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Abstract

Despite of the existence of several techniques for emu-
lating software faults, there are still open issues regarding
representativeness of the faults being injected. An impor-
tant aspect, not considered by existing techniques, is the
non-trivial activation condition (trigger) of real faults,
which causes them to elude testing and remain hidden until
operation.

In this paper, we investigate how the representativeness
of injected software faults can be improved regarding the
representativeness of triggers, by proposing a set of generic
criteria to select representative faults from a faultload.

We used the G-SWFIT technique to inject software faults
in a DBMS, resulting in over 40 thousands faults and 2 mil-
lion runs of a real test suite. We analyzed faults with respect
to their triggers, and concluded that a non-negligible share
(15%) would not realistically elude testing. Our proposed
criteria decreased the percentage of non-elusive faults in
the faultload, improving its representativeness.

1 Introduction

Software Fault Injection (SFI) has emerged in the last
decades as a valuable mean for assessing the impact
of software faults on a system and for evaluating fault
tolerance mechanisms [2]. A key property that SFI need to
satisfy is the representativeness of injected faults, that is,
the faultload should represent realistic faults experienced
in the field [9, 21]. Only the appropriate choice of faults
to be injected can assure an accurate evaluation of depend-
ability metrics in the presence of faults (as in the case of
dependability benchmarking), and an efficient testing of
fault tolerance with respect to the extremely large space
of faults. Unfortunately, representativeness is a very hard
property to attain for software faults. They are difficult
to characterize and to emulate since their root causes are
related to human design errors [3]; this issue is exacerbated
by the strong interaction of the faults with the surrounding

code, and with the system as a whole. Nevertheless, they
play an important role in the field of fault injection, since
they are a well-known major cause of system outages [12].

Past efforts in this research area led to significant steps
towards a representative model of software faults [7, 10];
they specify fault patterns that can be used to perturb the
target system in a controlled way. Nevertheless, the use of
representative fault patterns may not be sufficient; it can be
argued that they alone do not guarantee realistic injected
faults, because many other factors in the program affect
representativeness. For instance, an injected fault could
cause the immediate crash of the system, regardless of the
submitted inputs. Although causing software failures is the
goal of SFI (i.e., fault acceleration), a too simple activation
condition (i.e., trigger) is not representative of real faults
and thus undesirable in SFI, since a programmer would
trivially find and fix the fault before the system release.
In the dependability evaluation scenario, this can lead to a
distorted picture of the perceived system dependability and
to wrong design or selection decisions (e.g., selecting one
system which is apparently more dependable than other,
when in fact it might not be the case). Thus, it is important
to select representative faults in a faultload.

It is worth mentioning that works such as [7, 10], al-
though based on field studies on real software faults, could
not capture the activation conditions of the software faults.
In fact, these studies were based on the analysis of how
real faults have been corrected, in order to infer the most
typical bugs found in the field and understand what (in term
of code pattern) makes a typical fault. Nevertheless, the re-
production of most frequent types of software faults based
solely on its defining code patterns cannot guarantee the
realism of the triggering conditions, thus cannot guarantee
whether the injected faults are representative or not.

In order to put some light on this problem, this paper
investigates how the representativeness of injected faults
can be improved, by means of a set of criteria for selecting
representative faults from a faultload. We evaluate the
extent of the issue and the effectiveness of the proposed
criteria in a real-world case study, using an existing SFI
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technique (G-SWFIT, Generic SoftWare Fault Injection
Technique [10]), and a complex and widely used open-
source system (the MySQL DBMS). We analyze injected
faults according to their ability to elude testing activities
and remain hidden (we call this property elusiveness), as
faults experienced in the field, which SFI aims to emulate,
elude testing and go with the deployed product [20].

We performed an extensive SFI campaign, based on over
40 thousands injected faults and 2 million runs. We took
advantage of the test suite used by MySQL developers to
analyze fault elusiveness under realistic conditions. From
the experimental results, we observed a non-negligible
share of faults (15%) that are easily detected by the test
suite. Such faults cannot be viewed as representative or
interesting to dependability evaluation as they would most
surely be identified by test cases. Since including these
faults in the faultload biases the results of an experimental
campaign, G-SWFIT (or any other SFI technique) can be
improved by discarding these faults. In this respect, we
deeply analyze the injected faults, in order to draw some
general features to characterize them. The analysis reveals
that the choice of target components actually affects the
percentage of non-elusive faults in the faultload, because
the extent of these faults varies among components.
Therefore, we defined a set of criteria, based on software
complexity metrics, to guide the selection of target com-
ponents in which representative faults can be injected;
our results confirm that using these criteria decreases the
percentage of non-elusive faults in the faultload.

In section 2, we discuss related work. In section 3,
we describe the research problem and the methodological
approach adopted in this paper. Section 4 discusses the
case study and the results from the SFI campaign. Section
5 discusses the use of complexity metrics to guide SFI.
Section 6 concludes the paper.

2 Related work

The relationship between testing and fault injection has
been explored in the past, but from an opposite perspective
than this work. Here, we adopt testing to evaluate a fault
injection technique in terms of fault representativeness.
Past work focused on fault injection for generating test
cases (in the hypothesis that, if a test case is effective
against mutants, it will be able to detect real faults), i.e.,
mutation testing [13], and comparing testing strategies, i.e.,
mutation analysis [1]. These techniques do not aim at fault
forecasting or fault removal in fault tolerant systems, thus
injected faults, not necessarily representative, are simple
program mutations to assess the effectiveness of tests.

There are several examples of dependability research
works in the literature in which the representativeness of
software faults is crucial. In [9], a dependability benchmark

for web servers is proposed, to assess a set of metrics related
to both performance (e.g., throughput, response time) and
dependability (e.g., percentage of erroneous operations),
with respect to software faults in the OS. Representative
faults are needed to obtain a realistic estimate of measures
(e.g., the expected performance degradation that may occur
in operation), and to make systems comparable. In [9]
faults are injected at run-time in the binary program, in
order to reproduce the activation of faults during operation;
although that work used a representative workload to
exercise faults in a representative manner, this approach
is not fully representative, because real faults are in the
system before and during the entire execution of the target.
In [21], a dependability benchmark is proposed to evaluate
different DBMS configurations with respect to operator and
software faults, in order to aid system administrators; in
this case, a representative faultload is essential to identify
the best configuration. The benchmark in [21] requires that
faults are injected at given times after the system reaches
a “steady state”, in order to reproduce realistic conditions;
however, since fault triggers are neglected by existing SFI
techniques, it is still an open issue to reproduce software
fault activation in a fully representative way. In [8], SFI in
device drivers is adopted to classify 3 OSs and their failure
modes with respect to different scales (i.e., availability,
feedback to the user, stability), to enable the user to choose
the best OS to be included into a system, according to his
specific requirements. However, several faults (45.16%)
are activated during the OS boot phase in [8], which are in
contrast to field data studies [7,20], in which failures during
startup are a small part (3.4%); therefore, not taking into
account the fault trigger can have a significant impact on
dependability assessment. In [17], complexity metrics were
adopted for risk assessment, and in particular to estimate
the distribution of faults across components; nevertheless,
the representativeness of triggers is still neglected, thus
affecting the confidence in risk estimates.

The problem of software fault representativeness was
addressed for the first time in [7]. It proposed a set of
rules for the injection of errors that emulate software faults,
based on field data. However, these emulation rules are
dependent on the availability of field data on real faults
of the target system, which is normally not the case. This
makes the technique very difficult to apply in practice, if
not totally impossible.

Following studies evaluated existing techniques for
emulating software faults, such as SWIFI and robustness
testing [14–16], and demonstrated that existing techniques
are not suitable for this purpose. To tackle these limitations,
the study in [10] demonstrated that a unique fault distribu-
tion is common among several programs and thus generally
applicable, and proposed G-SWFIT for precisely emulating
faults at the executable code. This technique emulates the
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Table 1. Most common fault types (from [10]).
Fault types Description

MIFS Missing “If(cond) { statements }”

MFC Missing function call

MLC Missing “AND EXPR” / “OR EXPR” in expression
used as branch condition

MIA Missing “If(cond)” surrounding statements

MLPA Missing small and localized part of the algorithm

MVAE Missing variable assignment using an expression

WLEC Wrong logical expression used as branch condition

WVAV Wrong value assigned to variable

MVI Missing variable initialization

MVAV Missing variable assignment using a value

WAEP Wrong arithmetic expression used in parameter of
function call

WPFV Wrong variable used in parameter of function call

software fault classes most frequently observed in the field
(Table 1) through a small set of fault emulation operators;
they consist of a code change representing the class of fault
and a code pattern identifying where that change can be
realistically made in a program. Our work is built on top of
these efforts to evaluate and improve the representativeness
of injected faults.

3 Problem statement and research method-
ology

The problem of adequate fault emulation (described in
section 1) is related to the two aspects that characterize
software faults, namely the fault type and the fault trig-
ger [6]. The fault type relates to the kind of change in the
code to fix the fault. The fault trigger is a condition that
allows the fault to surface; it can encompass user inputs,
the internal system state, and the external environment
such as the OS. An injected fault is deemed representative
when its fault type and fault trigger are similar to the
fault types and triggers most frequently occurring in the
field. Although past work on fault injection focused on
representativeness with respect to fault types, there is a lack
of a way to assure the representativeness of the fault trigger.
In G-SWFIT, fault types are well emulated, since its fault
operators encompass more than 50% of fault types found
in the field (Table 1), as demonstrated by a large field data
study on 668 faults over 12 real-world applications [10].
Instead, fault triggers are not considered in G-SWFIT, since
the available field data did not include any information
about them. Therefore, G-SWFIT applies fault operators

regardless of the way the faults will manifest themselves.
The first research problem arising from the above

observations is whether emulated faults are triggered by
representative activation conditions or not, since we aim
to inject faults whose trigger is similar to triggers of field
faults. Field data studies [11, 18] observed that pre-release
defects (i.e., those found during system and function
testing) are distributed in complex software differently
than post-release defects, since post-release defects are
more prone to be hidden where testing is less effective.
This fact is relevant to our problem, since fault injection is
commonly adopted during the late phases of the system’s
lifecycle, namely after or at the same time of function
and system testing, for dependability evaluation purposes
(section 2). Therefore, we investigate if injected faults
are representative of faults encountered in this context, by
analyzing if they can be triggered by testing activities.

In order to perform a rigorous analysis and to obtain
meaningful results, it is necessary to ensure the realism of
testing procedures. In fact, test effectiveness is influenced
by many factors related to the testing process (e.g., which
functionalities should be tested more thoroughly). In
order to include these factors into the analysis, we adopted
the real suite for function testing of a complex system.
Although function testing is not the only mean to address
software faults, it is the most significant contributor to
detect faults in complex systems [5]. We systematically
analyze injected faults, by executing the system under
individual test cases from the test suite; each test case en-
compasses a different set of inputs. If the fault is activated
only in a small subset of test cases, then the activation
condition is a combination of events specific to that subset.
In this case, the fault can be considered elusive, since its
activation condition is subtle and testing could have missed
it. We discriminate between elusive and non-elusive faults
by counting the number of test cases that detected each
fault; if more than 50% of test cases detect the fault, it is a
non-elusive fault. Although the 50% threshold may appear
arbitrary, it is the fairest choice, and we will demonstrate
that this choice does not significantly affect results.

The second research problem is how to remove
non-elusive faults from a faultload, to improve its represen-
tativeness. To this aim, we need to discriminate between
elusive and non-elusive faults a priori, without requiring
the availability of a test suite to evaluate the elusiveness
of faults. A way to achieve this goal is to collect a set of
features related to each fault, and to use statistical analysis
techniques to characterize elusive (representative) faults.
We consider software complexity metrics of the component
in which the fault is injected, due to the relationship
between complexity and software faults [4].

The approach adopted in this paper to answer to these
two problems can be summarized as follows:
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1. We generate a large set of faulty versions of the target
system. Each version contains one fault;

2. We select a set of test cases from the original test suite
of the system;

3. Each faulty version is executed several times, one for
each test case;

4. Data about system failures are collected for each exper-
iment; moreover, to gain additional insights, we collect
information about the statement coverage of test cases;

5. We analyze the failure distribution to find non-elusive
faults and evaluate their amount (first research
problem);

6. We analyze software complexity metrics related to the
location of each fault, in order to define criteria for
identifying non-elusive faults a priori (second research
problem).

4 Evaluation of fault representativeness

In this section, we first provide details about the case
study and the experimental setup, and then we discuss the
results we obtained.

4.1 Case study and experimental setup

MySQL is one of most used among all DBMSes,
accounting for about 30% of installations among IT
organizations1. The popularity of MySQL is also due to the
overall adoption of Off-The-Shelf applications based on it
for running services over the web. The wide use of MySQL
in business-critical contexts makes it a representative target
of a dependability benchmark [21].

The MySQL DBMS is also representative of complex
software systems; it is made up of more than 700K Lines
of Code (LoC) distributed among 2K files. Moreover, the
test suite is provided along with the source code, which
is actually used for regression and functional testing. Test
cases are grouped based on the set of functionalities to
test. In particular, we targeted the MySQL core, since it is
the largest and most fundamental part of the DBMS. The
core is in charge of managing threads and connections,
SQL query parsing, optimization, and execution. The test
suite provides 473 test cases for core functionalities. We
carefully selected 50 test cases; this number is a trade-off
between the time required for the experimental analysis,
and the need of a sample large enough to be representative.
Test cases were randomly sampled, and those cases too
similar between them were discarded.

A fault injection tool2 automated the fault injection
process of this study. The tool analyzes and modifies the

1http://www.mysql.com/why-mysql/marketshare/
2Available at http://www.mobilab.unina.it/SFI.htm

target program to inject software faults in its source code. It
first analyzes a source code file to identify suitable locations
where fault types in Table 1 can be applied. It then generates
a set of faulty versions of the source file, each containing
a single fault (Figure 1). The tool identified 384,650
fault locations; we injected a sample of 40,402 faults in
those locations tested by at least one test case. It is worth
mentioning that the injection of more than 40 thousand
faults represents a quite extensive fault injection campaign.

Figure 1. Software fault injection tool.

Figure 2 shows the experimental setup. Several faulty
versions of the DBMS (each containing an individual
fault) are preliminarily compiled. A program, namely Test
Controller, was developed to execute every faulty version
for each test case; in total, 2,020,100 experiments were exe-
cuted. For each experiment, the results of the test case were
collected, i.e., the crash of the DBMS, an incorrect answer
to an SQL query, and the timeout of the test. Since we are
only interested whether the test case is able to detect a given
fault (i.e., to cause a failure), we did not take into account
the type of failure mode. The experiments were distributed
among 4 workstations equipped with an Intel Core2Duo
2.4GHz CPU, 4 Gb RAM, and a SATA 3 Gb/s NCQ disk.

Figure 2. Experimental setup.

4.2 Result discussion

During the experimental campaign, 282,739 failures out
of 2 million of experiments were observed. Since some test
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cases proved not to be effective (they detect less than 1% of
the injected faults) and would skew the results, we removed
them from the test suite. After this operation, 40 test cases
were kept, accounting for 281,027 failures. Failure occur-
rences for each fault and test case are shown in Figure 3.

Figure 3. Experiments in which a failure
occurred. Points represent experiments
in which a given fault was activated by a
given test case, causing a failure. Faults are
ordered by number of failures observed.

In the figure, points represent an experiment in which
a given fault was activated by a given test case, causing
a failure; white areas represent experiments in which the
test case was not able to detect the fault. Part of the faults
are detected by most of test cases (right side of the figure);
these faults should be considered as non-elusive, since they
are easily detected by tests.

The histogram in Figure 4 provides a perspective from the
point of view of faults, in which each vertical bar represents
the percentage of failed executions for a given fault (on the
horizontal axis). For ease of reading and for evaluating the
amount of elusive and non-elusive faults, faults are ordered
by the percentage of failures and correct executions, re-
spectively. This enabled us to analyze the two reasons why
several injected faults are elusive. A first subset of faults
(63.60%) is detected by a small number of test cases since
their location in the source code is not executed in the re-
maining test cases. This fact is representative of real faults
that elude testing since the portions of code where they re-
side are hard to cover and exercise; the problem of generat-
ing test cases to achieve a high coverage in a limited amount
of time often occurs in testing of complex systems [1].

Moreover, there is a second subset of faults (21.83%) that
seldom manifest themselves even if their source code loca-
tion is executed many times. They are also representative of

(1) (2) (3) 

Elusive faults, activated in a low number 
of executions (21.83%) 
Elusive faults, covered in a low number 
of cases (63.60%) 
Non-elusive faults (14.57%) 

Key: 

Figure 4. Percentages of failures and correct
executions for each fault. Faults are ordered
by the percentage of failures and correct
executions, respectively.

real faults, since they cause a failure only when the faulty
location is executed under specific activation conditions,
which can be missed during testing. For instance, the
activation condition can be related to specific values took
by input and state variables. This problem is related to the
unfeasibility of exhaustive testing in complex systems [1].
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executions for each test case.
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The percentage of faults detected and covered by each
test case is shown in Figure 5. Because the percentage of
failures is low for non-elusive faults, there are only are
small differences in the number of detected faults between
test cases (with few exceptions). This also means that the
activation triggers of elusive faults are distributed among
test cases; therefore, an SFI campaign requires a set of
several inputs to trigger elusive faults. This is still an open
issue that should be analyzed in future research.

Figure 6. Distribution of faults with respect
to the number of failures.

The last set of faults in Figure 4 contains non-elusive
faults, which are easy to detect. Their extent can be
observed in Figure 6, which shows the fault distribution
with respect to the number of times they caused a failure.
The majority of faults cause a small number of failures,
with the predominance of faults causing 0 (30%) or 1
failure (29.56%). This result seems to support the thesis
that faults injected by G-SWFIT are elusive and therefore
representative; nevertheless, the percentage of non-elusive
faults is non-negligible, and they cause a large number of
failures (more than 35). In fact, 14.57% of faults caused
a failure at least in the 50% of cases. It should be noted
that choosing a threshold different than 50% does not
significantly affect this result (see Figure 6), ranging from
12.73% (at least 75% of failures) to 19.86% (at least 25%
of failures) of non-elusive faults.

4.3 Validation of results

In order to get more confidence in our conclusions, we
challenged these results by means of a second experimental
campaign. Our aim was to confirm (or not) that the low
number of non-elusive faults is not due to the simplicity of
the test cases but is really related to the nature of the faults.
Therefore, we augmented test cases with an implementation
of the TPC-C benchmark3 as an additional workload. In
this setup (Figure 7), TPC-C and a test case are executed at
the same time on the same database, in order to analyze the

3http://jtpcc.sourceforge.net/

effects of a more demanding workload (in terms of amount
of data and operations rate).

time 
1. MySQL start 
2. TPC-C start 
3. Test case start
4. Test case stop 
5. TPC-C stop 
6. MySQL stop 

1. 2. 3. 4. 5. 6. 

Figure 7. Experiment setup for the validation
of results using TPC-C.

We selected a random sample of 668 faults from those
causing 0 or 1 failure, keeping about the same proportion of
Figure 6. As in the previous campaign, each faulty version
has been executed several times, one for each test case. We
considered only test cases (34 in total) not conflicting with
TPC-C (e.g., some test cases forced a reboot of the DBMS).

Figure 8 shows the distribution of faults in the sample
with respect to the number of failures, after the addition of
TPC-C. During the experiments, only a small part of faults
(1.35%) caused 2 or more failures, which were always
triggered by TPC-C (0.45%) or by the joint execution
of TPC-C and a test case (0.90%). Even with TPC-C
benchmark, which represents a quite demanding workload
for the MySQL DBMS, 98.65% of faults in the sample
revealed an elusive nature.

Figure 8. Distribution of a sample of elusive
faults with respect to the number of failures
(under test cases and TPC-C running at the
same time).

5 Improving fault representativeness

In this section we address our second research problem.
Our goal is to tell apart elusive from non-elusive faults
before any actual fault injection. This ability will allow
us to filter non-elusive faults from the faultload and thus
increase its representativeness.
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5.1 Analysis of fault types and compo-
nents

In order to understand the key features of the injected
faults, we deeply analyze them with respect to two impor-
tant factors: their fault type and the component in which
they are located. We hypothesize that these factors can
affect the elusiveness of injected faults; if this hypothesis
is true, faultload representativeness can be improved by
including specific fault types or components.

In Figure 9 and Figure 10 we compare the distributions
of elusive (including subsets 1 and 2 in Figure 4) and non-
elusive faults across fault types (Table 1), respectively. Ap-
parently, fault elusiveness has little influence on the shape
of the distribution. To quantitatively evaluate if differences
between distributions are statistically significant (i.e., they
are not caused by random factors) we use the two-sample
Kolmogorov-Smirnov (KS) test [19], which is a procedure
for evaluating if two samples are drawn from the same
underlying probability distribution. On the basis of the KS
test (p-value = 0.4333), the null hypothesis that the two
samples are from the same distribution cannot be rejected,
i.e., differences are not statistically significant. Therefore,
the fault type alone cannot discriminate non-elusive faults.
It should be noted that this result is not obvious, since the
fault type affects where faults are injected (e.g., a fault type
could have occurred more frequently in code easy to test).
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Figure 9. Elusive faults distribution across
types.

In order to analyze whether the elusiveness of injected
faults is related to a specific system component, we applied
the same procedure on the distributions across components
of elusive and non-elusive faults (Figure 11 and Figure
12). We use the term “component” to refer to a source
file of MySQL core. Source files are adopted by C/C++

0

5

10

15

20

25

30

35

40

45

50

P
e

rc
e

n
ta

g
e

 o
f 

fa
u

lt
s

 (
%

)

Fault Type

M
F

C

M
IA

M
IE

B

M
IF

S

M
L

C

M
L

P
A

M
V

A
E

M
V

A
V

M
V

IV

W
A

E
P

W
P

F
V

W
V

A
V

Figure 10. Non-elusive faults distribution
across types.

developers to group related procedures/classes; by defining
source files as components, we take into account the
influence of both individual procedures/classes and the
whole source file (e.g., the use of a shared variable by
related procedures). Faults were injected in 96 components.
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Figure 11. Elusive faults distribution across
components.

The two distributions are noticeably different; the KS test
confirms this observation, since the null hypothesis can be
rejected with a confidence level greater than 99% (p-value
= 7.2862 · 10−7). This result suggests that the elusiveness
is influenced by the target component; it is probably
due to the interplay between faults and the surrounding
code. Therefore, we will analyze if the features of the
target component can be exploited to discriminate between
elusive and non-elusive faults.
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Figure 12. Non-elusive faults distribution
across components.

5.2 Filtering non-elusive faults

From the results of the previous section, we observe that
the distributions of elusive and non-elusive faults across
components are significantly different. In fact, the relative
percentage of non-elusive faults tends to be higher in some
components (on the right side in Figure 11 and Figure 12).
Therefore, if these components are identified before fault
injection, they can be discarded from the analysis in order
to reduce the relative percentage of non-elusive faults. In
practical terms, this means that fault which locations fall
into these components will be filtered out from the fault-
load. This reduces the skew of non-elusive faults on the
results and the loss of time in performing misleading exper-
iments. To characterize the components, we collected a set
of complexity metrics. We investigate complexity metrics
since the complexity of a component (e.g., the number of
paths) and its relationships with other components affect
the ability to thoroughly test the component; therefore,
metrics can reveal where faults may hide from tests.

We selected a set of complexity metrics (Table 2) that
can be easily collected from a software artifact (assuming
source code availability), and thus are available to the
tester before SFI: they take into account the cyclomatic
complexity (AvgCyc, MaxCyc), the code size (LoC),
and dependencies on symbols (e.g., a function) that are
imported (InDepR, InDepC) or exported (OutDepR, Out-
DepC) by the component. In order to extract the hidden
relationship between complexity metrics and components
containing non-elusive faults, we adopted a technique
commonly used in data mining problems, namely decision
trees [22]. A decision tree is a hierarchical set of questions
that are used to classify an element. In our study, questions
are based on complexity metrics (for instance “Is LoC

Table 2. Software complexity metrics.

Name Description

AvgCyc Average cyclomatic complexity of functions in the
component

MaxCyc Maximum cyclomatic complexity of functions in the
component

LoC Number of lines of code

OutDepC Dependencies of the component (“fan-out”), number of
components

OutDepR Dependencies of the component (“fan-out”), number of
references

InDepC Dependencies on the component (“fan-in”), number of
components

InDepR Dependencies on the component (“fan-in”), number of
references

greater than 340?”), and the components are the elements
to be classified. A decision tree has been preferred over
other classifiers because it is simple to interpret, and it
provides insights on why the percentage of non-elusive
faults is higher in some components.

Before training the decision tree, we split components
in two classes, respectively those in which the percentage
of non-elusive faults is negligible (C1), and the remaining
ones (C2), in order to discriminate components with most
non-elusive faults. In fact, we observed from a preliminary
analysis that there are some differences in the complexity
metrics when the percentage of non-elusive faults is higher
than 5%. The dataset is composed by 96 components in
two classes (50 and 46 components, respectively).

A decision tree (Figure 13) is obtained from the whole
dataset using the C4.5 algorithm [22]. The training algo-
rithm iteratively splits the dataset in two parts, by choosing
an attribute (i.e., complexity metric) and a threshold that
most effectively classifies the training data; this operation is
then repeated on the subsets. The root and inner nodes rep-
resent questions about complexity metrics being over than a
threshold value, and leafs represent class labels. To classify
a component, a complexity metric of the component is
first compared to a threshold specified in the root node, to
choose one of the two children nodes; the same is repeated
for each node, until a leaf is reached. Figure 13 shows the
number of components of the training set classified by each
leaf, and the number of components wrongly classified.

By analyzing the structure of the tree, we can notice that
InDepR (in the root node) is the metric most relevant to non-
elusive faults; it represents the number of times a reference
to a symbol of the component (e.g., a function) is found in
other components. In fact, InDepR is > 22 for most com-
ponents with non-elusive faults (25 out of 46), and InDepR
≤ 22 for most components with a small percentage of

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 444 DSN 2010: Natella et al.



InDepR 

AvgCyc 

InDepC p

InDepC 

OutDepR 

AvgCyc 

OutDepC 

InDepR 

MaxCyc 

I

LoC 

A

AvgCyc 

InDepC nDepC

AvgCyc 

I

A

AvgCyc A

Figure 13. Decision tree based on compo-
nents complexity metrics.

non-elusive faults (42 out of 50). This fact implies that com-
ponents with a small InDepR contain a small percentage of
non-elusive faults. This can be due to the higher “exposure”
of faults in a component with high InDepR (a fault in the
component can propagate to several other components),
as in the case of the “sql string.cc” component (InDepR
= 1168), which provides utility functions for string
handling. Another metric relevant to non-elusive faults is
AvgCyc (in both children nodes of the root). When InDepR
is low and AvgCyc is > 7, components have a noticeable
percentage of non-elusive faults (9 out of 46), and when
InDepR is high and AvgCyc is ≤ 1, components have a low
percentage of non-elusive faults (5 out of 50). For instance,
the “sql table.cc” from class C2, which provides support
for managing SQL tables, is associated with AvgCyc = 11.
Therefore, when filtering components for fault injection,
those with low InDepR or low AvgCyc should be selected,
since they contain a lower percentage of non-elusive faults.

Until this point, we analyzed the decision tree to identify
the key features of components containing non-elusive
faults. However, we also want to investigate if the decision
tree can guide the selection a priori of components that
should be filtered out (i.e., without knowing beforehand the
amount of non-elusive faults in the components). In this
scenario, complexity metrics of a component are the input
of the decision tree, to decide if the component should be
considered (class C1) or not (class C2) in SFI.

To obtain an initial evaluation of the non-elusive faults

that can be removed, we simply classified all the compo-
nents in the dataset using the decision tree. This evaluation
is optimistic, since the whole dataset was also used in
the training phase; however, it provides an upper bound
to the effectiveness that can be achieved. In this case,
the tree correctly classifies 91.67% of the components. If
we include in the faultload only faults in components not
filtered (class C1, 48 components), we obtain 10,312 faults
of which 2.55% are non-elusive faults; this percentage
is significantly lower than 14.57% when no filtering is
performed. However, including only components with a
negligible amount of non-elusive faults comes at the cost of
a reduced number of injected faults (26.02% of the whole
set of faults). This does not seem to be a limitation in
complex software systems, in which the number of fault
locations is high enough to still obtain statistically signif-
icant results. The trade-off between number of injected
faults and percentage of non-elusive faults is caused by the
presence of both elusive and non-elusive faults in the same
component; techniques for more fine-grained identification
of non-elusive faults are needed to obtain a better trade-off.

Figure 14. Model validation.

Moreover, we evaluated the accuracy of the model when
we use it to discriminate components not included in the
dataset. In fact, the threshold values and the tree structure
may not be suited and need some tuning for each specific
system. To this aim, we used the k-fold cross validation
technique [22] (Figure 14); we split the dataset in 10 folds,
and then we evaluated the classification accuracy on each
fold when the remaining 9 folds are used for training a
model. This approach provides an estimation of the model
accuracy when it used to analyze components not included
in our dataset. In this case, the tree is able to correctly clas-
sify 61.46% of components; using the decision tree to ana-
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lyze components not in the dataset, the expected percentage
of remaining non-elusive faults is 10.75%, which is still
lower than the percentage of non-elusive faults when no fil-
tering is performed. Although this result does not guarantee
the effectiveness of the model with respect to all complex
software systems, it increases our confidence in the use of
complexity metrics for filtering non-elusive faults. A more
throughout validation on more software systems is a future
research direction. Moreover, some kind of adaptation to
the specific system (e.g., by means of clustering techniques
to tune thresholds in the model) can be potentially exploited
to further improve the effectiveness of filtering.

6 Conclusion

This paper investigated how the representativeness of
injected faults can be analyzed and improved, by means
of a set of criteria for selecting representative faults. We
evaluated the extent of the issue and the effectiveness of
the proposed criteria in of a real-world case study, in the
context of an existing SFI technique (G-SWFIT) and a
complex and widely used open-source system (MySQL).
Faults were analyzed with respect to their ability to elude
testing and stay hidden (elusiveness). Experimental results
show that 85.43% of injected faults elude more than 50%
of test cases, thus supporting G-SWFIT as an effective way
to emulate software faults. To cope with the remaining
non-elusive faults (14.57%), we proposed the use of com-
plexity metrics for filtering out components with a large
extent of non-elusive faults. We observed a relationship
between metrics and the occurrence of non-elusive faults
(in particular, InDepR and AvgCyc). We exploited this
relationship to identify components containing non-elusive
faults; using a very simple classifier, the expected percent-
age of non-elusive faults was reduced to 10.75%, which
can be potentially improved down to 2.55%. We believe
that the refinement of faultloads made possible through this
elimination of non-elusive faults will improve the represen-
tativeness of results obtained in dependability assessment
techniques that use the injection of software faults.
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