
Software Aging and Rejuvenation: Where we are and where we are going

Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, Stefano Russo
Dipartimento di Informatica e Sistemistica

Università degli Studi di Napoli Federico II
Via Claudio 21, 80125, Naples, Italy

{cotroneo, roberto.natella, roberto.pietrantuono, sterusso}@unina.it

Abstract—After 16 years, a significant body of knowledge has
been established in the area of Software Aging and Rejuvena-
tion (SAR). In this paper, we survey papers about SAR that
appeared in IEEE conferences and journals, identify where
SAR research has been mostly focused, and highlight some
aspects deserving more attention, with the aim to provoke a con-
structive discussion among SAR researches about where SAR
has arrived and where it should be headed in the next future.

Keywords-Software Aging; Software Rejuvenation; Survey

I. INTRODUCTION

Since 1995, year of publication of the seminal work
of Huang et al. [1], much efforts have been devoted to
characterize and mitigate the Software Aging phenomenon,
that is, the accumulation of errors occurring in long-running
operational software systems that leads to progressive resource
depletion, performance degradation, and eventually to the
hang or crash of the software system. As a result, a significant
body of knowledge has been established and an international
community of researchers in the area of Software Aging and
Rejuvenation (SAR) has grown. Therefore, after 16 years,
it is reasonable to look at what has been made, what has
still to be accomplished to transfer the results to the industry
world, and which are the future challenges for the SAR
community. Starting from the analysis of 71 papers, which
appeared in IEEE conferences and journals, this paper tries to
identify where SAR research has been mostly focused, and to
highlight some aspects which still deserve more attention by
the SAR community. The aim is to stimulate a constructive
discussion among SAR researches about where SAR has
arrived and where it should be headed in the next future.

In Section II, we describe how SAR research papers have
been collected. Section III reviews SAR literature with respect
to four dimensions. Section IV concludes the paper with open
issues and research opportunities.

II. ANALYSIS OF LITERATURE

To have a picture of the current status of SAR literature, we
analyzed some of the most important conference proceedings
and journals. The steps followed for the analysis are:

Search engine. We relied on IEEE Xplore
(http://ieeexplore.ieee.org/) to conduct the analysis.

Selection of conferences and journals. This preliminary
analysis focused on the most relevant conferences/journals

in the field of dependability, also considering the workshops
held jointly with them: International Conference on
Dependable Systems and Networks (DSN), International
Symposium on Fault Tolerant Computing (FTCS), Pacific Rim
International Symposium on Dependable Computing (PRDC),
International Symposium on Software Reliability Engineering
(ISSRE), International Symposium on Reliable Distributed
Systems (SRDS), Transactions on Software Engineering
(TSE), Transactions on Reliability (TR), Transactions on
Computers (TC), Transactions on Dependable and Secure
Computing (TDSC). In addition, we also considered part
of the software engineering community (by querying for
“software engineering” in the proceedings or journal title),
addressing conferences/journals like International Symposium
on Empirical Software Engineering (ISESE), International
Conference on Software Engineering (ICSE), World Congress
on software Engineering (WCSE), and other minor conferences.

Search criteria. The research has been carried out by
querying for the words “aging”, or “rejuvenation”, or “leak”
in the metadata of the IEEEXplore research engine (e.g., title,
abstract, keywords, etc.). Note that in the case of software
engineering, the word “aging”, as well as “rejuvenation”
has a different meaning: it indicates the software becoming
obsolete, e.g., because of changed requirements, maintenance
actions, and so on. As a result, most of the papers found in
that case is not related to software aging as intended by the
dependability community. Actually, only 8 papers of software
engineering community are related to SAR. It should be noted
that some papers on SAR appeared in venues not published
by the IEEE or related to other computer science fields, and
that we focus our analysis on the ones previously mentioned.

In Figure 1, the number of papers per year is reported. As
may be noted, since 1995, the trend is increasing. A sharp
increase of scientific productivity of the SAR community was
fostered by the 2008 WoSAR workshop, which took place
for the first time in that year. The venues preferred for SAR
studies were ISSRE (30), DSN (12), and PRDC (8).

III. WHERE WE ARE

Past work on SAR can be analyzed with respect to several
dimensions. We here consider four dimensions, namely:

• the type of analysis that has been conducted,
• the type of system to which the work is related,

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

'(
()
"

'(
(%
"

'(
(*
"

'(
(&
"

'(
((
"

#!
!!
"

#!
!'
"

#!
!#
"

#!
!+
"

#!
!$
"

#!
!)
"

#!
!%
"

#!
!*
"

#!
!&
"

#!
!(
"

#!
'!
"

#!
''
"

!"
#$

%&
'(
)*

+,
-"

./)0"

Figure 1. SAR publications per year in IEEE journals and conference
proceedings.

• the aging indicators analyzed, and
• the rejuvenation approach adopted or proposed.
We believe that these dimensions provide insights on

interesting research directions that could be pursued by the
Software Aging and Rejuvenation community.

A. Type of analysis

From the point of view of the type of analysis, most SAR
work focuses on predicting the time-to-aging-failure and on
optimal scheduling of software rejuvenation strategies. Two
main categories can be identified among these works, that
is, model-based analyses and measurement-based analyses.
In model-based analyses, a mathematical model of the system
is considered, that include states in which the system is
correctly working, states in which the system is failure-prone,
and states in which software rejuvenation is taking place.
Several kinds of model have been considered for this purpose,
such as Markov Decision Processes and Stochastic Petri
Nets [2], [3]. These studies typically aim at identifying the
optimal time for applying software rejuvenation strategies
in order to maximize availability or performability in the
long term. Measurement-based analyses are instead based
on data collected from a system about resource usage (e.g.,
free physical memory and used swap space) and performance
(e.g., response throughput and latency) [4], [5]. These data
are processed using algorithms for time series analysis and
machine learning, in order to identify resource exhaustion
/ performance degradation trends. One of the aims of these
studies is to provide a support to on-line planning of software
rejuvenation, in order to predict aging failures in the short
term and to adapt rejuvenation to the actual workload
and resource consumption of the system. Another aim of
measurement-based analysis is to provide empirical data
about the software aging phenomenon; for instance, this
data could be used to populate mathematical models. We
also consider hybrid analyses, in which the approaches of
measurement- and model-based approaches are combined,
e.g., by populating models with actual measurements and to
validate the effectiveness of models with respect to real aging

failures. Finally, we consider another class of studies (referred
to as ”other”) that do not belong to the classes previously
mentioned. These studies are focused on various topics such
as field-data analysis of aging-related bugs [6] and debugging
techniques tailored to these bugs [7], and software rejuvenation
techniques (these are discussed in section III-D) [8].

!"#$%&'()$#*
+,-*

!$()./$0$12&
'()$#*
34-*

56'/7#*
8-*

92:$/*
38-*

Figure 2. Type of analysis.

The distribution of the types of analysis is shown in Figure 2.
Model-based analyses represent the largest share. Many
studies have been devoted to analyze alternative models of
systems affected by software aging: indeed, these models are
needed in order to take into account different kinds of system
(e.g., single-server and cluster systems) and rejuvenation (e.g.,
perfect and imperfect rejuvenation) [9], [10]. Instead, hybrid
analyses represent a very small part of SAR studies. We
believe that this kind of analysis deserves more attention, since
it is fundamental to the adoption of model-based approaches in
real-worlds systems. Indeed, following the hybrid approaches
it is possible to provide examples on how measurements,
which are already collected by modern systems for monitoring
and debugging purposes, can be exploited to mitigate
software aging and improve availability, and performability.
Furthermore, the application of software rejuvenation
schedules to real systems could serve to provide evidence that
model-based approaches are effective at improving availability
and performability. A notable example of cross-check between
models and real failures can be found in [11].

B. Type of system

An important issue regards the type of system on
which aging is analyzed, and/or rejuvenation actions are
implemented. Software aging has been shown to affect many
kinds of long-running software systems. We distinguish
the analyzed papers in three classes: safety critical systems,
non-safety-critical systems, unspecified, according to the
employment scenarios. The first class indicates systems
employed in scenarios that are critical from the safety point
of view, i.e., systems whose malfunctioning may cause
serious damages or loss of human lives; the non-safety-critical
systems class includes business and mission-critical scenarios,

but not safety-critical ones. For instance, a Web Server or a
DBMS are typically employed in non-safety-critical scenarios.
The class unspecified refers to papers that do not present an
experimentation on real systems, but that use simulation or
numerical examples to demonstrate the validity of their results.

Figure 3 shows that, although safety-critical systems are
designed to respect stringent dependability requirements and
are tested extensively, a non-negligible percentage of papers
have reported aging phenomena in this class of systems. This
confirms that aging problems are very difficult to detect in
the development phase. Moreover, it should be noted that
many papers (49%) do not perform experiments on
real software systems. The greatest part of these papers
present model-based approaches for time-based rejuvenation,
and validate their approach by numerical examples.

!"#$%&'()*$
+,-.+&/0
1120

3&'()*$+,-.+&/0
420

5#%6(+-7(80
1920

Figure 3. Type of system.

C. Aging indicators

Past studies have also been categorized with respect to the
kind of software aging issue that has been investigated. Many
studies propose models and approaches to deal with resource
depletion trends, regardless of which specific resource is
affected by depletion (i.e., it seems it has been assumed that the
approach could be applied to rejuvenate any kind of resource).
These papers are marked as ”unspecified” in Figure 4. Most of
remaining work focuses on software aging trends representing
memory consumption, performance degradation or both (see for
instance [4], [5]). These two aspects are the most frequent is-
sues occurring in non-safety-critical systems (see section III-B).
These issues have less relevance for safety-critical systems.
For instance, in the case of software that undergoes a safety
certification process, dynamic memory management is typically
avoided in order to accomplish the most stringent safety levels.
By contrast, none of analyzed papers tackled arithmetic
issues, such as the accumulation of round-off errors.
These errors are much more relevant in safety-critical contexts,
since software is adopted in control systems. Suffice to think
that many of the analyzed works, including ours, cited in their
introduction the problem of the Patriot missile system but
unfortunately only one work discussed issues related to it [12].

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

!"
#$

%&
'(
)*

+,
-" '()*+,"-*./0)12*."

3(+4*+)5.-("6(7+5652*."

89:(+";//0(/"

<./1(-;=(6"

Figure 4. Aging indicators considered in past work.

D. Software rejuvenation approaches

The fourth dimension against which we evaluated SAR
studies is with respect to the software rejuvenation actions that
were proposed or adopted to counteract software aging. The
most of SAR papers are focused on determining the optimal
schedule to perform rejuvenation, by either analytical models
(i.e., time-based rejuvenation), or by measurements (i.e.,
prediction-based rejuvenation). In this section, the attention
is focused on techniques adopted to rejuvenate the system.
Rejuvenation aims to bring the software from a failure-prone
state (which is the result of errors accumulated due to software
aging) to an aging-free state. Therefore, rejuvenation techniques
can be compared with respect to how the state is processed and
the resulting aging-free state that is achieved after rejuvenation.

We distinguish between Application-generic actions,
Application-specific actions, and Unspecified. Application-
generic actions are further classified in: Component Restart,
Application Restart, VM/VMM (Virtual Machine, or Virtual
Machine Monitor) Restart, Node Reboot, Cluster Failover.
These actions are generic since they do not make use of
application-specific features, but rely on restarting the system
or its components to perform software rejuvenation, or
they activate another copy of the system. By following this
approach, the system or the component being rejuvenated is
brought to its initial state, which is assured to be aging-free.
This kind of rejuvenation is simple to implement since it
makes use of initialization mechanisms of the system, and
for this reason it is the most widespread.

By contrast, application-specific rejuvenation is tailored for a
specific system: it aims at reducing the cost required to perform
rejuvenation (i.e., the downtime and performance loss due to
rejuvenation), by cleaning a specific aging-affected resource.
This kind of rejuvenation introduces additional mechanisms
in the system, and developers exploit peculiar features of the
system or the resource. Some examples of application-specific
rejuvenation are represented by garbage collection, kernel table
flushing, defragmentation. State checkpointing mechanisms
could also be adopted, although they need to be tailored to

the specific application in order to save only the relevant part
of the system state and avoid to include aging-related errors in
the checkpoint [13]. These techniques are effective at reducing
the cost of rejuvenation since they do not bring the system
to its initial state, and avoid to redo work for reconstructing
the relevant system state (e.g., to restart transactions that
were taking place at the time of rejuvenaton). This issue is
negligible in the case of stateless applications (e.g., a web
server), although it has great importance in the case of stateful
applications that are adopted in critical systems.

The third class is “unspecified”: this class includes those pa-
pers where the focus is on determining the optimal rejuvenation
time, no matter what specific policy is adopted (e.g., many of
these are model-based papers, where there is no application on
which experiments are performed). In these studies, application-
generic rejuvenation is often implicitly assumed.

Figure 5 shows the distribution among the three mentioned
classes, as well as the distribution for the application-generic
subcategories. The “unspecified” class accounts for 59%
of the total, which denotes that the focus is often on
optimal time scheduling rather than on the design of
more effective rejuvenation actions. Among application-
generic actions, the most common one is the Application
Restart, whereas selective rejuvenation actions (e.g., VMM
or component restarts) represent a small share.

IV. WHERE WE ARE GOING

The preliminary survey presented in this paper attempts to
reveal the trends followed by the software aging researchers
in these years. Dimensions adopted for classifying the papers
help us getting useful hints.

The first dimension highlighted that a lot of effort has
been spent on designing analytical models for rejuvenation
time scheduling. These models are becoming more and more
refined and comprehensive; however, the works addressing
aging by models often lack experimentation on real systems.
Most often, models are validated by numerical examples,
or by simulation, but to make them actually applicable in
operational systems assumptions need to be verified against
real system behavior. One relevant research opportunity we
identify is about the further development of hybrid (i.e., model
and measurement based) approaches, along with an increasing
application in real-world systems. This would also provide
examples of how software rejuvenation strategies can be
applied, and encourage their adoption by practitioners. Toward
this direction, the implementation of online monitoring and
aging estimation frameworks may represent a valuable support
in order to increase in the industrial world the perception and
the awareness of the software aging problem.

The need for additional experimentation on real systems is
also highlighted from the second dimension that we adopted.
The non-negligible percentage of aging symptoms in safety-
critical systems suggests us that: i) it is certainly worth to
further investigate aging phenomena in safety-critical systems,

since although well-tested they show to suffer from aging; ii)
more attention to aging-related bugs is needed in the design
and validation of safety-critical systems, since aging-related
bugs can affect reliability requirements that are imposed on
long-running systems by safety certification standards.

The analysis of aging indicators in Section III-C reports
that memory-related and performance indicators received the
same attention; however, further research is needed for the
investigation of more complex software aging manifestations.
There is evidence of several other types of aging bugs,
such as numerical errors, storage-related bugs (e.g., when
a bug consumes disk space), bugs related to the management
of system-dependent data structures (e.g., shared memory
pools in DBMSs). In particular, we did not find any suitable
approach to cope with the accumulation of numerical errors,
for which there is not an aging indicator that could be used
by traditional model- or measurement-based analyses. Another
missing piece of the puzzle is represented by a comprehensive
analysis of real aging bugs.

Finally, in Section III-D we analyzed software rejuvenation
approaches. From results, it is clear that much literature is de-
voted to the optimal schedule determination. A potential direc-
tion to further reduce the cost of software rejuvenation regards
the development of more efficient techniques for rejuvenating
a system. The problem of accounting for the state of the appli-
cation may be addressed in the future, as well as the implemen-
tation of additional mechanisms that try to minimize the down-
time by selectively rejuvenating part of the system. The adop-
tion of these rejuvenation strategies among developers could
be encouraged by the integration of rejuvenation mechanisms
at the OS or middleware level and in programming languages.

REFERENCES

[1] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
rejuvenation: analysis, module and applications,” in Fault-
Tolerant Computing, 1995. FTCS-25. Digest of Papers,
Twenty-Fifth Int’l. Symp.

[2] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of
software rejuvenation using markov regenerative stochastic
petri net,” in Software Reliability Engineering, 1995. Proc.,
Sixth Int’l. Symp.

[3] Y. Bao, X. Sun, and K. Trivedi, “A workload-based analysis
of software aging, and rejuvenation,” Reliability, IEEE
Transactions on, vol. 54, no. 3, sept. 2005.

[4] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A
methodology for detection and estimation of software aging,” in
Software Reliability Engineering, 1998. Proc. Ninth Int’l. Symp.

[5] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis
of software aging in a web server,” Reliability, IEEE
Transactions on, vol. 55, no. 3, sept. 2006.

[6] M. Grottke, A. Nikora, and K. Trivedi, “An empirical
investigation of fault types in space mission system software,”
in Dependable Systems and Networks (DSN), 2010 Int’l. Conf.

[7] H. Zhang, G. Wu, K. Chow, Z. Yu, and X. Xing, “Detecting
resource leaks through dynamical mining of resource usage
patterns,” in Dependable Systems and Networks Workshops
(DSN-W), 2011 41st Int’l. Conf.

!"#$%&'(%)*
+,-*

.$$/'&012"3
#$%&'(&*

4%567%"012"*
89-*

:2;$2"%"<*4%#<04<*
=-*

.$$/'&012"*
4%#<04<*
88-*

>?*@*
>??*
4%#<04<*
=-*

A2)%*4%B22<*
C-*

:/6#<%4*D0'/27%4*
C-*

.$$/'&012"3E%"%4'&*
4%567%"012"*

F+-*

Figure 5. Software rejuvanation approaches.

[8] K. Kourai and S. Chiba, “Fast software rejuvenation of virtual
machine monitors,” Dependable and Secure Computing, IEEE
Transactions on, vol. 8, no. 6, nov.-dec. 2011.

[9] W. Xie, Y. Hong, and K. Trivedi, “Software rejuvenation policies
for cluster systems under varying workload,” in Dependable
Computing, 2004. Proc. 10th IEEE Pacific Rim Int’l. Symp.

[10] V. Koutras and A. Platis, “Modeling perfect and minimal rejuve-
nation for client server systems with heterogeneous load,” in De-
pendable Computing, 2008. 14th IEEE Pacific Rim Int’l. Symp.

[11] R. Matias, K. Trivedi, and P. Maciel, “Using accelerated life
tests to estimate time to software aging failure,” in Software
Reliability Engineering (ISSRE), 2010 IEEE 21st Int’l. Symp.

[12] M. Grottke, R. Matias, and K. Trivedi, “The fundamentals of
software aging,” in Software Reliability Engineering Workshops,
2008. IEEE Int’l. Conf.

[13] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala,
“Checkpointing and its applications,” in Fault-Tolerant Comput-
ing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth Int’l. Symp.

[14] K. Cassidy, K. Gross, and A. Malekpour, “Advanced pattern
recognition for detection of complex software aging phenomena
in online transaction processing servers,” in Dependable
Systems and Networks, 2002. Proc. Int’l. Conf.

[15] K. Kourai and S. Chiba, “A fast rejuvenation technique for
server consolidation with virtual machines,” in Dependable
Systems and Networks, 2007. 37th Int’l. Conf.

[16] J. Alonso, J. Torres, J. Berral, and R. Gavalda, “Adaptive
on-line software aging prediction based on machine learning,”
in Dependable Systems and Networks (DSN), 2010 Int’l. Conf.

[17] A. Avritzer, A. Bondi, M. Grottket, K. Trivedi, and E. Weyuker,
“Performance assurance via software rejuvenation: Monitoring,
statistics and algorithms,” in Dependable Systems and Networks,
2006. Int’l. Conf.

[18] A. Tai, K. Tso, W. Sanders, and S. Chau, “A performability-
oriented software rejuvenation framework for distributed
applications,” in Dependable Systems and Networks, 2005.
Proc. Int’l. Conf.

[19] R. Hanmer and V. Mendiratta, “Rejuvenation with workload
migration,” in Dependable Systems and Networks Workshops
(DSN-W), 2010 Int’l. Conf.

[20] Y. Bao, X. Sun, and K. Trivedi, “Adaptive software rejuvenation:
degradation model and rejuvenation scheme,” in Dependable
Systems and Networks, 2003. Proc. 2003 Int’l. Conf.

[21] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and Y. Liu,
“Software aging and multifractality of memory resources,” in
Dependable Systems and Networks, 2003. Proc. 2003 Int’l. Conf.

[22] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda,
“Reducing recovery time in a small recursively restartable
system,” in Dependable Systems and Networks, 2002. Proc.
Int’l. Conf.

[23] L. Silva, V. Batista, and J. Silva, “Fault-tolerant execution of
mobile agents,” in Dependable Systems and Networks, 2000.
Proc. Int’l. Conf.

[24] Y.-F. Jia, J.-Y. Su, and K.-Y. Cai, “A feedback control approach
for software rejuvenation in a web server,” in Software
Reliability Engineering Workshops, 2008. IEEE Int’l. Conf.

[25] H. Suzuki, T. Dohi, N. Kaio, and K. Trivedi, “Maximizing inter-
val reliability in operational software system with rejuvenation,”
in Software Reliability Engineering, 2003. 14th Int’l. Symp.

[26] H. Okamura, S. Miyahara, and T. Dohi, “Dependability analysis
of a client/server software system with rejuvenation,” in
Software Reliability Engineering, 2002. Proc. 13th Int’l. Symp.

[27] H. Shetty, M. Nambiar, and H. Kalita, “Analysis and application
of conditional software rejuvenation—a new approach,” in Soft-
ware Reliability Engineering Workshops, 2008. IEEE Int’l. Conf.

[28] F. Machida, D. S. Kim, J. S. Park, and K. Trivedi, “Toward
optimal virtual machine placement and rejuvenation scheduling
in a virtualized data center,” in Software Reliability Engineering
Workshops, 2008. IEEE Int’l. Conf.

[29] A. Avritzer, R. Cole, and E. Weyuker, “Methods and
opportunities for rejuvenation in aging distributed software
systems,” in Software Reliability Engineering Workshops, 2008.
IEEE Int’l. Conf.

[30] A. Bobbio, S. Garg, M. Gribaudo, A. Horvath, M. Sereno,
and M. Telek, “Compositional fluid stochastic petri net model
for operational software system performance,” in Software
Reliability Engineering Workshops, 2008. IEEE Int’l. Conf.

[31] Y. Liu, K. Trivedi, Y. Ma, J. Han, and H. Levendel, “Modeling
and analysis of software rejuvenation in cable modem
termination systems,” in Software Reliability Engineering,
2002. Proc. 13th Int’l. Symp.

[32] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Soft-
ware aging analysis of the linux operating system,” in Software
Reliability Engineering (ISSRE), 2010 IEEE 21st Int’l. Symp.

[33] K. Vaidyanathan and K. Trivedi, “A measurement-based model
for estimation of resource exhaustion in operational software
systems,” in Software Reliability Engineering, 1999. Proc.
10th Int’l. Symp.

[34] V. Koutras, A. Platis, and N. Limnios, “Availability and
reliability estimation for a system undergoing minimal, perfect
and failed rejuvenation,” in Software Reliability Engineering

Workshops, 2008. IEEE Int’l. Conf.
[35] H. Okamura and T. Dohi, “Availability optimization in

operational software system with aperiodic time-based software
rejuvenation scheme,” in Software Reliability Engineering
Workshops, 2008. IEEE Int’l. Conf.

[36] K. Rinsaka and T. Dohi, “Non-parametric predictive inference
of adaptive software rejuvenation schedule,” in Software
Reliability Engineering Workshops, 2008. IEEE Int’l. Conf.

[37] X. Wang, J. Xu, and C. Pham, “An effective method to
detect software memory leakage leveraged from neuroscience
principles governing human memory behavior,” in Software
Reliability Engineering, 2004. 15th Int’l. Symp.

[38] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo,
“An experiment in memory leak analysis with a mission-critical
middleware for air traffic control,” in Software Reliability
Engineering Workshops, 2008. IEEE Int’l. Conf.

[39] F. Salfner and K. Wolter, “A queuing model for service
availability of systems with rejuvenation,” in Software
Reliability Engineering Workshops, 2008. IEEE Int’l. Conf.

[40] J. Zhao, K. Trivedi, Y. Wang, and X. Chen, “Evaluation of
software performance affected by aging,” in Software Aging and
Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop on.

[41] R. Matias, I. Beicker, B. Leitao, and P. Maciel, “Measuring
software aging effects through os kernel instrumentation,” in
Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second
Int’l. Workshop on.

[42] D. Cotroneo, R. Natella, and R. Pietrantuono, “Is software
aging related to software metrics?” in Software Aging and
Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop on.

[43] H. Okamura and T. Dohi, “Performance-aware software rejuve-
nation strategies in a queueing system,” in Software Aging and
Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop on.

[44] A. Macedo, T. Ferreira, and R. Matias, “The mechanics
of memory-related software aging,” in Software Aging and
Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop on.

[45] P. Reinecke and K. Wolter, “A simulation study on the
effectiveness of restart and rejuvenation to mitigate the effects
of software ageing,” in Software Aging and Rejuvenation
(WoSAR), 2010 IEEE Second Int’l. Workshop on.

[46] A. Platis and V. Koutras, “Software rejuvenation on a pki,”
in Software Aging and Rejuvenation (WoSAR), 2010 IEEE
Second Int’l. Workshop on.

[47] J. Magalhaes and L. Silva, “Prediction of performance
anomalies in web-applications based-on software aging
scenarios,” in Software Aging and Rejuvenation (WoSAR),
2010 IEEE Second Int’l. Workshop on.

[48] F. Machida, D. S. Kim, and K. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system,” in
Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second
Int’l. Workshop on.

[49] M. Moreno and L. Soares, “Resilient hypermedia presentations,”
in Software Aging and Rejuvenation (WoSAR), 2010 IEEE
Second Int’l. Workshop on.

[50] K. Vaidyanathan, D. Selvamuthu, and K. Trivedi, “Analysis
of inspection-based preventive maintenance in operational
software systems,” in Reliable Distributed Systems, 2002. Proc.
21st IEEE Symp.

[51] D. Cotroneo, S. Orlando, and S. Russo, “Characterizing
aging phenomena of the java virtual machine,” in Reliable
Distributed Systems, 2007. 26th IEEE Int’l. Symp.

[52] T. Dohi, T. Danjou, and H. Okamura, “Optimal software
rejuvenation policy with discounting,” in Dependable

Computing, 2001. Proc. 2001 Pacific Rim Int’l. Symp.
[53] T. Dohi, K. Goseva-Popstojanova, and K. Trivedi, “Statistical

non-parametric algorithms to estimate the optimal software
rejuvenation schedule,” in Dependable Computing, 2000. Proc.
2000 Pacific Rim Int’l. Symp.

[54] G. A. Hoffmann, K. S. Trivedi, and M. Malek, “A best practice
guide to resources forecasting for the apache webserver,” in
Dependable Computing, 2006. 12th Pacific Rim Int’l. Symp.

[55] T. Tsai, K. Vaidyanathan, and K. Gross, “Low-overhead
run-time memory leak detection and recovery,” in Dependable
Computing, 2006. 12th Pacific Rim Int’l. Symp.

[56] C. Fetzer and K. Hogstedt, “Rejuvenation and failure detection
in partitionable systems,” in Dependable Computing, 2001.
Proc. 2001 Pacific Rim Int’l. Symp.

[57] V. Sundaram, S. HomChaudhuri, S. Garg, C. Kintala,
and S. Bagchi, “Improving dependability using shared
supplementary memory and opportunistic micro rejuvenation in
multi-tasking embedded systems,” in Dependable Computing,
2007. 13th Pacific Rim Int’l. Symp.

[58] A. van Moorsel and K. Wolter, “Analysis of restart mechanisms
in software systems,” Software Engineering, IEEE Transactions
on, vol. 32, no. 8, aug. 2006.

[59] L. Silva, J. Alonso, and J. Torres, “Using virtualization to
improve software rejuvenation,” Computers, IEEE Transactions
on, vol. 58, no. 11, nov. 2009.

[60] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of
preventive maintenance in transactions based software systems,”
Computers, IEEE Transactions on, vol. 47, no. 1, jan 1998.

[61] K. Vaidyanathan and K. Trivedi, “A comprehensive model
for software rejuvenation,” Dependable and Secure Computing,
IEEE Transactions on, vol. 2, no. 2, april-june 2005.

[62] R. Matias, P. Barbetta, K. Trivedi, and P. Filho, “Accelerated
degradation tests applied to software aging experiments,”
Reliability, IEEE Transactions on, vol. 59, no. 1, march 2010.

[63] G. Hoffmann, K. Trivedi, and M. Malek, “A best practice guide
to resource forecasting for computing systems,” Reliability,
IEEE Transactions on, vol. 56, no. 4, dec. 2007.

[64] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for
estimation of software aging in a web server,” in Empirical
Software Engineering, 2002. Proc. 2002 Int’l. Symp.

[65] J. Guo, W. Li, X. Song, B. Zhang, and Y. Wang, “Software
rejuvenation strategy based on components,” in Software
Engineering, 2010 Second World Congress on.

[66] L. Jiang, X. Peng, and G. Xu, “Software rejuvenation practice,”
in Software Engineering, 2009. WRI World Congress on.

[67] Y.-F. Jia, L. Zhao, and K.-Y. Cai, “A nonlinear approach to
modeling of software aging in a web server,” in Software
Engineering Conf., 2008.15th Asia-Pacific.

[68] K. Gross, V. Bhardwaj, and R. Bickford, “Proactive detection of
software aging mechanisms in performance critical computers,”
in Software Eng. Workshop, 2002. Proc. 27th Annual NASA
Goddard/IEEE.

[69] G. Xu and A. Rountev, “Precise memory leak detection for java
software using container profiling,” in Software Engineering,
2008. ACM/IEEE 30th Int’l. Conf.

[70] B. Qu, J. Shu, Y. Huang, and Y. Lu, “Memory leak dynamic
monitor based on hook technique,” in Computational
Intelligence and Software Engineering, 2009. Int’l. Conf.

[71] Z. Alzamil, “Application of computational redundancy in
dangling pointers detection,” in Software Eng. Advances, Int’l.
Conf., 2006.

