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Abstract—We analyze performance degradation phenomena
due to software aging on a real supercomputer deployed at
the Federico II University of Naples, by considering a dataset
of ten months of operational usage. We adopted a statistical
approach for identifying when and where the supercomputer
experienced a performance degradation trend. The analysis
pinpointed performance degradation trends that were actually
caused by the gradual error accumulation within basic software
of the supercomputer.
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I. INTRODUCTION

Characterizing and understanding performance issues in
real-world computer systems, and in particular software
aging phenomena, is of great importance to devise effective
strategies against performance degradations and failures,
such as software rejuvenation [1]–[3]. This is especially
true for supercomputers, which are exposed to potential
performance issues due to the huge volume and long-running
nature of their workload, the large number of computational
nodes involved, and their inherent complexity.

In this paper we describe our experience with the SCoPE
supercomputer deployed at the Federico II University of
Naples (http://www.scope.unina.it). The aim of our study,
even if preliminary, is to provide a better understanding
of performance degradation issues in supercomputers due
to software aging. This both compensates for the lack of
detailed studies on software aging in supercomputers and
supports the definition of suitable software rejuvenation
strategies for this kind of system.

The analysis faces a set of issues that arise when seeking
for degradation phenomena within multiple sources of infor-
mation and in the presence of several users and resources. A
primary difficulty is related to the workload: large computer
systems are typically used by many and diverse categories
of users that submit a wide variety of workload patterns.
Performance is notoriously related to the amount and type
of work submitted in a given time period, and many studies
showed that the workload indeed influences software aging
phenomena [4]. Most of the experiments on software aging
in real systems, with few exceptions, have been conducted in
a controlled environment, and thus characterize the relation
between a stable and well-defined workload with some aging

indicators over a time period of hours [3], [5]–[7]. In a real
setting, the analysis is much more complex: the workload is
highly variable, and what administrators observe is not easily
interpretable as a performance increase or decrease caused
by aging issues. Hence, when considering a real scenario,
the analyst has to figure out which degradation behaviors are
simply due to a variation of the workload, and which ones
are instead due to aging. Besides the impact of the workload,
the analysis of supercomputers is made complex by the
existence of several dynamics that can occur at the same
time on the different nodes of the system. Different software
aging phenomena can overlap to (and/or mask) each other,
greatly hampering the detection of performance degradation
trends. What the administrator sees at high level may not
suffice to identify aging trends for the overall system. S/he
may misjudge some behaviors as a degradation problem
and/or overlook real software aging trends at a finer grain.

Our analysis is based on a statistical approach for lo-
calizing performance degradation trends at a fine grain,
i.e., identify when and where the system experienced a
performance degradation trend. The approach is aimed at
guiding the analyst in the investigation of huge amounts of
performance data, and to enable to focus problem diagnosis
and failure prevention strategies on specific parts of the
system that are affected by performance degradation. The
empirical analysis of SCoPE data shows that supercomputers
can actually be affected by software aging, and that aging
phenomena can be local to specific parts of the system and
occur only in specific periods of usage. We pinpointed some
performance degradation trends that were actually caused by
the gradual error accumulation within basic software of the
supercomputer. These results encourage further research on
software rejuvenation strategies for supercomputers.

The paper is organized as follows. After an overview of
related work in Section II, we describe the approach in
Section III. Section IV presents the results of the empirical
analysis that are discussed in Section V.

II. RELATED WORK

The analysis of performance degradation aiming at dis-
covering software aging phenomena is discussed in several
papers, although most software aging studies are on memory
consumption [8]. On one hand, studies analyze software



aging effects arising in a controlled environment. In [6], [7],
we conducted a workload-dependent analysis on Linux and
on the JVM respectively, that was generalized later in [4] in
a workload-based stress-testing method for software aging
analysis. In many studies of this kind, web applications and
web servers are considered as case study: examples are in
[3], where authors analyze the performance degradation of
the Apache web server, and in [5], where authors analyze de-
pendability of Service-Oriented Architectures, pointing out
software aging issues in controlled stress-test experiments.

On the other hand, there are studies that analyzed software
aging in production environments. One of the first work in
this direction is in [1], later extended in [2], where authors
present an analysis that takes into account some system-
level workload parameters, such as the number of CPU
context switches and page faults. Their results confirm that
software aging trends are related to the workload states.
Nevertheless, these papers are focused on a single machine,
while the analysis of software aging in supercomputers is
pretty unexplored. Examples of work a bit closer to ours
are the studies analyzing clustered systems, such as [9]–
[11] in which, however, the focus was on exploring optimal
rejuvenation policies (e.g., cluster failover strategies), typ-
ically by model-based analyses. In such studies, software
aging issues in supercomputers are only hypothesized, but
they do not provide evidence about software aging in this
kind of system. Instead, previous studies on supercomputers
aimed at characterizing their performance [12], [13] and
failure distribution [14], [15], without focusing on their
performance and reliability in the long-term and on software
aging issues. The lack of a characterization of software aging
phenomena, in turn, makes difficult to devise and to evaluate
software rejuvenation strategies for supercomputers.

III. DATA ANALYSIS APPROACH

The goal of the approach is to point out performance
degradation trends in supercomputer performance data. We
seek for performance decreases since they often represent the
onset of software aging phenomena, and can suggest where
and when to perform more in-detail analyses to find and fix
aging problems. The method is based on a combination of
statistical hypothesis testing techniques.

In our analysis, we face an important issue: the perfor-
mance data are not obtained from a controlled experiment,
but they are collected during the actual usage of the super-
computer “in the wild”, i.e., in production. This implies that
variations in performance data can be due to many factors
including, but not limited to, software aging problems.
Another factor that impacts on performance is represented by
the workload of the system: for instance, when the system is
overloaded, its performance can be severely reduced. Also,
given that data are collected over a large period of time,
the supercomputer may experience events during this period
that could impact on its performance, such as scheduled and

unscheduled maintenance activities, and periods of inactivity
occurring between periods of intense activity (e.g., inactivity
between two different projects).
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Figure 1. Overview of the analysis.

In our approach, we adopt a sequence of data processing
steps as depicted in Figure 1 and described in the following.

Step 1. We first divide the dataset into several subsets.
Each subset includes performance data from a specific node
or scheduling queue of the system (the space dimension).
We do so since software aging phenomena may not be
observable if considering the whole supercomputer; in fact,
software aging can affect only a specific part of the system
(e.g., a set of nodes) or a specific type of jobs (e.g., jobs with
special features that are assigned to a specific scheduling
queue). We thus obtain a distinct dataset for each distinct
node or distinct queue in the initial dataset.

Step 2. We further split the subsets, by considering the
time dimension. In fact, nodes and queues tend to exhibit
periods of intense usage, which are separated by periods



of inactivity. For instance, a node becomes inactive when
it undergoes a maintenance intervention, such as a reboot
or a hardware upgrade. Another situation is represented by
two different projects or teams that alternate in the usage
of a specific resource. We denote with the term “usage
period” a time period during which a node or queue is
continuously used, and which is preceded and followed by
periods of inactivity. Therefore, different usage periods are
not necessarily related to each other, and different work-
loads and performance trends can take place during distinct
usage periods. Therefore, we separately analyze each usage
period, by splitting data in distinct subsets, each containing
performance data for a specific usage period. In this way,
we avoid to mix usage periods that are interleaved with a
maintenance intervention or by an abrupt change of usage
pattern. To split different usage periods, we look for periods
with no workload: if an usage period is followed by a period
of no workload (i.e., no job is being processed), then we
assume that the usage period has ended.

Step 3. For each dataset obtained from the previous steps,
we perform a statistical hypothesis test to evaluate whether
there exists a statistically significant trend in performance
data, that is, a gradual and enduring decrease of performance
that is not due to random data variations, with a quantitative
degree of confidence. To detect performance degradation
trends, we adopt the Mann-Kendall test, which is a statistical
procedure for detecting linear trends that has been adopted in
many domains, including several studies on software aging
and rejuvenation [1], [3]. The test evaluates the likelihood
of the observed data under the assumption (null hypothesis)
that there is no trend in the data; if this likelihood is very
low (e.g., lower than 10%), then the null hypothesis is
rejected and a trend is detected. When a trend is detected,
we then estimate its intensity using the Sen’s procedure
[1], [3], which is robust (i.e., it does not assume normally
distributed measurement errors) and insensitive to outliers.
This procedure provides an estimation of the slope, along
with a confidence interval in which the value of the slope
lies with a given probability (e.g., the interval containing
the actual value of the slope with 95% probability). Given
that several hypothesis tests are being performed, and given
that some of the tests can erroneously detect a trend, we
need to assure that the false rejection rate of the overall set
of the tests is below a reasonable limit. We therefore adopt
the Benjamini-Hochberg procedure [16], which controls the
false rejection probability of a set of tests (we set the max-
imum false rejection rate to 10% in our analysis) by tuning
the thresholds adopted for rejecting the null hypothesis at
each Mann-Kendall test.

Step 4. Finally, after that a performance degradation trend
has been detected and estimated, we perform a joint analysis
between performance data and workload data, in order to
determine whether the performance degradation trend was
caused by a variation of the workload or not. In fact, if a

performance degradation occurs at the same time of a varia-
tion of the workload, it is doubtful whether the performance
degradation has been caused by software aging or by the
variation of the workload. To be on the conservative side,
we opted to discard performance degradation trends that are
likely to depend on workload variations. In such a way we
avoid performance degradation trends that are not actually
due to software aging: this is especially important when con-
sidering large systems with huge amounts of performance
data, as in the case of supercomputers. To rigorously perform
this filtering, we adopt the Granger causality test [17]. Given
two time series X and Y , the test evaluates whether a
variation of X is useful to forecast a later variation of Y (X
Granger-causes Y ). The test performs a regression analysis
between the time series Y (in our case, a performance
indicator), and lagged versions of both X and Y , and it
detects a Granger causality relationship when X (in our case,
a workload indicator) contributes to the regression model in
a statistically significant way. In our analysis, we set the lag
between the series being between 1 and the maximum job
duration D (up to a few days, depending on the node or
queue), since a performance variation that occurs later than
t + D is unlikely caused by a workload variation at t. In
the case that there is no statistically significant relation of
causality between workload and performance data (we adopt
a significance level of 10%), we conclude that a performance
degradation trend can potentially represent a software aging
phenomenon that is worth to inspect more closely.

IV. RESULTS

The approach described in Section III is applied to
performance and workload data collected at the SCoPE
supercomputer over a period of 10 months. SCoPE is a
batch system developed by the Italian Institute of Nuclear
Physics (INFN) and the Federico II University of Naples
for research activities and also as a Tier-2 resource of the
Worldwide LHC Computing Grid (WLCG). It is made up
of 512 servers, each equipped with 2 quad core CPUs and
32GB of memory, and Scientific Linux as operating system.
For jobs queueing, job scheduling and resource management,
SCoPE uses Maui/TORQUE. Our dataset is the list of jobs
submitted to and executed by the system over a certain time
period. For each job, we have the following information:

• Job ID: a unique identifier of the job in the system;
• Queue: the scheduling queue to which the job was sub-

mitted; jobs are allocated to different queues depending
on their duration (e.g., long or short jobs), the specific
organizations that use the system, and on the specific
project they belong to;

• Submission Time: the time (in Unix timestamp) when
the job was submitted to the system;

• Start Time: the time (in Unix timestamp) when the
execution of the job started;



• Completion Time: the time (in Unix timestamp) when
the execution of the job finished;

• Node: the node of the system in which the job ran;
• CPU utilization: average usage of CPU by the job.

To quantify the workload of the system by considering
the number of jobs submitted to the system at each day,
on the basis of their Start Time. To quantify performance,
we consider the average duration of jobs at each day, that
is, by computing the mean value of the duration of the jobs
completed at each day, on the basis of their Completion Time
and Submission Time. Even if these metrics only provide
a partial indication of the workload and of performance,
these metrics can be easily computed from the dataset that
was available to us, and enable a preliminary analysis of
performance degradations; we aim to extend the analysis in
the future with more metrics, based on an extended dataset.

Table I provides some basic information about the dataset
used for the analysis. During the analyzed period, several
hundreds of thousands of jobs were submitted to the super-
computer from many different users; jobs were scheduled
through 20 queues and evenly distributed over 292 nodes.

Table I
BASIC INFORMATION ABOUT THE DATASET USED FOR OUR ANALYSIS.

Number of jobs 277,249

Number of users 475

Number of nodes 292

Number of queues 20

Observation period Oct. 1st, 2010 - July 31st, 2011

Number of queues with 4performance degradation trends

Number of nodes with 8performance degradation trends

The analysis of performance data of the system as a
whole (i.e., without splitting data by node/queue and by
usage period) did not point out any decreasing trends
of the performance. Instead, we found some performance
degradation trends on a small subset of nodes and queues
in the supercomputer. This suggests that software aging
phenomena are localized in a specific part of the system
or for specific types of workload. We hypothesize that
this can be due to (i) software aging issues (e.g., resource
leaks) that are only present in the software of the affected
nodes or queues, and/or (ii) specific types of jobs that
trigger such issues. We focus the rest of the analysis on the
nodes that exhibited a performance degradation trend (i.e.,
a significative increase in the average duration of the jobs).

Table II reports the estimated intensity of the detected
trends and the usage periods in which these trends were
detected. Figure 2 shows workload (plot at the top of each

Table II
PERFORMANCE DEGRADATION TRENDS DETECTED BY THE APPROACH.

Node Estimated slope
[hours/day]

Confidence Inter-
val [hours/day]

Period [days]

wn157 0.4070 [0.1128, 0.6060] [149, 170]
wn167 0.2065 [0.0237, 0.4002] [148, 171]
wn168 0.2347 [0.0240, 0.4008] [148, 171]
wn182 0.5746 [0.0000, 1.0341] [156, 180]
wn197 0.3755 [0.0000, 0.9070] [156, 187]
wn211 0.6977 [0.2374, 1.2665] [156, 181]
wn241 0.1043 [0.0103, 0.2044] [118, 195]
wn260 0.0860 [0.0036, 0.1719] [117, 195]

subfigure) and performance data (plot at the bottom of each
subfigure) from some of these nodes.

The average slope of the trends is 0.3358 hours/day, that
is, the average job duration increased by a fraction of hour
at each day, over a period of time that ranges between 21
and 78 days. While such trends are clearly visible for some
nodes, in other cases only a rigorous statistical approach is
able to detect the increasing trend of the average daily job
duration. An interesting finding is that the detected trends
at different nodes occurred at overlapped periods of time:
all of them include the time period between day 149 and
day 170. Moreover, the performance data seem to have
followed similar patterns, such as those showed in Figure 2.
This observation suggested us that a common root cause
was behind these performance degradation trends in the
SCoPE supercomputer, either in user software or in the basic
software infrastructure of the supercomputer.

We also performed an analysis on the types of jobs,
by dividing the entire job dataset between CPU-bound and
I/O-bound jobs, on the basis of CPU usage. This analysis,
which is not shown for the sake of brevity, did not find a
relation between the type of job and the presence of a trend,
since performance degradation trends manifest both in CPU-
bound and I/O-bound jobs. Therefore, the basic software
infrastructure, rather than user software, seem to be the likely
root cause of the performance degradation.

The Granger causality test pointed out that these perfor-
mance degradation trends seem not to be related to variations
of the workload. This result provides some confidence
that the trends are not related to random variations of
the workload, and that it is worth to inspect these trends
more closely. Instead, Figure 3 shows an example of a
performance degradation trend that seems to be related to
workload variations and that was thus discarded from the
analysis. Even if the average job completion time seems
to be increasing, the workload exhibited similar variations,
therefore casting doubt on the existence of a software aging
phenomenon behind that performance trend.

V. DISCUSSION

The results presented in Section IV show that supercom-
puter performance exhibit suspicious performance degrada-
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(a) Node wn168.
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(b) Node wn211.
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(c) Node wn241.
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(d) Node wn260.

Figure 2. Performance degradation trends detected at a subset of nodes.

tion phenomena that can be classified as effects of software
aging. Performance degradation was present in the system,
even if it was not apparent when considering the system in its
entirety. The analysis of the performance trend with node or
queue granularity, instead, allowed us shining light on such
issues. Moreover, by considering the absence of causality
with the workload trend, we reduce the chance of false
positives and support the hypothesis that the performance
degradation is a symptom of software aging.

In our specific case, the similar trends found on several
nodes are a signal that the software at that nodes were
suffering from a common cause of performance degradation.
Moreover, the lack of relationship between the type of
jobs and performance degradation trends indicates that the
underlying, shared software layer may be the root cause of
performance issues. A more detailed analysis of job life-

cycle, and a discussion with the SCoPE technicians, showed
that the increase of job duration was due to the accumulation
of errors in a distributed filesystem. In fact, read/write
errors, due to filesystem corruption, caused the stop and the
restart of several jobs, thus delaying their completion. The
accumulation of stopped and restarted jobs, also caused the
shortage of computing resources, such as memory, which
delayed the execution of other jobs [18], [19]. These errors
were more and more frequent with time, thus causing a
gradual performance degradation of the nodes accessing that
filesystem and hampering the proper execution of jobs. The
problem lasted for about one month, until a maintenance
intervention interrupted the performance degradation trend.

Another important finding of the analysis is that perfor-
mance degradation trends occurred during a specific period,
instead of being distributedd across the whole observation
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Figure 3. Example of performance degradation trend with a causal
relationship with workload variations.

period. This suggests that highly variable environments, such
as supercomputers, require measurement-based rejuvenation
(i.e., triggering rejuvenation only when measurements ex-
hibit a software aging trend) rather than pure time-based
rejuvenation (i.e., rejuvenation is periodically triggered) to
achieve better performance and reliability [8]: in such sys-
tems, the workload and maintenance activities may cause the
abrupt occurrence or demise of performance degradation.

It should be noted that, in this early stage of our study,
only the number of jobs has been considered as workload
metric. More detailed information about jobs would enable
the analysis of other influencing factors, such as the type
of computations made by the jobs and their memory and
I/O usage, and provide additional insights about the causes
of performance degradations. Also, crossing performance
data with failure reports can help at identifying the root
cause of performance degradations, thus improving both the
understanding of the issue and its prevention as well.
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