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1 Introduction

With software systems becoming increasingly large and complex, coping with
software defects (“bugs”) is more and more difficult. Despite good development
practices, thorough testing, and proper maintenance policies, software is still
shipped with a significant number of bugs, which represent a severe threat for
the reliability and security of critical infrastructures.

The practice of defect analysis is recognized as an essential task for software
process and product improvement. Understanding the type of residual bugs is
fundamental for adopting proper countermeasures in current and future software
releases. Researchers, across years, have analysed bugs from different viewpoints
in order to improve the knowledge about their characteristics. Regardless of the
semantics of the error committed by a developer, a fundamental aspect in bug
comprehension is related to the process by which a bug manifests itself as a
failure. In fact, while static properties of a bug (e.g., its type, or origin) are
related to how a bug is introduced in the code, there are different causes for a
bug provoking a failure.

Expectedly, many bugs systematically cause the same failure on a given
(sequence of) input(s). On the other hand, there is a non-negligible set of bugs
that cause a failure depending on the state of the execution environment, and
hence may appear as non-deterministic or transient failure, as the failure does
not occur unless the environment is in a certain state. The latter category
contains bugs that have likely escaped testing, since their exposure may be a
rare event. Specific strategies are required to cope with these bugs. Examples
are fault tolerance strategies that mask faults, for instance by reinitializing the
software state and retrying the failed operation, and verification techniques that
do not need to actually reproduce the fault trigger during execution, such as
code reviews and model checking. Instead, faults that can easily be triggered
require more thorough testing in order to improve reliability.

Therefore, knowing how bugs manifest themselves (namely, the fault trig-
gering conditions that make the bug to surface as a failure, and to impact on
the rest of the infrastructure) is strictly tied to the effectiveness of in-process
fault detection/correction activities, and of runtime mechanisms against resid-
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ual bugs. We hereafter analyze the characteristics of bugs reported from the
perspective of their fault triggering condition, in a set of large open-source soft-
ware (OSS) projects, with the goal of understanding the common features of
the bugs from the triggering perspective, as this point of view is directly related
to the effectiveness of V&V and fault-tolerance techniques.

2 Approach

Past research studies attempted to classify bugs according to the point of view
of fault triggering, by adopting different terminologies with slightly different
meanings, such as hard vs. soft faults [1], or transient vs. non-transient bugs
[2]; other studies focused on concurrency bugs [3, 4, 5, 6] as the class of faults
causing failures that are difficult to reproduce. To examine fault triggers in a
comprehensive way, Grottke and Trivedi [7] developed the following definitions
concerning the conditions related to the fault activation and the error propaga-
tion, that we adopt and extend in our analysis:

• Bohrbug: a bug which can easily be isolated and which manifests con-
sistently under a well-defined set of conditions, because its activation and
error propagation lack “complexity”.

• Mandelbug: a bug whose activation and/or error propagation are “com-
plex”, where complexity can be caused by the possibility of a time lag
between the fault activation and the failure occurrence, or by the possible
influence of indirect factors, such as the interactions of the software appli-
cation with its system-internal environment (hardware, operating system,
or other applications), the timing of inputs and operations (relative to
each other), and the sequencing of inputs and operations.

There is a further subtype of Mandelbugs, that is responsible for a phe-
nomenon increasingly being studied, known as process aging [8] or software
aging [9]. Software aging is a typical problem of long-running software systems
in which an increasing failure rate and/or degraded performance is observed.
This Mandelbug subtype is defined as follows.

• Aging-related bug: a Mandelbug that is capable of causing an increasing
failure rate and/or degraded performance, because the rate at which it is
activated and/or the rate at which errors caused by it are propagated
into (partial) failures increases with the total time the system has been
running. Often, such an increasing error propagation rate is caused by
the accumulation of internal error states. Since aging-related bugs are a
subtype of Mandelbugs, each Mandelbug is either an aging-related bug or a
Mandelbug that does not cause software aging, called a non-aging-related
Mandelbug.

Note that these definitions do not focus on the circumstances of one specific
manifestation of the bug (e.g., the one that made the testers notice its presence,
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or that helped them locate it in the code), but rather on its potential mani-
festation characteristics and its inherent features [10]. For example, even if a
developer is able to reproduce a failure in a well-controlled environment, the
underlying fault is classified as a Mandelbug if its manifestation can result in
a transient failure at the user site because one of the criteria of complex fault
activation or error propagation (as laid out above) applies. Similarly, even if
an aging-related bug is detected before it has had the chance to actually lead
to a decreasing performance (e.g., during a code inspection), the fault is still
considered aging-related.

Adopting the above classification, we performed an extensive analysis of
fault triggers in four large OSS projects [11]: the Linux kernel, the MySQL
database management system, the Apache HTTPD server, and the Apache
AXIS Web services framework. The analysis of these OSS projects, which are
often adopted in mission- and business-critical scenarios, provides us insights
about Mandelbugs in complex software systems. These projects have different
nature (e.g., in terms of type of system, size, and programming language), which
allows us to relate the type of system with the type of bugs. Furthermore,
dealing with OSS projects enables us to publicly release our data to the research
community (http://goo.gl/aeKoGR), allowing other researchers to adopt the
classification more easily, and to carry out further analyses based on our data.

From publicly-available bug repositories, we inspected problem reports de-
scribing the failure occurrences observed, the underlying bugs, and their fix.
Based on our classification procedure, we classified each unique fault as Bohrbug
(BOH), non-aging-related Mandelbug (NAM), or aging-related bug (ARB),
and then analyzed its features. Moreover, we extended the classification to pro-
vide additional insights about subclasses of the NAM and ARB categories. Our
analysis reveals the following main findings:

• The proportion of Mandelbugs significantly varies among systems, and
can be close to the proportion of Bohrbugs as in the case of the Linux
kernel; the proportions can be related to both the size and the nature of
the system.

• In every project, the proportion of Mandelbugs seems to converge to a
constant value during the lifecycle, although past studies hypothesized
that the percentage of Mandelbugs should be predominant in the long
term. This may be explained by ineffective quality assurance and testing
activities, and by the possibility of introducing new bugs during the project
lifecycle.

• The analysis of subtypes indicates that timing-related faults are the largest
part of Mandelbugs, although other Mandelbugs, such as those involv-
ing interactions with other software and hardware, account for a remark-
able share. Similarly, memory-related aging-related bugs predominate,
although leaks related to system-dependent data structures are also fre-
quent.
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• The time to fix a bug is significantly affected by the bug type, and strate-
gies specifically tailored for Mandelbugs would certainly help.

2.1 Extended bug type classification

To classify bugs more in detail, we define the following subtypes of a non-aging-
related Mandelbug (NAM), based on the different kinds of complexity in fault
triggering conditions:

• LAG: there can be a time lag between the activation of the fault and the
occurrence of a failure;

• ENV: the activation and/or error propagation is influenced by the inter-
actions of the software application with its system-internal environment;

• TIM: the activation and/or error propagation is influenced by the timing
of inputs and operations;

• SEQ: the activation and/or error propagation is influenced by the se-
quencing (i.e., the relative order) of operations.

Of course, these subcategories could also be employed for ARBs. However, it
can be expected that the LAG subclass would apply to almost all of them. It is
thus more informative to distinguish ARBs according to the various underlying
reasons for the software aging phenomenon. Based on our definition of an ARB
as well as on the software aging literature [12, 13], we identify the following
ARB subtypes:

• MEM: ARBs causing the accumulation of errors related to memory man-
agement (e.g., memory leaks, buffers not being flushed);

• STO: ARBs causing the accumulation of errors that affect storage space
(e.g., the bug consumes disk space);

• LOG: ARBs causing leaks of “other logical resources”, that is, system-
dependent data structures (e.g., sockets or inodes that are not freed after
usage);

• NUM: ARBs causing the accumulation of numerical errors (e.g., round-off
errors, integer overflows);

• TOT: ARBs in which the increase of the fault activation/error propaga-
tion rate with the total system run time is not caused by the accumulation
of internal error states (e.g., due to a bug in the Patriot missile defense
system [12, 14], the system runtime was incorrectly processed, but the
error produced was only propagated into a failure if the system had been
running for more than eight hours; error states did not accumulate).
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2.2 Bug sources

We considered four open-source software systems with public and actively-used
bug repositories, which provided us with a large number of bugs for the analysis.
The chosen software systems are widely adopted in business-critical contexts
[15], and they cover different types of software: (i) the Linux kernel, a feature-
rich OS used in several domains, from embedded systems to supercomputers;
(ii) MySQL, one of the most-used database management systems, accounting
for a significant market share among IT organizations; (iii) the Apache HTTPD
server, and (iv) the Apache AXIS framework for Web services, adopted by many
companies for running their Web applications.

Since these systems are very large and have been around for a long time,
tens of thousands of problems have been reported by their users; hence it is un-
realistic to analyze all of them. We therefore selected a subset of these compo-
nents for each project, and focused the analysis on the problem reports related
to them. The selected components/subsystems were: Network Drivers, SCSI
Drivers, EXT3 Filesystem, and Networking/IPV4 for Linux; InnoDB Stor-
age Engine, Replication, and Optimizer for MySQL; Apache httpd core, Apache
httpd mod proxy, Apache httpd mod cgi, Apache httpd mod ssl for Apache HTTPD;
for Apache AXIS, we inspected all reports but those related to the Distribution,
Documentation, and Samples areas (i.e., only reports about problems that can
affect the system during its execution). In the selection, we accounted for the
relevance of subsystems/components in terms of usage and number of problem
reports, as well as for the coverage of diverse functionalities of the system and
of a significant share of the system code. Table 1 provides, for each project, its
programming language, the total size in LoC (computed using the sloccount

utility) of the whole project and of the considered components, the number of
problem reports that have been marked as “fixed” and “closed” by the develop-
ers (i.e., a fix was found and included in the source code), and the time frame
during which these reports were issued.

The bug repositories1 provide a large amount of information. Although
projects may slightly differ with respect to the gathered information (e.g., they
use different versioning schemes or fault severity scales), all reports provide:

• the type of the problem report (e.g., if it is a bug report or a request for
a new feature);

• the date it was opened, closed, and last modified;

• the severity of the problem (i.e., the perception of its effects by users and
developers);

• the version(s) affected by the problem;

• the component or subsystem affected by the problem;

1Available at https://bugzilla.kernel.org (Linux 2.6), http://bugs.mysql.com
(MySQL 5.1), https://issues.apache.org/bugzilla (Apache HTTPD 2), and
https://issues.apache.org/jira/secure/IssueNavigator.jspax (Axis 1).
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• some textual messages describing the effects of the problem, its diagnosis
by developers, and information on whether and how it can be reproduced
(e.g., the inputs for triggering the failure behavior at the user’s site, or a
test case accompanying the bug fix);

• the status (e.g., the problem has been assigned to a developer, it has been
solved, etc.).

To work with reliable bug descriptions, we filtered the bug repository, fo-
cusing on problem reports that had been solved (i.e., marked as “fixed” and
“closed”). Moreover, we restricted the analysis to reports related to the above-
mentioned components as well as to stable and mature system versions; in par-
ticular, the considered versions were Linux 2.6, MySQL 5.1, Apache HTTPD 2,
and Apache Axis 1.

2.3 Classification procedure

Given a problem report, to classify the related bug as a Bohrbug, a non-aging-
related Mandelbug, or an aging-related bug, we conducted a manual analysis
by examining the textual descriptions and, if available, the test case to repro-
duce the failure occurrence, the available patches, and additional information
attached to the problem report. We defined a classification procedure consisting
of the following steps to classify faults in a rigorous way:

1. The problem report was first examined to make sure that it was related to
a unique bug; i.e., problems turning out to be operator errors, requests for
software enhancements, and duplicates were removed from the analysis.
A report was considered a duplicate if either a field in the report or the
textual description indicated that the reported problem was caused by the
same underlying bug as another report already included in our study.

2. The report was then searched for any information on the activation con-
ditions of the bug (e.g., the set of events and/or inputs required to trigger
errors), its error propagation (e.g., how the bug affected the program state
and how an erroneous state propagated through the running system), and
the failure behavior (e.g., the bug effects perceived by the users).

3. The bug was classified as an ARB if there were indications that the rate
with which it is activated and/or the rate with which errors caused by
it are propagated into (partial) failures can be an increasing function of
the total time the system has been running (e.g., the report refers to
leakage and/or gradual corruption of resources, or to the accumulation of
numerical errors). Typically, the information in the failure report allowed
us to determine the ARB subtype (MEM, STO, LOG, NUM, TOT) as
well (e.g., because it was reported that memory expected to be freed had
not been freed). Sometimes, it was merely known that the failure rate of
a bug tended to increase over time (e.g., because it caused a failure only
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after a certain function had been called multiple times), but there was not
enough information about the exact failure mechanics, like the presence
of error accumulation. In such a case, we classified the bug as an ARB of
unknown subtype (ARU).

4. A bug that was not an ARB was classified as a NAM if we found indi-
cations that one of the types of “complexity” of the activation and/or
error propagation, embodied in the four subtypes LAG, ENV, TIM, and
SEQ, applied to it. Sometimes, we did not have sufficient information
about the activation and error propagation conditions of a bug that was
reported to sporadically cause failures that could not be reproduced. We
then classified this bug as a NAM of unknown subtype (NAU).

5. If there was evidence that the bug was neither an ARB nor a NAM, we
classified it as a Bohrbug (BOH).

6. Sometimes, a report did not contain sufficient details to classify the un-
derlying bug as an ARB, NAM, or BOH. It was then labeled as a bug of
unknown type (UNK).

During the manual analysis, further information was extracted for the pur-
pose of our analyses: the time at which the report was opened and closed, and
the severity stored in the bug repository. To clarify the classification, Table 2
shows examples of NAMs and ARBs, along with statements from the reports
that provide information about the fault activation, the error propagation, and
the failure occurrence.

3 Results of the bug analysis

Our inspection of problem reports, using the procedure previously described,
provided a large set of bug data. We first examine the relative frequencies of
the bug types in the considered projects, and relate the results with the features
of the considered projects. Subsequently, we analyze bug types with respect to
some relevant features, including the time to fix the bugs and their severity.

3.1 Bug type proportions

Table 3 summarizes the absolute numbers and the percentages of each bug type.
Among the 963 problem reports, we identified 852 actual bugs: these reports
include neither operator errors nor duplicates nor problems that do not affect
the operational software, such as documentation and compile-time issues. A
subset of 816 bugs was classified as BOH, NAM, or ARB. The remaining bugs,
which we refer to as UNK, were lacking information for classifying them with
certainty. Most of these bugs belong to the Linux project: for this system,
some problem reports do not provide a precise diagnosis of the bug, since the
related failure disappeared in newer versions of the system (e.g., the bug did
not manifest itself anymore after a major rewrite of a module or subsystem).
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Table 2: Examples of NAMs and ARBs.

Project Bug ID Type Description

MySQL 54453 NAM/SEQ “if you ‘alter table .. rename to ..’ on a table that has
an active transaction open and UNIV DEBUG is defined,
mysqld crashes”

Linux 7207 NAM/LAG ”[The e1000 network driver at suspend/resume does not]
explicitly free and allocate irq [...] Restarting the network
solved the problem”

HTTPD 8184 NAM/ENV “The error only occurs intermittently [...] It behaves as
if requests are being distributed (via round-robin or the
like) and handled sometimes by a worker thread that is
not properly initialized”

AXIS 1270 ARB/MEM “Strings and char[]s are being leaked”

Linux 32832 ARB/LOG “In 2.6.35 and earlier, shutdown(2) will fully remove a
socket. This does not appear to be true any more and is
causing software to misbehave.”

HTTPD 13511 ARB/STO “Apache child processes will die trying to write logs which
have reached 2GB in size.”

Comparing the projects with respect to their relative percentages of BOH,
NAM, and ARB, it is possible to notice significant differences. In the Linux
project, there are more Mandelbugs than Bohrbugs (NAMs and ARBs together
account for more than 50% of all bugs), while in the remaining projects the per-
centage of Bohrbugs is predominant: this percentage ranges between 56.6% and
92.5%. We believe that the first cause for this result is the different nature of the
considered projects: Linux and operating systems in general are tightly related
to hardware devices; this makes them more prone to incorrect interactions with
the hardware and to bugs in event handling, which can lead to transient failures.
Another reason for the high percentage of Mandelbugs is the presence of several
complex and tightly-interacting subsystems in the Linux kernel. It seems that
the proportion of NAMs decreases as we move up in the “software stack”; that
is, the proportion is higher for “low-level” code, such as an operating system,
and lower for “high-level” code, such as middleware for web applications. This
can be expected since in “high-level” code there are fewer interactions with the
hardware and less resource management burdens.

We observe that the percentage of ARBs is approximately the same for the
Linux, MySQL, and HTTPD projects. Instead, for AXIS the percentage of
ARBs is lower than for the other three projects. This can be explained by con-
sidering the kind of system and by the fact that AXIS has been developed using
the Java language, which provides automated memory management through
garbage collection. By contrast, the other three projects adopted the C and
C++ languages, in which memory management is handled by developers, and
which are therefore more prone to software aging issues. However, it is impor-
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Table 4: Estimated fault densities for each bug type.

Project #bugs/kLoC #BOH/kLoC #NAM/kLoC #ARB/kLoC

Linux 0.3434 0.1569 0.1556 0.0309
MySQL 0.4939 0.2954 0.1583 0.0402
HTTPD 3.1054 2.5548 0.3304 0.2202
AXIS 26.1994 24.2245 0.9216 1.0532

tant to note that Java software is also subject to software aging, even in the
presence of garbage collection: This happens in the case of objects that are no
longer needed but still referenced, which prevents the garbage collector from
reclaiming them [16].

Another perspective on the relative importance of the bug types is given by
Table 4, which provides an estimated fault density, expressed in faults per kLoC,
for each type of bug and each project. To obtain these fault density estimates,
we divided the estimated total number of bugs of each type (calculated by mul-
tiplying the total number of bug reports, including reports that are still open
and UNK reports, with the respective bug type proportion among all classified
bugs) by the LoC of the considered components shown in Table 1. This compu-
tation necessarily makes the assumption that the bug type proportions among
the reports classified are the same as among those bug reports not yet closed or
not classified. Of course, the considered projects exhibit different #bugs/kLoC
ratios, which is a result of the software development process and of quality as-
surance activities. Nevertheless, we can notice different trends for individual
bug types. In fact, the ratio #BOH/kLoC decreases fast with an increase in
the project size; instead, the decrease in the #ARB/kLoC and #NAM/kLoC
ratios is slower. Therefore, when a large software project is considered, the
fault densities for Bohrbugs and Mandelbugs may be similar, while for smaller
projects the fault density for Bohrbugs tends to be higher. Note that in our
sample of projects, there is a high dependency between code size and the kind
of system (e.g., Linux is both a large and a “low-level” software); we therefore
cannot separate these effects, and both are likely to have an influence on the
fault densities.

Figure 1, Figure 2, and Figure 3 show the evolution of the BOH, NAM,
and ARB proportions among the classified bugs during project life. For all the
projects, the proportions stabilize around a constant value after about two years
after project birth. Another interesting result is that the ARB proportions also
settle to constant values, which are about the same for three of the four projects
(as reported above).

It could have been expected that the proportion of Mandelbugs increases
with time: according to Gray’s conjecture [1], most of the software faults re-
maining after thorough testing and years of production are Mandelbugs due to
their transient manifestation. However, there are other aspects that have to be
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Figure 1: Proportions of BOH among classified bug reports.

taken into account to explain this result. The proportion of Bohrbugs (or Man-
delbugs) is not necessarily equal to the percentage of software failures caused
by Bohrbugs (or Mandelbugs, respectively): the failures actually experienced
by the users also depend on the operational profile, that is, the kind of system
usage that is made by its users. For this reason, our results do not contradict
past empirical studies that were concerned with failures rather than faults, and
that reported Mandelbugs as a major cause of software failures [17]. Note that
even if Bohrbugs are easy to reproduce and to debug once detected, they are
still difficult to detect in large and complex software systems. This may be
due to ineffective quality assurance and testing activities, or simply due to the
fact that it is impractical to extensively test such large systems. As a result, a
significant number of Bohrbugs can still be found after several years. Another
possible factor is that OSS in general are continuously evolving during their life-
time, since new features keep being introduced by developers. Therefore, even
if Bohrbugs are detected and fixed, more Bohrbugs could be introduced when
changing or extending the software.

To better understand which factor is most influential on the observed trends
in bug type proportions, we analyzed the release dates of minor and major
versions of the considered projects. Figure 4 shows the occurrences of minor
and major releases for each project during the same time windows of Figure 1,
Figure 2, and Figure 3. It can be seen that for all four projects several minor
releases (e.g., Linux 2.6.31, 2.6.32, . . . ) occurred during the whole lifecycle.
Instead, major releases occur rarely. Considering that after a major release
(and even some time before it goes public) most development efforts are devoted
to the new major release (e.g., new important functionalities are introduced in
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Figure 2: Proportions of NAM among classified bug reports.
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Figure 3: Proportions of ARB among classified bug reports.
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Figure 4: Minor and major release dates of considered projects.

MySQL 5.5 instead of MySQL 5.1), we can assume that the effects of code
changes on bug type proportions are less significant from that time. In fact,
when a major release occurs, minor releases are mostly focused on bug fixes
and minor improvements, and are less likely to introduce new faults; therefore,
the bug type proportions after a major release mainly reflect old bugs rather
than new ones. In the case of MySQL and HTTPD, major releases occur in the
middle of the lifecycle of a previous major version (e.g., the major version 5.5 of
MySQL was released while MySQL 5.1 was still being updated and widespread
among users), while for AXIS and Linux a major version is released after the
end of the lifecycle of the previous major version (i.e., the lifecycles of two major
releases do not overlap). For the MySQL and HTTPD projects, at the time of a
new major release (at about 1250 days), a stabilization of bug type proportions
has already occurred, and there does not seem to be an increasing trend in
the proportion of NAMs; therefore, we attribute the stabilization of bug type
proportions for these projects to old Bohrbugs that keep being discovered after
some time rather than to new Bohrbugs introduced by late releases. For Linux
and AXIS, significant changes may have occurred during their lifecycle, but the
Bohrbug/Mandelbug proportions among the newly-introduced faults seem to
be similar to those among the fixed faults.

In Figure 5 and Figure 6, we provide the proportions of NAM and ARB
subtypes for all projects (omitting ARB/TOT, which never applied). As for
Linux and MySQL, there is a predominance of timing-related bugs, which can
be explained by the nature of these systems, where threads concur to access
shared resources and have to be properly synchronized. Timing is a less sig-
nificant problem in Apache HTTPD: although it is a multi-threaded software,
there is a high degree of independence between threads, because they seldom
have access to shared resources when handling HTTP requests, which renders
synchronization problems much less frequent. Environment-related faults are
also a significant share of NAMs: in Linux, they are often related to hardware
management, while in Apache HTTPD and AXIS they are related to the net-
work and the filesystem. Bugs exhibiting a time lag before a failure only affect
Linux and MySQL, which have a tendency towards data corruption problems
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that may cause failures only after these errors have propagated through the
system. As for ARBs, there is a strong predominance of memory-related bugs
(e.g., memory leaks). Leaks associated with storage and other logical resources
were also found. Only few ARBs (a total of two bugs) were related to numerical
problems, and in particular to integer overflows. This low number is probably
due to the scarcity of floating point arithmetic in the considered projects, which
is not used at all in the case of the Linux kernel [18].
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Figure 5: Proportions of NAM subtypes.
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Figure 6: Proportions of ARB subtypes.

3.2 Time to fix

In order to understand the impact of bug types on the defect management pro-
cess, we analyzed the time spent by developers on fixing bugs. We hypothesized
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Table 5: Comparison of time to fix for bug types.

Project
Time to fix: avg. (std. dev.) Test result (adj. p-value)

BOH NAM+ARB BOH vs. NAM+ARB

Linux 157.34 (226.21) 229.84 (304.24) reject (0.0560)
MySQL 107.92 (176.76) 89.45 (109.60) do not reject (0.2820)
HTTPD 99.09 (199.44) 116.65 (133.84) reject (0.0973)

AXIS 111.19 (254.99) 186.50 (256.18) reject (0.0973)

that the type of a bug has a significant impact on the time to fix, since Man-
delbugs tend to be more difficult to reproduce and to diagnose than Bohrbugs.
We collected from each bug report the date at which it was issued, as well as
the date at which the bug was considered definitively solved by developers, and
computed the difference between these two dates. This time period includes
the time spent by developers on reproducing the failure reported by the users,
diagnosing its root cause, developing a fix for the bug, and validating the ef-
fectiveness of the fix through testing and user feedback. It does not include
the time required for users to reproduce the failure on-site before a bug re-
port is filed; however, we expect that the delay for this activity is no longer for
Bohrbugs than for Mandelbugs, given their transient nature, and therefore the
time to fix obtained from the bug reports should not bias the comparison in
favor of Mandelbugs.

We compared the time to fix for Bohrbugs and Mandelbugs by means of the
Wilcoxon rank-sum test [19], which assesses whether one of two independent
samples tends to attain larger values. Table 5 provides the average and the
standard deviation of the time to fix for each class of bugs. It also shows whether
the null hypothesis that for both types of bugs the time to fix is sampled from
the same distribution can be rejected at a type I error level of 10%, which is the
case for a p-value below 0.1. Since multiple comparisons (one per project) are
being performed, using unadjusted p-values for making a test decision would
lead to a probability of at least one false rejection that is larger than the type
I error level chosen. We therefore adopted the Benjamini-Hochberg procedure
[20], controlling the false rejection probability and retaining a higher power of
the tests, to derive adjusted p-values. Despite this correction, which makes the
tests more conservative, the null hypothesis can be rejected for three of the four
projects (Linux, HTTPD, and AXIS); in each of these cases, the time to fix
tends to be greater for Mandelbugs (including both NAM and ARB classes)
than for Bohrbugs. One possible cause for this finding is that upon a failure
caused by a Mandelbug the developer often requires additional information to
understand its nature and to detect the underlying bug in the code. Moreover,
Mandelbugs may be located in components that are more difficult to maintain
(e.g., a problematic code area that can be dealt with only by few developers
in the team). As Mandelbugs seem to be more difficult and time-consuming to
cope with than Bohrbugs, strategies specifically tailored for Mandelbugs should
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be useful to improve the reliability of software systems in a cost-effective way,
both by means of fault tolerance mechanisms and by specific testing methods.

3.3 Bug severity

Finally, we compared the severity of bugs as perceived by users and develop-
ers, who can assign through the bug tracker system an indication of the “im-
portance” of the bug in terms of consequences caused by it. We limited this
analysis to severity because it is the only indicator of bug importance available
for all the four considered projects. In every project, the severity is expressed
using a severity scale. Since the scale is different for each project (in terms
of the number and names of severity levels), the severities of the bugs of two
different projects cannot be compared. We thus focus on analyzing the severity
of bugs within the same project. Table 6 provides the contingency tables for
bug type and bug severity, which we analyzed in order to understand whether
there is a bug type that is perceived to be more severe than the other one. We
adopted Fisher’s exact test of independence [19], assessing the null hypothesis
that two variables are independent. Again, p-values were adjusted using the
Benjamini-Hochberg procedure [20]. The null hypothesis cannot be rejected at
a reasonable type I error level for any of the projects; the percentage of bugs
across severity levels does not seem to be influenced by the bug type. There-
fore, we conclude that, although Bohrbugs and Mandelbugs exhibit a different
behavior, there is no evidence from the considered projects that their effects in
terms of failure severity are perceived to be different. This can be explained by
the fact that the distinction between Bohrbugs and Mandelbugs is concerned
with fault triggering (e.g., the sequence of inputs or events that make the fault
affect the system state), rather than the way in which a bug manifests itself to
external users as failures. Therefore, different strategies are needed for dealing
with each of them.

3.4 Limitations

Although the analysis is comforted by the extensiveness of the study, accounting
for more than 900 problem reports, care must be taken when interpreting the
results and drawing conclusions. While the classification procedure can easily
be generalized, results are limited by the chosen applications and components,
by the bugs considered, and by the quality of bug reports, like for any empirical
study in this field. However, using the outlined criteria for bug selection, we
selected a well-defined set of bugs (i.e., the entire set of fixed bugs) from the
repositories, avoiding biases related to sampling (e.g., keyword-based sampling,
random sampling), which was instead adopted in past empirical studies to deal
with the huge number of bug reports [2, 3, 5, 6]. Moreover, we focused our
attention on widely-used and diverse projects and components (e.g, we consid-
ered both “low-level” code, such as device drivers and a storage engine, and
“high-level” code, such as a web framework).
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Table 6: Contingency tables for bug type and severity.

(a) Linux (outcome = do not reject,
adj. p-value = 0.8276)

BOH NAM+
ARB

Blocking 9 11
High 18 30
Low 7 4

Normal 88 100

(b) MySQL (outcome = do not re-
ject, adj. p-value = 0.8276)

BOH NAM+
ARB

Critical 28 17
Serious 41 29

Non-critical 55 36
Performance 1 2

(c) HTTPD (outcome = do not re-
ject, adj. p-value = 0.8276)

BOH NAM+
ARB

Blocker 4 0
Critical 16 4

Major 24 7
Minor 8 0

Normal 62 14
Trivial 2 0

(d) AXIS (outcome = do not reject,
adj. p-value = 0.4924)

BOH NAM+
ARB

Blocker 5 0
Closed 1 0

Critical 6 3
Major 78 6
Minor 15 0
Trivial 1 0

The analysis does not include bugs that have not yet been fixed, since their
reports may contain inaccurate or incomplete information. This could bias our
estimates, since unfixed bugs may have properties different from the fixed ones;
for instance, Mandelbugs may tend to be fixed less frequently than Bohrbugs.
However, the previous study of NASA systems [10], for which all reports were
analyzed due to the availability of detailed failure data, showed trends similar
to the ones in this study; it is thus possible that our focusing on fixed bugs
has not biased the results. Also, the analysis of fixed bugs found a remarkably
large (absolute) number of Bohrbugs, highlighting that Bohrbugs are a serious
problem even for mature systems.

4 Discussion

The presented classification and analysis provide insights about how bugs mani-
fest themselves during operation. These kinds of results are useful for (i) under-
standing the bug characteristics that make failures difficult to reproduce, and
(ii) identifying the best countermeasures to cope with bugs during development,
testing, and maintenance. The following findings help us on these issues.

The bug type proportions vary with the size and nature of systems.
Although Mandelbugs (NAMs and ARBs) account for about 32.9% (25.7% and
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7.2%, respectively) of all classified faults, which is in line with previous studies
[10, 21], we noticed significant differences among systems. While the size of
the software may have some influence, its kind seems to play an important role
as well. In fact, non-reproducible behavior of bugs is often related to interac-
tions of the systems with hardware and with low-level resource management.
This observation is confirmed by the subsequent analysis of bug subtypes, which
distinguishes between the causes of complexity; the environment and the tim-
ing of inputs and events (e.g., concurrency) represent the main subtypes of
Mandelbugs, whereas the LAG class is a secondary cause. NAM/LAG bugs
exhibit a long chain of events between fault activation and manifestation, which
hinders systematic reproduction; they are related to coupling among system
components and to code complexity. The predominance of ENV and TIM,
along with the greater percentage of NAMs in Linux, suggests that Mandelbugs
are more related to low-level interactions and resource management than to
software size/complexity. Further analyses are needed for investigating the re-
lationship between NAMs and software metrics. As for ARBs, results confirmed
that memory-related problems are the main source of software aging, but the
non-negligible percentage of ARBs connected with other system-dependent re-
sources suggests pushing the research on software aging (today mainly focused
on memory issues) to investigate other types of ARBs.

Within each project, the bug type proportions stabilize over the
years. This finding contradicts the popular opinion that the prevalence of
simple bugs (i.e., Bohrbugs) decreases with time, thus leading to an increase in
the proportion of Mandelbugs; instead, an approximately constant proportion
has been observed. The similarity of this behavior among projects (even in terms
of the time to stabilization) suggests that both Mandelbugs and Bohrbugs keep
being detected during the overall lifecycle of the product. This appears to be the
consequence of ineffective verification activities, leaving many Bohrbugs in the
code. It is, in fact, impractical to extensively test large systems. Analyzing the
evolution of bug types during the lifecycle of large systems can provide feedback
on the effectiveness of quality assurance and on the need for improvements.
Another influential factor is the continuous evolution of open-source software,
since maintenance actions, such as corrective actions and the introduction of
new features, can introduce regression Bohrbugs, as well as Bohrbugs in new
functionalities. This observation can be symptomatic of the need to improve
maintenance activities: Bohrbugs represent a significant portion of faults and
should not be neglected when operating on existing code. This means that more
thorough analyses should be made to verify the effects of changes.

Mandelbugs take longer to fix, and require specific strategies to be
dealt with. We found a statistically significant difference in the times to fix of
Bohrbugs and Mandelbugs, respectively, for three out of four projects. In each
of these cases, Mandelbugs tend to have a greater time to fix than Bohrbugs.
Adopting strategies and tools for improving the diagnosis of Mandelbugs would
improve the fixing time of such bugs. This is the case for the MySQL project,
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in which there is no statistically significant difference in the times to fix; we
attribute this result in parts to the fact that MySQL developers make extensive
use of the Valgrind debugging tool for tracking down NAMs and ARBs [22].
Moreover, Mandelbugs are by their nature difficult to detect by testing, and
they require more specific techniques to be found during V&V. If the number of
Mandelbugs found during operation is high, there are basically two alternatives.
The first one is to employ additional V&V techniques for future releases, by
introducing model checking, stress testing, code reviews. The second solution
is to rely on runtime failure detection [23] and recovery mechanisms [24, 14], to
compensate for the longer repair time of these bugs, and avoid system downtime
while developers investigate the root cause of problems. Recovery mechanisms
include: restart of a component or a service; reconfiguration of components (e.g.,
migration to a diverse environment); retry operations. These strategies can be
adopted depending on the system and failure type (e.g., a retry can succeed in
the case of a timing bug in the software application, while a complete reboot is
needed for bugs in the OS). Moreover, software aging issues can be prevented
by software rejuvenation [8], a technique that proactively restarts a system in
order to avoid the occurrence of aging failures.

The severities of bug types are perceived to be similar. The analysis
of bug severity highlights that, despite the higher complexity of Mandelbugs that
might endow them with more severe consequences, the failure severity assigned
by developers shows no significant differences between Bohrbugs and Mandel-
bugs. These bug types differ in their failure reproducibility, not in their impact
on the system. The relative importance of Bohrbugs and Mandelbugs during
design, testing, and maintenance activities is therefore determined by their rel-
ative proportions. If there is a significant proportion of Mandelbugs, additional
testing and recovery strategies are recommended, while more regression and
functional testing may be needed if the proportion of Bohrbugs is high.
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