
State-Driven Workload Generation in
Distributed Systems: System Model of an FDPS

Roberto Natella1 and Fabio Scippacercola2

1 Università degli Studi di Napoli Federico II
roberto.natella@unina.it

2 Consorzio Interuniversitario Nazionale per l’Informatica
fabio.scippacercola@consorzio-cini.it

Abstract. This report describes the system model that is adopted for
state-driven workload generation for a Flight Data Processing System.

1 System model

The system model adopted for state-driven workload generation is showed in
Figure 1. Transitions in the Petri Net represent events that can occur during
an execution. These events are logged by the Workload Generator during an
execution, in order to infer the evolution of the system and to identify whether a
target state has been reached. Events are logged by instrumenting the application
code in key points, such the entry and exit points of methods of CORBA objects.
Table 1 briefly describes the meaning of the considered events: they are related
to requests issued by processes in the system, the completion of requests, and
lock/unlock operations performed by the Façade on FDP Tables.

In Figure 1, transitions and places are grouped on the basis of their re-
lationships with components of the FDPS (Client, Façade, Processing Server,
Load-Balancing Service). The places in the uppermost part of the system model
represent the state of the FDP Table in the Façade process: in particular, the
number of tokens in places A1 . . . A6 represent the number of enqueued requests
for the FDP number 1 . . . 6. When a request is sent from the Façade to a Pro-
cessing Server, a token is removed from one of the places B1 . . . B6, and a to-
ken is added in the place BF1. In turn, a token is added to one of the places
WRK1,WRK2,WRK3 according to a load-balancing strategy, which reflect
the state of Processing Servers (busy or idle). When a Processing Server fin-
ishes, it invokes a callback method of the Façade, which unlocks the FDP and
allows the system to process the next pending request for that FDP.



2 Roberto Natella and Fabio Scippacercola

















































 





































 

 















 

    

 





















 



  

















  




Fig. 1. System model of the FDPS.



State-Driven Workload Generation in Distributed Systems 3

Table 1. FDPS events considered in the system model.

Event Description

Client FDP* A client issued a request for an FDP

Lock FDP* The Façade locked an FDP; other requests cannot access
the FDP until it is unlocked

PS enqueue FDP* A request has been forwarded to the group of Processing
Servers

PS working Host* A Processing Server started processing a request

PS end working Host* A Processing Server finished processing a request

Façade callback FDP* The Façade has been notified about the completion of
a request

Unlock FDP* The Façade unlocked an FDP

Client notify FDP* A client has been notified about the completion of a
request


	State-Driven Workload Generation in Distributed Systems: System Model of an FDPS

