a workload configuration is a compact representation
of a set of request W 2 P(W ⇤) (actually, |Wc| ⌧ |P(W ⇤)|), and frees the search
algorithm from subtle details about individual interactions with the DS.

Herein, we consider a workload configuration wc 2 Wc defined the following
vector of parameters:

wc =
⌦
Tm1,1 , Tm1,2 , . . . , TmN,1 , TmN,2 , . . . , Dp1 , . . . , DpM

↵
. (3)

These parameters are used by the Feeder to generate a set of requests W ✓
W ⇤ to submit to the DS. In our case, the Feeder periodically invokes each service
ui using parameters mi,j , with a period of Tmi,j , 8mi,j . The Navigator explores
several combinations of values for the Tmi,j parameters, in order to find a com-
bination able to reach the target state. Moreover, we consider an additional set
of parameters, Dpk , which represent delay factors to introduce in one or more
processes in the DS. Since the system may evolve very quickly, the target state
could be reached only for short periods of time, leading to a low probability of
hitting the target state for a su�cient time (Eq. 2). The introduction of small
delays, by either slowing down a process (e.g., reducing its CPU quota by tun-
ing its scheduling priority) or by forcing the process to sleep for short periods of
time, increases the likelihood of sojourning in the target state for long enough.

The search for a proper workload proceeds through iterations. At each it-
eration, the Navigator changes the workload configuration on the basis of the
feedback of the previous iterations, until a target state has been reached. To do
so, two elements need to be defined, namely (i) a search algorithm to explore
the space of workload configurations Wc, in order to find a workload W suitable
for reaching the target state, and (ii) a criterion for assessing the “quality” of
the current workload with respect to the target state.

We adopted in the Navigator a genetic algorithm (GA) [31]. A genetic algo-
rithm evaluates a population of solutions (individuals) during the o↵-line phase
of each iteration; then, a new population is generated from the previous one,
by randomly mutating and combining previous individuals, on the basis of their
quality (fitness).

Each individual of the population represents a workload configuration. An
individual wc is evaluated by executing the system under the workloadW , gener-
ated by the Feeder using wc, and by evaluating a fitness function on the execution
traces, which is computed by the Performance Evaluator component (Fig. 2).
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The definition of the fitness function is an important aspect of our approach,
since it drives the Navigator in the search for the target state. The pSG,⌧ (RW )
(Eq. 2) cannot be used as fitness function, as it is not able to compare two
di↵erent solutions that do not reach the target states (it would be 0 for both
solutions). Instead, we propose a fitness function that evaluates the “distance”
between the tentative solution and the target states, and the “continuity” of pe-
riods spent in the target state. Considering a set of execution reports obtained
from one or more executions under workload W , RW , the fitness function is
defined as

f↵,"(RW ) =
1

|RW |
X

rw2RW

0

@
X

(s,d)2rw

d↵ · 10�"·dist(s)

1

A (4)

where the ↵ rewards the continuity of the sojourn times (permanence bonus),
while the " penalizes the distance from the target states (distance bonus). When
two solutions have a di↵erent distance, the closest solution is privileged (the
distance bonus predominates); when two solutions have the same distance, the
most continuous solution is privileged (the permanence bonus predominates).
The times are normalized, i.e.,

P
(s,d)2rw

d = 1 8rw 2 RW and d � 0 8(s, d) 2

rw.
The function dist is a distance measure between any state and the target

states, which is introduced to reward the workloads that are closer to the tar-
get states. We propose two di↵erent measures for the Petri net model we have
adopted:

1. The minimum di↵erence of tokens between the marking of the actual state
and any target state: this measure is coarse and imprecise, however, is fast
to calculate and it is easy to understand. Given a vector marking M , and
let G be the set of target markings of a PN with m places, we have:

dist(M,G) = arg min
M 02G

0

@
X

0i<m

|Mi �M 0
i |

1

A (5)

2. The di↵erence in the breadths on the reachability graph between the state
and any target state, i.e., the minimum number of transitions (events) that
have to happen to reach the closer target state. To compute this distance,
we need to do a breadth-first search in the PN. Since we might not reach any
target states, and because we do not need a precise value in the applications if
the distance is greater than a fixed threshold, then we can limit the expansion
of the PN at a depth R. Let BFS be an R-bounded breadth first visit, we
have the follow:

dist(M,G,R) = arg min
M 02G

(BFS (M,M 0, R)) (6)

In particular, we could save in memory all the states that are within range R
from all the target states, avoiding to search in a graph each time. Whenever
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we would need to compute the distance of a node, we would just need to
check if M is in memory. If there is, then we would know the distance, else
dist(M,G,K) > R.

To select the ↵ and " parameters of the fitness function, the following heuris-
tics can be adopted. Considering any two states sl, sl+1

2 S such that dist(sl+1

) =
dist(sl) + 1, it is possible select the parameters ↵, ", according to the following
system of inequalities:

8
><

>:

f↵,"
�
{r1w = {(sl, ✓ · ⌧)1}}

�
� f↵,"

�
{r2w = {(sl, ⌧)1, . . . , (sl, ⌧)k}}

�

f↵,"
�
{r3w = {(sl, ⌘)1}}

�
� f↵,"

�
{r4w = {(sl+1

, 1)
1

}}
�

✓ > 1; 0 < ⌘ < 1

(7)

The first inequality expresses that it is better to sojourn in a state sl for a
✓ · ⌧ time, rather than visiting the same state up to k times for the same ⌧ time.
In this way, the tester can control the amount of reward to provide through the
permanence bonus. The second inequality expresses that it is better to remain
at least a ⌘ time in a state sl, rather than to stay full-time in a state sl+1

, one
level farther from the target states; this inequality can be adopted to control the
level bonus. Developing the system we obtain the following relations:

(
(✓⌧)↵

10

"l � k⌧↵

10

"l ) ↵ � log k
log ✓

⌘↵

10

"l � 1

10

"(l+1) ) " � �↵ log ⌘
(8)

For instance, if we prefer staying in a state for a 25% longer time instead
of visiting ten times a state for the same duration, and if we want that the
sojourning for the 1% of total time in a “close” state sl is better than staying for
the 100% of total time in a “far” state sl+1

, then we have: ↵ � log 10

log 1.25 � 10.318,
" � �↵ log 0.01 = 2↵ � 20.636.

5 Preliminary implementation

Herein, we present a preliminary implementation of our approach for testing
a Flight Data Processing System (FDPS). FDPS is a distributed software de-
veloped in C++ which uses CARDAMOM, a fault-tolerant CORBA-compliant
middleware. It is a part of an Air Tra�c Control (ATC) system, in charge of
managing Flight Data Plans (FDPs). An FDP is a data structure containing
information about a flight; the goal of FDPS is to keep FDPs up-to-date. For
example, FDPS has to analyze the actual position of aircrafts, retrieved from
radar tracks, and update flight routes consequently, in order to e�ciently allocate
the flight space and to avoid flight collisions.

The architecture of FDPS (Fig. 4) is composed by a Façade component,
which acts as the frontend of the system and is replicated by the CARDAMOM
Fault-Tolerance (FT) Service, and by a set of three Processing Servers (PSs),
managed by the Load-Balancing (LB) Service. Service requests are delivered to
the Façade by the middleware: the Façade forwards requests to a specific PS
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Fig. 4. A simplified view of the architecture of FDPS.

according to a round robin scheduler; once the requests are completed, they are
sent back to the Façade, which disseminates the updated FDP through a Data
Distribution Service (DDS) and replies the clients.

The requests are relative to a specific flight track that is identified by means
of an FDP-ID number: for each FDP-ID, the Façade dispatches no more than
one request at time towards the PSs, and enqueues the others. The state of
requests for each FDP is stored in a FDP Table of the Façade. Because the PSs
are managed with a mono-threaded policy, the middleware in turn enqueues the
requests forwarded to a PS if that PS is busy. The FT Service performs a warm

replication of the Façade process: FDP Tables are checkpointed at each update
and transmitted to backup replicas, which are activated in the case of failure of
the primary replica.

Since our aim is to test the fault-tolerance and load-balancing mechanisms,
in this case study we include in the system model (and thus in the definition of
the state) the number and type of requests in the FDP Tables, and the number
of requests enqueued at each PS. The system model was not included in this
paper due to space constraints; it is described in [32].

In our preliminary implementation, we considered only one service u
1

of the
DS, the update interface, which is invoked by specifying the FDP-ID. For each
FDP-ID, we composed the workload configuration with two parameters, Tm1,i

and Di: the first one specifies the period between two requests for the i-th FDP-
ID; the second one imposes on PSs the time to spend in processing the respective
update invocations. The Feeder interacts with FDPS through the middleware
(Fig. 5). We fixed six FDP-IDs and set the domains for the parameters of the
workload configuration ranging from 500ms to 5s, with a step of 500ms. In our
tests, the application has been deployed on 100Mbps Ethernet LAN, using 3
Processing Servers, one active Façade and one backup Façade replica.

We conducted a preliminary experiment in order to evaluate the feasibility of
the proposed approach. The Navigator was configured to drive the system in a
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WL Navigator

WL FeederFDP1: (T1,1, D1)
FDP2: (T1,2, D2)

FDP1 stream

FDP2 stream

FDPS

PSs

T-Period

ORB

D-Delay

WL Configuration

Workload

Fig. 5. The interaction among the WL Navigator, the WL Feeder and FDPS. The
Feeder generates a request stream for each FDP-ID. Each request stream is config-
ured through two parameters: a period between requests (T-Period), and a delay in
processing of the requests associated with that stream (P-Delay).

state fulfilling the following conditions: (i) one PS is idle, the other two PSs are
busy, (ii) there are requests enqueued by the middleware for the two busy PSs,
and (iii) there are between 1 and 5 enqueued requests for each FDP Table. This
scenario is interesting because it represents an hard-to-reach condition, as also
discussed in [33]: there should be an idle Processing Server, while the other two
PSs should be busy and have requests enqueued by the middleware for them (i.e.,
the enqueued requests should not be forwarded to the idle PS). This condition
is actually possible since the round robin scheduler selects the PS for a request
regardless of whether it is busy.

In the experiment, we aimed at reaching this target state with a high proba-
bility pG,⌧ (RW ) for at least 0.25s. The WG found a solution with pSG,⌧ (RW ) w
66% in the first population, after 30 minutes. At the fourth population of so-
lutions and 2 hours, the best solution found by the WG was able to reach the
target state with pSG,⌧ (RW ) = 100%.

6 Conclusion and future work

In this paper, we discussed an approach for state-driven workload generation in
complex distributed systems. Our approach, based on a genetic algorithm, itera-
tively tunes the workload until a desired target state is reached. Our preliminary
implementation on a real-world case study (a Flight Data Processing System)
confirmed the feasibility of the approach and provided encouraging results. In
future work, we will perform a more throughout evaluation of the approach,
by evaluating fault tolerance mechanisms in the FDPS through fault injection.
Moreover, we aim to further develop our implementation of the approach, in
order to make it portable to other systems and to freely distribute it.
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