
Emulation of Transient Software Faults for Dependability Assessment: A Case Study

Roberto Natella, Domenico Cotroneo
Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II,

Via Claudio 21, 80125, Naples, Italy
{roberto.natella, cotroneo}@unina.it

Abstract—Fault Tolerance Mechanisms (FTMs) are exten-
sively used in software systems to counteract software faults,
in particular against faults that manifest transiently, namely
Mandelbugs. In this scenario, Software Fault Injection (SFI)
plays a key role for the verification and the improvement of
FTMs. However, no previous work investigated whether SFI
techniques are able to emulate Mandelbugs adequately. This
is an important concern for assessing critical systems, since
Mandelbugs are a major cause of failures, and FTMs are
specifically tailored for this class of software faults.

In this paper, we analyze an existing state-of-the-art SFI
technique, namely G-SWFIT, in the context of a real-world
fault-tolerant system for Air Traffic Control (ATC). The anal-
ysis highlights limitations of G-SWFIT regarding its ability to
emulate the transient nature of Mandelbugs, because most of
injected faults are activated in the early phase of execution, and
they deterministically affect process replicas in the system. We
also notice that G-SWFIT leaves untested the 35% of states of
the considered system. Moreover, by means of an experiment,
we show how emulation of Mandelbugs is useful to improve
SFI. In particular, we emulate concurrency faults, which are
a critical sub-class of Mandelbugs, in a fully representative
way. We show that proper fault triggering can increase the
confidence in FTMs’ testing, since it is possible to reduce the
amount of untested states down to 5%.

Keywords-Dependability Assessment, Software Fault Injec-
tion, Fault Tolerance, Software Faults, Mandelbugs

I. INTRODUCTION

With the recent growing of software complexity, software
faults (i.e., bugs) represent a significant cause of system
failures. In the last decades, very interesting studies on
software systems contributed to better understand this kind
of faults [1]–[4]. As these confirmed, dealing with software
faults is quite a hard task: the main problem is the repro-
ducibility of the failure, that is the ability to identify the fault
activation pattern. Faults whose activation is reproducible
are called Bohrbugs. They are typically detected and then
fixed during testing phases. Mandelbugs, instead, are faults
whose activation is not systematically reproducible and they
typically lead to transient failure manifestations [5]1. Their
activation conditions (namely, fault triggers) depend on
complex combinations of user inputs, the internal state, and
the external environment, i.e., the set composed by other

1In the taxonomy proposed in [5] the term “Heisenbugs”, which was
adopted in some past research, denotes the subset of Mandelbugs that
change their behavior when probed or isolated.

programs, services, libraries, virtual machines, middleware
and operating system the application interact with. The
activation conditions of Mandelbugs occur during the system
operational phase and can be very difficult to reproduce (e.g.,
a thread scheduling that triggers a concurrency fault). For
this reason, testing activities revealed to be not effective for
dealing with such a kind of faults. It is worth noting that
Mandelbugs account for a significant part of failures in the
operational phase, up to 82% in well-tested critical software
[2], [5], [6].

Since it is almost unfeasible to avoid the occurrence of
Mandelbugs, critical systems adopt Fault Tolerance Mech-
anisms (FTMs). In fact, failures due to Mandelbugs can be
masked by means of spatial redundancy (e.g., replication
[2], [7]) and temporal redundancy (a retry of the failed
action can result in success [8]). However, FTMs in critical
systems have to undertake a thorough assessment before
acceptance, which can be achieved by means of Software
Fault Injection (SFI). By deliberate injection of software
faults, fault tolerance can be tested and potentially improved
[9], [10]; SFI is also useful to assess the impact of software
faults on the system during the operational phase [11].

Although several past works focused on software fault
emulation techniques [12]–[14], to the best of our knowledge
no previous work investigated whether SFI techniques are
able to emulate Mandelbugs adequately. We claim that em-
ulation of Mandelbugs is an important concern for assessing
critical systems, since Mandelbugs are a significant cause of
failures. In this paper, we analyze an existing state-of-the-
art SFI technique, namely G-SWFIT [14], in the context
of a real-world fault-tolerant system for Air Traffic Control
(ATC). In particular, we investigate whether faults injected
by G-SWFIT are representative of Mandelbugs. Our analysis
is supported by a Finite State Machine (FSM) model of
the system, and we use a quantitative metric, namely state
coverage, to evaluate the confidence of SFI campaigns.

The mentioned analysis highlights limitations of G-
SWFIT regarding its ability to emulate the transient nature
of Mandelbugs. In fact, most of injected faults are activated
in the early phase of execution, and they deterministically
affect process replicas in the system. This problem is not
easy to be solved, since emulation of Mandelbugs, in addi-
tion to fault injection into the executable code, also requires
the emulation of fault triggers that characterize them. By

2010 European Dependable Computing Conference

978-0-7695-4007-8/10 $26.00 © 2010 IEEE

DOI

23

2010 European Dependable Computing Conference

978-0-7695-4007-8/10 $26.00 © 2010 IEEE

DOI 10.1109/EDCC.2010.13

23

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

means of an experiment, we show how emulation of fault
triggers is useful to improve SFI. In particular, we focus
on the emulation of concurrency faults, which represent a
critical sub-class of Mandelbugs because they are hard to
be detected [15], [16], they have a severe impact on system
availability and reliability [3], [4], and because of the current
shift towards multi-threaded software architecture [17]. The
representativeness of emulated faults is assured by a field
data study on real concurrency faults, and by the precise
emulation of their activation conditions (using a technique
specifically designed for this purpose).

The case study considered in this paper consists of a
mission-critical system for ATC, namely Flight Data Proces-
sor System (FDPS), and the middleware on which it is based,
namely CARDAMOM2. Both CARDAMOM and FDPS
have been developed in the framework of an Italian research
project, namely COSMIC3. From experimental results, we
notice that G-SWFIT cannot achieve full state coverage in
the case study, leaving untested 35% of states. Moreover,
we demonstrate that, by means of proper fault triggering, it
is possible to reduce the amount of untested stated down to
5%. In turn, a higher state coverage provides an increased
confidence in FTMs’ testing.

The paper is organized as follows. Section II discusses
relevant work on SFI. Section III describes the case study
considered in this work. In section IV, G-SWFIT is analyzed
with respect to the mentioned aspects. In section V, we
describe a technique for injecting concurrency faults, which
is evaluated in section VI. Section VII closes the paper.

II. RELATED WORK

A. State-of-the-art in Software Fault Injection

Software Fault Injection roots date back to 70s, during
which mutation testing was developed [18]. Mutation testing
is based on the transformation of elementary components in
a program, such as changing variable names or arithmetic
operators in expressions. Synthetically generated faulty pro-
grams (namely, mutants) are used (i) to create a set of
test cases, in the hypothesis that test cases effective against
mutants will be able to detect real faults, and (ii) to evaluate
and compare the adequacy of testing strategies. Several mu-
tation operators have been proposed, which deal with most
common programming constructs. However, since mutants
do not occur with equal probability in real software systems,
the problem of fault representativeness arose in the last
decades [19]. Representativeness is a relevant concern for
dependability evaluation, since it is a necessary condition to
obtain meaningful results (e.g., to evaluate the fault coverage
of FTMs, the occurrence rate of different faults has to be
taken into account).

2http://cardamom.objectweb.org
3http://www.cosmiclab.it

In several past works, SoftWare-Implemented Fault In-
jection (SWIFI) was used to emulate both hardware and
software faults [10], [20]; this technique consists in the byte-
level alteration of register and memory locations at run-
time, in order to emulate high-level software faults (e.g., by
changing the destination register of an opcode to emulate an
incorrect assignment operation) and errors due to software
faults (e.g., data corruption). However, this approach does
not achieve fault representativeness for two reasons. First,
it has been demonstrated that SWIFI is able to emulate
only a subset of software faults, due to the semantic gap
between high-level programs and their binary translation.
Moreover, the error model commonly adopted by SWIFI is
only representative of errors due to hardware faults (e.g., bit-
flips). Second, injection of faults and errors in memory at
arbitrary time does not reflect the characteristics of software
faults, which are permanent design/implementation faults
into the source code. [13], [21]

Subsequent works pursued error injection by (i) designing
a formal framework for error injection experiments, (ii) cor-
rupting the memory state using a realistic error model, and
(iii) triggering error injection every time that a target source-
code statement (supposed to be faulty) is executed [9], [12],
[22]. Error injection techniques are convenient in terms of
time and efforts devoted to experiments. Nevertheless, they
still lack of a precise mapping between injected errors and
source-code faults [13]; they cannot guarantee that an error
could have been caused by a residual software fault into the
code. This issue also affects robustness testing, i.e., testing
against exceptional inputs [23], which is not suitable for
accurately reproducing the effects of residual software faults
in a system [24].

The Generic Software Fault Injection Technique (G-
SWFIT) [14] was the first proposal in the literature that
achieved fault representativeness, by means of a field study
on real software faults. It consists of (i) a set of fault
operators, that is representative mutation operators, and (ii)
a technique for injecting software faults at the machine-code
level. It was found that a small set of fault operators is able
to emulate most of faults occurring in several real-world
programs; therefore, G-SWFIT can be used on systems for
which field data are not available, as in the case of third-
party software [11]. However, no previous work investigated
how well faults injected by G-SWFIT emulate Mandelbugs.

B. Fault-Tolerance Testing

Fault injection has been extensively used to evaluate and
improve FTMs in hardware and software systems. Therefore,
theoretical frameworks have been proposed in past works to
make the fault injection process systematic. In [25], [26],
formal testing approaches for fault-tolerant protocols are
proposed; they are based on a state model of the fault-
tolerant system, namely execution tree. This model is an ab-
straction of the events that may occur (i.e., both correct and

2424

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

faulty inputs) and the actions the system should undertake
for each event. The model is used to generate and monitor
events (by means of appropriate system instrumentation) for
testing an actual implementation of a protocol (e.g., with
respect to wrong messages), and to assess the coverage of
the tests. In [27], a methodology for conformance testing
by fault injection (CoFI) is evaluated in the context of
software for space applications. In CoFI, state-based models
are derived from specifications, for each service provided
by the software. A model describes the expected behavior
with respect to normal inputs and external faults; SWIFI is
used to inject communication, processor, and memory faults,
in order to check the conformance of the system to the
specification. In [28], a fault injection tool for distributed
systems evaluation (Loki) is described. The tool is designed
to trigger faults (e.g., a process crash) during a specific
state, with low intrusion and high precision; these goals
are achieved by means of partial view of global state and
optimistic synchronization (i.e., the tool assumes that the
nodes are correctly synchronized, and it performs off-line
filtering of experiments in which fault injection is wrongly
triggered). In [23], a robustness testing technique is proposed
for triggering faulty input injection at the interface between
drivers and the operating system. The technique is based on
the preliminary analysis of distinct sequences of function
calls to a driver (namely call blocks); an experiment is
performed several times, once for each call blocks containing
the target function call. It is shown that triggering injection
using call blocks can identify an higher number of robustness
vulnerabilities than first-occurrence triggering.

Although the mentioned works demonstrated the useful-
ness of proper triggering in fault injection experiments,
to the best of our knowledge there is not a study about
the triggering of injected software faults; instead, existing
approaches focus on SWIFI and robustness testing. In this
paper, we consider a fault model representative of Mandel-
bugs, in which the fault activation is taken into consideration
together with source-level fault injection; this feature enables
to test fault tolerance under different system states.

III. CASE STUDY

This section describes the fault tolerant system considered
in this work. In particular, the emphasis is on FTMs adopted
by the FDPS, which are provided by the underlying middle-
ware platform (CARDAMOM). In the following sections,
we analyze the effectiveness of SFI (both G-SWFIT and
Mandelbugs emulation) for testing FTMs of this system.

A. CARDAMOM middleware

CARDAMOM is a middleware platform that provides
features to configure, deploy and execute near real-time,
distributed and fault-tolerant applications. It is a CORBA-
based, OMG compliant platform supporting both the object
and the component programming models.

CARDAMOM lies on several off-the-shelf components;
in particular, it makes use of the Linux operating system,
and the TAO ORB4. Moreover, the platform includes an im-
plementation of the OMG Data Distribution Service (DDS)
standard for publish-subscribe communication, namely RTI
DDS5. DDS enables data sharing among distributed pro-
cesses, without concern for their actual physical deployment.

Two CARDAMOM services are relevant in the context
of this paper: the Fault Tolerance (FT) and Load Balancing
(LB) services. The FT Service is compliant to the FT
CORBA Specification. It provides redundancy by means of
CORBA object replication; when a faulty primary replica
is detected (e.g., a replica is terminated unexpectedly),
the FT Service elects a new primary replica from a pool
(namely object group). CARDAMOM implements the warm
passive replication style, i.e., when the state of the primary
replica is modified, it gets recorded and transferred to other
members in the object group. The fault-tolerant application
is responsible for maintaining consistency between replicas,
by means of an API provided by CARDAMOM.

The LB Service allows the distribution of CORBA re-
quests among the members of an object group. A request is
redirected to one of the servers, according to an user-defined
policy (e.g., Round-Robin, Random). The LB Service is
transparent from the client point of view.

B. FDPS

FDPS is a C++ application based on CARDAMOM. It
represents the part of an ATC system in charge of managing
Flight Data Plans (FDPs). An FDP is a data structure
containing information about a flight; the goal of FDPS is
to keep FDPs up-to-date. For example, FDPS has to analyze
the actual position of aircrafts (retrieved from radar tracks)
and update flight routes consequently, in order to efficiently
allocate the flight space and to avoid flight collisions. A
simplified view of FDPS architecture is shown in Figure 1.

FDPS is composed by a Façade component, replicated
by the FT Service, and a set of Processing Servers (PSs),
managed by the LB Service. The Façade is in charge of
interfacing the FDPS with external systems (e.g., a graphical
user client), and to manage the state of FDPs. When the
Façade receives a FDP request, it locks the FDP (at most
one request at a time for the same FDP can be processed)
in an internal data structure (namely, the FDPs table), and
it sends a processing request to a PS. The PS retrieves the
FDP and radar tracks from the DDS, processes the FDP, and
returns the FDP to the Façade. The Façade then updates the
FDP on DDS and unlocks it. If several requests are sent to
the same PS, they are executed one at a time. The Façade
is responsible for queueing concurrent requests, and for
checkpointing the FDPs table. For the sake of simplicity, the

4http://www.theaceorb.com
5http://www.rti.com/products/dds/

2525

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

Load Balancing Service

FDPs Table

FDPs Table

Fault Tolerance Service

Checkpointing

Client Primary Façade

Backup Façade

Processing Server

Processing Server

Processing Server

FDP
Request Façade

Request

Data Distribution Service

Key: CORBA
object

CORBA
interaction

DDS
interaction

State
transfer

Figure 1. Simplified architecture of FDPS.

only FDP operations we take into account are the insertion,
deletion, and update of an FDP.

IV. EVALUATION OF G-SWFIT

In order to study how G-SWFIT performs with respect
to state coverage, we first model the FDPS using a Finite
State Machine (FSM). State-based analysis is relevant for
dependability assessment, since a fault trigger can unpre-
dictably occur in any system state, even after a long period
of uninterrupted execution; in turn, system behavior under
faulty execution, and correct failure detection and recovery,
depend on the current state. In a FSM, each state represents
a different combination of internal system variables. States
are connected by transitions, which represent events (e.g., an
external input) that change the value of internal variables.
When the state is changed, the system performs a computa-
tion in answer to the occurred event.

The choice of internal variables is a trade-off between the
accuracy and the complexity of the model. A too accurate
model suffers from the explosion of the number of states,
which makes the analysis unfeasible. Therefore, we select
a proper subset of system variables and of their possible
values, in order to keep the number of states low, and to still
take into account the features of the system most relevant
to fault tolerance testing. The considered variables are:

#QF Number of FDP requests queued by the Façade;
#UP Number of Façade requests under processing;
#QP Number of Façade requests queued by PSs.
Moreover, we consider messages exchanged within the

FDPS (shown in Table I) as transition events, because they
are easy to be collected, and they enable to track the values
took by the considered variables.

To make the model finite, the number of requests that can
be queued by the Façade is bounded (#QF ≤ 3), without
any loss of generality. For the same reason, we also choose
to assign only two possible values to #UP , respectively
the absence of requests queued by PSs (#UP = 0), and

Table I
MESSAGES EXCHANGED WITHIN THE FDPS.

Name Description

CR A Client request for an FDP not already requested
CRQ A Client request for an FDP already requested
FR A Façade request for an FDP request not in the Façade queue
FRQ A Façade request for an FDP request in the Façade queue
PSC A PS returns an FDP, and no other Façade requests are

queued by the PS
PSCQ A PS returns an FDP, and there are Façade requests queued

by the PS

the presence of one or more requests queued (#UP = 1).
Instead, the number of requests under processing is bounded
by the number of PSs (#UP ≤ 3 in the current FDPS
architecture). The chosen internal variables and events do
not take into account which particular FDPs or FDP oper-
ations are under processing, but only how many FDPs or
FDP operations are involved, and whether a FDP operation
involves an already queued FDP (CRQ, FRQ, PSCQ) or not
(CR, FR, PSC). This choice reduces the number of states
from several thousands to 20 (Figure 2).



































































































































































Figure 2. A Finite State Machine that models the FDPS.

In order to study the manifestation of injected faults with
respect to system states, the application has been instru-
mented to log the contents of input and output messages of
the Façade (Table I). Moreover, a log message is produced
before a faulty piece of code is executed. By analyzing these
logs after a fault injection experiment, it is possible to trace
which states were reached during an experiment. A failure
has occurred if the sequence of Façade states does not match
the state sequence of faulty-free runs.

Regarding the workload used for SFI experiments, we
designed a set of 3 workloads. Each workload makes the
system to reach all states in the FSM (starting from 0:0:0).
The workloads differ in the direction in which the FSM is
visited (e.g., row-by-row, column-by-column) and the type

2626

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

of the requests (insert, update, delete).
As for the faultload, fault operators encompassed by G-

SWFIT (Table II) are used to inject faults into the business
logic of the Façade. Fault injection is focused on the Façade,
since it is the most complex component in the FDPS, and
therefore the most fault-prone [11]; moreover, it represents a
fundamental entity in the FDPS architecture. We performed
fault injection by means of an automated tool, which has
been developed by the authors6. The tool is based on a
C/C++ parser, which seeks suitable fault locations within
a source code file and produces a “patch” file for each
injectable fault. Each fault represents an individual SFI
experiment. The experimental campaign encompasses 533
faults, and 1599 fault injection experiments; in 521 cases
we noticed a failure of the primary Façade.

Table II
FAULT OPERATORS (SEE ALSO [14]).

Acronym Explanation

OMFC Missing function call
OMVIV Missing variable initialization using a value
OMVAV Missing variable assignment using a value
OMVAE Missing variable assignment with an expression
OMIA Missing IF construct around statements
OMIFS Missing IF construct + statements
OMIEB Missing IF construct + statements + ELSE construct
OMLAC Missing AND in expression used as branch condition
OMLOC Missing OR in expression used as branch condition
OMLPA Missing small and localized part of the algorithm
OWVAV Wrong value assigned to variable
OWPFV Wrong variable used in parameter of function call
OWAEP Wrong arithmetic expression in function call parameter
















































































Figure 3. Failure and fault activation distributions of the G-SWFIT
campaign. (the percentage of failures for each state is shown in bold; the
percentage of faults activated in each state is shown within the node)

For each experiment in which a failure occurs, we con-
sider the state of the system before the failure, and the state

6Available at: http://www.mobilab.unina.it/SFI.htm

in which the faulty piece of code is executed before the
failure. Figure 3 shows the 2 distributions of these states. A
detailed analysis of the experimental results reveals that:
• A great amount of faults (55.85%) manifest themselves

before the Façade is ready to receive and to process
requests, or when the Façade receives the first request
(state 0:0:0). Although these faults are useful to test
fault tolerance during the initialization phase of FDPS,
they are not well representative of Mandelbugs, which
can unexpectedly manifest themselves during the oper-
ational phase of a system.

• Faults injected by G-SWFIT are useful to test fault
tolerance with respect to a subset of important system
states. In particular, faults that manifest when at least
one request is queued by Façade (#QF > 0) allow
testing of the checkpointing mechanism (i.e., whether
the FDPs table is correctly sent to the backup Façade)
and failure detection mechanisms.

• In most of cases (93.3%) in which the backup Façade is
activated, the fault causes the failure also of the replica.
This suggests us that injected faults are activated deter-
ministically. In these cases, the fault activation is simple
to reproduce (as in the case of Bohrbugs). This result
biases evaluation of FTMs, which should instead focus
on Mandelbugs in well-tested critical software.

• A significant part of states (35%) is not covered during
SFI experiments. Moreover, there are some states in
which the percentage of activated faults is very low
(i.e., 1:2:0, 2:2:0, 3:3:0), or the faults are activated only
under 1 out of 3 workloads (i.e., 3:1:0, 0:3:1). Thus,
these states are not well tested, since it is unlikely that
they would be covered under a different workload. The
same holds true for those states that were not covered.

• Part of the injected faults (15.36%, Figure 4) causes a
failure only under 1 workload, and a significant part of
faults (56.93%) do not cause a failure. Therefore, even
if several of the injected faults could be representative
of Mandelbugs, they are seldom (or never) activated due
to the missing occurrence of their activation conditions.

11.24%

26.78%

1.87% 2.25%

0.37% 0.56%

0%

Workload 1

Workload 2 Workload 3

No failure:

56.93%

Figure 4. Distribution of faults leading to failures (230 out of 534) among
workloads. Overlapping areas are faults activated by more than 1 workload.

Although these results are influenced by the particular

2727

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

FSM model and workloads, we can conclude that G-SWFIT
alone does not easily allow testing of FTMs under some
specific states. In particular, no fault manifests itself when
one or more requests are queued by the PSs (#QP > 0).
This fact prevents testing of whether the system correctly
tolerates a failure in this scenario. We believe that the
problem is due to the lack of control on the fault activation.
This result justifies the study of whether faults can manifest
in the remaining states, and how they can be activated.

V. CONCURRENCY FAULT INJECTION

In order to identify which factors lead to a transient
manifestation of Mandelbugs, and the related nature of
faults, we analyzed the scientific literature on field data of
software faults. Results of field analysis guided us to the
design of a SFI technique which, by taking into account
the fault activation process, is able to precisely emulate the
manifestation of faults.

A. Fault Model

From past works on field data [2], [3], [6], [29], we
identified the following transient fault triggers:
• concurrency;
• timing of external events;
• wrong memory state;
• faulty error handling routines (the fault is triggered by

another one);
• complex input sequences;
• software aging (e.g., resource leaks).
As discussed in Section I, we focus on faults related

to concurrent programming. In order to emulate the most
frequent concurrency faults, we take into account the results
of a study on concurrency faults [29], which analyzed 105
faults from 4 real complex and concurrent systems. This
study pointed out that the most frequent synchronization
faults are7:
• atomicity-violation faults (48.57%), i.e., non-atomic

execution of concurrent memory accesses;
• deadlock faults (29.52%);
• order-violation faults (22.86%), i.e., execution of a set

of operations in the wrong order.
In particular, we focus on atomicity-violation faults, since

they occur most frequently. Moreover:
• non-deadlock faults involved one variable (66.22%);
• 2 threads are needed for triggering a fault (89.52%).
There are several strategies to enforce the atomicity of

a group of memory accesses. However, it is well known
that the use of locks is the most common strategy used by
programmers. Although [29] does not provide the precise
amount of atomicity-violation faults fixed by means of lock
primitives (i.e., by adding or changing lock operations),

72.86% of the faults are classified as both atomicity- and order-violation.

the study recognizes that different fix strategies are not
mandatory, except when a precise ordering among operations
is needed (e.g., order-violation bugs). Because in this work
we focus on atomicity-violation faults, we will consider
faults related to the wrong usage of lock primitives.

To emulate the features of most frequent atomicity-
violation faults, we adopt a fault model in which the access
to a shared variable by 2 threads is non-atomic (by omitting
lock operations), one of whose is a write access to the
variable (in order to cause an interference). This fault is
more commonly known as race condition.

B. Overview of the Concurrency Injection Technique

In order to emulate the adopted fault model, we adopt
a SFI technique consisting of two phases. In the first
phase (namely fault injection, Section V-C), we identify two
critical sections, both containing a memory access to the
same shared variable. The fault model requires the removal
of lock operations before and after a critical section.

Since this kind of fault, like Mandelbugs in general, has
a low probability to be activated, the technique includes
a second phase (namely trigger injection) for activating
the injected fault during a test. There are tools that can
be used for triggering concurrency faults, such as Chess
[15] and CTrigger [16]; they aim to detect residual faults
in concurrent programs, by systematically forcing several
thread interleavings. However, they do not assure that the
injected fault will be activated. Moreover, in this work
we want to investigate whether proper fault triggering can
improve SFI, by triggering software faults in those states not
covered during the first experimental campaign. To this aim,
we design a novel fault triggering technique (Section V-D).

Before fault injection, the technique requires to trace
input and output messages. For each message, we profile
shared memory accesses and lock usage (Figure 5). This is
information is used for removing lock operations between
and after conflicting memory accesses, and for identifying
which inputs can be used to trigger a conflict in a specific
state. Memory and lock profiling can be made by means of
profiling tools like Valgrind8.

Target

System

Memory & lock profiling

1(W), 2(R), 3(R), 4(R), …

Input message

tracing

CR(INSERT, 1),
CR(UPDATE, 1), …

Output message

tracing

FR(INSERT, 1),
FR(UPDATE, 1), …

•! List of critical sections and accesses to shared variables

•! Correlations between inputs, critical sections and accesses

to shared variables

Figure 5. Preliminary data collection.

8http://www.valgrind.org

2828

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

C. Fault Injection Phase

In the fault injection phase, the information about memory
accesses and lock operations is analyzed to identify those
critical sections that can be conflicting. In particular, the
analysis is based on the list of memory accesses to shared
variables, the type of access (read or write), and the set of
locks held during the access. A critical section is a piece
of code that atomically accesses shared memory variables;
we take into account those critical sections beginning with a
lock acquisition, and ending with a lock release. Moreover,
to keep low testing efforts, we take into account only
memory accesses performed by the application under a given
set I of inputs. The required information consists of:

• The set of critical sections accessed for each input i;
• The set of memory accesses to shared variables made

in the jth critical section;
• The lock acquired before the jth critical section;
• The shared variable sva accessed by the access a;
• The type (read or write) of each access a, that is,

type(a) = R or type(a) = W .

Table III shows the shared variables for the case study,
by using their symbolic name in the source code (although
no information about the source code is required for fault
injection). Moreover, 15 critical sections are identified; the
table shows the shared variables accessed by each critical
section, and the type of access (e.g., if critical section 11
both reads and writes a shared variable, we write “11-RW”).
The locks variable is an array representing the FDPs table.
Each element stores a set of attributes related to a FDP
request (e.g., the callback attribute is an identifier of the
requester). The shared variable state is used by the FT
Service for checkpointing; m state changed is a boolean
flag which is set when state is updated.

Table III
SHARED VARIABLES AND CRITICAL SECTIONS IN THE FDPS.

Shared variable Critical sections and access type

locks 1-RW 2-R 3-R 4-R 5-R 10-R 11-R 12-R 13-R 15-R

locks[i].id 1-W 2-R 11-R 15-R

locks[i].flag 1-W 2-RW 3-RW 11-RW 12-W 15-W

locks[i].callback 1-W 4-W 10-R 15-W

locks[i].mutex 1-W 2-R 3-R 11-R 12-R 15-W

locks[i].cond 1-W 2-R 3-R 11-R 12-R 15-W

state 5-W 8-R 11-R 12-R 13-W

m state changed 6-W 7-R 9-W 12-W 14-W

Subsequently, data on locks and memory accesses are
used to identify faults to be injected. A fault injection
experiment consists of the following steps:

1) Select any pair of critical sections such that:

a) They contain an access (respectively, a′ and a′′)
to the same shared variable, that is sva′ = sva′′ ;

b) The accesses a′ and a′′ are conflicting, that is
type(a′) = W and type(a′′) = R;

c) They hold the same lock l.
2) Remove the acquisition of lock l before the critical

section, and its subsequent release;
3) Run the test using the trigger injection technique.

Removal of lock operations can be made statically, i.e., by
modifying the binary or source code. Another option is to
make lock operations ineffective at run-time, by wrapping
functions representing primitives for lock acquisition and
release. Wrappers skip a lock operation when it is made in
a particular location. This technique can be ported to several
hardware/software platforms, and it introduces a negligible
overhead, without slowing down the system and keeping
its behavior representative [30]. Moreover, as discussed in
the following, this option is convenient for fault triggering;
therefore it has been preferred in this work.

D. Trigger Injection Phase

The fault triggering technique identifies which inputs to
submit to the system to activate an injected fault in a target
state. Figure 6 shows an example of an input sequence (the
technique will be explained in detail in the following) to
trigger a fault in 2:1:0. When the system is in state 1:1:0, the
input CRQ UPDATE is submitted. In answer to this input,
the Façade executes the critical section with the memory
access a′′. In order to enforce a specific thread scheduling
to trigger the fault, we block the thread that is going to make
the a′′ access (by means of a breakpoint9). Subsequently, a
second input CR DELETE is sent; then, the system performs
the memory access a′ (which conflicts with a′′); this event
is intercepted by means of another breakpoint, in order to
unblock the thread that is going to make the access a′′.
From this moment, the fault is active; in this example,
threads interfere with each other because a shared variable is
overwritten by thread 2 before being read by thread 1. The
system moves to state 2:1:0 when the conflicting accesses
occur.

CRQ

(UPDATE)

thread 1

thread 2

state

lock

CR

(DELETE)

FR PSC lock

read

a’’
thread 1

blocked

faulty

execution

write

a’

STOP

STOP

1:1:0 2:1:0 2:1:0 2:2:0 2:1:0

time

time

Figure 6. Input timing that triggers a fault in state 2:1:0.

9A breakpoint is an instruction (provided by most computer architectures)
that can be inserted in a program to temporarily interrupt its execution.

2929

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

To avoid fault activation before the target state is reached,
lock operations are made ineffective at run-time by means
of wrappers (Section V-C). In particular, wrappers enable
lock operations when fault triggering should be avoided, and
disable them when the fault triggering procedure begins.
It should be noted that this solution does not harm fault
representativeness; this scenario is equivalent to a dormant
fault, i.e., thread scheduling never preempts a thread when
it executes a non-atomic critical section. In this way, it is
possible to trigger a fault in a specific state.

Input selection. To identify inputs for fault triggering, we
design a procedure based on the FSM system specification
(Section IV). The procedure is based on the correlation
between input messages and memory accesses, and it is ob-
tained by preliminary analysis of the target system (Section
V-B). This information is needed to identify which inputs
the tester can submit, and how they can be used to enforce
a particular path within the FSM.

Table IV
INPUTS, MESSAGE SEQUENCES AND CRITICAL SECTIONS IN THE FDPS.

Input Messages and Memory Accesses

CR/CRQ CR/CRQ FR/FRQ PSC/PSCQ
INSERT 1, 2, 3, 4, 5, 6 7, 8, 9 10, 11, 12, 13, 14, 7, 8, 9

CR/CRQ CR/CRQ FR/FRQ PSC/PSCQ
DELETE 2, 3, 4, 5, 6 7, 8, 9 10, 11, 12, 13, 14, 15, 7, 8, 9

CR/CRQ CR/CRQ FR/FRQ PSC/PSCQ
UPDATE 2, 3, 4, 5, 6 7, 8, 9 10, 11, 12, 13, 14, 7, 8, 9

Table IV shows the correlation between inputs, message
sequences (see Table I) and critical sections occurring after
each input. Executions of the same critical section are
represented by the same integer number. Depending on the
input, a different sequence of critical sections is executed.
The proposed procedure performs the following steps:

1) Find the message sequence in Table IV that makes the
memory access a′;

2) For this message sequence, find a sub-path (first back-
ward path, FBP) in the FSM that ends in the target
state, and that contains the message sequence (recall
that edges in the FSM is associated to messages of the
system); let S be the first state of this sub-path;

3) Find the message sequence in Table IV that makes the
memory access a′′;

4) For this message sequence, find a sub-path (second
backward path, SBP) in the FSM that ends in the state
S, and that contains the message sequence;

5) The final path is obtained by connecting the SBP to
the FBP in the state S.

The sequences of messages and critical sections may also
depend on the current state of the system. This issue can be
solved during the preliminary analysis by repeating, under
every state of the system, the analysis of sequences caused

by each input. Using the additional information about states,
the algorithm can be extended to cope with state dependence
(by exploring only those paths allowed under a given state).
However, the sequences in the FDPS do not exhibit any state
dependence, and this extension was left as future work.

Fault triggering. The inputs to be submitted by the tester
for fault triggering are the initial messages of the SBP and
the FBP, respectively. More specifically, the tester has to:

1) Send the first message associated to the SBP;
2) Wait for the memory access a′′; the thread should be

blocked before the access;
3) Send the first message associated to the FBP;
4) Wait for the memory access a′; subsequently, unblock

the previous thread.
Since the tester can control fault triggering, the experi-

ment is repeatable (e.g., to enable a posteriori analysis).
Breakpoint setup. Breakpoints are exploited to drive

thread scheduling, in order to cause a faulty interleaving
between memory accesses. The first breakpoint is inserted
before the memory access a′′, in order to stop the execution
of a thread until another thread makes the memory access
a′. The second breakpoint is inserted after a′, in order to
re-enable the thread interrupted by the previous breakpoint.
It should be noted that the intrusiveness due to breakpoints
is negligible, since their delay (less than 1 ms in modern
CPUs) is much littler than other delays in complex systems
(e.g., communication and processing delays).

An example of concurrency fault trigger. We describe
an example of fault trigger identified by the proposed
procedure. The fault triggering path is shown in Figure 7,
which contains a subset of the FSM in Figure 2. Let suppose
to inject a fault in the state 2:1:0 between the critical section
8 that follows a PSC DELETE message, and critical section
2 that follows a CRQ UPDATE message (as in Figure 6).
The two critical sections make respectively a write (a′) and a
read (a′′) memory access to the same shared variable. First,
the procedure finds a sub-path (FBP) ending with a PSC
transition in 2:1:0 (steps 1, 2). The sub-path should start with
a CR or a CRQ transition, since all message sequences in
Table IV start with a CR or a CRQ request. In the example,
a suitable FBP is: 2:1:0 → CR → 2:1:0 → FR → 2:2:0 →
PSC → 2:1:0. Subsequently, the procedure finds a second
sub-path (SBP) ending with a CRQ transition in S (i.e.,
2:1:0), and starting with a CR or CRQ transition (steps 3,
4). In the example, the SBP is: 1:1:0→ CRQ→ 2:1:0. The
final path is obtained by connecting the two sub-paths in
reverse order (step 5): 1:1:0 → CRQ → 2:1:0 → CR →
2:1:0 → FR → 2:2:0 → PSC → 2:1:0.

To trigger the fault using this path (Figure 7), the tester has
to send to the system a CRQ UPDATE and a CR DELETE
request, in accordance to the timing shown in Figure 6. The
system should first reach the initial state of the path (1:1:0
in our example). The choice of the workload used to reach
the initial state does not affect the experiment; in our case

3030

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.























































Figure 7. An example of path in the FSM that can trigger a fault in 2:1:0.

study, we one of the workloads described in Section IV. The
sequence of inputs and messages in Figure 6 are the same
of the SBP and FBP, respectively.

There can be several paths that can be used to trigger
a fault in a given state. However, it is better to choose
the shortest path. In fact, it is possible that blocking a
thread may cause the stall of the program, even if lock
operations are made ineffective. For example, the thread
may have acquired a logical resource by means of a boolean
flag, which prevents further execution of other threads. By
choosing the shortest path, such a scenario will be less likely.
Nevertheless, it is neither possible to avoid this issue in all
cases, nor to know a priori if it will happen. Therefore, a
timeout has to be enforced when it is not possible to cause
a specific thread scheduling [15], [16]. If memory accesses
are not made within the timeout, the experiment is aborted.

VI. EVALUATION OF CONCURRENCY FAULT INJECTION

The concurrency fault injection technique has been used
to evaluate the FDPS in those states not adequately tested
during the first campaign (i.e., states in which the fault
activation distribution is null or very low). To this aim,
we applied the triggering technique (Section V-D) in those
states. From the experimental campaign, we identified four
pairs of critical sections that are able to cause a failure in
at least one state (Table V). Figure 8 shows a detailed view
of states in which one or more conflicting critical sections
caused a failure. During the experiments, all failures occur in
the same state in which a fault is activated, and the failures
manifest through invalid pointer dereference.

Table V
CRITICAL SECTION PAIRS LEADING TO A FAILURE.

Shared variable Critical sections Messages

locks[i].cond 2-R, 1-W CRQ, CR

locks[i].cond 11-R, 15-W PSC, PSC

locks[i].mutex 2-R, 15-W CR, PSC

locks[i].mutex 11-R, 15-W PSC, PSC

From the analysis of results, we conclude that:

 






















































Figure 8. Fault activation distribution of the concurrency fault injection
campaign. (this distribution is the same of the failure distribution)

• There are some conflicts that can be activated only in
specific states (e.g., in 2:3:0, only 1 out of 4 failure-
prone conflicts is activated). This is because it is not
possible to find a fault activation path in those target
states, or the fault is not activated within a timeout. The
problem of not activated faults is common among fault
injection techniques (e.g., G-SWFIT).

• By proper fault triggering, it is possible to trigger a
fault in almost all states not adequately tested by G-
SWFIT. Even if these states are actually failure-prone,
faults injected by G-SWFIT are seldom activated in
them. Therefore, faults by G-SWFIT do not cover
all the scenarios in which the considered system can
potentially fail.

• Only the state 0:3:0 is not covered by both experimental
campaigns. It is still possible that the system can be
affected by software faults in state 0:3:0 (e.g., by
different kinds of Mandelbugs). However, the increased
state coverage (95%) brings a significant improvement
on the confidence of the overall SFI campaign.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed an existing state-of-the-art
SFI technique, namely G-SWFIT, in the context of a real-
world fault-tolerant system for Air Traffic Control (ATC).
The analysis pointed out that faults injected by G-SWFIT
are not well representative of Mandelbugs, because most
of them manifest in the early phase of the execution, and
they deterministically affect both replicas. This has negative
effects on the state coverage, because not covered states
(35%) can potentially be affected by software faults, as
demonstrated by the second SFI campaign. The technique

3131

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

for concurrency fault injection was able to inject and trigger
faults in most of not covered states, reducing them down to
5%, and thus improving the confidence in FTM assessment.
Future work will encompass a broader analysis of G-SWFIT
on different systems, since it is likely that SFI campaigns
will suffer the same limitations of the ones observed in this
work, due to lack of control on fault activation by G-SWFIT.
Moreover, we will devote efforts to make the technique more
general, by increasing the set of faults and fault triggers, and
by adapting it to the features of more complex systems.

ACKNOWLEDGMENT

This work has been partially supported by the project
”CRITICAL Software Technology for an Evolutionary Partner-
ship” (CRITICAL-STEP, http://www.critical-step.eu), Marie Curie
Industry-Academia Partnerships and Pathways (IAPP) number
230672, within the context of the Seventh Framework Programme
(FP7).

REFERENCES

[1] J. Gray, “Why Do Computers Stop and What Can Be Done
About It?” in Proc. 5th Symp. on Reliability in Distributed
Software and Database Systems, 1985.

[2] I. Lee and R. Iyer, “Faults, Symptoms, and Software Fault
Tolerance in the Tandem GUARDIAN90 Operating System,”
in Proc. 23th Symp. on Fault-Tolerant Computing, 1993.

[3] M. Sullivan and R. Chillarege, “Software Defects and their
Impact on System Availability: A Study of Field Failures in
Operating Systems,” in Proc. Intl. Symp. on Fault-Tolerant
Computing, 1991.

[4] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have
Things Changed Now?: An Empirical Study of Bug Char-
acteristics in Modern Open Source Software,” in Proc. 1st
workshop on Architectural and System Support for Improving
Software Dependability, 2006.

[5] M. Grottke and K. Trivedi, “Fighting Bugs: Remove, Retry,
Replicate, and Rejuvenate,” IEEE Computer, vol. 40, no. 2,
2007.

[6] S. Chandra and P. Chen, “Whither Generic Recovery from
Application Faults? A Fault Study using Open-Source Soft-
ware,” in Proc. Intl. Conf. on Dependable Systems and
Networks, 2000.

[7] S. Maffeis and D. Schmidt, “Constructing Reliable Dis-
tributed Communication Systems with CORBA,” IEEE Com-
munications Magazine, vol. 35, no. 2, 1997.

[8] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: Treating
Bugs as Allergies—A Safe Method to Survive Software
Failures,” in Symp. on Operating Systems Principles, 2005.

[9] J. Christmansson and P. Santhanam, “Error Injection Aimed
at Fault Removal in Fault Tolerance Mechanisms–Criteria for
Error Selection using Field Data on Software Faults,” in Proc.
of Intl. Symp. on Software Reliability Engineering, 1996.

[10] W. Ng and P. Chen, “The Systematic Improvement of Fault
Tolerance in the Rio File Cache,” in Proc. 29th Intl. Symp.
on Fault-Tolerant Computing, 1999.

[11] R. Moraes, J. Durães, R. Barbosa, E. Martins, and H. Madeira,
“Experimental Risk Assessment and Comparison using Soft-
ware Fault Injection,” in Proc. Intl. Conf. on Dependable
Systems and Networks, 2007.

[12] J. Christmansson and R. Chillarege, “Generation of an Error
Set that Emulates Software Faults based on Field Data,” in
Proc. Intl. Symp. on Fault-Tolerant Computing, 1996.

[13] H. Madeira, D. Costa, and M. Vieira, “On the Emulation of
Software Faults by Software Fault Injection,” in Proc. Intl.
Conf. on Dependable Systems and Networks, 2000.

[14] J. Durães and H. Madeira, “Emulation of Software faults: A
Field Data Study and a Practical Approach,” IEEE Transac-
tions on Software Engineering, vol. 32, no. 11, 2006.

[15] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar,
and I. Neamtiu, “Finding and Reproducing Heisenbugs in
Concurrent Programs,” in Proc. 8th Symp. on Operating
Systems Design and Implementation, 2008.

[16] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places,” in Proc. 14th Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, 2009.

[17] D. Dig, J. Marrero, and M. Ernst, “Refactoring Sequential
Java Code for Concurrency via Concurrent Libraries,” in
Proc. 31st Intl. Conf. on Software Engineering, 2009.

[18] W. Howden, “Weak Mutation Testing and Completeness
of Test Sets,” IEEE Transactions on Software Engineering,
vol. 8, no. 4, 1982.

[19] M. Daran and P. Thévenod-Fosse, “Software Error Analysis:
A Real Case Study Involving Real Faults and Mutations,” in
Proc. Intl. Symp. on Software Testing and Analysis, 1996.

[20] W.-I. Kao, R. Iyer, and D. Tang, “FINE: A Fault Injection
and Monitoring Environment for Tracing the UNIX System
Behavior under Faults,” IEEE Transactions on Software En-
gineering, vol. 19, no. 11, 1993.

[21] J. Christmansson, M. Hiller, and M. Rimen, “An Experimen-
tal Comparison of Fault and Error Injection,” in Proc. Intl.
Symp. on Software Reliability Engineering, 1998.

[22] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman,
“Predicting How Badly “Good” Software Can Behave,” IEEE
Software, vol. 14, no. 4, 1997.

[23] A. Johansson, N. Suri, and B. Murphy, “On the Impact of
Injection Triggers for OS Robustness Evaluation,” in The 18th
Intl. Symp. on Software Reliability Engineering, 2007.

[24] R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins,
and H. Madeira, “Injection of Faults at Component Interfaces
and Inside the Component Code: Are They Equivalent?” in
European Dependable Computing Conference, 2006.

[25] D. Avresky, J. Arlat, J. Laprie, and Y. Crouzet, “Fault Injec-
tion for Formal Testing of Fault Tolerance,” IEEE Transac-
tions on Reliability, vol. 45, no. 3, 1996.

[26] A. Arazo and Y. Crouzet, “Formal Guides for Experimentally
Verifying Complex Software-Implemented Fault Tolerance
Mechanisms,” in Proc. Intl. Conf. on Engineering of Complex
Computer Systems, 2001.

[27] A. Ambrosio, F. Mattiello-Francisco, V. Santiago, W. Silva,
and E. Martins, “Designing Fault Injection Experiments Using
State-Based Model to Test a Space Software,” Lecture Notes
in Computer Science, vol. 4746, 2007.

[28] R. Chandra, R. Lefever, K. Joshi, M. Cukier, and W. Sanders,
“A Global-State-Triggered Fault Injector for Distributed Sys-
tem Evaluation,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2004.

[29] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes
— A Comprehensive Study on Real World Concurrency Bug
Characteristics,” in Proc. Intl. Conf. on Architecture Support
for Programming Languages and Operating Systems, 2008.

[30] P. Marinescu and G. Candea, “LFI: A Practical and General
Library-Level Fault Injector,” in Proc. Intl. Conf. on Depend-
able Systems and Networks, 2009.

3232

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on June 07,2010 at 08:56:32 UTC from IEEE Xplore. Restrictions apply.

