
FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 1	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

ICEBERG

Industrial needs collection & state of the art surveys

Industry-Academia Partnerships and Pathways (IAPP)
Call: FP7-PEOPLE-2012-IAPP

The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°324356

Deliverable	No.:		 2.1	

Deliverable	Title:	 Industrial	needs	collection	&	state	of	the	art	surveys	

Organisation	
name			of		lead	
Contractor			for	this	
Deliverable:	

CINI	

Author(s):	 	 Roberto	Pietrantuono	
Stefano	Russo	
Ida	Licia	Battipaglia	
Claudio	Gaiani	
Luis	Fernandez	
Daniel	Rodriguez	

Work	package	
contributing		to	
the		deliverable:	

2	

Task	contributing	
to	the	deliverable:	

T	2.1,	T2.2,		T2.3	

Total	N.	of	Pages	 64	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 2	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

Table of Versions

Version	 Date	 Version	Description	 Contributors	
0.1	 11-07-2013	 Document	Structure.	Background,	Content	on	

“Background”,	“Framework”,	and	“Quality	
Standard”	Sections.			

Roberto	Pietrantuono	

0.2	 06-09-2013	 Updated	Structure.	Content	on	“Quality	of	the	
product”	section.	

Roberto	Pietrantuono	
Stefano	Russo	

0.3	 17-10-2013	 Contributions	by	other	partners	integrated	
(“Factors	impacting	quality	and	cost”	and	
“quality	based	decision	making	process”	
sections).		

Roberto	Pietrantuono,	
Luis	Fernandez,	
Daniel	Rodriguez,		
Claudio	Gaiani		
Ida	Licia	Battipaglia	

1.0	 30-10-2013	 Formatting	refinements.	Document	completed	 Roberto	Pietrantuono

	 	 	
	 	 	

	 	 	

	 	 	
	

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 3	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

TABLE	OF	CONTENTS	
1	 EXECUTIVE SUMMARY ... 4	
2	 OVERVIEW .. 5	
3	 BACKGROUND ... 6	

3.1	 Terminology ... 6	
3.2	 Main quality attributes and impacting factors .. 9	

4	 A GENERIC FRAMEWORK FOR MEASUREMENT AND ANALYSIS 12	
5	 QUALITY STANDARDS .. 15	
6	 QUALITY OF THE PRODUCT .. 20	

6.1	 Internal quality attributes and metrics .. 20	
6.2	 External quality attributes and metrics .. 24	

6.2.1	 Dependability and Security ... 24	
6.2.2	 Performance ... 29	
6.2.3	 Robustness ... 30	
6.2.4	 Usability .. 32	

7	 FACTORS IMPACTING QUALITY AND COST .. 34	
7.1	 The impact of the PROCESS .. 35	
7.2	 The impact of the ENVIRONMENT ... 37	
7.3	 The impact of the WORKFORCE (Human Factors) 37	
7.4	 The impact of the TECHNOLOGY .. 39	

8	 QUALITY-BASED DECISION-MAKING PROCESS ... 41	
8.1	 Introduction .. 41	
8.2	 The eight steps for a decision making process ... 43	
8.3	 The fourteen factors for the success ... 44	

8.3.1	 The effectiveness decision and the level of use of the system 45	
8.3.2	 The importance of training .. 46	
8.3.3	 The quality of the system .. 47	

8.4	 Decision-making process factors in Software Quality Assurance (SQA) 48	
8.4.1	 Actual Quality Level .. 48	
8.4.2	 Expected Quality Level ... 49	
8.4.3	 Human Factors ... 50	
8.4.4	 Economics .. 50	
8.4.5	 Time .. 50	
8.4.6	 Resources ... 50	
8.4.7	 Process ... 51	

9	 REFERENCES .. 53	
	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 4	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

1 EXECUTIVE SUMMARY

The	ICEBERG	project	intends to carry out an intensive Transfer of Knowledge (ToK)
in the Software Quality Assurance domain. To this aim, the project pursues the
following high level objectives: i) investigation of what is the current state of the art
about software quality measurement and analysis, software quality assurance,
software quality standards, software quality improvement means and strategies; ii)
definition of solutions for:

• identifying critical activities from the cost/quality point of view;
• estimating quality and related cost associated with the implementation of

quality assurance activities and with the missing, incomplete or wrong
implementation of such activities;

• monitoring and controlling quality by data collection and analysis;
implementing support means on decision-making on the next steps at quality
management level.

This document is the deliverable D2.1 of the ICEBERG project – “Industrial needs
collection and state of the art surveys”. The	objective	of	this	document	is	to	provide	
practitioners,	 working	 in	 the	 quality	 assurance	 and	 software	 process	
improvement	 area,	 with	 an	 overview	 of	 existing	 works	 concerning	 the	 main	
areas	of	software	quality,	as	well	as	to	collect	the	actual	 industrial	needs	 in	the	
field	of	quality	assurance.	The	document	will	provide	the	ICEBERG	partner	with	
the	guidelines	to	pursue	the	mentioned	project	goals.		

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 5	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

2 OVERVIEW

This	document	explores	the	state	of	the	state	of	the	art	and	of	the	practice	in	the	
software	 quality	 area,	 both	 from	 the	 literature	 point	 of	 view	 and	 from	 the	
industrial	perspective.	After	a	background	section,	meant	to	establish	a	common	
vocabulary	 for	 projects’	 partners	 and	 for	 document	 readers,	 an	 introductory	
section	follows,	which	describes	a	generic	high-level	framework	for	quality/cost	
measurement	 and	analysis	helpful	 to	 contextualize	 the	 successive	 sections	 and	
future	project’s	activities	as	well.	The	subsequent	sections	will	then	focus	on:			

1. Quality	 standards:	 What	 are	 the	 most	 common	 software	
process/product	 quality	 standards	 and	 models?	 How	 do	 they	 define	
quality,	and	how	propose	to	pursue	quality	objectives?		

2. Attributes	 and	 Metrics:	 What	 are	 the	 main	 attributes	 of	 quality	 of	
software	 products	 and	 software	 process,	 and	 the	most	 used	metrics	 to	
measure	such	attributes?	

3. Quality-related	Factors:	What	are	the	main	external	factors	that	impact	
the	quality	of	the	developed	product?	

4. Decision-making	process:	How	 is	 the	 current	decision-making	process	
supported	 in	 industry,	 and	 what	 are	 their	 needs	 with	 respect	 to	 this	
problem?	

The	review	is	oriented	to	provide	 feedback,	besides	to	 interested	practitioners,	
to	 the	 subsequent	 phases	 of	 the	 project,	 in	 which	 proper	 standards,	 metrics,	
analysis	 strategies,	 and	 industry	 requirements	 will	 be	 used	 for	 defining	 the	
quality	model	and	the	decision-making	support	method.		

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 6	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

3 BACKGROUND

3.1 TERMINOLOGY
In	the	wide	field	of	software	quality,	there	are	several	different	uses	of	terms	and	
definitions,	sometimes	in	contrast	to	each	other	especially	if	used	in	different	
contexts	(e.g.,	academia,	industry).	The	aim	of	this	Section	is	to	set	a	common	use	
of	terms	throughout	the	project.		

Software	 Quality:	 Software	 Quality	 is	 (1)	 the	 degree	 to	 which	 a	 system,	
component,	or	process	meets	specified	requirements.	(2)	The	degree	to	which	a	
system,	 component,	 or	 process	meets	 customer	 or	 user	 needs	 or	 expectations	
(IEEE 610.12 n.d.).	

Software	 quality	 assurance,	 software	 quality	 control,	 and	 software	 quality	
engineering	 are	 a	 planned	 and	 systematic	 set	 of	 activities	 to	 ensure	 quality	 is	
built	into	the	software.		

Software	 Quality	 Assurance	 (SQA):	 	 The	 function	 of	 software	 quality	 that	
assures	 that	 the	 standards,	 processes,	 and	 procedures	 are	 appropriate	 for	 the	
project	and	are	correctly	implemented (NASA 2009).		

Software	Quality	Control:	The	function	of	software	quality	that	checks	that	the	
project	 follows	 its	 standards,	 processes,	 and	 procedures,	 and	 that	 the	 project	
produces	the	required	internal	and	external	(deliverable)	products	(NASA 2009).	

Software	 Quality	 Engineering:	 The	 function	 of	 software	 quality	 that	 assures	
that	quality	is	built	into	the	software	by	performing	analyses,	trade	studies,	and	
investigations	on	the	requirements,	design,	code	and	verification	processes	and	
results	 to	 assure	 that	 reliability,	 maintainability,	 and	 other	 quality	 factors	 are	
met	(NASA 2009).					

Quality	attribute.	A	feature	or	characteristic	that	affects	an	item's	quality.	Syn:	
quality	 factor.	 (IEEE 610.12 n.d.).	 	 Note:	 ISO	 9126	 (ISO/IEC 9126 2001)	
distinguishes	 between	 (sub-)characteristic	 and	 attribute,	 the	 latter	 being	 at	
lower	 level	 and	 a	 “measurable”	 (sub-)characteristic.	 We	 do	 not	 apply	 this	
distinction	here.			

Measure.	A	quantitative	indication	of	the	extent,	amount, dimensions, capacity
or size of some attribute of a product or process.	(IEEE 729-1993 1993)	

Metric.	A	quantitative	measure	of	the	degree	to	which	a	system,	component,	or	
process	possesses	a	given	attribute	(IEEE 729-1993 1993)	and	(IEEE 610.12 n.d.).	

Measurement.	 The	 process	 by	 which	 numbers	 or	 symbols	 are	 assigned	 to	
attributes	 of	 entities	 in	 the	 real	 world	 in	 such	 a	 way	 as	 to	 describe	 them	
according	to	clearly	defined	rules.	(Fenton and Pfleeger 1998)		

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 7	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

In	 the	 following,	 definitions	 about	 fault,	 defect,	 error,	 and	 failure	 are	 reported:	
since	there	are	two	fundamental	ways	of	defining	these,	both	are	reported	in	order	
to	be	aware	of	their	use	throughout	the	project	and	avoid	each	one	coming	up	with	
his	own	definition,	creating	ambiguities.		

According	to	IEEE	standards	(software	engineering	community):	

Error:		An	error	is	a	mistake,	misconception,	or	misunderstanding	on	the	part	of	
a	software	developer.	

Defect:	 An	 imperfection	 or	 deficiency	 in	 a	 work	 product	 where	 that	 work	
product	does	not	meet	its	requirements	or	specifications	and	needs	to	be	either	
repaired	or	replaced (IEEE 1044-2009 2009).	According	to	this	standard,	a	Fault	
is	a	manifestation	of	an	error	 in	software.	A	 fault	 is	a	subtype	of	 the	supertype	
defect.	A	defect	is	a	fault	only	if	it	is	encountered	during	software	execution	(thus	
causing	a	failure);	

Fault:	A	fault	(defect)	is	introduced	into	the	software	as	the	result	of	an	error.	It	
is	 an	anomaly	 in	 the	 software	 that	may	cause	 it	 to	behave	 incorrectly,	 and	not	
according	to	its	specification.	In	this	case	fault	and	defect	are	synonymous.		

Failure:	A	failure	is	the	inability	of	a	software	system	or	component	to	perform	
its	required	functions	within	specified	performance	requirements.		

According	to	the	community	of	“dependability”	and	“fault	tolerance”:	

Fault.	A	fault	is	the	adjudged	or	hypothesized	cause	of	an	error.	A	fault	is	active	
when	it	produces	an	error,	otherwise	it	is	dormant.	(Avizienis, et al. 2004)	

Error.	An	 error	 is	 that	 part	 of	 the	 system	 state	 that	 may	 cause	 a	 subsequent	
failure:	 a	 failure	 occurs	when	 an	 error	 reaches	 the	 service	 interface	 and	 alters	
the	service.	(Avizienis, et al. 2004)	

Failure.	 A	 system	 failure	 is	 an	 event	 that	 occurs	 when	 the	 delivered	 service	
deviates	from	correct	service.	(Avizienis, et al. 2004)	

There	 is	 a	 substantial	 agreement	 on	 Failure	 and	 on	 Fault	 term	 (which	
corresponds	 roughly	 to	 defect):	 the	 fundamental	 difference	 is	 that	 an	 error	 for	
IEEE	definitions	comes	before	the	defect	(fault),	because	 it	 is	 the	human	mistake;	
for	dependability	definitions,	an	error	is	a	state	consequent	to	a	fault	activation	(it	
captures	 the	 state	 propagation	 from	 the	 fault	 activation	 to	 the	 failure	
manifestation).	 In	 the	 former	 case	 the	 chain	 is:	Error	 ->	Defect	 ->	Failure,	 in	
the	second	case	is:	Fault	->	Error	->	Failure.		

Bug:	a	bug	is	software	defect	(or	fault)	introduced	during	coding.		

Issue:	an	 issue	 is	a	notification	of	a	deviation	of	 the	provided	service	 from	the	
expected	one	as	perceived	by	the	end	user	(i.e.,	from	what	user	believes	to	be	the	
correct	service).	In	other	words,	it	may	also	not	correspond	to	an	actual	defect.		

Verification:	Confirmation	by	examination	and	provision	of	objective	evidence	
that	 specified	 requirements	 have	 been	 fulfilled (ISO/IEC 12207-2008 2008).	 In	
other	 words,	 verification	 ensures	 that	 “you	 built	 it	 right”.	 It	 applies	 to	 any	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 8	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

intermediate	 artefact,	 since	 it	 check	 conformance	 between	 an	 artefact	 and	 its	
specification	(e.g.,	a	low-level	design	against	a	low-level	design	specification).		

Validation:	 Confirmation	 by	 examination	 and	 provision	 of	 objective	 evidence	
that	the	particular	requirements	for	a	specific	intended	use	are	fulfilled	(ISO/IEC
12207-2008 2008).	 In	 other	 words,	 validation	 ensures	 that	 “you	 built	 the	 right	
thing”.	Validation	is	against	“user	requirements”,	verification	is	against	“specified	
requirements”.		

Independent	 Verification	 and	Validation	 (IV&V):	 Verification	 and	 validation	
performed	 by	 an	 organization	 that	 is	 technically,	 managerially,	 and	 financially	
independent.		

Testing:	 process	 of	 executing	 the	 software	 to	 reveal	 malfunctioning	 (i.e.,	 to	
expose	failures).	Testing	is	not	to	find	bugs,	but	to	expose	failures.	The	activities	
aimed	 at	 finding	 bugs	 is	 known	 as	 bug	 localization;	 the	 activities	 aimed	 at	
removing	bugs	(or	at	finding	and	removing	bugs)	is	known	as	debug.		

Analysis	 (Technique):	 set	 of	 activities	 aimed	 verifying	 a	 property	 of	 the	
software.	(Pezze and Young 2008)	

Static	Analysis:	 Analysis	 activity	 acting	 on	 static	 artefacts,	 for	 instance	 on	 the	
source	code. (Pezze and Young 2008)	

Dynamic	Analysis:	Analysis	activity	acting	on	dynamic	artefacts,	namely	one	the	
software	execution	traces.	(Pezze and Young 2008)	

Test	 Case:	A	 test	 case	 is	 a	 set	 of	 inputs,	 execution	 conditions,	 and	 a	 pass/fail	
criterion.	(Pezze and Young 2008)	(This	usage	follows	the	IEEE	standard.)	

Test	case	specification:	A	test	case	specification	is	a	requirement	to	be	satisfied	
by	one	or	more	actual	test	cases.	(Pezze and Young 2008)	(This	usage	follows	the	
IEEE	standard.)	

Test	suite:	A	test	suite	 is	a	set	of	 test	cases.	Typically,	a	method	 for	 functional	
testing	is	concerned	with	creating	a	test	suite.	A	test	suite	for	a	program,	system,	
or	individual	unit	may	be	made	up	of	several	test	suites	for	individual	modules,	
subsystems,	 or	 features. (Pezze and Young 2008)	 (This	 usage	 follows	 the	 IEEE	
standard.)	

Test	or	test	execution:	The	activity	of	executing	test	cases	and	evaluating	their	
results.	When	we	refer	to	"a	test,"	we	mean	execution	of	a	single	test	case,	except	
where	 context	makes	 it	 clear	 that	 the	 reference	 is	 to	execution	of	 a	whole	 test	
suite.	 (Pezze and Young 2008)	 (The	 IEEE	 standard	 allows	 this	 and	 other	
definitions.)	

	 	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 9	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

	

3.2 MAIN QUALITY ATTRIBUTES AND IMPACTING FACTORS
	

The	main	drivers	of	the	ICEBERG	project	are	the	quality	of	the	software	product	
and	cost.	In	particular,	we	aim	at	understanding:		

• What	 are	 the	 factors	 into	 an	 organization	 (e.g.,	 a	 company)	 that	 mostly	
impact	 the	 (poor)	 quality	 of	 the	 final	 software	 product.	 This	 implies	
investigating	 many	 aspects	 of	 the	 process,	 of	 the	 organization,	 of	 the	
environment,	and	in	general	of	the	context	in	which	the	product	is	built.		

• What	 is	 the	 relationship	 between	 such	 quality-impacting	 factors	 and	 cost	
factors,	 and	how	 this	 can	be	1)	measured,	2)	 controlled,	3)	 improved.	 	We	
distinguish	between	two	types	of	quality-cost	relation:		
1. a	direct	relation	 from	quality	 factors	 to	cost	 to	achieve	 that	quality	

(e.g.,	measuring	effort	and	time	to	develop	the	product	with	that	quality);	
2. an	indirect	relation	between	“missed”	quality	and	cost,	i.e.,	what	is	the	

cost	associated	with	poor	quality,	or	conversely	how	much	the	bad	quality	
costs	 (e.g.,	 in	 terms	 of	 user	 dissatisfaction,	 maintenance	 costs	 due	 to	
residual	defects,	etc.).		

To	this	aim,	we	present,	in	the	following,	our	high-level	view	of	software	quality	
and	 the	basic	 framework	 to	measure,	 control,	 improve	quality/cost,	which	will	
be	refined,	customized,	and	tailored	for	specific	contexts,	alongside	the	project.		

	

Quality	attributes	of	a	software	product	(i.e.,	product	quality)	can	be:		

Internal:	 “static”	 properties	 of	 a	 software	 artefact	 (requirements	 specification,	
design	 specification,	 code)	 as	 seen	 by	 the	 developers/managers	 within	 the	
organization.	 	 They	 are	 static	 because	 their	 measurement	 does	 not	 need	 the	
execution	of	the	software	in	its	environment.		

Examples	 are:	 Requirements	 size,	 volatility,	 completeness,	 design	 decoupling,	
modularity,	degree	of	 reuse,	code	McCabe	complexity,	 size	 in	 lines	of	code,	 fan-in,	
fan-out.		

External:	properties	of	the	software	product	that	the	final	users	can	experience	
and	 enjoy.	 It	 expresses	 therefore	 the	 dynamic	 behaviour	 of	 the	 software	 in	 its	
usage	context.		

Examples	are:	Reliability,	functional	correctness,	robustness,	usability,	portability,	
interoperability.		

Note:	 ISO	 9126	 (ISO/IEC 9126 2001)	 also	 introduces	 the	 “in-use”	 attributes,	
referring	 to	 efficacy,	 efficiency,	 safety,	 and	 satisfaction	 with	 which	 the	 software	
meet	 the	 user	 needs,	 and	 is	 related	 to	 the	 user	 perception.	 We	 neglect	 this	
distinction	 between	 external	 and	 in-use	 quality	 the	 latter	 is	 represented	 by	 too	
abstract	 and	 implicit	 attributes	 that	 are	 generally	 desirable	 for	 any	 software	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 10	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

system,	 and	 are	 therefore	 useless	 in	 the	 practice	 (rather,	 engineers	 activities	 are	
aimed	at	pursuing	one	or	more	of	the	“external”	quality	attributes).		

One	or	more	external	attributes	represent	the	desired	characteristics	of	the	final	
software	product,	 and	 the	organization	and	 the	overall	process	are	oriented	 to	
provide	high	level	of	such	quality	attributes	at	low	cost.		

External	quality	attributes	are	particularly	difficult	to	measure.	Thus,	among	the	
many	attributes,	 and	 consequent	metrics,	 of	potential	 interest,	 a	 special	 role	 is	
played	by	the	degree	of	defectiveness.		In	fact,	we	consider	defectiveness,	at	any	
level,	 as	 generic	 measure	 of	 (non-)quality	 of	 the	 artefact	 and/or	 of	 a	 process	
phase/activity,	 since	 it	 is	 the	 closest	 measurable	 attribute	 to	 user-perceived	
external	 quality,	 and	 the	 base	 for	measuring	more	 complex	 external	 attributes	
(e.g.,	reliability,	availability,	usability,	etc.).	Defectiveness	can	be	measured	by	a	
set	of	metrics,	 the	most	relevant	one	being	the	number	of	defects	(but	also	the	
defect	 density,	 the	 estimated	 final	 number	 of	 defects).	 Moreover,	 it	 can	 be	
characterized	 a	 set	 of	 sub-attributes,	 useful	 for	 analysis	 purposes,	 such	 as	 the	
type	 of	 defects,	 the	phase	 injection	 origin,	 the	 trigger,	 the	detection	phase,	 the	
source	of	the	defects,	and	so	on.		

Internal	 quality	 impacts	 defectiveness	 and	 thus	 external	 quality.	 The	
measurements	of	internal	quality	is	therefore	useful	not	only	for	understanding	
the	quality	of	intermediate	product,	but	also	for	external	quality	prediction	(e.g.,	
in	 terms	 of	 expected	 defects)	 and	 the	 consequent	 planning	 of	 (design	 and	
testing)	activities.		

But	both	internal	and	external	quality,	as	the	final	quality/cost	relationships,	are	
heavily	impacted	by	non-product	quality	factors,	namely	by	factors	related	to	
the	 organization	 and	 the	 context	 in	 which	 the	 product	 is	 developed	 (as	
depicted	in	Figure	1).			

So,	we	have	the	following	high-level	view	as	depicted	in	Figure	1,	showing	some	
(not	all)	of	the	factors	potentially	impacting	the	product	quality.		

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 11	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

	
Figure	1.			Some	of	the	factors	impacting	the	product	quality	

	

All	 these	 and	 others	 factors	 describing	 the	 context	 in	 which	 the	 product	 is	
created,	may	have	a	great	impact	on	product	quality.		

Thus,	summarizing,	we	distinguish:		

1. Internal	quality	attributes;		
2. External	quality	attributes;		

a. Defectiveness	 as	 reference	 attribute	 for	 product	 quality	
measurements;		

3. Context-related	quality	attributes.		

Impacts	on	product	quality	translates	into	impact	on	the	final	cost;	however,	the	
relationship	between	quality	and	cost,	or	to	better	say	between	non-quality	and	
cost,	need	to	be	assessed	both	by	reviewing	literature	studies,	and	by	customized	
field	data	(since	literature	data	embody	a	too	wide	spectrum).			

	

	 	

	 	

	

	
	

	

	

	

	

	

	

	

	
	

	

Product
Quality

Organization Size &
Constraints

Role &
Responsability Mng.

Req./Design/V&V
techniques

Personnel
skills

Versioning

In-Process
Measurement

Development Model &
Techniques

Human	Factors

	

Environment Process/Lifecycle	
Management

	

Req/Design/V&V(C
ASE) Tools

Config.
Management

Technologies

Physical
Environemt

Working
Procedures

Communication

Training Attitudes &
Experience

	

Languages

Release&
Maintainance Policies

Moral&
Motivation

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 12	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

4 A GENERIC FRAMEWORK FOR MEASUREMENT AND
ANALYSIS

A	general	 scheme	to	capture	relationships	among	quality	 factors	 is	 reported	 in	
Figure	2.		

	

Figure	2:	The	general	scheme	for	measurement	and	analysis	

In	this	scheme,	the	sources	of	information	considered	are:		

§ Artefacts	(documents,	models,	code)	at	each	phase/activity	of	the	process	
development	of	each	available	product	in	the	company	

§ Context-related	information,	as	the	ones	in	Figure	1.			

Process Improvement

Control
 Monitor pogresses

Improve

 Implement
improvement actions

Measure

Quality	Indicator

Define

Objectives

Analyze

Interpret Results
Identify Problems

Requirement
s

Design

Coding

Testing

Operation

E
X
T
R
A
C
T

&

C
O
L
L
E
C
T

	

	

	

	

	

Repos.

Planning Effort
Allocation.

Predict Critical
Modules

	

	

Measure

Analyze
Ident. Problems

Improve
Suggest Actions

	

C
O
N
T
E
X
T
-
R
E
L
A
T
E
D
A
T
T
R.

	

QUALITY/COST INFO

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 13	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

	From	the	activities	carried	out	in	each	phase	it	is	possible	to	extract	and	collect	
relevant	 information	 for	 the	 subsequent	 analysis	 and	 improvement	 steps.	 It	 is	
important	 to	 remark	 that	 the	 amount	 of	 information	 that	 can	 be	 extracted	 is	
potentially	very	large:	thus,	the	first	thing	that	the	analyst	should	do	is	to	figure	
out	what	 is	really	relevant	 in	relation	to	his	objective.	Several	paradigm	can	be	
adopted,	such	as	the	goal-question-metric,	or	the	DMAIC	method	from	six-sigma,	
in	order	to	define	proper	metrics	in	relation	to	objectives.	The	general	steps	are	
in	any	case:		

§ Define	the	objective	of	the	measurement;	
§ Select	 the	 (sub-)processes	 to	 monitor,	 analyze	 improve	 to	 satisfy	 the	

objective;	
§ Select	 the	 attributes	 (among	 the	 many	 existing	 ones)	 and	 the	

corresponding	metrics,	trying	to	obtain	the	smallest	useful	subset.		

In	the	scheme,	metrics	collected	from	single	phases	capture	static	characteristics	
of	 any	 intermediate	 product	 artefact	 (e.g.,	 requirements,	 design,	 code),	 namely	
internal	 quality	 attributes;	 whereas	 metrics	 collected	 from	 the	 right	 side	
represent	 characteristics	 of	 the	 context/organization	 that	 are	 independent	 from	
development	phases.		

Internal	quality	characteristics	are	often	supposed	to	adhere	to	some	reference	
values,	denoting	a		“good”	acceptable	quality	of	the	intermediate	artefact.		

Both	 these	and	context-related	attributes	are	also	 typically	supposed	to	 impact	
the	 final	 defectiveness	 and	 quality/cost	 trade-off.	 	 More	 advanced	 approaches	
use	 (some	 of)	 these	 static	 metrics	 to	 build	 prediction	 models,	 in	 order	 to	
estimate	 the	 defectiveness	 of	 software	 modules.	 This	 activity	 may	 be	 a	 good	
driver	 to	 properly	 concentrate	 efforts	 on	 modules	 predicted	 to	 be	 the	 most	
defective	ones,	and	thus	to	plan	design	and	especially	V&V	activities.		

Thus,	 all	 the	 collected	 information	 in	 the	 loop	 may	 be	 used	 basically	 at	 two	
different	and	complementary	levels:		

• Product-level;	in	this	case	metrics	are	used	to	measure	the	quality	of	
the	artefacts	of	the	single	product	(both	in	terms	of	internal	quality	or	
as	 number	 of	 defects).	 When	 complemented	 with	 information	
regarding	 the	 “size”	 of	 what	 produced	 and	 cost	metrics	 such	 as	 the	
“effort”	 to	 produce	 it	 (e.g.,	 by	 people/month,	 schedule),	measures	 of	
productivity	can	be	obtained	besides	quality.			Both	static	and	context-
related	 metrics	 can	 be	 used	 for	 prediction	 purposes	 (e.g.,	 predict	
defectiveness),	 and	 thus	 as	 support	 for	 planning	 and	 scheduling	
activities	driven	by	expected	defectiveness.		

• Process/Management-level;	in	this	case,	there	are	two	ways	of	using	
the	 information	 to	measure	 the	 quality	 of	 the	 development	 process,	
and	of	the	organization	at	higher	level,	and	its	relation	with	cost:	
o Trend	 analysis	 of	 (normalized)	 quality	 and	 cost	 attributes	 over	

products,	 along	with	 their	 variability	 across	products.	This	 is	 the	
main	 way	 to	 evaluate	 the	 quality	 of	 the	 process	 through	 its	
products.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 14	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

§ Effectiveness	per	process	phase/activity:	this	is	a	special	
case	 of	 analysis,	 in	which	 defects	 data	 are	 considered	 per	
phase/activity,	 in	 order	 to	 judge,	 across	 product,	 what	
activities	are	more	critical	from	the	quality	point	of	view.			

o Impact	analysis	of	single	(internal	and	context-related)	attribute	
on	 quality	 and	 on	 cost.	 This	 includes	 both	 internal	 quality	
attributes,	such	as	lines	of	code,	complexity,	size	of	requirements,	
decoupling,	 and	 so	 on,	 and	 phase-independent	 organizational	
metrics	 (e.g.,	 human	 factor	 metrics),	 useful	 especially	 for	 cost	
analysis.	 This	 evaluation	 needs	 typically	 to	 be	 done	 over	 more	
products,	and	determine	process-,	management-level	choices.	The	
purpose	is	to	infer	relations	and/or	perform	predictions.		
Note	 that	 both	 types	 quality/cost	 relationship	 have	 to	 be	
evaluated:	1)	the	direct	relation	from	quality	attributes	to	cost	
attributes	to	achieve	that	quality	(e.g.,	measuring	effort	and	time	to	
develop	 the	 product	 with	 that	 quality),	 and	 2)	 the	 indirect	
relation	 between	 “missed”	 quality	 and	 cost:	 this	 can	 be	
obtained	 be	 a	 two-level	 approach,	 which	 first	 relates	
internal/context	 quality	 to	 quasi-external	 (e.g.,	 defectiveness)	
quality,	and	then	relates,	in	a	second	step,	the	“missed”	quality	(in	
terms	of	residual	defectiveness)	to	the	cost	that	 it	causes	(e.g.,	by	
the	cost	of	maintenance	intervention).		

This	general	high-level	scheme	is	meant	to	provide	practitioner	with	an	overall	
picture	of	measurement	and	analysis	activities	for	quality	and	cost	management.	
The	view	will	serve	also	the	ICEBERG	partners	as	a	general	 frame	and	possible	
guideline	to	conduct	their	activity	within	the	project	scope.	In	the	following	

	

	

	

	

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 15	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

5 QUALITY STANDARDS

Software	quality	assurance	is	by	now	one	of	the	most	 important	and	expensive	
activities	within	a	software	development	lifecycle.	Suffice	it	to	recall	that	the	V&V	
phase,	 which	 is	 a	 crucial	 activity	 in	 the	 quality	 assurance	 framework,	 may	
account,	in	terms	of	both	time	and	resources	used,	for	more	than	50%	of	the	cost	
of	 the	 entire	 development.	 Thus,	 issues	 related	 to	 the	 definition	 and	
implementation	 of	 appropriate	 quality	 assurance	 strategies	 go	 far	 beyond	 the	
purely	 technical	 and	 /	 or	 technology	 aspect;	 they	 involve,	 in	 a	 significant	way,	
methodological	 aspects,	 typically	 related	 to	 the	 production	 process,	 to	 the	
development	 process,	 as	 well	 as	 to	 organizational	 structure	 and	 business	
strategies	for	medium	and	long	term.			

In	 the	 ICEBERG	 project,	 software	 quality	 standards	 play	 a	 key	 role	 for	 the	
foreseen	process	definition.	In	this	Section,	the	most	important	product/process	
quality	standards	(such	as	ISO/IEC	15504,	ISO/IEC	29119,	ISO	9126)	and	models	
(such	 as	 the	 CMMI)	 will	 be	 reviewed,	 in	 order	 to	 identify	 those	 elements	 of	
interest	 to	 the	 project	 purposes.	 Guidelines	 suggested	 will	 be	 considered	 for	
outlining	the	framework	within	which	the	models-based	process	will	be	defined.	

Process-oriented	Standards	

Due	 to	 the	 increasing	 importance	 of	 quality,	 several	 methodologies	 and	
standards	have	been	defined	aiming	at	defining	quality	attributes	and	suggesting	
organizational	 frameworks	 to	 measure	 and	 improve	 those	 attributes.	 In	 the	
following	 the	 most	 commonly	 used	 methodologies	 and	 standards	 are	 briefly	
surveyed.		World-wide	organizations	working	on	software	proposed	methods	for	
quality	control	and	evaluation	of	activities,	and	for	the	test	process	as	well.	We	
intend	 to	 integrate	 their	 most	 important	 concepts,	 such	 as	 the	 ability	 of	
"measuring"	the	process,	of	monitoring	 its	state,	and	of	exploiting	the	 feedback	
obtained	for	improving	the	process	in	the	development	of	future	products.		

Some	standards	 rule	about	 the	entire	 software	development	process,	 including	
the	V&V	phase.	One	of	 the	most	 relevant	 is	 the	 ISO/IEC	15504	 (ISO/IEC 15504
2012),	 also	 known	 as	 SPICE	 (Software	 Process	 Improvement	 and	 Capability	
Determination).	It	acts	as	reference	model	for	the	so-called	“maturity	models”,	in	
which	an	assessor	aims	at	giving	a	judgment	of	the	organization’s	capabilities	for	
delivering	 products.	 ISO/IEC	 15504	 is	 the	 reference	 model	 for	 the	 maturity	
models	 (consisting	 of	 capability	 levels	 which	 in	 turn	 consist	 of	 the	 process	
attributes	and	 further	consist	of	generic	practices)	against	which	 the	assessors	
can	 place	 the	 evidence	 that	 they	 collect	 during	 their	 assessment,	 so	 that	 the	
assessors	can	give	an	overall	determination	of	the	organization's	capabilities	for	
delivering	products.			

The	 reference	model	 defines	 a	 process	 dimension	 and	 a	 capability	 dimension;	
means	for	verifying	the	adherence	to	such	a	model	are	defined	in	the	standard.	
The	process	dimension	 refers	 to	 an	external	process	 lifecycle	 standard,	named	
ISO/IEC	 12207 (ISO/IEC 12207-2008 2008),	 which	 defines	 the	 core	 processes	
involved	 in	 the	 development	 of	 a	 software	 product:	 “acquisition”	 in	 the	 initial	
phase,	 “supply”,	 in	 which	 a	 project	 management	 plan	 is	 developed,	
“development”,	including	requirements	definition,	high-level	and	module	design,	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 16	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

coding,	 module,	 integration	 and	 system	 test,	 “operation”,	 and	 	 “maintenance”.	
Processes	 are	 divided	 in	 five	 categories:	 “customer/supplier”,	 “engineering”,	
“supporting”,	“management”,	“organization”,	according	to	the	type	of	process	to	
be	 implemented.	 	 The	 capability	 dimension	 defines	 levels	 of	 process	maturity.	
The	 following	 levels	 are	 defined:	 “Optimizing	 process”,	 “Predictable	 process”,	
“Established	 process”,	 “Managed	 process”,	 “Performed	 process”,	 “Incomplete	
process”	 (the	 former	 being	 the	 best	 level)	 measured	 by	 several	 process	
attributes.			

ISO/IEC	 15504	 can	 be	 used	 to	 perform	 process	 improvement	 within	 a	
technology	organization.	 It	has	been	 successful	 so	 far,	 and	other	 standards	are	
derived	 from	 it	 (e.g.,	 the	Automotive	SPICE,	 for	 the	automotive	domain)	and	 is	
reference	for	many	other	techniques	and	models.		

A	 very	 successful	 maturity	 model	 is	 the	 Capability	 Maturity	 Model	 Integrated	
(CMMI)	 (Software Engineering Institute 2010).	 CMMI,	 and	 its	 appraisal	 standard	
SCAMPI	 (Standard	CMMI	Appraisal	Method	 for	Process	 Improvement),	 support	
the	improvement	of	the	development	process	by	indicating	a	set	of	best	practices	
for	 each	 development	 and	 maintenance	 activity.	 It	 defines	 5	 levels,	 which	
inspired	 also	 ISO	 15504,	 indicating	 the	 maturity	 of	 the	 process,	 and	 a	 set	 of	
"process	areas"	 to	 implement	according	 to	 the	 level	of	maturity	 (also	 for	 these	
attributes,	levels	of	"capability"	are	foreseen).		

Starting	 from	 this	 idea,	 a	 similar	model	has	been	 conceived	 specifically	 for	 the	
testing	phase:	 the	Testing	Maturity	Model	has	been	defined	 for	 supporting	 the	
entire	V&V	process.	It	grounds	on	the	same	concepts	of	the	CMMI,	detailing	them	
for	V&V.	It	also	includes	5	levels	of	maturity,	with	the	following	objectives:		

Level	 1,	 Initial:	 no	 specific	 objective;	 Level	 2,	 Managed:	 the	 testing	 process	 is	
managed	and	clearly	separated	 from	debugging;	 there	 is	a	 testing	strategy;	 the	
process	 is	 controlled	and	 is	 focused	on	 functional	 testing;	Level	3,	Defined:	 the	
testing	process	is	no	longer	considered	as	a	step	after	the	implementation,	but	it	
is	integrated	in	the	development	process;	the	testing	is	also	non-functional;	Level	
4,	 Management	 and	 Measurement:	 it	 is	 developed	 a	 process	 for	 quality	
evaluation	of	the	software,	and	a	measurement	program	of	the	testing;	it	is	also	
developed	 a	 program	 of	 revision	 of	 	 the	 entire	 organization;	 Level	 5,	
Optimization:	the	testing	process	is	optimized;	there	are	implemented	measures	
of	quality;	it	is	applied	the	defect	prediction	based	on	the	available	data,	and	on	
the	feedback	received	from	the	process	application	to	a	product.		

A	 fundamental	 feature	 for	 optimized	 levels	 of	 these	 standards	 is	 the	 ability	 of	
monitoring	 and	 measuring	 the	 process	 in	 order	 to	 propose	 improvements:	
companies	are	required	to	learn	from	the	past,	in	order	to	continuously	improve	
future	products.		

Another	standard	concerning	quality	is	the	IEEE	1012-2012 (IEEE 1012 2012),	a	
standard	 for	 software	 Verification	 and	 Validation	 recently	 updated.	 It	 is	 a	
process	 standard	 that	 addresses	 all	 system	 and	 software	 life	 cycle	 processes	
including	 the	 Agreement,	 Organizational	 Project-Enabling,	 Project,	 Technical,	
Software	 Implementation,	 Software	 Support,	 and	 Software	 Reuse	 process	
groups.	This	standard	defines	the	verification	and	validation	processes	that	are	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 17	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

applied	to	the	system,	software,	and	hardware	development	throughout	the	life	
cycle,	 including	acquisition,	 supply,	development,	operations,	maintenance,	and	
retirement.	This	 standard	applies	 to	 the	 system,	 software,	 and	hardware	being	
acquired,	developed,	maintained,	or	reused.		

This	 standard	 is	 organized	 into	 clauses	 (Clause	 1	 through	 Clause	 12),	 tables,	
figures,	and	annexes.	Clause	2	through	Clause	12	provide	(with	some	Tables)	the	
mandatory	 V&V	 requirements	 for	 this	 standard.	 Each	 clause	 containing	 V&V	
activities	and	tasks	has	a	subset	of	tables	associated	with	the	V&V	requirements	
for	that	clause.		

Clause	 1	 provides	 guidance	 for	 using	 this	 standard.	 Clause	 2	 is	 reserved	 for	
normative	references;	however,	this	standard	does	not	prescribe	any	normative	
references.	 Clause	 3	 provides	 a	 definition	 of	 terms,	 abbreviations,	 and	
conventions.	 Clause	 4	 describes	 the	 relationships	 between	 the	 V&V	 processes	
and	the	life	cycle	processes	from	ISO/IEC	15288:2008	and	ISO/IEC	12207:2008,	
and	it	describes	how	the	V&V	standard	is	applied	recursively	within	the	concept	
of	a	 system	of	 systems	and	 from	system	 to	 software	or	hardware	components.	
Clause	5	describes	the	use	of	integrity	levels	to	determine	the	scope	and	rigor	of	
V&V	 processes.	 	 Clause	 6	 explains	 how	 V&V	 tasks	 are	 described	 within	 this	
standard.	Clause	7	describes	common	V&V	tasks;	that	is,	tasks	that	are	common	
across	 application	 of	 this	 standard	 to	 system,	 software,	 or	 hardware.	 Clause	 8	
describes	 system	V&V	 tasks.	Clause	9	describes	 software	V&V	 tasks.	Clause	10	
describes	 hardware	 V&V	 tasks.	 Clause	 11	 describes	 V&V	 reporting,	
administrative,	 and	 documentation	 requirements.	 Clause	 12	 describes	 the	
content	of	a	V&V	plan.	

Another	new	international	standard	by	ISO/IEC	specifically	on	software	testing	
is	being	defined,	which	aims	to	replace	old	partial	or	 incomplete	documents	on	
single	 pieces	 of	 the	 V&V	 process	 with	 a	 definitive	 standard:	 it	 is	 the	 ISO/IEC	
29119	 (ISO/IEC 29119 2013).	 The	 standard	 is	 defining	 several	 sections	 about:	
vocabulary,	 test	 process,	 test	 documentation,	 test	 techniques,	 and	 a	 process	
assessment	 model	 for	 software	 testing	 that	 can	 be	 used	 within	 any	 software	
development	life	cycle.	

Our	project	 is	 in	 line	with	 the	process	organization	 that	will	be	defined	by	 this	
standard,	in	that	it	foresees	to	include	aspects	related	to	planning,	organization,	
and	management.	Standard’s	 levels	 cover	 these	aspects:	 the	organisational	 test	
strategies	and	policies,	the	management	of	testing	projects	including	the	design	
of	project/level	test	strategies	and	plans	and	monitoring	and	controlling	testing,	
and	a	dynamic	test	process	that	provides	guidance	for	test	analysis	and	design,	
test	environment	set-up	and	maintenance,	test	execution	and	reporting.		

Part	2	of	the	standard	defines	a	generic	testing	process	model	that	can	be	used	
within	 any	 software	 development	 and	 testing	 life	 cycle.	 This	 process	 will	 be	
based	 on	 a	 four-layer	 testing	 process	 covering:	 Organizational	 Test	
Specifications	(e.g.	Organizational	Test	Policy,	Organizational	Test	Strategy),	Test	
Management	 (e.g.	 project	 test	management,	 phase	 test	management),	Dynamic	
Test	Processes,	including	test	design	&	implementation,	test	environment	set-up	
&	maintenance,	test	execution	and	incident	reporting.		

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 18	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

Finally,	 it	 is	 worth	 to	 point	 out	 that	 guidelines	 for	 quality	 assurance	 are	 also	
proposed	 by	 domain-specific	 standards	 for	 software	 certification,	 such	 as	 the	
DO178B/C	(RTCA - DO 178C 2011)	for	the	avionic	domain,	the	CENELEC	50126	
(CENELC 50126 1999),	50128	(CENELEC 50128 2011),	50129	(CENELEC 50129
2003)	 for	 the	 railway	 domain,	 the	 ISO	 26262	 (ISO 26262 2011)	 for	 the	
automotive,	 and	 so	 on.	 These	 usually	 prescribe	 process	 activities,	 and	
documentation	 to	 be	 produced,	 at	 a	 high	 level	 of	 abstraction.	 They	 are	 quite	
generic	guidelines,	as	also	in	the	previous	cases,	and	the	level	of	details	by	which	
they	 are	 implemented	 in	 the	 company	 is	 the	 result	 of	 a	 trade-off	 with	 the	
company	 needs	 in	 terms	 of	 cost	 and	 time.	 As	 for	 any	 other	 standard,	 we	will	
consider	the	valuable	guidelines	provided	by	them;	however,	it	is	a	cost-effective	
implementation	of	 these	guidelines	 that	 stimulates	 companies	 to	 conceive	new	
solutions	for	instantiating	their	quality	process,	according	to	their	need,	to	their	
organization	(size,	personnel	skill,	assets,	know	how),	and	to	the	features	of	their	
products.	 The	 ICEBERG	 objective	 is	 therefore	 to	 propose	 effective	 solutions	 to	
setup	 such	 an	 implementation.	 Thus,	 the	 project	 intends	 to	 move	 within	 the	
framework	defined	by	 the	mentioned	standards,	but	at	 the	same	 time	 it	has	 to	
implement	effective	solutions	for	make	the	standard	guidelines	concrete	actions	
in	a	real	process.		

For	instance,	for	quality	monitoring/measurements	and	feedback/control	of	the	
process	 through	 decision-making	 support,	 we	 will	 define	 a	 specific	 strategy	
based	 on	 selected	 metrics	 and	 predictive	 models	 able	 to	 drive	 assurance	
activities	and	the	“measurable”	provided	quality.			

Product-oriented	Standards	

Besides	 standards	 guiding	 through	 the	 process,	 another	 relevant	 aspect	 to	
consider	is	about	the	product.	In	fact,	when	we	talk	about	quality	assurance,	and	
improvement	 of	 process	 to	 pursue	 quality,	 it	 should	 be	 well	 intended	 what	
“quality”	is	meant	for	in	the	considered	context.		

It	is	thus	important	to	figure	out	what	attributes	of	quality	will	be	relevant	for	a	
given	context.	One	of	the	most	important	reference	models	for	defining	“quality”	
is	the	ISO/IEC	9126	standard	(ISO/IEC 9126 2001).		

ISO	9126	is	an	international	standard	for	the	evaluation	of	software.	It	is	divided	
into	 four	 parts,	 which	 addresses,	 respectively,	 the	 following	 subjects:	 quality	
model;	 external	metrics;	 internal	metrics;	 and	quality	 in	use	metrics.	 ISO	9126	
Part	 one,	 referred	 to	 as	 ISO	 9126-1	 defines	 a	 set	 of	 software	 quality	
characteristics.	

ISO9126-1	aims	at	characterizing	software	for	the	purposes	of	software	quality	
control,	software	quality	assurance	and	software	process	improvement.	The	ISO	
9126-1	 software	 quality	 model	 identifies	 6	 main	 quality	 characteristics:	
Functionality,	 Reliability,	 Usability,	 Efficiency,	Maintainability,	 Portability.	 It	 also	
defines	 27	 sub-features	 measurable	 via	 metrics.	 The	 standard	 defines	 a	 four-
level	model,	defining	the	quality	by	three	perspectives	(external,	internal,	and	in	
use)	 that	 each	 project	 should	 satisfy,	 the	 attributes	 qualifying	 the	 product	
according	 to	 the	 three	defined	perspective,	 for	 each	 attribute,	 the	 sub-features	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 19	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

(measureable	 requirements)	 representing	 it,	 and	 the	 metrics	 to	 perform	
measurements,	which	however	are	not	always	clear	and	unambiguous.		

Product	 and	 process	 metrics	 are	 also	 defined	 in	 the	 literature	 to	 measure	
product’s	 features	 describing	 the	 quality	 or	 features	 potentially	 related	 to	 the	
quality;	this	will	be	the	subject	of	the	next	section.

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 20	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

6 QUALITY OF THE PRODUCT

This	 section	 aims	 at	 surveying	 the	 metrics	 available	 in	 the	 literature	 for	
measuring	 both	 software	 product	 and	 process	 quality.	 The	 main	 attributes	
regarding	 the	 internal	 and	 external	 quality	 of	 a	 product	 (e.g.,	 reliability,	
functionality,	usability,	robustness)	will	be	examined.	Besides	the	usefulness	for	
practitioners,	 this	 survey	 will	 help	 the	 project’s	 partners	 to	 figure	 out	 which	
metrics	should	be	considered	for	implementing	an	efficient	quality/cost	process.		

6.1 INTERNAL QUALITY ATTRIBUTES AND METRICS

As	defined	by	 the	described	standards,	 software	quality	can	be	measured	 from	
an	external,	user-perceived,	perspective,	and	from	internal	perspective.	Clearly,	
the	 ultimate	 goal	 of	 any	 engineering	 activity	 is	 to	 provide	 a	 product	 with	 the	
desirable	 quality	 attributes	 as	 viewed	 by	 the	 customer,	 namely	 the	 external	
quality;	 but	 such	 a	 quality	 is	 heavily	 affected	 by	 the	 quality	 of	 any	 previous	
artefact	within	 the	 development	 process.	 In	 fact,	 internal	 quality	 attribute	 just	
measure	how	good	 the	product	 is	 at	 a	previous	 stage	before	 the	 final	 one:	 the	
better	it	is,	the	better	the	final	product	will	be.		

Thus,	in	the	practice,	many	software	engineers,	mangers,	and	practitioners,	rely	
on	 internal	 quality	 measures	 to	 control	 and	 thus	 drive	 the	 development	
activities,	in	order	to	end	up	with	the	desired	external	quality	with	the	planned	
cost.			

This	 sub-section	 presents	 those	 works	 that	 defined	 and/or	 used	 some	 of	 the	
most	 common	 internal	 quality	 attributes	 to	 quality	measurement	 and	 process	
improvement.			

The	 most	 studied	 set	 of	 internal	 metrics	 are	 the	 ones	 referring	 to	 the	 source	
code.	 Relatively	 fewer	 studies	 investigated	 requirements	 and	 design	 metrics.	
Code	Metrics	have	been	widely	used	 in	 the	past	both	to	measure	the	quality	of	
the	 code	 according	 to	 some	 reference	 values,	 and	 as	 predictors	 of	 software	
module	defectiveness.	 The	most	 commonly	 adopted	metrics	 can	be	divided	 in:	
method-level,	 class-level,	 file-level,	 component-level	 metrics (Catal and Diri
2009).	Examples	of	most	common	method-level	metrics	are	McCabe	metrics	(e.g.,	
McCabe	 LoC,	 McCabe	 cyclomatic	 complexity)	 (McCabe 1976),	 and	 Halstead’s	
(software	 science)	 metrics	 (e.g.,	 Volmue,	 Length,	 Difficulty) (Halstead 1977).	
Class-level	 metrics	 are	 more	 recent,	 and	 refer	 to	 object	 oriented	 paradigm.	
Examples	 are	 the	 Chidamber–Kemerer	 (CK)	 metrics	 suite	 (Chidamber and
Kemerer 1994)	proposed	in	1994,	the	MOOD	(metrics	for	object-oriented	design)	
(Abreu and Carapuca 1994),	QMOOD	(quality	metrics	 for	object-oriented	design)
(Bansiya and Davis 2002),	and	Lorenz	and	Kidd	(L&K)	metric	suites (Lorenz and
Kidd 1994).	However,	CK	metrics	suite	 is	much	more	popular	 than	other	suites	
and	 they	 are	 mostly	 used	 if	 class-level	 metrics	 are	 applied.	 They	 are:	
Coupling_Between_Objects	 (CBO),	 Depth_Of_Inheritance_Tree	 (DIT),	
Lack_Of_Cohesion_Of_Methods	 (LCOM),	 Num_Of_Children	 (NOC),	 Response_	
For_Class	(RFC),	and	Weighted_Method_Per_Class	(WMC).	WMC		is	the	sum	of	the	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 21	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

complexities	of	all	class	methods.	DIT	is	the	distance	of	the	longest	path	from	a	
class	to	the	root	in	the	inheritance	tree.	RFC	is	the	number	of	methods	that	can	
be	executed	to	respond	a	message.	NOC	is	the	number	of	classes	that	are	direct	
descendants	for	each	class.	CBO	is	the	number	of	non-inheritance-related	classes	
to	 which	 a	 class	 is	 coupled.	 LCOM	 is	 related	 to	 the	 access	 ratio	 of	 attributes.	
According	 to	 several	 software	 fault	 prediction	 studies	 (Zhou and Leung 2006),	
CBO,	WMC,	and	RFC	are	the	most	significant	CK	metrics	for	fault	prediction.	

Metrics	 per	 source	 file	 are	 also	 increasingly	 used	 for	 fault	 prediction,	 such	 as	
in	(Khoshgoftaar, Gao and Szabo 2001),	(Ostrand, Weyuker and Bell 2005):	some	of	
these	 metrics	 are	 the	 number	 of	 lines	 of	 code	 per	 file,	 number	 of	 lines	 of	
commented	code	per	file,	number	of	changes	per	file.			
	
Much	literature	has	been	produced	to	find	a	“best”	set	of	metrics	able	to	predict	
defect	proneness	of	software	modules.		
Much	work	 is	on	 investigating	relationships	between	several	kinds	of	 software	
metrics	and	 the	defect	proneness	 in	a	program.	Early	 research	was	 focused	on	
the	definition	of	metrics	 able	 to	measure	 the	 complexity	 of	 a	 software	module	
and,	 in	 turn,	 its	 likelihood	 to	 be	 faulty	 (such	 as	 the	 McCabe’s	 and	 Halstead’s	
metrics).	 Fault	 prediction	 approaches	 have	 then	 evolved	 by	 adopting	machine	
learning	and	data	mining	algorithms	and	techniques,	in	order	to	establish	a	more	
accurate	 relationship	 between	 sets	 of	 software	 metrics	 and	 faults,	 using	
classifiers	and	regression	models.			
In (Gokhale and Lyu, Regression Tree Modeling for the Prediction of Software
Quality 1997),	 authors	 used	 a	 set	 of	 11	 metrics	 and	 an	 approach	 based	 on	
regression	 trees	 to	 predict	 faulty	modules.	 In	 (Nagappan, Ball and Zeller 2006),	
authors	mine	metrics	 to	 predict	 the	 amount	 of	 post-release	 faults	 in	 five	 large	
Microsoft’s	software	projects.	They	adopted	the	well-known	statistical	technique	
of	Principal	Component	Analysis	(PCA)	in	order	to	transform	the	original	set	of	
metrics	 into	 a	 set	 of	 uncorrelated	 variables,	 with	 the	 goal	 of	 avoiding	 the	
problem	of	redundant	features	(multicollinearity).	The	study	in	(Denaro, Morasca
and Pezze, Deriving Models of Software Fault-proneness 2002),	 then	 extended	 in	
(Denaro and Pezze, An Empirical Evaluation of Fault-proneness Models 2002)	
adopted	logistic	regression	to	relate	software	measures	and	fault-proneness	for	
classes	 of	 homogeneous	 software	 products.	 Subsequent	 studies	 confirmed	 the	
feasibility	 and	 effectiveness	 of	 fault	 prediction	 using	 public-domain	 datasets	
from	 real-world	 projects,	 such	 as	 the	 NASA	 Metrics	 Data	 Program,	 and	 using	
several	 regression	 and	 classification	models	 (Ostrand, Weyuker and Bell 2005),	
(Menzies, Greenwald and A.Frank 2007),	(Seliya, Khoshgoftaar and Hulse 2010).		
	
In (Chidamber and Kemerer 1994)	 object-oriented	 metrics	 were	 proposed	 as	
predictors	 of	 faults	 density.	 A	 later	 study	 (Subramanyam and Krishnan 2003)	
empirically	validated	 three	OO	design	metrics	suited	 for	 their	ability	 to	predict	
software	quality	 in	 terms	of	 fault-proneness:	 the	Chidamber	and	Kemerer	(CK)	
metrics,	 Abreu’s	 metrics	 for	 object-oriented	 design	 (MOOD),	 and	 Bansiya	 and	
Davis’	quality	metrics	for	object-oriented	design	(QMOOD).	The	study	presents	a	
survey	 on	 eight	 empirical	 studies	 showing	 that	 OO	 metrics	 are	 significantly	
correlated	 with	 faults.	 Further	 studies	 on	 design	 metrics	 are	 in	 (Binkley and
Schach 1998),	 (Ohlsson and Alberg 1996),	 where	 authors	 investigated	 the	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 22	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

suitability	of	metrics	based	on	the	software	design.	Basili	et	al.	(Basili, Briand and
Melo 1996)	also	focused	on	validating	OO	design	metrics	for	prediction.		
	
Other	studies	focused	on	the	definition	of	software	metrics	collected	from	early	
lifecycle	data	such	as	textual	requirements:		authors	in	(Jiang, Cukic and Menzies
2007)	 combined	 requirement	 metrics	 with	 code	 metrics	 and	 reported	 that	
requirement	metrics	improve	the	performance	of	models	that	use	code	metrics.	
These	 metrics	 have	 been	 gathered	 from	 textural	 requirement	 specification	
documents	by	using	ARM	(automated	requirement	measurement)	tool.	
	
In	 many	 cases,	 common	 metrics	 provide	 good	 prediction	 results	 also	 across	
several	different	products.	However,	it	is	difficult	to	claim	that	a	given	regression	
model	or	a	set	of	regression	models	is	general	enough	to	be	used	even	with	very	
different	 products,	 as	 also	 discussed	 in	 (Nagappan, Ball and Zeller 2006),	
(Zimmermann, et al. 2009).	 Some	 works	 focused	 on	 transferring	 prediction	
models	 across	 different	 projects	 and	 companies,	 e.g.,	 (Nam, Jialin Pan and and
Kim 2013).	 Finally,	 only	 few	 studies	 considered	 the	 problem	 of	 discriminating	
between	fault	types	in	fault	prediction	(Caglayan, et al. 2010),	(Mısırlı, et al. 2011),	
(Carrozza, et al. 2013),	(Cotroneo, Natella and Pietrantuono, Predicting aging-related
bugs using software complexity metrics 2013).		
	
Although,	as	described,	there	are	studies	using	every	sort	of	metrics,	authors	of	
(Catal and Diri 2009)	argue	that	the	most	used	and	reliable	ones	are	the	method-
level	metrics,	followed	by	the	class-level	ones	(they	count	that	more	than	64%	of	
the	works	 they	 surveyed	 adopt	method-level	metrics),	 the	most	 common	ones	
being	 the	 McCabe’s	 cyclomatic	 complexity,	 the	 lines	 of	 code,	 the	 Halstead’s	
metrics,	and	the	object-oriented	CK	metrics.		
Thus,	a	practical	way	to	apply	this	step	is	to	consider	such	metrics	as	a	starting	
point	 (Table	 I	 provides	 a	 list	used	 in	 (Cotroneo, Pietrantuono and Russo, Testing
techniques selection based on ODC fault types and software metrics 2013),	which	are	
more	guaranteed	by	past	 studies	 to	give	good	results;	other	metrics	specific	 to	
the	company	or	to	the	product/process	features	may	be	then	added	to	refine	the	
prediction	 accuracy,	 and	 their	 “quality”	 for	 prediction	 purposes	 iteratively	
monitored	across	products.		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	
	

Table	I.	A	set	of	commonly	used	code	metrics	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 23	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

	
Metrics Description Metrics Description

CountDeclClass Number of classes MaxNesting Maximum nesting
level of control

constructs
CountDeclFunction Number of Function CountPath Number of unique

paths though a body
of code

CountLine Number of lines SumComplexity Sum of cyclomatic
complexity

CountLineBlank Number of blank
lines

SumEssential Sum of essential
complexity

CountLineCode Number of lines
containing source

cede

AvgVolume Average Halstead’s
volume

CountLineComment Number of lines
containing comments

AvgLength Average Halstead’s
Length

CountLineInactive Number of lines
inactive from the

view of pre-processor

AvgVocabulary Average Halstead’s
Vocabulary

CountStmtDecl Number of
declarative
statements

AvgDifficulty Average Halstead’s
Difficulty

CountStmtExe Number of executable
statements

AvgEffort Average Halstead’s
Effort

RatioCommentToCode Ratio of the number
of code lines to the

number of comment
lines

AvgBugs Average Halstead’s
Bugs Delivered

Header Files Number of header
files

VVolume Variance of
Halstead’s Volume

Code File Number of Code File VLength Variance of
Halstead’s Length

CountLineCodeDecl Declarative source
code

VVocabulary Variance of
Halstead’s

Vocabulary
CountLineCodeExe Number of lines

containing executable
source code

VDifficulty Variance of
Halstead’s Difficulty

AvgCyclomatic Average Cyclomatic
Complexity

VEffort Variance of
Halstead’s Effort

MaxCyclomatic Maximum
Cyclomatic
Complexity

VBugs Variance of
Halstead’s Bugs

Delviered
	
	

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 24	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

6.2 EXTERNAL QUALITY ATTRIBUTES AND METRICS
	
Besides	 internal	 quality	 of	 the	 product,	 it	 is	 also	 a	 common	 practice	 the	
measurement	 of	 “process”	 quality,	 which	 provide	 insights	 on	 how	 well	 the	
phases	of	a	process	work,	how	people,	teams,	organizational	factors,	and	all	the	
resources	 involved	 in	 the	 development	 impact	 the	 final	 quality,	 and	 to	 what	
extent	all	these	factors	are	controllable	and	thus	improvable.	All	this	represents	
a	 degree	 of	 how	much	 the	 entire	 know-how	 of	 the	 company	 is	 clearly	 stated,	
objectively	 visible,	 easily	 available,	 and	 independent	 from	 individual	 skills	 and	
competencies.		

This	 Section	 describes	 the	 most	 common	 external	 quality	 attributes	 used	 by	
practitioners	and	researchers.	The	described	ISO9126	standard	defines	a	set	of	6	
external	 quality,	 characterized	 by	 sub-attributes,	which	 engineers	 can	 refer	 to.	
However,	 there	 exist	 several	 different	 terminologies	 describing	 aspects	 of	
external	 quality	 with	 slight	 shades	 depending	 on	 the	 context	 and	 on	 the	
attributes	of	 interest.	 For	 instance,	 robustness	and	 reliability	are	 intended	 in	a	
different	way	 from	 the	 dependability	 community	with	 respect	 to	 the	 software	
engineering	community.	ISO	9126	reflects	more	the	latter.		
Moreover,	 the	 amount	 of	 work	 that	 has	 been	 done	 to	 assess	 or	 improve	 the	
external	 quality	 attributes	 also	 depend	 on	 the	 easiness	 in	 obtaining	
measurements	for	that	attribute:	for	instance,	“usability”	may	be	more	difficult	to	
assess	than	robustness.		
In	 the	 following,	we	briefly	 describe	 the	most	 considered	quality	 attributes	 by	
both	 researchers	 and	 industrial	 practitioners,	 along	with	 a	 brief	mentioning	of	
the	quality	assurance	strategy	to	assess	and	improve	them.		
	

6.2.1 Dependability and Security

	
Dependability	 is	 defined	 as	 the	 ability	 to	 deliver	 service	 that	 can	 justifiably	 be	
trusted.	This	definition	stresses	the	need	for	justification	of	trust.	Another	way	to	
define	it	is:	the	ability	to	avoid	service	failures	that	are	more	frequent	and	more	
severe	 than	 is	 acceptable.	 This	 definition	 stresses	 more	 the	 avoidance	 of	
failures	(Avizienis, et al. 2004).	Dependability	is	not	a	single	quality	attribute;	it	is	
rather	 viewed	 as	 a	 composition	 of	 several	 attributes,	 which	 can	 be	 assessed	
using	qualitative	or	quantitative	measures.	Avizienis	 et	al.	 define	 the	 following	
dependability	attributes:	

§ Availability	-	readiness	for	correct	service	
§ Reliability	-	continuity	of	correct	service	
§ Safety	 -	 absence	 of	 catastrophic	 consequences	 on	 the	 user(s)	 and	 the	

environment	
§ Integrity	-	absence	of	improper	system	alteration	
§ Maintainability	-	ability	for	a	process	to	undergo	modifications	and	repairs	

	
Means	to	attain	dependability	are	classifiable	in:		

§ Fault	 Prevention,	 e.g.,	 implementation	 of	 good	 practices	 of	 software	
engineering	to	prevent	fault	from	being	present	at	operational	time;	these	
include	 as	 defined	 requirements	 engineering	 processes,	 good	 design	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 25	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

principles	(e.g.,	modularity,	abstraction,	reuse),	good	coding	practices	and	
standard/guidelines	 compliance,	 proper	 V&V	 processes	 and	 techniques,	
etc..		

§ Fault	 Tolerance	 is	 concerned	 with	 the	 means	 to	 avoid	 failures	 by	
detecting	an	activated	error,	tolerate	it,	and	perform	system	recovery	

§ Fault	Removal	means	are	applied	either	in	the	system	development	phase	
(through	 Verification,	 Diagnosis,	 and	 Correction)	 or	 at	 system	 usage	
phase,	through	corrective	or	preventive	maintenance.		

§ Fault	 Forecasting	 focuses	 on	 performing	 an	 evaluation	 of	 the	 system	
behavior	 with	 respect	 to	 fault	 occurrence	 of	 activation;	 it	 includes	
qualitative	 evaluation	 (e.g.,	 failure	 mode	 analysis)	 and	 quantitative	
evaluation	 means	 (e.g.,	 evaluate	 in	 terms	 of	 probabilities	 the	 extent	 to	
which	some	of	the	attributes	are	then	viewed	as	measure).			

The	 implementation	 of	 these	 means	 depend	 greatly	 on	 the	 attribute	 being	
assessed.	For	instance,	taking	testing	as	one	of	the	main	assessment	techniques,	
there	are	many	techniques	varying	according	to	the	attribute	under	assessment.	
	
	
Availability	 and	 Reliability	 are	 more	 easily	 quantifiable	 as	 direct	
measurements,	 whilst	 the	 others	 are	 more	 subjective,	 and	 their	 assessment	
makes	 more	 use	 of	 qualitative	 techniques	 or	 mixing	 quantitative/qualitative	
techniques.		
Differently	from	availability,	which	focuses	on	failures	on	a	given	instant	of	time,	
reliability	 emphasizes	 the	occurrence	of	 undesirable	 events	 in	 a	 specified	 time	
interval,	 often	 called	 Mission	 Time.	 A	 lowly	 available	 system	 may	 be	 highly	
reliable	 in	 a	 given	mission	 time,	 depending	 on	when	 the	 failures	 occur	 (e.g.,	 a	
system	may	 fail	many	 times	 in	 one	 year,	 but	 never	 in	 the	 time	 interval	 that	 is	
crucial	for	system’s	mission).		
Models	 are	 extensively	 used	 for	 dependability	 attributes	 evaluation,	 especially	
for	 reliability	 and	 availability	 analysis.	 A	 first	 distinction	 is	 between	
combinatorial	and	state-based	models.	Contrary	to	combinatorial	models,	state-
based	stochastic	ones	appear	to	be	adequate	to	deal	with	the	complexity	of	the	
considered	 class	 of	 systems,	 though	 they	 suffer	 of	 the	 state-space	 explosion	
problem.	This	problem	has	 triggered	many	studies	and	significant	 results	have	
been	achieved	in	the	last	15	years	based	on	two	general	approaches:	"largeness	
avoidance"	and	"largeness	tolerance".		
Largeness	 avoidance	 techniques	 try	 to	 circumvent	 the	 generation	 of	 large	
models.	 They	 are	 complemented	 by	 largeness	 tolerance	 techniques	 which	
provide	practical	modelling	 support	 to	 facilitate	 the	generation	and	solution	of	
large	 state-space	 models.	 A	 number	 of	 modelling	 approaches	 appeared	 in	 the	
literature.	They	are:	
1) compositional	modelling	approaches	(e.g.,	(J. F. Meyer and W.H.Sander 1993),	

(Kanoun 2004) (Rabah and K. Kanoun 2003) (Dai, Pan and Zou 2007)),	both	at	
level	of	defining	suitable	composition	operators	to	build	models	from	a	set	of	
building	blocks,	as	well	as	defining	composition	rules;	

2) decomposition/aggregation	modelling	approaches	 (e.g.,	 (Bobbio and Trivedi
1986),	(Lollini, Bondavalli and Giandomenico 2009),	(Ciardo and Trived 1993)),	
where	 the	 overall	 model	 is	 decoupled	 in	 simpler	 and	more	 tractable	 sub-

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 26	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

models,	and	the	measures	obtained	from	the	solution	of	the	sub-models	are	
then	aggregated	to	compute	those	concerning	the	overall	model;	

3) derivation	 of	 dependability	 models	 from	 high-level	 specification,	 e.g.	 from	
UML	design	(e.g.,	(Ganesh and Dugan 2002)).	

A	 detailed	 survey	 of	 major	 approaches	 to	 modelling	 based	 on	 largeness	
avoidance	and	largeness	tolerance	is	in	(Nicol, Sanders and Trivedi 2004).		
	
However,	model-based	approaches	may	be	not	accurate	enough,	when	the	input	
parameters	 values	 are	 not	 representative	 of	 the	 real	 system	 behaviour.	
Measurements-based	approach	may	allow	for	more	accurate	results:	 it	 is	based	
on	 real	 operational	 data	 (from	 the	 system	 or	 its	 prototype)	 and	 the	 usage	 of	
statistical	inference	techniques.	It	is	an	attractive	option	for	assessing	an	existing	
system	 or	 prototype	 and	 constitutes	 an	 effective	 way	 to	 obtain	 the	 detailed	
characterization	 of	 the	 system	behaviour	 in	 presence	 of	 faults.	However,	 since	
real	 data	 are	needed,	 it	 is	 not	 always	possible	 to	 apply	 this	 approach,	 because	
data	 may	 be	 not	 available.	 Moreover,	 just	 relying	 on	 measurement-	 based	
approach	 does	 not	 yield	 insight	 into	 the	 complex	 dependencies	 among	
components	 and	 does	 not	 allow	 system	 analysis	 from	 a	more	 general	 point	 of	
view.	 It	 is	 often	 more	 convenient	 to	 make	 measurements	 at	 the	 individual	
component/subsystem	level	rather	than	on	the	system	as	a	whole	(Garzia 2002),	
and	then	to	combine	them	in	a	system	model.		
An	overview	of	experimental	approaches	to	dependability	evaluation	is	in	(Silva
and Madeira 2005).	Although	the	most	of	papers	use	either	the	model	based	or	the	
measurement	based	approach,	some	papers	use	a	combined	approach	(Tang and
Iyer 1993),	 (D.Long, A.Muir and R.Golding n.d.).	 An	 online	 monitoring	 system	
combining	 both	 the	 approaches	 towards	 system	 availability	 evaluation	 is	 in	
(Mishra and Trivedi 2006),	 (Haberkorn and Trivedi 2007),	 (R.Pietrantuono, Russo e
Trivedi 2010).	 Models	 parameterized	 by	 experimental	 data	 are	 also	 used	 in	
(Vaidyanathan and Trivedi 2005)	 for	 software	 aging	 and	 rejuvenation	 analysis	
(directly	related	to	availability),	in	which	Markov	chains	are	used	to	model	both	
system	states	and	workload	states,	and	transition	probabilities	and	sojourn	time	
estimates	were	obtained	by	using	real	experimental	data.	
	
A	class	of	models	that	gained	importance	since	the	advent	of	object-oriented	and	
component-based	systems	are	the	architecture-based	models.	These	analyze	the	
attribute	 of	 interest	 (reliability	 or	 availability,	 typically)	 by	 modelling	 the	
relation	 among	 components,	 and	 how	 components’	 interaction	 impacts	 on	 the	
reliability/availability	value	attained	for	the	overall	system (Gokhale, E.Wong, et
al. 2004),	 (Goseva-Popstojanova, Mathur and Trivedi 2001),	 (Gokhale, Lyu and
Trivedi 2006),	 (W.Wang, Y.Wu and Chen 2009).	 This	 enables	 evaluating	
architectural	alternatives	and	supports	development	in	the	architectural	design	
stage.	
Architecture-based	models	 can	 be	 categorized	 as	 follows	 (Goseva-Popstojanova
and Trivedi 2001)	
§ State-based	 models	 use	 the	 control	 flow	 graph	 to	 represent	 software	

architecture,	 modelling	 the	 architecture	 as	 a	 Discrete	 Time	 Markov	 Chain	
(DTMC)	 a	 Continuous	Time	Markov	Chain	 (CTMC)	 or	 semi	Markov	Process	
(SMP).	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 27	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

§ Path-based	 models	 compute	 the	 system	 reliability/availability	 considering	
the	possible	execution	paths	of	the	program.	

§ Additive	 models,	 where	 the	 component	 reliabilities	 are	 modelled	 by	 non-
homogeneous	 Poisson	 process	 (NHPP)	 and	 the	 system	 failure	 intensity	 is	
computed	as	the	sum	of	the	individual	components	failure	intensities.	

	
As	 for	 reliability,	 there	 exist	 a	 further	 class	of	model-based	analysis,	 known	as		
the	“black	box”	modelling	approach.	These	are	aimed	to	evaluate	how	reliability	
improves	 during	 testing	 and	 varies	 after	 delivery,	 differently	 from	 the	
“architecture-based	models”,	which	focus	mainly	on	understanding	relationships	
among	system	components	and	their	influence	on	system	reliability/availability.	
The	black	box	approach	ignores	information	about	the	internal	structure	of	the	
application	and	neglects	relationships	among	system	components.	It	is	based	on	
(i)	collecting	failure	data	during	testing,	and	(ii)	calibrating	a	software	reliability	
growth	 model	 (SRGM)	 using	 such	 data.	 These	 models,	 e.g.,	 (A. L. Goel 1979),	
(Yamada, Ohba and Osaki 1983),	 (Goel. 1985),	 (Gokhale and Trivedi, Log-logistic
software reliability growth model 1998),	 (Mullen 1998),	 (Okamura, Dohi and Osaki
2004),	are	then	used	for	prediction	in	the	operational	phase	(to	predict	the	next	
failure	 occurrences	 based	 on	 the	 trend	observed	during	 testing)	 and/or	 in	 the	
testing	phase	of	successive	system	releases	to	determine	when	to	stop	testing.	
	
Besides	modelling,	 further	assessment	methods	are	 through	 testing.	While	 it	 is	
rare	to	hear	about	“availability	testing”,	reliability	testing	dates	back	to	eighties	
and	has	a	long	history.		Testing	to	assess	(or	in	some	cases	to	improve)	reliability	
is	often	referred	to	as	operational	testing.	With	it,	 testers	aim	at	achieving	high	
operational	 reliability,	 intended	 as	 the	 probability	 of	 not	 failing	 during	 the	
operational	 phase.	 Ideally,	 operational	 testing	 is	 historically	 considered	 as	 the	
most	promising	approach	at	 improving	reliability,	because	 it	 is	 the	only	testing	
method	 devised	 to	 find	 failures	with	 probabilities	matching	 their	 real	 runtime	
occurrence.	 The	 term	 Statistical	 testing	 is	 also	 used	 to	 denote	 this	 technique.	
However,	Statistical	testing	is	more	recently	being	used	to	denote	also	a	slightly	
different	 approach	whose	 goal	 is	 to	 satisfy	 an	 adequacy	 criterion	 expressed	 in	
terms	 of	 functional	 or	 structural	 properties	 (e.g.,	 ensuring	 that	 each	 structural	
element	 is	 exercised	 as	 frequently	 as	 possible	 (Poulding and Clark 2010)).	 The	
most	 important	 contexts	 in	which	operational	 testing	has	been	used	are	 in	 the	
frame	of	the	Cleanroom	approach	(Mills, Dyer and R. C. Linger 1987),	and	in	the	
process	 defined	 by	Musa,	 i.e.,	 the	 Software	 Reliability	 Engineering	 Test	 (SRET)	
practice	(Musa 1996).	
More	recently,	Chen	et	al.	(Chen, Kuo and and H. Liu 2009),	(T.Y.Chen, F.-C.Kuo
and Liu 2008)	 tried	 to	 improve	 the	 effectiveness	 of	 uniform	 random	 testing	 by	
taking	account	of	the	feedback	information	generated	by	those	test	cases	that	do	
not	 trigger	 defects.	 They	 use	 the	 concept	 of	 adaptive	 random	 testing	 (ART)	
(K.Y.Cai 2002),	 looking	 for	 test	profiles,	different	 from	operational	profile,	able	
to	 evenly	 distribute	 test	 cases	 over	 the	 code.	 Adaptive	 testing	 is	 also	 the	
approach	 adopted	 in	 (Cai, et al. 2007).	 In (Cai, Li and Liu 2004),	 the	 same	
approach	 is	 used	 to	 assess	 software	 reliability	 (i.e.,	 with	 the	 objective	 of	
minimizing	 the	 variance	 of	 the	 reliability	 estimator).	 Although	 the	 cited	
approaches	 promote	 operational	 and	 re-	 liability-oriented	 testing,	 reporting	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 28	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

good	 results,	 it	 is	 still	 difficult,	 at	 this	 time,	 to	 find	 compelling	 evidence	 that	
operational	testing	is	always	a	good	practice.	
	
The	 evaluation	 of	 the	 safety	 attribute	 is	 not	 easily	 done	 by	 quantitative	
approaches.	What	it	 is	actually	done	is	to	combine	quantitative	with	qualitative	
methods.	Some	of	 the	most	used	 techniques	and	principles,	also	recommended	
by	 the	mentioned	 safety-related	 certification	 standards	 (e.g.,	 (CENELEC 50128
2011),	(ISO 26262 2011) (RTCA - DO 178C 2011)),	are:		
- Hazard	 (and	 operability)	 Analysis	 (HAZOP),	 risk	 analysis,	 failure	mode	 and	
effect	 (and	 criticality)	 analysis	 (FME(C)A),	 fault	 tree	 analysis	 (FTA),	 formal	
methods,	in	the	requirement	analysis	and	specification	phase;		

- Formal	methods,	modelling,	fully	defined	Interface	(e.g.,	design	by	contract),	
temporal/spatial	 partitioning,	 design	 diversity,	 recovery	 block,	 graceful	
degradation	in	the	design	phase;	

- Coding	 standards,	 coding	 rules	 (e.g.,	 no	 pointer,	 no	 global	 var.),	 defensive	
programming,	 appropriate	 language	 (e.g.,	 strongly	 typed,	 language	 subset),	
for	the	coding	phase;	

- Strict	 V&V	Process	 definition,	 planning,	monitoring	 and	 control;	 functional	
and	 structural	 testing	 with	 full	 coverage,	 non-functional	 Testing	
(performance,	 robustness,…),	 static	 	 and	 dynamic	 analysis,	 inspection,	
formal	methods,	for	the	V&V	phase;	

- CVS,	 defect	 tracking,	 data	 recording	 and	 analysis,	 full	 traceability,	
configuration	management,	design	for	change,	impact	analysis.		

Typically,	standards	require	several	of	 these	techniques	according	to	the	safety	
level	 that	 one	 wants	 to	 achieve.	 The	 objective	 of	 the	 producer	 is	 to	 provide	
evidence,	 through	 these	 techniques,	 that	 the	 developed	 system	 is	 safe.	 Such	
evidences	are	often	called	safety	cases.		
	
When	we	add	to	these	attributes	the	confidentiality,	we	also	have	the	attribute	of	
“security”.	 Confidentiality	 is	 the	 absence	 of	 unauthorized	 disclosure	 of	
information,	 and	 the	 composition	 of	 Confidentiality,	 Integrity,	 and	 Availability	
makes	security.	Security	is	sometimes	classed	as	an	attribute	(Sommerville 2004)	
but	 the	 current	 view	 is	 to	 aggregate	 it	 together	 with	 dependability	 and	 treat	
Dependability	as	a	composite	term	called	Dependability	and	Security	(Avizienis,
et al. 2004).		
	
Security	 is	 huge	 field	 of	 research,	 ranging	 from	 network-related	 security,	 to	
cryptography,	 from	 physical	 (transmission)-level	 to	 protocol-level,	 up	 to	
application-level	 security.	 From	 the	 software	 perspective,	works	 regarding	 the	
software	 design	 and	 testing	 for	 security	 are	 	 more	 of	 interest.	 A	 number	 of	
papers	regard	design	 for	security	 (Laverdiere, et al. 2006),	 security	models	(e.g.,	
(Jing 2010) (Roy, Kim and Trivedi 2012))	 formal	definition	of	security	attributes	
and	 metrics	 (e.g.,	 (Krautsevich, Martinelli and Yautsiukhin. 2010)),	 testing	 and	
analysis	 for	 security	 (see	 (AL-Ghamdi 2013)).	 In	 the	 practice,	 the	 most	 used	
approaches	to	assess	security	are	testing	and	analysis	techniques.	They	include:	
code	reviews,	automated	static	analysis,	binary	code	analysis,	fuzz	testing,	source	
and	binary	code	fault	injection,	risk	analysis,	vulnerability	scanning,	penetration	
testing.			
	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 29	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

The	 last	 attribute	 of	 dependability	 is	 maintainability.	 The	 definition	 of	
maintainability	as	per	IEEE	is	defined	as:	
“The	 ease	 with	 which	 a	 software	 system	 or	 component	 can	 be	 modified	 to	
correct	 faults,	 improve	performance	or	other	 attributes,	 or	 adapt	 to	 a	 changed	
environment	is	maintainability”.	There	are	four	major	categories	of	maintenance	
(Lientz and Swanson 2000):	
• Corrective	 maintenance:	 Reactive	 modification	 of	 a	 software	 product	

performed	after	delivery	to	correct	discovered	problems.	
• Adaptive	maintenance:	Modification	of	 a	 software	product	performed	after	

delivery	 to	 keep	 a	 software	 product	 usable	 in	 a	 changed	 or	 changing	
environment.	

• Perfective	maintenance:	Modification	of	a	software	product	after	delivery	to	
improve	performance	or	maintainability.	

		
Maintainability	 models	 and	 techniques	 can	 be	 divided	 roughly	 in	 two	 classes	
(Tiwari and Sharma 2012):		

§ Traditional	 Maintainability	 Technique:	 these	 include	 works	 defining	
models	 that	 include	 several	 attributes.	 For	 instance	 (Khairuddin and
Elizabeth 1996)	 includes	 attributes	 as:	 	 Modularity,	 Readability,	
Programming	Language,	Standardization,	Level	of	Validation	and	Testing,	
Complexity	 and	 Traceability	 used	 to	 assess	 maintainability;	 (Fioravanti
and Nesi 2001)	 includes	 considers	 adaptive	 maintenance,	 defining	 a	
proper	 metric;	 Bandini	 et	 al.,	 (Bandini, et al. 2002)	 considered	 three	
independent	 factors,	 namely;	 design	 complexity,	 maintenance	 task	 and	
programmer’s	ability	to	predict	the	maintenance	performance	for	object-
oriented	 systems;	 Ahn	 et	 al.	 (Ahn, et al. 2003)	 proposed	 a	 software	
maintenance	 project	 effort	 estimation	 model,	 which	 is	 based	 on	 the	
function	point	measure	and	10	maintenance	productivity	factors;	

§ Soft	 Computing	 based	 Maintainability	 Techniques:	 include	 more	 recent	
techniques	 to	 assess	maintainability	based	on	a	 set	of	predictor	 factors:	
these	 can	 be	 grouped	 in	 techniques	 based	 on	 aritifical	 neural	 network,	
Adaptive	 Neuro	 Fuzzy	 Inference	 System,	 Fuzzy	 approach,	 Genetic	
Algorithm	(Singh, Kaur and Sangwan 2004),	(Aggarwal, Singh and Chandra,
et al. 2005),	 (Aggarwal, Singh and Kaur, et al. 2006),	 (Shukla and Mishra
2008).		

	

6.2.2 Performance

	
Performance	is	an	external	attribute	based	on	user	requirements,	related	to	the	
ability	of	the	system	to	provide	the	required	response	within	time	and	resource	
constraints.		
Performance	 is	 mainly	 assessed	 by	 either	 modelling	 approaches	 (e.g.,	 in	 the	
design	 phases)	 or	 by	 performance	 testing	 techniques.	 Performance	 modelling	
techniques	 are	 similar	 to	 the	 ones	used	 for	 reliability	 and	 availability	 analysis,	
being	 them	 based	 on	 Markov-like	 formalisms	 and	 network	 queues,	 aimed	 at	
analyzing	 the	 possible	 behaviours	 of	 a	 system	 from	 the	 architectural	 point	 o	
view,	 by	 changing	 parameters	 of	 interest	 and	 improve	 planning	 and	 resource	
allocation	(Pietrantuono, Russo e Trivedi 2010).		

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 30	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

On	 the	 other	 hand,	 a	 set	 of	 approaches	 focuses	 on	 testing	 to	 assess	 and	 then	
improve	performance.	 In	 fact,	 the	predecessor	of	 performance	problems	 is	 the	
absence	 of	 test	 planning	 (Weyuker and Vokolos 2000);	 	 hence,	 	 strategies	 	 that		
support	 	the	 	choice	and	the	execution	of	performance	testing	are	fundamental.	
In	 this	 direction (D. G. and Emmerich 2004),	 the	 authors	 underline	 the	
importance	 of	 designing	 and	 executing	 performance	 testing	 since	 early	
architectural	 design	 phases.	 They	 propose	 an	 approach	 that	 supports	 the	
selection	of	relevant	use	cases	from	the	architecture	design	and	the	execution	of	
such	tests	using	early	available	software.	Liu		et	al.		propose		in		(Liu, et al. 2002)		
a	 	 hybrid	 	 approach	 	 based	 	 on	 empirical	 testing	 and	 a	 queuing	 network	
modelling	 to	 predict	 the	 performance	 of	 component-based	 applications.	 They	
point	out	the	importance		to		isolate		performance		issues		due		to		the	business		
logic		from		the		ones		due		to		the		underlying		middle-ware		infrastructure		(i.e.,		
the	 	 container),	 	 and	 	 to	 	 the	 	 operating	 environment	 (e.g.,	 hardware,	 OS,	 and	
DBMS).	 In	 (A.Avritzer and E.J.Weyuker 2004)	 the	authors	combine	performance	
testing	 and	 simulation	 model	 to	 predict	 performance	 problems	 of	 an	 e-
commerce	application,	consisting	of	a	front-end	web	application,	 	 	a	middle-tier		
application		server,		and		a		back-end		database.		The	paper	also	provides	a	series	
of	 steps	 to	 support	 the	 diagnosis	 of	 performance	 slowdown,	 as	 well	 as	 a	
procedure	 for	 automatic	 test	 case	 generation	 and	 execution.	Other	 approaches		
based	on		testing		that		evaluate		the		performance		of		component-based		systems		
are	 	 surveyed	 	 in	 (Koziolek 2010).The	authors	 classify	 approaches	according	 to	
the	development	 cycle	phase	 in	which	 they	are	applied,	 and	 then	discuss	 their	
benefits	 	 and	 	 drawbacks.	 	 An	 earlier	 study	 (Becker, et al. 2006)	 also	 surveys	
model-	 	 and	 	 measurement-based	 	 approaches	 	 that	 	 address	 	 performance	
assessment	of	component-based	systems.		
	

6.2.3 Robustness

	
Robustness	is	defined	as	the	degree	at	which	a	system	operates	correctly	in	the	
presence	 of	 exceptional	 inputs	 or	 stressful	 environmental	 conditions	 (IEEE
610.12 n.d.).		
As	 the	 robustness	 of	 a	 software	 component	 has	 repercussions	 on	 the	
dependability	 of	 the	 whole	 system,	 its	 correct	 evaluation	 is	 essential.	 It	 is	
particularly	relevant	software	Components	taken	Off-The-Shelf	(COTS),	because	
they	have	been	developed	by	ignoring	a	specific	application	context.		
A	 common	 way	 to	 assess	 robustness	 of	 the	 software	 is	 through	 robustness	
testing.	 It	 aims	 to	 evaluate	 the	 capacity	 of	 a	 system	 to	 resist	 and	 react	 to	
exceptional	 and	 erroneous	 inputs.	 Robustness	 testing	 was	 introduced	 as	 an	
automatic	 technique	 treating	 the	 tested	 system	 as	 a	 black-box.	 Robustness	
testing	 campaigns	 based	 on	 robustness	 failure	 rate	 (the	 percentage	 of	 non-
properly	 handled	 erroneous	 inputs)	 allow	 identifying	 several	 improperly	
handled	inputs.		
	
Robustness	is	evaluated	in	presence	of	the	erroneous	inputs	at	the	interface	of	a	
component/system.	 Such	 erroneous	 inputs	 may	 originate	 from	 faults	 in	 some	
other	components,	or	from	human	mistakes	in	providing	inputs	to	the	interface.		

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 31	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

Based	on	 this	view,	 there	are	roughly	 two	approaches	 to	robustness	testing.	 In	
the	 former,	 faults	may	 be	 injected	 into	 a	 component	 A	 and,	 if	 and	 when	 they	
become	 active,	 there	 is	 a	 chance	 that	 they	 manifest	 at	 the	 interface	 of	 the	
component	A	as	errors:	then	these	errors	may	propagate	to	component	B	which	
is	 the	 target	 of	 the	 robustness	 testing.	 The	 injection	 of	 faults	 in	 A	 is	 achieved	
through	what	 is	 known	 as	 code	mutation.	 This	 technique	 has	 been	 adopted	 in	
(Duraes and Madeira 2002);	although	it	is	effective,	it	requires	that	injected	faults	
are	representative	of	real	faults,	and	of	their	activation	and	their	propagation	to	
component	B’s	interface.		
The	 latter	 approach	 is	 to	 inject	 errors	directly	 at	 the	 interface	of	 the	 target.	 In	
practice,	 the	parameters	of	 the	 service	 (a	 function)	are	 corrupted	with	 specific	
errors.	 This	 approach	 compared	 to	 the	 former	 one	 does	 not	 require	 the	
activation	of	a	 fault,	but	 it	 is	 sufficient	 to	observe	a	service	 invocation	 towards	
the	 target.	 In	 both	 cases,	 the	 service	 interface	 is	 the	 error	 location.	 For	 this	
reason	robustness	testing	is	also	named	interface	error	injection	(Natella 2011).		
Robustness	 testing	 has	 been	widely	 and	 successfully	 applied	 to	 the	OS	 system	
call	 interfaces	 or	 device	 drivers	 (Johansson, Suri and Murphy, On the impact of
injection triggers for OS robustness evaluation 2007) (Sarbu, et al. 2009).	 These	
interfaces	 are	 of	 interests	 because	 through	 them	 it	 is	 possible	 to	 assess	 the	
robustness	 of	 the	 OS	 against	 erroneous	 behavior	 of	 applications	 and	 drivers,	
which	have	been	proven	 to	be	particularly	error	prone	 (Chou, et al. 2001).	The	
types	 of	 errors	 injected	 at	 the	 service	 interface	 can	 be	 classified	 according	 to	
three	types	of	error	model	(Johansson, Suri and Murphy, On the selection of error
model(s) for OS robustness evaluation 2007):	
§ Fuzzy;	 errors	 are	 chosen	 randomly	 among	 all	 possible	 values	 of	 the	 input	

domain	of	the	service.	Therefore	experiments	with	this	type	of	errors	should	
be	repeated	a	significant	number	of	times	to	be	confident	in	the	final	results.	

§ Data	Error;	errors	are	selected	according	to	the	type	of	the	input	parameters.	
The	selection	of	the	error	is	conducted	on	the	basis	of	the	tester	experience	
or	with	established	methods	(e.g.,	boundary	analysis).	Depending	on	the	type	
of	 parameters,	 the	 number	 of	 injections	 can	 vary	 from	 one	 case	 to	 tens	 of	
cases	 for	a	given	parameter	 (Johansson, Suri and Murphy, On the selection of
error model(s) for OS robustness evaluation 2007).	

§ Bit	Flip;	errors	are	permutations	of	one	of	 the	bit	of	 the	 input	parameter	of	
the	service.	This	model	derives	from	hardware	errors	in	which	the	real	faults	
are	modelled	as	"bit	flips"	(Hsueh, Tsai and Iyer 1997).	It	is	easy	to	use,	but	it	
requires	many	experiments	because	of	different	number	of	the	bit	to	flip	for	
all	the	input	parameters.	

The	errors	can	be	injected	in	a	precise	temporal	 interval,	 time-driven	injection,	
or	when	specific	events	occur,	event-driven	injection.	The	time	for	the	injection,	
often,	is	not	precisely	defined,	rather	it	is	assumed	that	the	system	is	in	a	given	
state	when	executing	 the	RT.	The	event-driven	approach	 injects	errors	when	a	
precise	sequence	of	calls	to	the	service	interface	takes	place.		
	
Some	 of	 the	 most	 successful	 approaches,	 with	 the	 associated	 tool,	 is	 Ballista	
(Koopman and DeVale, The exception handling effectiveness of POSIX operating
systems 2002),	 (Koopman, Sung, et al. 1997).	 It	 was	 the	 first	 approach	 for	
evaluating	and	benchmarking	the	robustness	of	commercial	OSs	with	respect	to	
the	POSIX	system	call	interface	(IEEE Std 1003.1b 1993).	BALLISTA	adopts	a	data-

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 32	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

type	based	fault	model,	that	is,	it	defines	a	subset	of	invalid	values	for	every	data	
type	 encompassed	 by	 the	 POSIX	 standard.	 	 A	 test	 case	 consists	 of	 a	 small	
program	that	invokes	the	target	system	call	using	a	combination	of	input	values.	
Test	 outcomes	 are	 classified	 by	 severity	 according	 to	 the	 CRASH	 scale:	 a	
Catastrophic	failure	occurs	when	the	failure	affects	more	than	one	task	or	the	OS	
itself;	 Restart	 or	 Abort	 failures	 occur	when	 the	 task	 launched	 by	 BALLISTA	 is	
killed	by	 the	OS	or	 stalled;	 Silent	 or	Hindering	 failures	occur	when	 the	 system	
call	 does	 not	 return	 an	 error	 code,	 or	 returns	 a	 wrong	 error	 code.	 BALLISTA	
found	 several	 invalid	 inputs	 not	 gracefully	 handled	 (Restarts	 and	Aborts),	 and	
some	Catastrophic	 failures	 related	 to	 illegal	pointer	values,	numeric	overflows,	
and	 end-of-file	 overruns	 (Koopman and DeVale, The exception handling
effectiveness of POSIX operating systems 2002).		
	

6.2.4 Usability

	
Usability	 is	 the	ability	of	a	software	system	to	be	comprehended,	 learned,	used	
with	satisfaction	by	users	 in	specified	usage	conditions.	 It	means	 that	software	
manages	 well	 the	 interaction	 with	 users.	 At	 the	 beginning,	 the	 software	
engineering	 community	 has	 always	 associated	 usability	 with	 interface	 design.	
Then	several	compsite	models	have	been	developed.		
There	are	older	quality	models	including	usability	in	their	definition,	such	as	the	
Boehm	Model	 (1978),	 	and	 the	Mc	Call	Model	 (1977)	-	also	called	GE	model	or	
FCM	 (factor,	 criteria	 and	metric).	However,	 these	 older	models	 do	not	 capture	
our	current	meaning	of	usability.		
In	the	literature,	one	of	the	first	authors	in	the	field	to	recognize	the	importance	
of	 usability	 engineering	 was	 Shackel	 (Shackel 1991).	 In	 his	 approach,	 Shackel	
defines	a	model	where	product	acceptance	is	the	highest	concept.	The	user	has	
to	 make	 a	 trade-off	 between	 utility,	 the	 match	 between	 user	 needs	 and	
functionality,	usability,	 ability	 to	utilize	 functionality	 in	practice	and	 likeability,	
affective	 evaluation	 versus	 costs;	 financial	 costs	 as	 well	 as	 social	 and	
organizational	consequences	when	buying	a	product.	Usability	is	defined	as:	‘‘the	
usability	of	a	system	is	the	capability	in	human	functional	terms	to	be	used	easily	
and	effectively	by	the	specified	range	of	users,	given	specified	training	and	user	
support,	 to	 fulfil	 the	 specified	 range	 of	 tasks,	 within	 the	 specified	 range	 of	
scenarios’’.	
	For	a	system	to	be	usable	it	has	to	achieve	defined	levels	on	the	following	scales:	

§ Effectiveness:	performance	in	accomplishment	of	tasks.	
§ Learnability:	degree	of	learning	to	accomplish	tasks.		
§ Flexibility:	adaptation	to	variation	in	tasks.		
§ Attitude:	user	satisfaction	with	the	system.	

Nielsen	 (Nielsen 1993)	 follows	 Shackel,	 considering	 usability	 as	 an	 aspect	 that	
influences	product	acceptance.	Acceptability	 is	differentiated	 into	practical	 and	
social	acceptability.	It	considers	usability	as	composed	of:		
Learnability;	 Efficiency	 (systems	 should	 be	 efficient	 to	 use),	 memorability	
(systems	 should	 be	 easy	 to	 remember),	 errors	 (the	 system	 should	 have	 a	 low	
error	rate);	satisfaction	(the	system	should	be	pleasant	to	use).		
	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 33	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

The	ISO	9126	standard	currently	defines	it	as	“The	extent	to	which	a	product	can	
be	 used	 by	 a	 specified	 set	 of	 users	 to	 achieve	 specified	 goals	 (tasks)	 with	
effectiveness,	 efficiency	 and	 satisfaction	 in	 a	 specified	 context	 of	 use”.	 It	 is		
viewed	as	made	up	of:	understandability,	learnability,		operability,	attractiveness	
(i.e.,	user-friendliness).	
Authors	 in	 (Folmer and Bosch 2004)	 surveys	 these	 definitions,	 and	 ends	 up	 by	
dividing	usability	attributes	in:		
Objective	operational	criteria:	user	performance	attributes	such	as	efficiency	and	
learnability.		
Subjective	 operational	 criteria:	 user	 view	 attributes	 such	 as	 satisfaction	 and	
attractiveness.	Of	course	subjective	criteria	are	more	difficult	to	assess.		
	
As	for	the	evaluation,	Zhang	(Zhang 2001)	has	identified	three	types	of	usability	
evaluation	methods:	Testing,	Inspection,	Inquiry.		
The	usability	testing	approach	requires	representative	users	to	work	on	typical	
tasks	using	the	system	or	the	prototype.	The	evaluators	use	the	results	of	testing	
to	 see	 how	 the	 user	 interface	 supports	 the	 users	 to	 do	 their	 tasks.	 Testing	
methods	include	the	following	(from	(Folmer and Bosch 2004)):	

§ Coaching	method	
§ Co-discovery	learning	
§ Performance	measurement	
§ Question-asking	protocol		
§ Remote	testing		
§ Retrospective	testing		
§ Teaching	method		
§ Thinking	aloud	protocol	

	
The	 usability	 inspection	 requires	 usability	 specialists	 or	 software	 developers,	
users	and	other	professionals	 to	examine	and	 judge	whether	each	element	of	a	
user	 interface	 or	 prototype	 follows	 established	 usability	 principles.	 Commonly	
used	 inspection	 methods	 are:	 Heuristic	 evaluation;	 Cognitive	 walkthrough;	
Feature	 inspection;	 Pluralistic	 walkthrough;	 Perspective-based	 inspection;	
Standards	inspection/guideline	checklists.		
	
Usability	 inquiry	 requires	 evaluators	 to	 obtain	 information	 about	 users	 likes,	
dislikes,	needs	and	understanding	of	the	system.	Inquiry	methods	include:	Field	
observation.	 Interviews/focus	 groups;	 Surveys;	 Logging	 actual	 use;	 Proactive	
field	study;	and	Questionnaires.	About	the	latter,	(Zhang 2001)	and	various	other	
web	 resources	 provide	 an	 overview	 of	 web	 based	 interface	 evaluation	
questionnaires.		
	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 34	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

7 FACTORS IMPACTING QUALITY AND COST

Besides	quality	characteristics	of	a	product,	those	factors	that	most	prominently	
impact	the	quality	need	to	be	reviewed.	In	fact,	the	ICEBERG	project	focuses	on	
determining	 a	 model-based	 process	 for	 linking	 (poor)	 quality	 attributes	 with	
cost.	 External	 factors	 impacting	 such	 quality	 are	 therefore	 to	 be	 considered	 in	
subsequent	steps.		

Main	objectives	of	projects	are	defined	by	 the	classical	model	of	 restrictions	of	
the	triangle	of	project	management.	This	model	also	knows	as	the	 iron	triangle	
(see	 Fig.	 3)	 was	 invented	 by	 Dr	 Martin	 Barnes	 in	 1969	 to	 demonstrate	 the	
connection	between	time,	cost	and	output	(correct	scope	at	the	correct	quality)	
(APM	2010).	
	

	
	

Fig.	3	The	project	management	triangle	or	iron	triangle	

	
Keeping	 in	mind	 the	 interest	 in	 the	 three	 dimensions	which	 project	managers	
want	 to	 control,	 we	 want	 to	 analyse	 which	 are	 the	 sources	 for	 quality	 while	
looking	at	the	necessary	effects	in	the	two	other	dimensions:	cost	and	time.	This	
idea	 is	 expressed	 in	 this	 document	 as	 the	 factors	 that	 impact	 quality,	 cost	 and	
time.	Although	many	 classifications	might	be	 adopted,	 the	model	 presented	by	
(McConnel	 1996)	 would	 help	 us	 to	 allocate	 current	 lines	 of	 actions	 in	 big	
categories	 according	 to	 their	 core	 philosophy.	 The	 model	 proposes	 four	 main	
classes	of	factors	influencing	results	in	software	projects	(see	Fig.	4).	
	

Scope
(constant area)

Cost

Time Defects/Quality

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 35	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

	
	

Fig.	4	Factors	for	software	quality	and	productivity	

	

In	 the	 subsequent	 sections,	 we	 will	 review	 some	 of	 the	 relevant	 existing	
references	 in	the	 literature	that	describe	the	factors	of	each	type	and	how	they	
impact	results.	

7.1 THE IMPACT OF THE PROCESS
The	 category	 of	 processes	 is	 huge	 as	 it	 embraces	 both	 processes	 in	 the	 large	
(with	 a	 special	 focus	 on	 quality	 assurance	 and	 management	 activities)	 and	
specific	 methods	 and	 techniques	 for	 detailed	 tasks	 at	 project	 level	 (also	 with	
specific	 interest	on	quality-related	activities).	 In	the	first	group,	 the	main	effort	
has	been	devoted	to	the	well-known	process	models	 like	CMMi	(CMMI	Product	
Team	 2006)	 and	 ISO15504	 (ISO 15504-1 2004).	 Lastly	 agile	 methods	 such	 as	
SCRUM	(Cohn	2009)	have	been	emerged	with	energy	as	proposed	solutions	for	
quality	 and	 productivity.	 The	 more	 traditional	 proposals	 like	 Unified	 Process	
(Jacobson,	Booch	y	Rumbaugh	1999)	or	 classical	methodologies	 and	 life	 cycles	
models	 are	 not	 today	 choices	 if	 not	 embedded	 within	 bigger	 frameworks,	
especially	because	they	have	been	well	accepted	but	almost	no	real	rigorous	data	
on	benefits	have	been	provided.		

At	least,	different	studies	on	CMMi	influence	have	been	published	during	the	last	
years,	e.g.	(Goldenson	y	Gibson	2003)	and	(Herbsleb,	y	otros	1994).	Within	the	
proposals	 of	 processes	 in	 the	 large,	 the	 specific	 proposals	 centred	 on	 quality	
assurance	are	also	important	chances,	specially	the	adaptation	of	the	general	ISO	
9001	(ISO 9001 2008)	to	software	development	(ISO/IEC 90003 2004).	Although	
its	 implementation	 in	 the	software	companies	has	been	scarce	and	with	a	 total	
absence	 of	 measurement	 of	 benefits,	 it	 is	 true	 that	 its	 consequences	 in	
organizations	 (systematic	 documented	 processes,	 etc.)	 represent	 a	 minimum	
application	 of	 quality	 practices	 that	 provide	 some	 trust	 in	 reaching	 project	
objectives.	

In	 the	category	of	processes	at	project	 level,	 specific	quality	plans,	 for	example	
(IEEE	 1984),	 usually	 rely	 on	 a	 traditional	 set	 of	 techniques	 to	 help	 in	 quality	
assurance:	 configuration	 management,	 metrics/measurement,	 verification	 and	
validation	 (highlighting	 software	 testing	 and	 review	 and	 audits	 processes	 as	
commonest	methods	although	additional	 techniques	are	 available	but	not	 very	

Technology

Environment

Workforce Processes
Software

quality and
productivity

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 36	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

common	(Adrion,	Branstad	y	Cherniavsky	1982)).	It	is	important	to	remark	that	
these	techniques	require	non	trivial	investment	in	human	effort	(hence	money),	
so	 their	 use	 should	 be	 adapted	 to	 each	 organization	 both	 to	 be	 effective	 (e.g.	
providing	an	easy-to-use	environment)	and	to	be	efficient	and	cost-effective	(e.g.	
reviewing	 all	 the	 code	 is	 usually	 unfeasible;	 so	 a	 previous	 selection	 of	 defect-
prone	 parts	 using	 metrics	 and	 Pareto	 principle	 and	 the	 help	 of	 automatic	
reviewing	tools	are	a	must).	In	general,	adequate	quality	assurance	efforts	tend	
to	 make	 more	 stable	 delivery	 schedules	 and	 quality	 levels	 (Herbsleb,	 y	 otros	
1994).	 A	 good	 number	 of	 studies	 (e.g.	 (van	 Solingen	 2006)	 	 and	 (Rico	 2004))	
show	productivity	improvement	and	good	ROI	based	on	decreasing	rework	and	
bad	quality	costs	(Fleckenstein	1983),	especially	when	focus	is	put	on	prevention	
and	 early	 detection	 because	 fixing	 cost	 rises	 sharply	 when	 defects	 remain	
undetected	throughout	the	project	phases		(Harrington	1987).	

Processes	 are	 not	 equally	 implemented	 in	 all	 types	 of	 settings,	 and	 these	
differences	lead	to	different	decisions	in	projects	and	different	effects	in	results	
and	 costs.	 This	 is	 the	 case	 of	 SME	 (Small	Medium-size	 Enterprises).	 Empirical	
studies	 state	 that	 there	 exist	 a	 lot	 of	 problems	 in	 small	 and	 medium	 scale	
companies,	 which	 must	 be	 taken	 into	 consideration	 while	 talking	 about	 the	
quality	 in	software	product.	An	example	 is	described	by	(Pusatli	y	Misra	2011)	
with	empirical	 investigations	 for	quality	assurance	activities	 in	SME	 in	Turkey.	
Due	to	constraints	in	resources	and	business	model,	management	tend	to	work	
with	 some	 thoughts	 related	 to	 quality:	 quality	 issues	 are	 not	 the	 main	 goal	
during	 projects,	 large	 standards	 like	 ISO	 or	 CMMI	 are	 mainly	 considered	 for	
external	image,	there	is	a	lack	of	expertise	and	customer	satisfaction	which	is	the	
only	priority	does	not	need	certifications	and	complex	QA.		

Another	scenario	where	decisions	on	quality	and	related	costs	are	also	affected	
by	human	factors	is	global	software	development	(GSD)	as	described	by	(Misra	y	
Fernández-Sanz	2011).	A	significant	number	of	studies	are	available	in	literature	
analysing	the	problems	of	developing	software	in	distributed	environments.	The	
processes	normally	have	to	change	to	cope	with	the	clear	limitations	imposed	by	
these	 projects.	 Although	 many	 of	 the	 factors	 in	 GSD	 (cultural	 differences,	
geographical	 distance,	 time	 difference,	 etc.)	 can	 better	 be	 included	 in	 the	
category	 of	 environment	 (see	 Section	 7.2)	 or	workforce	 (see	 Section	 7.3),	 it	 is	
clear	 that	processes	have	to	be	adapted	and	that	effects	of	decisions	on	quality	
and	costs	are	different.	

Other	scenarios	and	settings	for	projects	lead	to	differences	in	the	application	of	
QA	 techniques	 and	methods	 or	 in	 the	 selection	 of	 the	 tools,	methodologies	 or	
techniques	 that	 could	 be	 more	 appropriate	 for	 assuring	 quality	 results	 while	
controlling	 they	 are	 effective	 and	 efficient	 in	 costs	 and	 time.	 Even	 selection	 of	
processes	 in	 the	 large	 through	 CMMi	 or	 ISO	models	 or	 adoption	 of	 life	 cycles	
(incremental,	 iterative,	 spiral	 cycles,	 etc.)	 and	 development	 methodologies	 or	
philosophies	 (agile,	 standard	 methods,	 etc.)	 is	 not	 leading	 to	 totally	
homogeneous	 ways	 to	 work	 in	 projects:	 on	 the	 contrary,	 they	 promote	 the	
necessary	 customization	 to	 company	 features	 and	 circumstances.	 In	 fact,	 each	
project	 is	 going	 to	 adapt	 general	 guidelines	 through	 decisions	 of	 project	
managers	 in	 terms	 of	 process	 adaptation,	 allocation	 of	 resources,	 selection	 of	
tools	and	techniques,	etc.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 37	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

7.2 THE IMPACT OF THE ENVIRONMENT
Environment	 and	 personnel	 are	 the	 two	 factors	 which	 are	 by	 far	 the	 least	
analyzed	 in	a	 formal	way,	 specially	 their	 relation	 to	effects	on	software	quality	
and	productivity	described	in	a	measurable	manner	(Thomas,	Hurley	y	J.:	1996).	
As	development	cost	models	have	shown,	humans	represent	the	main	resource	
(and	 the	main	 cost)	 for	 software	projects.	 In	 general,	 proposals	 related	 to	 cost	
estimation	 and	 project	management	 have	 been	 the	 pioneers	 in	 the	 analysis	 of	
human	and	environmental	factors	due	to	their	influence	on	budget,	schedule	and	
quality.	One	sophisticated	example	of	modelling	of	relations	among	the	different	
factors	 which	 influence	 software	 development	 projects	 in	 effort	 and	 results	
during	is	the	project	dynamics	proposed	by	(Abdel-Hamid	y	Madnick	1991).	But	
people	are	not	isolated	from	their	professional	environment:	office	and	working	
conditions	as	well	as	psychological	aspects	are	influencing	their	productivity	and	
the	 quality	 they	 produce.	 Although	 studies	 and	models	 clearly	 describing	 how	
the	 environment	 affects	 results	 in	projects	 are	 scarce,	 at	 least	we	 can	mention	
some	 remarkable	 results	 from	 them.	 The	 work	 in	 (Jones,	 Estimating	 software	
costs	 1998)	 determines	 with	 the	 reference	 to	 function	 points	 statistics	 that	
ergonomic	offices	can	add	an	average	15%	of	productivity	to	development	while	
crowded	and	uncomfortable	ones	deduct	27%	and	that	 low	moral	decreases	 in	
an	 average	 6%	 productivity	while	 high	moral	 and	 good	mood	may	 add	 a	 7%.	
Even	 decisions	 of	 managers	 which	 impact	 the	 psychological	 conditions	 of	
professionals	would	lead	to	clear	effects:	a	moderate	schedule	pressure	gets	an	
additional	11%	of	improvement	in	productivity	while	an	excessive	one	provokes	
a	 radical	 decrement	of	30%.	 In	 specific	 settings	 like	 geographically	distributed	
projects	and	GSD,	cultural	differences	usually	create	communication	barriers	and	
problems	of	coordination	in	the	team.	As	described	by	(Misra	y	Fernández-Sanz	
2011),	they	may	also	affect	productivity	and	quality	of	by	results	foreigners	who	
work	 during	 a	 period	 in	 another	 country	 and	 even	 their	 acceptance	 by	 local	
team.	Time	differences	between	countries	 in	GSD	projects	 is	another	important	
environmental	factor.	These	reasons	are	causing	a	restructuration	of	outsourcing	
destinations	all	over	the	world	promoting	the	change	to	nearshoring.	

7.3 THE IMPACT OF THE WORKFORCE (HUMAN FACTORS)
As	 stated	 in	 previous	 section,	 workforce	 is	 the	 main	 resource	 of	 a	 software	
project	and	it	accounts	for	the	most	of	the	cost.	Together	with	other	factors,	the	
project	 dynamics	model	 of	 (Abdel-Hamid	 y	Madnick	 1991)	 is	 one	 of	 the	most	
complete	 to	 show	 all	 factors	 and	 their	 consequences	 in	 projects	 through	 a	
complex	 network	 of	 influences.	 Some	 subsequent	 efforts	 on	 this	 model	 have	
checked	if	the	famous	Brook’s	law,	“adding	people	to	a	delayed	project	tends	to	
delay	it	more	and	with	higher	cost”	(Brooks	1975),	is	confirmed	with	the	model:	
one	study	confirms	higher	costs	but	not	always	more	delay	(only	when	tasks	are	
highly	 sequential)	 (Hsia,	Hsu	 y	Kung	1999),	 others	 restrict	 the	 effects	 to	 small	
projects	 below	5	people	 involved.	Of	 course,	 this	 can	be	pointed	 out	 using	 the	
traditional	 study	 of	 Schulmeyer	 in	which	 the	 phenomenon	 of	 the	 net	 negative	
producing	programmer	is	exposed	(Schulmeyer	1992).	

However,	locating	quantified	analysis	of	development	personnel	is	usually	linked	
to	 contribution	 in	 the	 area	 of	 software	 cost	 estimation	 models.	 An	 evident	
reference	in	this	approach	is	the	quantification	of	 influence	of	qualification	and	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 38	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

experience	 of	 development	 personnel	 in	 the	 traditional	 COCOMO	 drivers	 (van	
Solingen	 2006):	 analysts’	 capacity,	 experience	 with	 similar	 applications,	
programmer’s	 capacity,	 experience	 with	 virtual	 machine	 and	 experience	 with	
language.	Letting	aside	the	precision	and	validity	of	COCOMO,	it	is	interesting	to	
realize	 that	 negative	 influence	 of	 these	 factors	 is	 always	 	 greater	 than	 the	
corresponding	 positive	 influence	 when	 having	 better	 than	 average	 situations	
(e.g.	 low	 valued	 analysts	 represent	 46%	 of	 extra	 cost	 while	 highly	 skilled	
analysts	contribute	with	a	29%	reduction	of	costs).	

Another	 interesting	 set	 of	 data	 on	 the	 influence	 of	 factors	 related	 to	 software	
development	 personnel	was	 published	 by	 C.	 Jones	 (Jones,	 Estimating	 software	
costs	 1998)	 within	 his	 wide	 statistics	 on	 software	 costs,	 mainly	 based	 on	
function	points.	Table	II	extracted	from	(Jones,	Estimating	software	costs	1998)	
shows	the	different	influence	of	key	factors	when	situation	is	positive	(e.g.,	very	
experienced	personnel:	+55%)	and	when	 it	 is	negative	 (e.g.,	 -87%).	 In	general,	
accumulation	of	negative	factors	in	environment	and	personnel	means	a	big	fall	
of	productivity	 in	much	higher	degree	than	positive	 factors.	 	As	a	consequence,	
the	 sentence	 “people	 are	 our	 main	 asset”	 is	 even	 more	 justified	 in	 software	
development,	at	least	avoiding	not	cutting	costs	too	much	in	this	aspect.	

Table	II.	Impact	of	key	factors	affecting	productivity	((Jones,	Estimating	software	costs	1998)	

Factor Positive influence (+%) Negative influence (-%)

Lack of experience in managers High +65% Low –90%

Developers’ experience High +55% Low –87%

Not paid extra hours Yes +15% No 0%

Annual training >10 days +8% No training -12%

Organization Hierarchical +5% Matrix –8%

	

As	 seen,	 moral	 and	 motivation	 is	 a	 key	 factor.	 Research	 into	 motivation	 of	
software	 developers	 suggests	 they	 might	 resist	 the	 implementation	 of	 quality	
management	 techniques	 (Cheney	 1984)	 (Couger	 y	 Zawacki	 1980)	 (Woodruff	
1980).	 In	 general,	 there	 are	many	 sources	 of	motivation	 and	 demotivation	 for	
software	engineers	 (Beecham,	y	otros	2008)	and	motivation	 is	 recognized	as	a	
major	 influence	 for	 quality	 (Thomas,	 Hurley	 y	 J.:	 1996)	 with	 many	 studies	
analysing	 level	 of	 motivation	 of	 software	 developers	 (compared	 to	 other	
professions	 or	 positions)	 and	 their	 resistance	 to	 change	 (really	 high	 in	
developers	 engaged	 in	 software	 maintenance	 (Griesser	 1993))	 but	 with	 a	
favourable	influence	of	human	relations	on	motivation	(Guterl	1984).	In	fact,	the	
use	 of	 disciplined	 teams	 for	 development	 (with	 disciplined	methods)	 tends	 to	
produce	better	results	than	ad-hoc	or	individual	programmers	(Basili	y	Reiter	R.	
W.	1979).	This	is	also	aligned	to	models	more	oriented	to	personal	performance	
of	developers	like	PSP.	Given	that	one	important	de-motivator	is	producing	poor	
quality	software	with	no	sense	of	accomplishment	(Beecham,	y	otros	2008),	total	
freedom	 or	 ad-hoc	 arrangements	would	 be	 not	 a	 real	motivation	 for	 software	
professionals.		

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 39	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

When	 dealing	 with	 software	 quality	 and	 reliability,	 human	 factors	 have	 been	
identified	as	a	cause	of	problems	that	can	determine	success	or	not	of	a	project	
or	 system	 (Ren-zuo,	 y	 otros	 2004).	As	 stated	 in	 several	 articles	 (Bach,	 Enough	
About	Process:	What	We	Need	Are	Heroes	1995)	(Bach,	What	Software	Reality	Is	
Really	About	1999),	the	quality	of	the	people	should	be	considered	the	primary	
driver	 for	 software	quality	while	 sometimes	 too	much	 industry	 focus	has	been	
on	 the	process	 (“[software]	 It’s	more	 about	people	working	 together	 than	 it	 is	
about	 defined	 processes”).	 From	 an	 intuitive	 and	 experiential	 perspective,	 the	
education	 and	 abilities	 of	 a	 developer	 represents	 an	 important	 part	 in	 the	
ultimate	 quality	 of	 their	 developed	 software	 but	 little	 empirical	 evidence	 to	
support	 this	 logical	 assumption.	 One	 of	 the	 scarce	 studies	 analyzing	 this	
relationship	has	shown	that	higher	proportions	of	skilled	engineers	had	the	most	
dramatic	 effect	 in	 terms	 of	 adequacy	 of	 the	 design	 and	 implementation	 while	
higher	proportions	of	less	skilled	engineers	negatively	affected	the	end	product	
quality	of	the	software	(Beaver	y	Schiavone	2006).	However,	the	study	allocates	
the	 most	 dramatic	 positive	 effect	 to	 functional	 completeness	 to	 experienced	
leader-ship	 in	 all	 stages	 of	 the	 project.	 Some	 additional	 experiments	 (Zuser	 y	
Grechenig	2003)	(Ting-Peng,	y	otros	2010)	(Hoegl	y	Gemuenden	2001)	(Wong	y	
Bhatti	 2009)	 tend	 to	 show	a	 correlation	between	good	 teamwork	dynamics	or	
other	 indicators	 (e.g.	 size	 between	 5	 and	 7)	 and	 success	 and	 quality	 in	 the	
corresponding	projects.	Team	dynamics	might	be	affected	by	cultural	difference	
as	 described	 by	 (Hofstede	 2001))	 although	 differences	 are	 clearer	 in	 certain	
aspects	of	work	as	shown	by	(Fernández	y	Misra,	Analysis	of	cultural	and	gender	
influences	 on	 teamwork	 performance	 for	 software	 requirements	 analysis	 in	
multinational	environments	2012)	

	

It	 is	 clear	 that	attitude	 is	an	 important	 factor	 for	both	quality	and	productivity	
that	 might	 be	 also	 linked	 to	 professional	 ethics	 codes	 (Fernández	 y	 García,	
Software	 engineering	 professionalism	 2003).	 Especially	 attitude	 of	 testers	 and	
developers	 towards	 testing	 is	 considered	 critical	 for	 software	 quality	
(Murugesan	1994)	(Acuña,	Gómez	y	Juristo	2008)	(Gill	2005).	

Obviously	one	key	point	is	the	adequacy	of	education,	qualification	and	soft	skills	
to	 the	 corresponding	 position.	 It	 is	 difficult	 to	 have	 clear	 definitions	 of	
requirements	and	skills	needed	for	each	role	or	position.	Although	big	efforts	on	
collecting	 information	 from,	 e.g.,	 job	 ads	 enable	 certain	 general	 descriptions	
(Fernández,	 Personal	 Skills	 for	 Computing	 Professionals	 2009),	 it	 is	 hard	 to	
quantify	 qualification	 and	 experience	 of	 people	 in	 order	 to	 find	 out	 possible	
relationships	 to	 effects	 in	 productivity	 and	 quality	 with	 enough	 accuracy.	
However,	as	stated	in	data	included	in	Table	II,	training	is	one	of	the	key	factors	
which	 can	 be	 evaluated	 by	 collecting	 data	 from	 professionals	 as	 well	 as	 the	
evaluation	of	developers	in	terms	of	factors	which	influence	and	their	perception	
of	their	own	skills.	

7.4 THE IMPACT OF THE TECHNOLOGY
It	 is	 supposed	 that	 technology	 improvement	 and	 evolution	 improves	 the	
productivity	 and	quality.	This	 is	 an	 evident	option	 for	 almost	 all	 professionals,	
sometimes	boosted	by	the	commercial	activity	behind	each	new	technical	option	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 40	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

launched	 to	market.	 Operating	 systems,	 platforms,	 languages,	 etc.	 in	 a	 general	
view	but	also	improved	functionality	for	developers’	tools	(IDE,	CASE,	etc.)	and	
new	 architectures	 and	 paradigms.	 Sadly,	 it	 is	 usually	 hard	 to	 find	 out	
independent	 and	 rigorous	 studies	 with	 data	 from	 real	 practice	 which	 support	
performance	 improvements	 proclaimed	by	 vendors	 (maybe	because	 they	 have	
not	been	measured	or	due	to	hidden	difficulties).	In	general,	better	tools	tend	to	
increase	productivity:	 it	 is	supposed	that	advanced	tools	could	 lead	to	–17%	of	
effort	while	 extremely	 basic	 tools	would	 cause	 a	 +24%	 (Boehm	 1981).	 In	 any	
case,	 true	 potential	 for	 this	 line	 of	 action	 is	 heavily	 linked	 to	 real	 use	 by	
practitioners,	 who	 should	 be	 promoted	 by	 implementing	 a	 formal	 and	
customized	process	of	acquisition,	implementation	and	training.		

Sadly,	organizations	tend	to	be	more	conscious	in	purchasing	in	tools	(more	than	
50%	 according	 to	 (McConnel	 1996)	 than	 in	 investing	 in	 other	 actions	 which	
might	 be	more	 efficient.	 Studies	 show	 that	 effective	 CASE	 approaches	 increase	
productivity	by	27%	but	an	inadequate	implantation	would	lead	to	a	fall	of	75%	
and	 it	 is	 remarked	 the	danger	of	exaggerated	and	sensational	ads,	 that	10%	of	
them	are	purchased	but	never	used,	that	25%	are	poorly	exploited	due	to	lack	of	
training,	 etc.	 has	 shown	 that	 75%	of	 statements	 in	 ads	 are	 considered	 as	 ones	
with	low	credibility	although,	after	reviewing	more	than	4,000	projects,	70%	of	
people	 in	 charge	 of	 projects	 believe	 that	 one	 unique	 factor	 like	 this	 would	
provide	big	improvement.	In	fact,	many	managers	still	look	for	the	new	best	tool,	
language	 or	 platform	which	 as	 a	 silver	 bullet	will	 kill	 all	 the	 problems,	 even	 if	
they	 are	 not	 even	 considering	 that	 getting	 results	 depend	 on	 an	 effective	
implementation	within	the	daily	practice,	changing	methods	and	processes	and	
providing	training	to	soften	the	learning	curve.	
Technology	 may	 be	 also	 present	 as	 an	 influence	 for	 project	 decisions	 when	
stakeholders	 require	 a	 specific	 technical	 scenario	 as	 target	 operative	
environment.	 Software	 cost	 estimation	 models	 and	 methods	 have	 tried	 to	
determine	how	this	type	of	requirements	influence	the	costs	and	the	complexity	
of	projects,	especially	when	dealing	with	development	languages:	experience	in	
using	the	target	language	is	a	cost	driver	which	was	already	included	in	the	first	
of	COCOMO	(Boehm	1981).	
	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 41	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

8 QUALITY-BASED DECISION-MAKING PROCESS

“There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.
But there are also unknown unknowns – there are things we do not know we don't know.”

(Rumsfeld 2002)
	

8.1 INTRODUCTION
This	 Section	 is	 concerned	 with	 the	 analysis	 of	 the	 decision-making	 processes	
from	an	industrial	viewpoint.	From	such	processes,	the	industrial	requirements	
for	 implementing	 a	 cost-effective	 software	 quality	 assurance	 will	 be	 collected	
and	formalized.		

Knowing	how	to	make	decisions	is	critical	in	business	management;	through	this	
process,	the	managers	of	functional	areas	can	determine	the	type	and	content	of	
actions	and,	therefore,	their	“results".																																																																	

The	decision-making	process	is	critical	to	any	organization	that	aims	to	improve	
efficiency	 and	 customer	 perception.	 Especially	 complex	 organizations	 should	
have	 effective	 tools	 for	 decision-making	 so	 that	 the	 choices	 can	 be	 carried	 out	
quickly	and	for	every	level	of	society.	

Over	 the	 past	 50	 years,	 different	 models	 for	 decision	 making	 have	 been	
developed.	 Each	 of	 them	 considers	 a	 different	 "rationality"	 and	 a	 different	
combination	 of	 the	 variables	 involved	 in	 the	 process.	 They	 develop	 a	 thought	
according	 to	 which	 organizations	 are	 mechanistic	 systems,	 regulations	 and	
rational,	and	their	path	is	focused	on	maximum	efficiency.	The	limitations	arising	
from	the	 individual	rationality	are	exceeded	by	the	capacity	of	organizations	 in	
being	able	to	make	decisions	(Simon	1960).	

The	neoclassical	view	initially	saw	the	man	with	a	full	rationality;	he	was	able	to	
choose	 a	 better	 alternative	 among	 all	 the	 possible	 ones,	 with	 the	 logic	 of	
maximizing	 results	 and	 cost	 /	 benefit.	 However,	 later,	 a	 new	 theory	 has	 been	
developed	 in	 which	 man	 has	 no	 full	 rationality	 and	 is	 unpredictable	 in	 his	
actions;	his	ability	to	process	 information	is	also	 limited	because	 it	depends	on	
his	knowledge	and	experience	which	 is	always	 fragmentary	 (many	 times	 there	
are	 things	we	 do	 not	 know	we	 don't	 know).	 The	 following	 Table	 shows	 some	
elements	involved	in	a	decision-making	process	and	the	different	philosophies.	

Table	III.	The	main	elements	of	a	decision-making	process	

Objective rationality Limited rationality

All alternatives of action are known Not all the alternatives of action are
known

It is possible to calculate all the
consequences of each action

It is not possible to calculate all the
consequences of action: knowledge is

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 42	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

fragmented

The information are a free commodity The information are expensive

The management has an exact utility
function of its current and future choices

The preferences are not perfectly ordered
and their change over time is not
predictable

The decision maker is the only one The decision makers are more than one

The decision is based on optimizing
calculation

The decision is based on heuristic vision

The choice is a synoptic process The choice is a sequential process

	

The	 rationality	 would	 lead	 to	 the	 choice	 of	 an	 alternative	 among	 all	 those	
available	ones,	but	 the	human	mind	has	 some	alternatives	 leading	 to	decisions	
not	valid	in	the	context	in	which	it	operates.	Decisions	may	be	irrational	because	
of:	

• incompleteness	of	knowledge;	
• difficulty	of	predicting;	
• variety	and	variability	of	behavior;	
• adaptability	and	flexibility	based	on	experience	or	on	communication;	
• memory;	
• attention	and	the	habit.	

Do	not	neglect	the	objective,	which	become	part	of	the	elements	involved	in	the	
decision-making	 process	 because	 it	 mainly	 drives	 the	 choices.	 The	 desire	 to	
achieve	the	final	objectives	leads	to	questionable	choices;	it	is	not,	in	fact,	applied	
a	 fair	 criterion,	 and	 the	 manager	 proceeds	 without	 considering	 the	 different	
aspects.	 	 From	 another	 point	 of	 view,	 the	 objectives	 do	 not	 represent	 the	
absolute	purpose	in	view	of	objectives	furthest.	This	creates	a	sort	of	hierarchy	
between	 the	 “means”	 and	 “ends”	 that	 are	 distributed	 along	 a	 chain.	 The	
relationships	 between	 them	 are	 never	 entirely	 clear	 and	 explainable,	 and	 also	
other	unconscious,	not	easily	detectable,	elements	could	be	involved.		

It	would	be	also	right	to	consider	the	decisions	of	others	as	a	variable	to	keep	in	
mind	 before	 making	 choices.	 Human	 action	 is	 intentional,	 but	 also	 limited,	
rational.	 The	 decision	maker	 tries	 to	 be	 up	 to	 the	 task	 of	 finding	 the	 optimal	
solution,	but	has	limitations	in	terms	of	decision-making	powers.	He	then	adopts	
a	process	of	research	and	satisficing,	which	 leads	him	to	 look	for	a	pretty	good	
solution.				

The	criteria	to	perform	this	function	in	the	decision-making	process,	in	which	the	
complexity	and	uncertainty	make	it	impossible	global	rationality,	are:	

-	Approach	 satisfying	 (simplification	of	 research,	 keeping	 the	 complexity	 of	 the	
real	 situation,	 retaining	 all	 the	 details,	 limiting	 the	 alternatives	 evaluated	 by	
setting	a	 level	of	suction	and	 try	 to	 find	a	satisfactory	alternative	 in	relation	 to	
expectations).	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 43	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

-	 Approximate	 optimization	 approach	 (it	 begins	 with	 a	 description	 of	 the	
situation	 and	 to	 simplify	 the	 real	 one,	 continuing	 to	 reduce	 it	 to	 a	 level	 of	 less	
complexity,	so	that	the	decision	maker	can	contemplate	and	manage	it	properly.	
All	 inside	 of	 this	 simplification	 identifies	 the	 solution.	 This	 is	 the	 typical	
approach	of	quantitative	systems).	

	

8.2 THE EIGHT STEPS FOR A DECISION MAKING PROCESS
The	rational	approach	to	individual	decision	emphasizes	the	need	for	systematic	
analysis	 of	 the	 problem,	 followed	 by	 a	 choice	 and	 realization,	 along	 a	 precise	
logical	 sequence.	A	deep	knowledge	of	 the	process	of	 rational	decision-making	
can	 help	 managers	 make	 better	 decisions	 even	 in	 the	 absence	 of	 clear	
information.	 About	 rational	 approach,	 the	 decision-making	 process	 can	 be	
divided	into	eight	steps;	the	first	four	belong	to	the	stage	of	identification	of	the	
problem,	while	the	others	represent	the	stage	of	solving	the	problem	of	decision-
making	(Montanari	2005):	

1.	 Monitor	 the	 surrounding	 environment:	 the	 manager	 collects	 and	 evaluates	
internal	 and	 external	 information	 to	 identify	 any	 deviations	 from	 the	 original	
objectives.	

2.	 Define	 the	 problem:	 the	 manager	 identifies	 the	 main	 causes	 and	 all	 the	
essential	elements	related	to	the	problem	and	he	assesses	its	impact	on	business.	

3.	 Specify	 the	 objectives	 of	 the	 decision:	 the	 manager	 defines	 the	 intent	 and	
expectations	so	the	results	to	be	obtained	in	relation	to	a	decision.	

4.	 Diagnosing	 the	 problem:	 the	 manager	 tries	 to	 understand	 the	 cause	 of	 the	
problem	in	order	to	respond	with	appropriate	actions.	

5.	 Develop	 alternative	 solutions:	 the	 manager	 creates	 a	 plan	 of	 action;	 the	
different	options	need	to	be	easily	interpreted	for	a	choice	in	line	with	the	initial	
objectives.	 The	 decision-making	 team	 proposes	 alternatives	 that	 present	 the	
highest	 possible	 requirements	 and	 comply	 with	 the	 highest	 number	 of	 goals.	
Usually,	 the	 solutions	 differ	 in	 their	 ability	 to	 meet	 the	 objectives	 set.	 The	
solutions	that	do	not	meet	the	objectives	must	be	immediately	removed	and	not	
considered	further.	

6.	Evaluate	 alternatives:	 using	 statistical	 techniques	or	personal	 experiences	 to	
assess	 the	 likelihood	 of	 success;	 the	 choice	 of	 method	 should	 be	 made	
considering	also	the	complexity	of	the	problem.	

7.	 Choose	 the	 best	 alternative:	 The	 manager	 uses	 the	 analysis	 of	 the	 problem	
previously	 performed,	 without	 neglecting	 objectives	 and	 alternatives	 to	 select	
the	alternative	with	greater	chance	of	success.	

8.	 Realize	 the	 alternative	 choice:	 once	 you	 have	 chosen	 an	 alternative,	 the	
manager	uses	his	management	skills,	administrative	and	his	persuasion	skills	to	
ensure	that	the	decision	actually	solves	the	problem.	We	analyze	deviations	from	
the	objectives	and	requirements	considering	the	indicators	of	decision	makers.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 44	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

	

8.3 THE FOURTEEN FACTORS FOR THE SUCCESS
Using	 a	 valid	decision-making	 approach	 is	helpful	 in	 any	 situation,	 even	under	
conditions	of	uncertainty,	because	 these	 steps	guide	 to	make	a	decision	 that	 is	
compatible	with	 the	 preferences	 and	 behavior	 of	 an	 individual	 (Ferrari	 2010).																						
Fourteen	 factors	 that	 contribute	 to	 the	 success	 of	 the	decision-making	process	
can	be	identified	as:	

1. management	commitment	
2. perceived	benefits	
3. quality	of	management	decisions	
4. user	involvement	in	the	design	and	implementation	of	the	system	
5. commitment	of	the	user	to	the	system	
6. costs	
7. usability	of	the	system	
8. functionality	of	the	system	
9. user's	knowledge	
10. training	
11. adequacy	of	the	relationship	between	the	system	and	the	context	in	which	

they	must	provide	their	support	
12. level	of	use	of	the	system	
13. technology	used	
14. quality	of	system	

The	 management	 commitment	 (factor	 1)	 is	 critical	 to	 the	 success	 of	 an	
information	 system;	 it	 depends	 on	 the	 perception	 of	 the	 benefits	 that	 can	 be	
gained	 and	 the	 costs	 that	 represent	 a	 limit	 to	 the	 decision	 to	 invest	 in	
information	systems.	The	commitment	increases	when	increasing	the	perceived	
benefits	and	decreases	when	the	costs	are	higher.	

The	real	benefits	provided	by	a	system	often	do	not	coincide	with	the	perceived	
benefits	 (factor	2)	 from	users	and	managers.	The	 real	benefits,	 in	 fact,	 are	not	
easily	 identified	 and	 measured.	 The	 commitment	 of	 management	 and	 user	
system	 includes	 an	 improvement	 of	 the	 quality	 of	 information	 to	 support	
decision-making,	therefore	an	improvement	in	the	quality	of	decisions,	increased	
productivity	 and	 greater	 efficiency	 in	 management	 and	 organizational	
effectiveness.	The	difficulty	 in	achieving	performance	is	also	determined	by	the	
complexity	 of	 the	 issues	 that	 the	 business	 intelligence	 system	 is	 intended	 to	

solve,	understood	as	the	sum	of	some	important	elements	(such	as	the	number	of	
variables	that	are	the	basis	of	a	decision,	their	degree	of	interaction,	the	level	of	
uncertainty	 associated	 with	 the	 precision	 with	 which	 each	 variable	 can	 be	

Figure 5 - The perceived benefits directly dependent on the commitment of management and
users, and the complexity of the issues, but with the opposite sig4n

Quality	of	decisions	 Perceived	Benefits	 Complexity	of	
issues	+	 -	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 45	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

measured,	 the	 time	 needed	 to	make	 the	 decision,	 the	 decision-maker's	mental	
and	cognitive	map	(Figure	5)).	
In	 relation	 to	 the	 degree	 of	 complexity,	 there	 are	 two	 types	 of	 organizational	
decisions:	

§ programmed	decisions	are	employed	 for	known	problems	and	routine	
in	which	 the	 decision	 alternatives	 are	 clear	 and	 their	 consequences	 are	
predictable	with	a	high	degree	of	accuracy.	Decisions	are	very	often	used	
in	planned	or	rational	decision-making	criteria	derived	from	experience,	
so	the	alternative	choice	will	be	a	success.	

§ unplanned	 decisions	 	 concern	 issues	 that	 the	 organization	 cannot	
clearly	 outline,	 in	which	 the	 decision	 alternatives	 are	 uncertain	 and	 for	
which	 the	accumulated	experience	or	 rational	decision-making	methods	
are	found	ineffective.		

A	business	 intelligence	system	has	as	 its	primary	objective	 in	the	improvement	
the	effectiveness	of	decision-making;	but	how	is	it	possible	to	better	assess	if	you	
have	 achieved	 your	 goal?	 Several	 aspects	 are	 involved:	 the	 organizational	
environment,	 the	 approach	 to	 the	 use	 of	 the	 system,	 the	 difficulty	 in	
understanding	the	decision-making	processes.		

8.3.1 The effectiveness decision and the level of use of the system

The	quality	of	management	decisions	 (factor	3),	 index	of	 effectiveness	of	 the	
decision-making	process,	depends	on	 the	complexity	 in	 inverse	proportion,	 the	
level	 of	 use	 of	 the	 system,	 and	 the	 quality	 of	 the	 system	 itself	 in	 direct	
proportion.	 The	user	 involvement	 in	 the	design	and	 implementation	of	 the	
system	 (factor	 4)	 is	 a	 key	 factor	 for	 the	 development	 of	 a	 decision-making	
process.	In	fact,	as	the	perceived	utility	of	the	system	increases,	it	allows	the	user	
to	experience	a	positive	effect	and	to	have	a	more	sensitive	on	the	perception	of	
the	 quality	management	 system.	 The	 commitment	 of	 the	 users	 to	 the	 system	
(factor	 5),	 positively	 relates	 to	 the	 knowledge	 domain	 of	 reference,	 the	
perception	 of	 the	 benefits	 arising	 from	 its	 use	 and	 its	 usability.	 An	 indirect	
relationship	 is	 defined,	 however,	 with	 the	 costs	 associated	 with	 the	
implementation	 of	 the	 system.	 The	 costs	 of	 a	 BI	 system	 (factor	 6)	 relate	 to	
technology,	 investment	 in	human	resources	 involved	in	the	development	of	the	
system,	 training	 of	 people	 who	 will	 use	 the	 system.	 They	 are	 influenced,	 so	
directed,	by	the	level	of	use	of	the	system.	The	quality	of	interaction	between	the	
user	 and	 the	decision	 support	 system	 refers	 to	 the	 concept	 of	usability	 of	 the	
system	 (factor	7):	 it	depends,	mainly,	by	 the	ease	of	user-system	dialogue.	The	
elements	 involved	 are	 definitely	 the	 technology	 used,	 and	 the	 knowledge	 and	
expertise	of	the	user.	About	the	functionality	of	a	system	(factor	8)	intervening	
variables	that	result	directly	on	the	type	and	scope	of	the	technology	that	is	the	
basis	 of	 the	 system.	 The	 ability	 to	 not	 only	 refer	 to	 the	 characteristics	 of	 the	
system	in	terms	of	data	access	and	analysis	tools,	but	also	the	ability	to	provide	
appropriate	means	 to	 the	 decision	maker	 to	 address	 the	 various	 stages	 of	 the	
decision-making	process,	and	the	 flexibility	 to	 the	user	 to	analyze	the	problem,	
define	the	alternative,	dispute	resolution	and	to	choose	a	plan	of	action.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 46	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

A	system	of	BI	should	direct	users	to	the	correct	understanding	of	the	problems	
and	 improving	 their	 skills	 and	 knowledge	 (factor	 9)	 making	 use	 also	 of	 the	
experience.	 So	you	gain	 some	awareness,	 influenced	by	 their	knowledge	of	 the	
system	and	its	level	of	use.	

8.3.2 The importance of training

The	user	knows	how	to	use	the	system	with	wing	formation	(factor	10),	which	
allows	to	expand	the	knowledge.	The	training	does	not	neglect	the	complexity	of	
the	application	and	the	user's	familiarity	and	competence	in	similar	applications.	
The	 user	will	 then	 be	more	 inclined	 to	 increase	 the	 level	 of	 acceptance	 of	 the	
system.	This	factor	does	not	refer	only	to	the	technology,	but	it	also	suggests	an	
approach	in	solving	the	problem,	and	then,	in	the	decision-making	process.	
It	 also	 requires	 attention	 to	 the	 adequacy	 of	 the	 relationship	 between	 the	
system	and	the	context	in	which	it	provides	support	(factor	11).	Failure	often	
leads	 to	 not	 use	 the	 system;	 you	 should	 take	 into	 account	 the	 system's	
functionality,	complexity	and	user	involvement	in	the	development.		

	
The	mode	of	use	of	the	system	is	an	important	success	factor.	The	level	of	use	of	
the	system	(factor	12)	is	positively	influenced	by	the	accuracy	and	relevance	of	
the	 system	 output;	 it	 is	 the	 experience	 and	 knowledge	 of	 the	 decision-maker	
with	respect	to	the	domain.	However,	as	already	mentioned,	the	use	depends	on	
the	complexity	of	the	problems	and	the	adequacy	of	the	relationship	between	the	
system	 and	 the	 environment.	Technology	 (factor	 13)	 is	 a	 key	 variable	 for	 the	
effectiveness	of	a	 system.	There	 is	always	 the	best	 tool,	but	you	should	choose	
the	one	that	best	fits	the	system	context,	not	neglecting	the	constraint	of	limited	
resources.	The	choice	of	technology	has	a	gap	between	availability	on	the	market	
and	the	organization's	ability	to	acquire	and	transform	the	technology	effectively	
in	a	system	(particularly	if	it	is	a	decision	support	system).	This	ability	is	related	
both	 to	 the	 effort	 required	 to	 develop	 a	 system,	 that	 reflects	 the	 desired	
requirements	of	the	system,	and	the	commitment	by	management,	convinced	on	

Figure 6 - The use of the system is strongly influenced by adaptation of the relationship
between the system and the context where it must provide its support, the complexity of the
issues, and the user commitment.

+	

	+	

	 -	

System	appropriateness	in	the	
context	where	it	provides	
support	

System	usage	level	User	commitment	 Complexity	of	
issues	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 47	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

the	 help	 provided	 by	 the	 system	 in	 terms	 of	 improving	 decision-making	 and,	
therefore,	on	its	strategic	role.	

8.3.3 The quality of the system

	
Finally,	 as	 a	 last	 factor,	 we	 find	 the	 quality	 of	 the	 system	 (factor	 14):	 it	 is	
influenced	 from	usability,	 features	 and	 alignment	 between	 the	 system	 and	 the	
context	for	which	it	requests	support.	The	usability	is	related	to	the	quality	due	
to	 the	 fact	 that	 the	 information	 for	 decision	 making	 may	 be	 provided	 in	 the	
required	time.	The	functionality	determines	of	a	system	is	qualitatively	valid,	if	is	
able	to	contribute	to	the	solution	of	problems	in	the	specific	context.	

This	model	 can	 be	 put	 into	 practice	 by	 analyzing	 these	 14	 success	 factors	 and	
studying	 the	causal	relationships	between	the	same	variables	using	correlation	
coefficients.	The	results	obtained	would	be	compared	with	the	theoretical	model	
and	 one	 can	 validate	 the	 success	 or	 failure	 of	 the	 system.	 The	 correlation	
coefficients	facilitate	the	understanding	of	the	factors	that	significantly	influence	
the	 system,	 and	 take	 action	where	 it	 is	 considered	 appropriate	 to	 increase	 the	
quality	of	the	system.	

Despite	 the	 guidelines	 for	 proper	 decision-making	 process,	 the	 organizations	
naturally	commit	mistakes.	When	the	uncertainty	about	the	identification	of	the	
problem	is	quite	high,	the	solution	are	not	easily	found,	and	it	is	very	difficult	to	
predict	the	outcome	of	the	decision,	errors	are	inevitable.	Sometimes	it	happens	
that	an	error	can	be	a	source	of	success;	on	the	one	hand	the	errors	are	useful	to	
acquire	 new	 information	 for	 the	 improvement	 of	 the	 planned	 solution;	 on	 the	

Costs	

Technological	
imbalance	

Technology	

	Organization’s	
ability	

Technology	
available	

Management	
commitment	 	

 +	

+

-

-

-

Figure 7 - Technology plays a fundamental role in determining the effectiveness of a system.

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 48	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

other	 hand,	 strengthening	 the	 ability	 of	 decision	 makers	 increase	 their	 useful	
experience	for	future	decisions.	However,	it	is	important	to	understand	when	an	
error	leading	to	an	interruption	of	the	action	without	fear	of	the	consequences.	

The	 study	 of	 decision-making	 processes,	 the	 ability	 to	 analyze	 and	 decompose	
mechanisms,	 and	 especially	 the	 development	 of	 methodological	 and	 technical	
tools	 for	 support,	 is	 essential	 to	 achieve	 ‘good’	 decisions.	 It	 is	 often	 the	 same	
decision-making	process	 that	produces	significant	results	beyond	 the	decisions	
and	 actions	 to	 which	 it	 leads;	 and	 this	 is	 due	 to	 its	 characteristic	 of	 being	 a	
learning	process	that	somehow	changes	the	actors	themselves	involved	in	it.		

	

8.4 DECISION-MAKING PROCESS FACTORS IN SOFTWARE QUALITY ASSURANCE
(SQA)
Based	on	the	characteristics	of	the	decision	processes	described	in	the	previous	
paragraphs,	and	based	on	experience	of	the	companies	involved	in	the	ICEBERG		
project	,	7	main	factors	have	been	identified:	

- Actual	Quality	Level	
- Expected	Quality	Level	
- Human	Factors	
- Economics	
- Time	
- Resources	
- Process	

Each	of	these	factors	should	be	taken	into	account	to	a	properly	decision	related	
to	 Quality	 Assurance	 (and	 not	 only).	 It’s	 very	 important	 to	 collect	 as	 many	
information	 as	 possible,	 related	 to	 the	 process	 and	 to	 the	 product,	 in	 order	 to	
take	correct	decisions.	

The	 ICEBERG	project	partners	 are	 conducting	a	 survey	whose	aim	 is	 to	 gather	
feedback	on	how	companies	operate	on	the	factors	related	to	the	quality	of	the	
software.	

	

8.4.1 Actual Quality Level

Actual Quality Level (AQL), represents the level of quality measured in a specific
product / service before starting decision-making process. This is an input for
decision-making process and can’t be changed because it’s a fixed measure (it refers
to the past).

For a new project, it may be derived from the state of similar projects available in the
context in which we work.

This factor can be determined measuring a series of sub-factors related to project
historical quality metrics (as suggested by ISO/IEC 9126 standard):

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 49	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

External Quality Metrics: Metrics that can be collected observing running software.
Example of external metrics are functional test bug, integration test bug, result of
performance test

Internal Quality Metrics: Metrics that can be collected observing software internally.
Example of internal metrics are: code vomplexity, %comments, %duplications, rules
compliance, maintainability level

In use Metrics: Quality in use metrics are only available when the final product is
used in real conditions. It is the effect of the using the software, rather than the quality
of software itself. In other words, it tells how the system supports the user to get their
job done, or how effective is the system usage. Example of in use metrics are:
production incident, production problem, production bug.

8.4.2 Expected Quality Level

Expected Quality Level (EQL) is what the customer expects from a product or a
service. We can also say it being a number of needs that are expected to be met.

It’s possible define 2 needs type:	

- Explicit needs, that will become specific; 	
- Implicit needs, what the customer does not tell anyone but he expects to be

satisfied, however. 	

During a decision making process it is very important to have clear the EQL of the
concerned object (product or service). 	

To do this, it is possible to get ideas from ISO standard for defining factors involved.
Many factors are involved as suggest by ISO/IEC 25000 (ex ISO/IEC 9126) model: 	

Functionality: a set of attributes that bear on the existence of a set of functions and
their specified properties. The functions are those that satisfy stated or implied needs; 	

Reliability: a set of attributes that bear on the capability of software to maintain its
level of performance under stated conditions for a stated period of time;	

Usability: a set of attributes that bear on the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users;	

Efficiency: a set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used, under stated
conditions;	

Maintainability: a set of attributes that bear on the effort needed to make specified
modifications;	

Portability: a set of attributes that bear on the ability of software to be transferred
from one environment to another. 	

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 50	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

8.4.3 Human Factors

In all decision-making processes, human factor is considered a fundamental
characteristic.

The Software Quality Assurance is intended to provide a guarantee that a product /
service complies with all the requirements. There is a trust aspect that is taken into
account by Software Quality Assurance decision-maker.

There are many factors involved in this characteristic, many of which can require
collecting information about people.

Some of these are:

Competence: level of competence on tools, technologies, domain, methodologies are
all factors concerned to Competence. These are normally taken into account in all
decision making process.

Experience: having people in the project that have already experience on similar
projects may be an important thing.

Team spirit: flexibility, stable allocation, presence of a leader, cultural differences,
ways of interaction, turnover of resources involved in project are factors linked to the
team spirit.

8.4.4 Economics

This	 is	a	 factor	usually	considered	 important	 in	all	 the	companies	 in	 the	 initial	
phase	 of	 each	 project.	 The	 cost	 of	 project	 can	 be	 estimated	 with	 different	
techniques.	This	phase	is	very	important	because	it	defines	the	budget	for	each	
activity,	among	which	the	Software	Quality	Assurance.	

	

8.4.5 Time

The	project	milestones	are	always	present.	The	Time	 factor	must	be	 taken	 into	
account	in	order	to	ensure	that	the	project	is	“on	time”.	Often,	this	is	a	problem	
for	Quality	Assurance	activities,	because	a	possible	delay	in	development	phase	
can	compress	the	QA	time.	

	

8.4.6 Resources

During the project lifecycle, many resources are involved. It is possible to identify
many type of resources:

- Physical resources: offices, desks, servers, phones;
- Software resources: tools to facilitate measuring and collection of information

about product/service.

Regarding the Software Quality Assurance, there are many tools that support this
phase:

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 51	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

- Tools for test design and management: these tools help you to create test cases, or
at least test inputs (which is part of a test case);

- Tools for bug recording (bug tracker): these tools are designed to keep track of
reported software bugs in software development efforts.

- Tools for static code analysis: Static analysis is the analysis of a software
program that is performed without actually executing it. In most cases the
analysis is performed on some version of the source code and in the other cases
on some form of the object code. The term is usually applied to the analysis
performed by an automated tool.

- Tools for unit test execution: unit testing is a method by which individual units of
source code, sets of one or more computer program modules together with
associated control data, usage procedures, and operating procedures are tested to
determine if they are fit for use. Tools for unit test support these activities.

- Tools for automated test execution: test automation is the use of special software
(separate from the software being tested) to control the execution of tests and the
comparison of actual outcomes to the predicted ones. Test automation can avoid
manual execution of some repetitive, but necessary, tasks in a formalized testing
process already in place, or add further test cases that would be difficult to
perform manually.

- Tools for performance / loading test: are tools that in general test how a system
performs in terms of responsiveness and stability under a particular workload.

	

8.4.7 Process

In IT, the software process term indicates the number of steps or paths to be carried
out to obtain high quality results in a fixed time, working on the development of a
product or system software.

It cannot be identified a quality process separated from the development; the two
activities are closely related to each other, and are connected with the Project
Management Process

Usually, it is possible to identify the following phases inside the Project
Management Process (PMBOK approach):

- Initiation: Project technical proposal and estimation;
- Plan: Project planning phase;
- Execution: Project plan execution;
- Controlling: Project assessment and control;
- Closing: Project closure.

	

All	 the	mentioned	 factors,	 referring	 to	 the	 decision	making	process	 in	 general,	
and	then	specifically	referring	to		quality	assurance	systems,	need	to	be	included	
in	the	loop	of	a	proper	decision-maker	design.	The	ICEBERG	project	partners	will	
give	 a	 greater	 focus	 to	 the	 factors	 related	 to	 the	 quality	 assurance	 activities,	
presented	 in	 the	 last	 paragraph.	 To	 go	 more	 in	 depth,	 and	 figure	 out	 how	
companies	 deal	 with	 the	 outlined	 needs,	 the	 ICEBERG	 project	 partners	 are	
conducting	a	survey	whose	aim	is	to	gather	feedback	on	how	companies	operate	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 52	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

on	 the	 factors	 related	 to	 the	 quality	 of	 the	 software.	 This	will	 serve	 as	 further	
basis	 for	 the	 successive	 phase	 of	 model-based	 process	 definition	 to	 support	
decision	making	about	products	quality	and	its	associated	cost.			

	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 53	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

9 REFERENCES

[1] A.	L.	Goel,	K.Okumoto.	“Time-dependent	error-detection	rate	model	for	
software	reliability	and	other	performance	measures.”	(Reliability,	IEEE	
Transac-	tions	on)	28,	no.	3	(1979):	206-211.	

[2] A.Avritzer,	and	E.J.Weyuker.	“The	role	of	modeling	in	the	performance	
testing	of	e-commerce	applications.”	IEEE	Transactions	Software	
Engeneering	30,	no.	12	(2004):	1072–1083,.	

[3] Abdel-Hamid,	T.	K.,	and	S.	Madnick.	Software	project	dynamics.	An	
integrated	approach.	New	Jersey:	Prentice-Hall,	1991.	

[4] Abreu,	F.	B.	e.,	and	R.	Carapuca.	“Object-oriented	software	engineering:	
Measuring	and	controlling	the	development	process.”	Fourth	international	
conference	on	software	quality.	1994.	

[5] Acuña,	S.T.,	M.	Gómez,	and	N.	Juristo.	“Towards	understanding	the	
relationship	between	team	climate	and	software	quality--a	quasi-
experimental	study.”	Empirical	Software	Engineering,	13(4),	2008:	401-
434.	

[6] Adrion,	W.	R.,	M.	A.	Branstad,	and	J.	C.	Cherniavsky.	“Verification,	
Validation,	and	testing	of	Computer	Software.”	ACM	Computing	Surveys,	14	
(2),	1982:	159-192.	

[7] Aggarwal,	K.	K.,	Y.	Singh,	A.	Kaur,	and	R.	Malhotra.	“Application	of	
Artificial	Neural	Network	for	Predicting	Maintainability	using	Object	-
Oriented	Metrics,.”	Transactions	on	Engineering,	Computing	and	
Technology	15	(2006):	285-289.	

[8] Aggarwal,	K.	K.,	Y.	Singh,	P.	Chandra,	and	M.	Puri.	“Measurement	of	
Software	Maintainability	Using	a	Fuzzy	Model.”	Journal	of	Computer	
Sciences	1,	no.	4	(2005):	538-542.	

[9] Ahn,	Y.,	J.	Suh,	S.	Kim,	and	H.	Kim.	“The	Software	Maintenance	Project	
Effort	Estimation	Model	Based	on	Function	Points.”	15,	no.	2	(2003):	71-
85.	

[10] AL-Ghamdi,	Abdullah	Saad	AL-Malaise.	“A	Survey	on	Software	Security	
Testing	Techniques.”	International	Journal	of	Computer	Science	and	
Telecommunications	4,	no.	4	(2013):	14-18.	

[11] APM.	A	History	of	the	Association	for	Project	Management	1972-2010.	
Buckinghamshire:	Association	for	Project	Management,	2010.	

[12] Avizienis,	A.,	J.-C.	Laprie,	B.	Randell,	and	C.	Landwehr.	“Basic	concepts	and	
taxonomy	of	dependable	and	secure	computing.”	Dependable	and	Secure	
Computing,	IEEE	Transactions	on	(IEEE)	1,	no.	1	(2004):	11-33.	

[13] Bach,	J.	“Enough	About	Process:	What	We	Need	Are	Heroes.”	IEEE	
Computer,	12(2),	1995:	96-98.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 54	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[14] Bach,	J.	“What	Software	Reality	Is	Really	About.”	IEEE	Computer,	32(12),	
1999:	148-149.	

[15] Bandini,	S.,	F.	D.	Paoli,	S.	Manzoni,	and	P.	Mereghetti.	“A	support	system	to	
COTS	based	software	development	for	business	service.”	Proceedings	of	
the	14th	International	Conference	on	Software	Engineering	and	Know	ledge	
Engineering.	2002.	307-314.	

[16] Bansiya,	.,	and	C.G.	Davis.	“A	hierarchical	model	for	object-oriented	design	
quality	assessment.”	IEEE	Transactions	on	Software	Engineering,	28,	no.	1	
(2002):	4-17.	

[17] Basili,	V.	R.,	L.	C.	Briand,	and	and	W.	L.	Melo.	“A	Validation	of	Object-
Oriented	Design	Metrics	as	Quality	Indicators.”	IEEE	Transactions	on	
Software	Engineering	22,	no.	10	(1996):	751-761.	

[18] Basili,	V.,	and	Jr.	Reiter	R.	W.	“An	Investigation	of	Human	Factors	in	
Software	Devel-opment.”	IEEE	Computer,	12(12),	1979:	21-38.	

[19] Beaver,	J.M.,	and	G.	A.:	Schiavone.	“The	effects	of	development	team	skill	
on	software	product	quality.”	SIGSOFT	Software	Engineering	Notes,	31	(3),	
2006:	1-5.	

[20] Becker,	S.,	L.	Grunske,	R.	Mirandola,	and	S.	Overhage.	“Performance	
prediction	of	component-based	systems:	A	survey	from	an	engineering	
perspective.”	RCHITECTING	SYSTEMS	WITH	TRUSTWORTHY	
COMPONENTS,	VOLUME	3938	OF	LNCS,	2006:	169-192.	

[21] Beecham,	S.,	N.	Baddoo,	T.	Hall,	H.	Robinson,	and	H.:	Sharp.	“Motivation	in	
Software	Engineering:	A	systematic	literature	review.”	Information	and	
Software	Technology,	50,	2008:	860-878.	

[22] Binkley,	A.B.,	and	S.	Schach.	“Validation	of	the	coupling	de-	pendency	
metric	as	a	predictor	of	run-time	failures	and	maintenance	measures.”	
Proceedings	of	the	Intl.	Conference	on	Software	Engineering.	IEEE,	1998.	
452-455.	

[23] Bobbio,	A.,	and	K.	Trivedi.	“An	Aggregation	Technique	for	the	Transient	
Analysis	of	Stiff	Markov	Chains.”	IEEE	Transactions	on	Computers	C-35,	no.	
9	(1986):	803-814.	

[24] Boehm,	Barry	W.	Software	engineering	economics.	New	Jersey:	Prentice-
Hall,	1981.	

[25] Brooks,	F.	The	mythical	man-month.	Boston:	Addison-Wesley,	1975.	

[26] Caglayan,	B.,	A.	Tosun,	A.	Miranskyy,	A.	Bener,	and	and	N.	Ruffolo.	“Usage	
of	multiple	prediction	models	based	on	defect	categories.”	Proceedings	of	
the	International	Conference	on	Predictive	Models	in	Software	engineering.	
2010.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 55	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[27] Cai,	K.	Y.,	B.	Gu,	H.	Hu,	and	and	Y.	C.	Li.	“Adaptive	software	testing	with	
fixed-memory	feedback.”	Journal	of	Software	and	Systems	80,	no.	8	(2007):	
1328-1348.	

[28] Cai,	Y.	K.,	C.	Li,	and	K.	Liu.	“Optimal	and	adaptive	testing	for	software	
reliability	assessment.”	Information	Software	Technology	46,	no.	15	
(2004):	989-1000.	

[29] Carrozza,	Gabriella,	Domenico	Cotroneo,	Roberto	Natella,	Roberto	
Pietrantuono,	and	Stefano	Russo.	“Analysis	and	Prediction	of	Mandelbugs	
in	an	Industrial	Software	System	.”	Proceedings	of	the	International	
Conference	on	Software	Testing,	Verification	and	Validation	(ICST).	2013.	
262-271.	

[30] Catal,	C.,	and	B.M.	Diri.	“A	systematic	review	of	software	fault	prediction	
studies.”	Expert	Systems	with	Applications	36,	no.	4	(2009).	

[31] CENELC	50126.	“Railway	applications	–	The	specification	and	
demonstration	of	Reliability,	Availability,	Maintainability	and	Safety	
(RAMS)	–	Part	1:	Basic	requirements	and	generic	process.”	1999.	

[32] CENELEC	50128.	“Railway	applications	-	Communication,	signalling	and	
processing	systems	-	Software	for	railway	control	and	protection	
systems.”	2011.	

[33] CENELEC	50129.	“Railway	applications	–	Communication,	signalling	and	
processing	systems	–	Safety	related	electronic	systems	for	signalling.”	
2003.	

[34] Chen,	T.	Y.,	F.-C.	Kuo,	and	and	H.	Liu.	“Application	of	a	failure	driven	test	
profile	in	random	testing,.”	IEEE	Transactions	on	Reliability	58,	no.	1	
(2009):	179-192.	

[35] Cheney,	L.	H.	“Effects	of	individual	characteristics,	organizational	factors	
and	task	characteristics	on	computer	programmer	productivity	and	job	
satisfaction.”	Information	Management,	7(4),	1984:	209-214.	

[36] Chidamber,	S.R.,	and	C.F.	Kemerer.	“AMetricsSuiteforOb-	ject	Oriented	
Design.”	IEEE	Transactions	on	Software	En-	gineering	20,	no.	6	(1994).	

[37] Chou,	A.,	J.	Yang,	B.	Chelf,	S.	Hallem,	and	D.	Engler.	“An	empirical	study	of	
operating	systems	errors.”	Proc.	ACM	Symp.	on	Operating	Systems	
Principles.	2001.	

[38] Ciardo,	G.,	and	K.	S.	Trived.	“Decomposition	Approach	to	Stochastic	
Reward	Net	Models.”	Performance	Evaluation	18,	no.	1	(1993):	37-59.	

[39] CMMI	Product	Team.	CMMI	for	Development,	Version	1.2,CMMI-DEV,	V1.2,	
CMU/SEI-2006-TR-008,	ESC-TR-2006-008.	Pittsburgh	:	Software	
Engineering	Institute,	2006.	

[40] Cohn,	M.	Succeeding	with	Agile:	Software	Development	Using	Scrum.	
Reading:	Addison-Wesley,	2009.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 56	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[41] Cotroneo,	D.,	R	Natella,	and	R.	Pietrantuono.	“Predicting	aging-related	
bugs	using	software	complexity	metrics.”	Performance	Evaluation	70,	no.	
3	(2013):	163-178.	

[42] Cotroneo,	D.,	R.	Pietrantuono,	and	S.	Russo.	“Testing	techniques	selection	
based	on	ODC	fault	types	and	software	metrics.”	Journal	of	Software	and	
Systems	86,	no.	6	(2013):	1613-1637.	

[43] Couger,	J.	D.,	and	R.	A.	Zawacki.	Motivating	and	managing	computer	
personnel	.	New	York:	Wiley	lnter-science,	1980.	

[44] D.	G.,	A.	Polini,	and	W.	Emmerich.	“Early	performance	testing	of	dis-	
tributed	software	applications.”	Proceedings	of	the	4th	International	
Workshop	on	Software	and	Performance.	2004.	

[45] D.Long,	A.Muir,	and	R.Golding.	“	A	Longitudinal	Survey	of	Internet	Host	
Reliability.”	Proceedings	of	the	14th	Symposium	on	Reliable	Distributed	
Systems.		

[46] Dai,	Y.-S.,	Y.	Pan,	and	X.	Zou.	“A	Hierarchical	Modeling	and	Analysis	for	
Grid	Service	Reliability.”	IEEE	Transactions	on	Computers	56,	no.	5	(2007):	
681-691.	

[47] Denaro,	G.,	and	M.	Pezze.	“An	Empirical	Evaluation	of	Fault-proneness	
Models.”	Proceedings	24th	Intl.	Conf.	on	Software	Engineering,.	IEEE,	2002.	
241-251.	

[48] Denaro,	G.,	S.	Morasca,	and	M.	Pezze.	“Deriving	Models	of	Software	Fault-
proneness.”	Proceedings	14th	International	Conference	on	Software	
Engineering	and	Knowl-	edge	Engineering.	IEEE,	2002.	361-368.	

[49] Duraes,	J.,	and	H.	Madeira.	“Characterization	of	Operating	Systems	
Behavior	in	the	Presence	of	Faulty	Drivers	through	Software	Fault	
Emulation.”	Proc.	Pacific	Rim	Intl.	Symp.	on	Dependable	Computing,	2002:	
201-209.	

[50] Fenton,	Norman	E.,	and	Shari	Lawrence	Pfleeger.	Software	Metrics:	A	
Rigorous	and	Practical	Approach	(2nd	ed.).	Boston,	MA,	USA.:	PWS	Pub.	
Co.,	1998.	

[51] Fernández,	L.	“Personal	Skills	for	Computing	Professionals.”	IEEE	
Computer,	42(10),	2009:	110-112.	

[52] Fernández,	L.,	and	M.	García.	“Software	engineering	professionalism.”	
Upgrade,	4,	2003:	42-46.	

[53] Fernández,	L.,	and	S	Misra.	“Analysis	of	cultural	and	gender	influences	on	
teamwork	performance	for	software	requirements	analysis	in	
multinational	environments.”	IET	Software,	6(3),	2012:	167-175.	

[54] Ferrari,	Antonella.	Fattori	critici	per	il	successo	dei	progetti.	2010.	
http://www.zerounoweb.it/approfondimenti/business-
intelligence/fattori_critici_per_succebo_dei_progetti.html.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 57	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[55] Fioravanti,	F.,	and	P.	Nesi.	“Estimation	and	Prediction	Metrics	for	Adaptive	
Maintenance	Effort	of	Object	-	Oriented	Systems.”	IEEE	Transactions	on	
Software	Engineering	27,	no.	12	(2001):	1062-1084.	

[56] Fleckenstein,	W.	O.	“Challenges	in	software	development.”	IEEE	Computer,	
16(3),	1983:	60-64.	

[57] Folmer,	Eelke,	and	Jan	Bosch.	“Architecting	for	usability:	a	survey.”	The	
Journal	of	Systems	and	Software	70	(2004):	61-78.	

[58] Ganesh,	J.	P.,	and	J.	B.	Dugan.	“Automatic	Synthesis	of	Dynamic	Fault	Trees	
from	UML	System	Models.”	Proc.	of	the	IEEE	Int.	Symposium	on	Software	
Reliability	Engineering.	2002.	243-256.	

[59] Garzia,	M.R.	“Assessing	the	Reliability	of	Windows	Servers.”	Proc.	of	
Dependable	Systems	and	Networks.	IEEE,	2002.	

[60] Gill,	N.S.	“Factors	affecting	effective	software	quality	management	
revisited.”	SIGSOFT	Software	Engineering	Notes,	vol.	30,	2,	2005:	1-4.	

[61] Goel.,	A.	L.	“Software	Reliability	Models:	Assumptions,	Limitations	and	
Applicability.”	IEEE	Trans.	on	Software	Engineering	SE-11,	no.	12	(1985):	
1411-1423.	

[62] Gokhale,	S.,	M.R.	Lyu,	and	K.S.	Trivedi.	“Incorporating	fault	debugging	
activities	into	software	reliability	models:	A	simulation	approach.”	IEEE	
Transactions	on	Reliability	55,	no.	2	(2006):	281-292.	

[63] Gokhale,	S.S.,	and	K.S.	Trivedi.	“Log-logistic	software	reliability	growth	
model.”	Proceedings	Third	IEEE	International	High-Assurance	Systems	
Engineering	Symposium.	1998.	34-41.	

[64] Gokhale,	S.S.,	and	M.R.	Lyu.	“Regression	Tree	Modeling	for	the	Prediction	
of	Software	Quality.”	Proceedings	of	the	3rd	ISSAT	.	1997.	

[65] Gokhale,	S.S.,	W.	E.Wong,	J.R.	Horganc,	and	K.	S.	Trivedi.	“An	analytical	
approach	to	architecture-	based	software	performance	and	reliability	
prediction.”	Performance	Evaluation	58,	no.	4	(2004):	391-412.	

[66] Goldenson,	D.	R.,	and	D.	L.	Gibson.	Demonstrating	the	Impact	and	Benefits	
of	CMMI:	An	Update	and	Preliminary	Results,	CMU/SEI-2003-SR-009.	
Pittsburgh:	Software	Engineering	Institute,	2003.	

[67] Goseva-Popstojanova,	and	Trivedi.	“Architecture-based	approach	to	
reliability	assessment	of	software	systems.”	Performance	Evaluation	45,	
no.	2-3	(2001):	179-204.	

[68] Goseva-Popstojanova,	K.,	A.P.	Mathur,	and	K.S.	Trivedi.	“Comparison	of	
architecture-based	software	reliability	models.”	Proc.	of	the	12th	
International	Symposium	on	Software	Reliability	Engineering	(ISSRE	’01).	
2001.	22-31.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 58	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[69] Griesser,	J.	W.	“Motivation	and	information	system	professionals.”	Journal	
of	Managerial	Psychology,	8(3),	1993:	21-30.	

[70] Guterl,	F.	“Spectrum/Harris	poll	-	The	job.”	IEEE	Spectrum,	21(6)	,	1984:	
38.	

[71] Haberkorn,	M.,	and	K.	Trivedi.	“Availability	Monitor	for	a	Software	Based	
System.”	Proceedings	of	the	10th	IEEE	High	Assurance	Systems	Engineering	
Symposium.	2007.	21-238.	

[72] Halstead,	M.	Elements	of	Software	Science.	Elsevier	Science,	1977.	

[73] Harrington,	H.	J.	Poor-quality	cost.	New	York:	McGraw-Hill,	1987.	

[74] Herbsleb,	James	D.,	Anita	Carleton,	James	A.	Rozum,	Jane	Siegel,	and	David	
Zubrow.	Benefits	of	CMM-Based	Software	Process	Improvement:	Initial	
Results.	Pittsburgh:	SEI,	1994.	

[75] Hoegl,	M.,	and	H.G.	Gemuenden.	“Teamwork	Quality	and	the	Success	of	
Innovative	Projects:	A	Theoretical	Concept	and	Empirical	Evidence.”	
Organization	Science,	12(4),	2001:	435-44.	

[76] Hofstede,	Geert.	Culture's	Consequences:	comparing	values,	behaviours,	
institutions,	and	organizations	across	nations.	SAGE	Publication,	2001.	

[77] Hsia,	P.,	C-T.	Hsu,	and	D.C.	Kung.	“Brooks'	Law	Revisited:	A	System	
Dynamics	Approach.	.”	In	23rd	International	Computer	Software	and	
Applications	Conference	(COMPSAC'99).	Washington,	DC,	USA:	IEEE	
Computer	Society,	1999.	370-375.	

[78] Hsueh,	Mei-Chen,	T.K.	Tsai,	and	and	R.K.	Iyer.	“Fault	injection	techniques	
and	tools.”	Computer	(IEEE)	30,	no.	4	(1997):	75-82.	

[79] IEEE	1012.	1012-2012		-		IEEE	Standard	for	System	and	Software	
Verification	and	Validation.	IEEE,	2012.	

[80] IEEE	1044-2009.	IEEE	Standard	Classification	for.	Software	Anomalies.	
IEEE	Computer	Society,	2009.	

[81] IEEE	610.12.	“IEEE	Standard	Glossary	of	Software	Engineering	
Terminology.”	

[82] IEEE	729-1993.	“IEEE	Software	Engineering	Standard	729-1993:	Glossary	
of	Software	Engineering	Terminology.”	IEEE	Computer	Society	Press,	
1993.	

[83] IEEE.	IEEE	Std.	730,	Standard	for	Software	Quality	Assurance	Plans.	New	
York:	IEEE,	1984.	

[84] IEEE	Std	1003.1b.	“IEEE	Standard	for	Information	Technology-Portable	
Operating	System	Interface	(POSIX).”	1993.	

[85] ISO	15504-1.	Information	technology-Process	assessment	-Part	1:	Concepts	
and	vocabulary.	Geneve:	ISO,	2004.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 59	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[86] ISO	26262.	“Road	vehicles-Functional	safety.”	2011.	

[87] ISO	9001.	Quality	management	systems	-Requirements.	Geneve:	ISO,	2008.	

[88] ISO/IEC	12207-2008.	Systems	and	software	engineering	—	Software	life	
cycle	processes.	IEEE	Computer	Society,	2008.	

[89] ISO/IEC	15504.	“15504:2012	-	Information	technology	—	Process	
assessment.”	2012.	

[90] ISO/IEC	29119.	ISO/IEC	29119	Software	Testing-	The	international	
software	testing	standard.	ISO/IEC,	2013.	

[91] ISO/IEC	90003.	Software	engineering	-	Guidelines	for	the	application	of	ISO	
9001:2000	to	computer	software.	Geneve:	ISO,	2004.	

[92] ISO/IEC	9126.	“Software	engineering-Product	quality.”	2001.	

[93] J.	F.	Meyer,	and	W.H.Sander.	“Specification	and	Construction	of	
Performability	Models.”	Int.	Workshop	on	Performability	Modeling	of	
Computer	and	Communication	Systems.	1993.	1-32.	

[94] Jacobson,	I.,	G.	Booch,	and	J.	Rumbaugh.	The	Unified	Software	Development	
Process.	Reading:	Addison-Wesley,	1999.	

[95] Jiang,	Y.,	B.	Cukic,	and	T.	Menzies.	“Fault	prediction	using	early	lifecycle	
data.”	Eighteenth	IEEE	international	symposium	on	software	reliability.	
2007.	237-246.	

[96] Jing,	Xue.	“A	Brief	Survey	on	the	Security	Model	of	Cloud	Computing.”	
Distributed	Computing	and	Applications	to	Business	Engineering	and	
Science	(DCABES),	2010	Ninth	International	Symposium	on.	2010.	475-478.	

[97] Johansson,	A.,	N.	Suri,	and	and	B.	Murphy.	“On	the	selection	of	error	
model(s)	for	OS	robustness	evaluation.”	Proc.	Intl.	Conf.	on	Dependable	
Systems	and	Networks.	2007.	502–511.	

[98] Johansson,	A.,	N.	Suri,	and	B.	Murphy.	“On	the	impact	of	injection	triggers	
for	OS	robustness	evaluation.”	ISSRE.	2007.	

[99] Jones,	C.	Assessment	and	control	of	software	risks.	Saddle	River:	Yourdon	
Press,	1994.	

[100] —.	Estimating	software	costs.	Hightstown,	NJ:	McGraw-Hill,	1998.	

[101] —.	Estimating	software	costs.	Hightstown,	NJ:	McGraw-Hill,	Inc,	1998.	

[102] K.Y.Cai.	“Optimal	software	testing	and	adaptive	software	testing	in	the	
context	of	software	cybernetics,.”	Information	Software	Technology	44,	no.	
14	(2002):	841-855.	

[103] Kanoun,	C.	Betous-Almeida	and	K.	“Construction	and	Stepwise	
Refinement	of	Dependability	Models.”	Performace	Evaluation	56	(2004):	
277-306.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 60	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[104] Khairuddin,	H.,	and	K.	Elizabeth.	“A	Software	Maintainability	Attributes	
Model.”	Malaysian	Journal	of	Computer	Science	9,	no.	2	(1996):	92-97.	

[105] Khoshgoftaar,	T.,	K.	Gao,	and	R.M.	Szabo.	“An	application	of	zero-inflated	
poisson	regression	for	software	fault	prediction.”	Twelfth	international	
symposium	on	software	reliability	engineering,.	IEEE,	2001.	

[106] Koopman,	P.,	and	J.	DeVale.	“The	exception	handling	effectiveness	of	
POSIX	operating	systems.”	IEEE	Trans.	on	Software	Engineering	26,	no.	9	
(2002).	

[107] Koopman,	P.,	J.	Sung,	C.	Dingman,	D.	Siewiorek,	and	T.	Marz.	“Comparing	
operating	systems	using	robustness	benchmarks.”	SRDS.	1997.	

[108] Koziolek,	H.	“Performance	Evaluation	of	Component-based	Software	
Systems:	A	Survey.”	Performance	Evaluation	67,	no.	8	(2010):	634–	658.	

[109] Krautsevich,	L.,	F.	Martinelli,	and	A.	Yautsiukhin.	“Formal	approach	to	
security	metrics:	what	does	“more	secure”	mean	for	you?”	Proceedings	of	
4th	European	Conference	on	Software	Architecture:	Companion	Volume,	.	
2010.	162-169.	

[110] Laverdiere,	M.	A.,	A.	Mourad,	A.	Hanna,	and	M.	Debbabi.	“Security	Design	
Patterns:	Survey	and	Evaluation	.”	Electrical	and	Computer	Engineering,	
2006.	CCECE	'06.	Canadian	Conference	on.	2006.	

[111] Lientz,	B.	P.,	and	E.	B.	Swanson.	Software	Maintenance	Management.	
Addison	-	Wesley,	2000.	

[112] Liu,	Y.,	I.	Gorton,	A.	Liu,	N.	Jiang,	and	and	S.	Chen.	“Designing	a	test	suite	
for	empirically-based	middleware	performance	prediction,.”	Proceed-	ings	
of	the	Fortieth	International	Conference	on	Tools	Pacific	Objects	for	
internet,	mobile	and	embedded	applications	series.	2002.	

[113] Lollini,	P.,	A.	Bondavalli,	and	F.	Di	Giandomenico.	“A	decomposition-based	
modeling	framework	for	complex	systems.”	IEEE	Transactions	on	
Reliability,	2009.	

[114] Lorenz,	M.,	and	J.	Kidd.	Object-oriented	software	metrics:	A	practical	guide.	
Prentice	Hall,	Inc.,	1994.	

[115] Mısırlı,	A.,	B.	Caglayan,	A.	Miranskyy,	A.	Bener,	and	and	N.	Ruffolo.	
“Different	strokes	for	different	folks:	a	case	study	on	software	metrics	for	
different	defect	categories.”	Proceedings	of	teh	internatlional	workshop.	on	
Emergerging	Trends	in	Software	Metrics	.	2011.	45-51.	

[116] McCabe,	T.	“A	complexity	measure	.”	IEEE	Transactions	on	Software	
Engineering	2,	no.	4	(1976):	308-320.	

[117] McConnel,	Steve.	Rapid	Development:	Taming	Wild	Software	Schedules.	
Redmond:	MS	Press,	1996.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 61	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[118] Menzies,	T.,	J.	Greenwald,	and	A.Frank.	“	Data	Mining	Static	Code	
Attributes	to	Learn	Defect	Predictors.”	IEEE	Transactions	on	Software	
Engineering	33,	no.	1	(2007):	2-13.	

[119] Mills,	H.	D.,	M.	Dyer,	and	R.	C.	Linger.	“Cleanroom	software	engi-	neering.”	
Software	(IEEE)	4,	no.	5	(1987):	19-24.	

[120] Mishra,	Kesari,	and	K.S.	Trivedi.	“	Model	Based	Approach	for	Autonomic	
Availability	Management.”	Proc.	of	the	Intl.	Service	Availability	Symposium.	
2006.	1-16.	

[121] Misra,	S.,	and	L.	Fernández-Sanz.	“Quality	Issues	in	Global	Software	
Development.”	The	Sixth	International	Conference	on	Software	Engineering	
Advances	(ICSEA'2011).	Barcelona,	2011.	325-330.	

[122] Montanari,	Fabrizio.	“Le	distorsioni	cognitive	nei	processi	decisionali	e	
negoziali:	una	review	e	alcuni	esperimenti.”	ticonzero,	2005.	

[123] Mullen,	R.E.	“	The	lognormal	distribution	of	software	failure	rates:	
application	to	software	reliability	growth	modeling.”	Proceedings	9th	
International	Symposium	on	Software	Reliability	Engineering.	1998.	134-
142.	

[124] Murugesan,	S.	“Attitude	towards	testing:	a	key	contributor	to	software	
quality.”	Proceedings	of	First	International	Conference	on	Software	Testing,	
Reliability	and	Quality	Assurance.	1994.	111-115.	

[125] Musa,	J.	D.	“Software-reliability-engineered	testing.”	Computer	(IEEE)	29,	
no.	11	(1996):	61-68.	

[126] Nagappan,	N.,	T.	Ball,	and	A.	Zeller.	“Mining	Metrics	to	Predict	Component	
Failures.”	Proceedings	of	the	28th	International	conference	on	Software	
engineering,	2006:	452-461.	

[127] Nam,	J.,	S.	Jialin	Pan,	and	S.	and	Kim.	“Transer	Defect	Learning.”	
Proceedings	of	the	International	conference	on	software	engineering.	2013.	

[128] NASA	.	Software	Assurance	Definitions.	2009	йил	28-1.	
http://www.hq.nasa.gov/office/codeq/software/umbrella_defs.htm.	

[129] Natella,	R.	“Achieving	Representative	Faultloads	in	Software	Fault	
Injection.”	PhD	thesis,	Universit`a	degli	Studi	di	Napoli	Federico	II,,	2011.	

[130] Nicol,	D.M.,	W.H.	Sanders,	and	K.S.	Trivedi.	“Model-based	evaluation:	From	
dependability	to	security.”	IEEE	Transactions	on	Dependable	and	Secure	
Computing,	2004:	48-65.	

[131] Nielsen,	J.,.	Usability	Engineering.	Academic	press,	1993.	

[132] Ohlsson,	N.,	and	H.	Alberg.	“Predicting	fault-prone	software	modules	in	
telephone	switches.”	IEEE	Transactions	on	Software	Engineering	22,	no.	
12	(1996):	996-894.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 62	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[133] Okamura,	H.,	T.	Dohi,	and	and	S.	Osaki.	“Em	algorithms	for	logistic	
software	reliability	models.”	Proc.	22nd	IASTED	International	Conference	
on	Software	Engineering.	2004.	263-268.	

[134] Ostrand,	T.,	E.	Weyuker,	and	R.	Bell.	“Predicting	the	Location	and	Number	
ofFaults	in	Large	Software	Systems.”	IEEE	Transactions	on	Software	
Engineering	31	,	no.	4	(2005):	340-355.	

[135] Ostrand,	T.J.,	E.J.	Weyuker,	and	R.M.	Bell.	“Predicting	the	location	and	
number	of	faults	in	large	software	systems.”	IEEE	Transactions	on	
Software	Engineering	31,	no.	4	(2005):	340-355.	

[136] Pezze,	Mauro,	and	Michal	Young.	Software	Testing	and	Analysis:	Process,	
Principles	and	Techniques.	John	Wiley	&	Sons,	2008.	

[137] Pietrantuono,	R.,	S.	Russo,	and	K.S.	Trivedi.	“Software	reliability	and	
testing	time	allocation:	An	architecture-based	approach.”	IEEE	
Transactions	on	Software	Engineering	36,	no.	3	(2010):	323-337.	

[138] Poulding,	S.,	and	J.	A.	Clark.	“Efficient	software	verification:	Statistical	
testing	using	automated	search.”	IEEE	Transactions	Software	Engineering	
36,	no.	6	(2010):	763-777.	

[139] Pressman,	Roger	S.	Pressman,	R.	S.:	Software	Engineering	Software	
Engineering:	A	Practitioner's	Approach.	7th	Edition.	McGraw-Hill,	2009.	

[140] Pusatli,	O.	T.,	and	S.	Misra.	“A	discussion	on	assuring	software	quality	in	
small	and	medium	software	enterprises:	an	empirical	investigation.”	
Tehnički	vjesnik,	18(3),	2011:	447-452.	

[141] R.Pietrantuono,	S.	Russo,	and	K.S.	Trivedi.	“Online	monitoring	of	software	
system	reliability.”	Dependable	Computing	Conference	(EDCC),	2010	
European.	Valencia:	IEEE,	2010.	209-218.	

[142] Rabah,	M.,	and	K.	Kanoun.	“Performability	evaluation	of	multipurpose	
multiprocessor	systems:	the	"separation	of	concerns"	approach.”	IEEE	
transactions	on	Computers	52,	no.	2	(2003):	223-236.	

[143] Ren-zuo,	X.,	M.	Ruo-feng,	Li-na	L.,	and	X.	Zhong-wei.	“Human	Factors	
Analysis	in	Soft-ware	Engineering.”	Wuhan	University	Journal	of	Natural	
Sciences,	9(1),	2004:	18-22.	

[144] Rico,	D.F.	Rico,	D.F.:	ROI	of	Software	Process	Improvement:	Metrics	for	
Project	Managers	and	Soft-ware	Engineers.	J.	Ross	Publishing,	2004.	

[145] Roy,	Arpan,	Dong	Seong	Kim,	and	and	Kishor	S.	Trivedi.	“Attack	
countermeasure	trees	(ACT):	towards	unifying	the	constructs	of	attack	
and	defense	trees.”	Security	and	Communication	Network	5,	no.	8	(2012):	
929-943.	

[146] RTCA	-	DO	178C.	“Software	Considerations	in	Airborne	Systems	and	
Equipment	Certification.”	2011.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 63	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[147] Rumsfeld,	Donald.	There	are	known	knowns	(2002).	

[148] Sarbu,	C.,	A.	Johansson,	N.	Suri,	and	N.	Nagappan.	“Profiling	the	
operational	behavior	of	OS	device	drivers.”	Empirical	Software	
Engineering	15,	no.	4	(2009).	

[149] Schulmeyer,	G.G.	“The	net	negative	producing	programmer.”	American	
Programmer,	6,	1992.	

[150] Seliya,	N.,	T.	Khoshgoftaar,	and	J.	Van	Hulse.	“Predicting	Faults	in	
HighAssurance	Software.”	Proceedings	IEEE	12th	Intl.	Symp.	on	High	
AssuranceSystems	Engineering.	2010.	26-34.	

[151] Shackel,	B.	“Usability–context,	framework,	design	and	evaluation.”	In:	
Shackel,	B.,	Richardson,	S.	(Eds.),	Human	Factors	for	Informatics	Usability.,	
1991:	21-38.	

[152] Shukla,	R,	and	A.	K.	Mishra.	“Estimating	Software	Maintenance	Effort	-	A	
Neural	Network	Approach.”	Proceedings	of	the	1st	conference	on	India	
Software	Engineering	Conference.	2008.	107-112.	

[153] Silva,	G.J.,	and	H.,	Madeira.	“Experimental	dependability	evaluation.”	In	
Diab,	H.B.,	Zomaya,	A.Y.,	eds.:	Dependable	Computing	Systems:	Paradigms,	
Performance	Issues,	and	Applications.	Wiley,	2005.	319-347.	

[154] Simon,	H.A.	The	New	Science	of	Management	Decision.	New	York:	Harper	&	
Row,	1960.	

[155] Singh,	Y.,	A.	Kaur,	and	O.	P.	Sangwan.	“Neural	Model	for	Software	
Maintainability.”	Proceedings	of	International	Conference	on	ICT	in	
Education	and	Development.	2004.	1-11.	

[156] Software	Engineering	Institute.	Capability	Maturity	Model	Integration	,	
verion	1.3.	SEI,	2010.	

[157] Sommerville,	I.	Software	Engineering.	Addison-Wesley,,	2004.	

[158] Subramanyam,	R.,	and	M.	S.	Krishnan.	“	Empirical	Analysis	of	CK	Metrics	
for	Object-Oriented	Design	Complexity:	Implications	for	Software	
Defects.”	IEEE	Transactions	on	Software	Engineering	29,	no.	4	(2003):	
297-310.	

[159] T.Y.Chen,	F.-C.Kuo,	and	H.	Liu.	“Distributing	test	cases	more	evenly	in	
adaptive	random	testing.”	Journal	of	Software	and	Systems	81,	no.	12	
(2008):	2146-2162.	

[160] Tang,	D.,	and	R.K.	Iyer.	“Dependability	Measurement	and	Modeling	of	a	
Multicomputer	System.”	IEEE	Transactions	on	Computers	42,	no.	1	(1993):	
62-75.	

[161] Thomas,	S.	A.,	S.	F.	Hurley,	and	Barnes.	D.	J.:.	“Looking	for	the	human	
factors	in	software	quality	management	.”	Proceedings	of	the	1996	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 64	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

International	Conference	on	Software	En-gineering:	Education	and	Practice	
(SEEP	'96).	Washington:	IEEE	Computer	Society,	1996.	474-480.	

[162] Ting-Peng,	L.,	J.	Jiang,	G.S.	Klein,	and	J.Y.-C.:	Liu.	“Software	Quality	as	
Influenced	by	Informational	Diversity,	Task	Conflict,	and	Learning	in	
Project	Teams.”	IEEE	Transactions	on	Engineering	Management,	57(3),	
2010:	477-487.	

[163] Tiwari,	Gagan,	and	Arun	Sharma.	“Maintainability	Techniques	for	
Software	Development	Approaches	–	A	Systematic	Survey.”	Special	Issue	
of	International	Journal	of	Computer	Applications	on	Issues	and	Challenges	
in	Networking,	Intelligence	and	Computing	Technologies,	2012.	

[164] Vaidyanathan,	K.,	and	K.	S.	Trivedi.	“A	comprehensive	model	for	Software	
Rejuvenation.”	IEEE	Transactions	on	Dependable	and	Secure	Computing	2,	
no.	2	(2005):	124-137.	

[165] van	Solingen,	R.	“Calculating	Software	Process	Improvement's	Return	on	
Investment.”	Advances	in	Computers,	66,	2006:	1-41.	

[166] W.Wang,	Y.Wu,	and	M.H.	Chen.	“An	architecture-based	software	reliability	
model.”	Proc.	of	the	Pacific	Rim	Dependability	Symposium.	2009.	

[167] Weyuker,	E.,	and	F.	Vokolos.	“Experience	with	performance	testing	of	
software	systems:	issues,	an	approach,	and	case	study.”	Software	
Engineering,	IEEE	Transactions	on	26,	no.	12	(2000):	1147–1156.	

[168] Wong,	B.,	and	M.	Bhatti.	“The	influence	of	team	relationships	on	software	
quality.”	ICSE	Workshop	on	Software	Quality	WOSQ'09,	2009:	1-8.	

[169] Woodruff,	C.	K.	“Data	processing	people	-	Are	they	really	different?”	
Information	&	Management,	3(4),	1980:	133-139.	

[170] Y.	Liu,	A.	Fekete,	and	I.	Gorton,.	“Design	level	performance	prediction	of	
component-based	applications.”	IEEE	Transactions	on	Software	
Engineering	31,	no.	11	(2005):	928–941.	

[171] Y.,	Liu,	Fekete	A.,	and	Gorton	I.	“Design-level	performance	prediction	of	
component-based	applications,.”	IEEE	Transactions	on	Software	
Engineering	31,	no.	11	(2005):	928–941.	

[172] Yamada,	S.,	M.	Ohba,	and	and	S.	Osaki.	“S-Shaped	Reliability	Growth	
Modeling	for	Software	Error	Detection.”	IEEE	Trans.	on	Reliability	R-32,	
no.	5	(1983):	475-485.	

[173] Zhang,	Z.	“Overview	of	usability	evaluation	methods.”	
<http://www.cs.umd.edu/~zzj/UsabilityHome.html>.	2001.	

[174] Zhou,	Y.,	and	H.	Leung.	“Empirical	analysis	of	object-oriented	design	
metrics	for	predicting	high	and	low	severity	faults.”	IEEE	Transactions	on	
Software	Engineering	32,	no.	10	(2006):	771-789.	

FP7-PEOPLE-2012-IAPP	–	ICEBERG	-	324356	 65	
	

Deliverable D2.1: “Industrial needs collection & state of the art surveys”	

[175] Zimmermann,	T.,	N.	Nagappan,	H.	Gall,	E.	Giger,	and	B.	Murphy.	“Cross-
project	Defect	Prediction-A	Large	Scale	Experiment	on	Data	vs.	Do-main	
vs.	Process.”	Proceedings	7th	Joint	Meeting	of	the	European	Software	
Engineering	Conference	and	the	ACM	SIGSOFT	Sym-	posium	on	
theFoundations	of	Software	Engineering.	2009.	91-100.	

[176] Zuser,	W.,	and	T.	Grechenig.	“Reflecting	Skills	and	Personality	Internally	
as	Means	for	Team	Performance	Improvement.”	In	Proceedings	of	the	16th	
Conference	on	Software	Engineering	Education	and	Training	(CSEET	'03).	
Washington:	IEEE	Computer	Society,	2003.	

	

	

	
	
	
	

