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1 EXECUTIVE SUMMARY

The DOTS-LCCI research project aims to define novel middleware technologies, models,
and methods to assure and assess the resiliency level of current and future OTS-based
LCCI, to diagnose faults in real time, and to tolerate them by means of dynamic
reconfiguration. Assuring the resiliency level of LCCI is crucial to reduce, with known
probabilities, the occurrence of catastrophic failures, and consequently, to adopt proper
diagnosis and reconfiguration strategies.

Project efforts will progress according to three main directions:

* Distributed architectures for LCCIs, their components (OTS and legacy), and
their resiliency requirements will be studied, in order to define algorithms and
middleware architectures for improving dependability attributes of future LCCls;

* Strategies for on-line diagnosis and reconfiguration will be studied and defined,
specifically tailored for OTS-based LCCIs, according to the resiliency assurance
requirements;

* Tools and techniques for modeling and evaluating LCCIs will be devised.

This document is the Deliverable D2.1 of DOTS-LCCI Project.
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2 BAsic CONCEPTS AND TERMINOLOGY

Several vocabulary definitions answer the question of what is diagnosis. From the
ancient Greek “Siaytywokewv”, which stands for to discern, to distinguish, they share the
general meaning of identifying the nature and cause of some phenomenon.

Essential for a smooth and efficient operation of modern systems is the ability to
analyze quantitative aspects related to performance and security, availability and
reliability features, which show and convince us of suitability of systems. In the field of
dependable systems, diagnosis consists in the interpretation of information collected
from the system in order to obtain an indication of the activation of faults, their nature
and their location [Avizienis 2004]. For these reasons Diagnosis activities are crucial to
build Dependable system.

In the rest of the chapter will carry out a systematic treatment of dependability, which
includes a description of basic concepts such as fault, error, failure, and dependability
attributes such as reliability, availability, security.

2.1 Dependability basics

A widely accepted notion of dependability was formulated by Aviezenis et al. as follow:
“the ability to deliver service that can be justifiably be trusted”, thus putting focus on the
definition of service. To provide also the criterion to decide if a system is dependable,
the dependability of a system is also defined as "the ability to avoid service failures that
are more frequent and more severe than acceptable ", where service is defined as the
behaviour of a system as perceived by its users, and failure is defined as the event that
occurs when the delivered service deviates from the specified correct service. The term
system refers to an entity that interacts with other entities, i.e., other systems, including
hardware, software, users, and the physical world with its natural phenomena. These
other systems are the environment of the given system.

What the system is intended to do is called function and it is described by the functional
specification in terms of functionality and performance. What the system does to
implement its function is the behaviour and it is described by a sequence of states. The
total state of a given system is the set of the following states: computation,
communication, stored information, interconnection, and physical condition. From a
structural viewpoint, a system is composed of a set of components bound together in
order to interact, where each component is another system, etc. The recursion stops to
the so-called atomic component: any further internal structure cannot be discerned, or
is not of interest and can be ignored. Consequently, the total state of a system is the set
of the states of its atomic components

The dependability concepts are used in all stages of the life cycle of a computer system,
from the requirement stage to the operational stage. Rather than being a monolithic
concept, dependability may be regarded as an umbrella term. In particular, the
attributes through which dependability can be expressed and quantified include:

* Availability: readiness for correct service;

* Reliability: continuity of correct service;

e Safety: absence of catastrophic consequences on the user(s) and the
environment;

* Integrity: absence of improper system alterations;

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art” 7
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* Maintainability: ability to undergo modifications and repairs.

When addressing security, an additional attribute deserves great importance, namely
confidentiality, i.e., the absence of unauthorized disclosure of information. Security is a
composite of the attributes of confidentiality, integrity and availability, requiring the
concurrent existence of a) availability for authorized actions only, b) confidentiality, and
c) integrity with “improper” meaning “unauthorized”.

Several causes may lead a system to failure causing the transition from a correct
service to an incorrect one. The period of delivery of incorrect service is a service
outage. The deviation from correct service may assume different forms that are called
service failure modes.

The service failure modes characterize incorrect service according to four viewpoints
[Avizienis 2004]:

* domain, which encompass timing failure (i.e., timing requirements are violated)
content failure (i.e., the service content deviates from implementing the system
function) and both;

* The detectability, which address the signaling of service failure, i.e., a failure may
be signaled, when a warning signal is provided, or unsignaled,;

* The consistency, which let us distinguish i) consistent failure, i.e., the incorrect
service is perceived identically by all users, and ii) inconsistent failure, i.e., users
perceive different behaviors (faulty or correct) of the system;

* The consequences on the environment, which address the impact of failures (e.g.,
Minor failure or Catastrophic failure).

With respect to the consequences point of view, failure modes are ranked according to
failure severities, which are determined following specifics criteria (e.g., for availability
is the outage duration; for safety is the possibility of the loss of human lives; for
integrity, the extent of the corruption of data and the ability to recover from these
corruptions).

Hardware faults and design faults are just an example of the possible sources of failures.
A service may fail either because it does not comply with the functional specification, or
because this specification did not adequately describe the system function. These
causes, along with the manifestation of incorrect service, are recognized in the
literature as dependability threats, and are commonly categorized as failures, errors,
and faults.

An error can be regarded as the part of a system’s state that may lead to a failure. In
other words, a failure occurs when the error causes the delivered service to deviate
from correct service. A more detailed discussion about errors will be provided in the
Error Detection subsection.

The adjudged or hypothesized cause of an error is called a fault. Faults can be
characterized from various point of view which regard:

* phase of occurrence: development or use phase faults;

* dimension: hardware or software faults;

* system boundaries: internal or external faults;

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art” 8
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* persistence: permanent or transient faults;

* phenomenological cause: natural or human-made faults;
* objective: malicious or non malicious faults;

* intent: deliberate or non deliberate faults;

* capability: accidental or incompetence faults.

However all faults can be grouped in three major (and overlapping) classes:
* Development: it includes all fault classes occurring during development;
* Physical: it includes all fault classes that affect hardware;
* Interaction: it includes all external faults.

The great research effort striven in dependable systems has provided good results with
respect to hardware-related faults, while lot of research is still needed with respect to
software faults. Software faults are neither easy to diagnose nor to recover, and
represent the major matter of concern for the dependability of complex systems
[Sullivan 1991].

A crucial concern for software engineers is to understand how a fault, of any type, may
be activated and how it can be reproduced. In [Gray 1986] Gray discussed Software
fault reproducibility for the first time. In this work, Gray distinguished faults whose
activation is easily reproducible (e.g., through a debugger), i.e., solid or hard faults,
from faults whose activation is not systematically reproducible, i.e., elusive or soft
faults.

Solid faults manifest consistently under a well-defined set of conditions and that can
easily be isolated, since their activations and error propagations are relatively simple.
Soft faults, instead, are intricate enough that their activation conditions depend on
complex combinations of the internal state and the external environment. The
conditions that activate the fault occur very rarely and can be very difficult to
reproduce.

In Gray’s paper, the first class of faults (i.e., solid) were named “Bohrbugs”, recalling the
physicist Niels Bohr and his rather simple atomic model: “Bohrbugs, like the Bohr atom,
are solid, easily detected by standard techniques, and hence boring”. Thus a Bohrbug
does not disappear or alter its characteristics when it is activated. These include the
easiest bugs to fix (where the nature of the problem is obvious), but also bugs that are
hard to find and to fix, which remain in the software during the operational phase. A
software system with a Bohrbug is analogous to a faulty deterministic finite state
machine.

Soft faults were instead defined as those faults for which “if the program state is
reinitialized, and the failed operation is retried, the operation will not fail a second
time”. Such kinds of faults were named “Heisenbugs”, referring to the physicist Werner
Heisenberg and his Uncertainty Principle. Based on Gray’s paper, researchers have
often equated Heisenbugs with soft faults. However, when Bruce Lindsay originally
coined the term in the 1960s (while working with Jim Gray), he had a more narrow
definition in mind. In his definition, Heisenbugs were envisioned as “bugs in which
clearly the system behaviour is incorrect, and when you try to look to see why it’s
incorrect, the problem goes away”. In this sense the term recalls the uncertainty
principle, in that the measurement process (in this case the fault probing) disturbs the
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phenomenon to be measured (the fault). A software system with a Heisenbug is
analogous to a faulty non-deterministic finite state machine. One common example is a
bug caused by a race condition. However, between Bohrbugs and Heisenbugs behaviour
there is another class of bugs that has been identified later, which cannot be classified in
neither of the two categories. They are, like Heisenbugs, very hard to reproduce but
their activation is just apparently non-deterministic, i.e.,, they are deterministically
activated by a particular exact condition (like Bohrbugs), but detecting this condition is
so difficult that the bug can be considered as non-deterministic.

In scientific literature these software defects are named Mandelbugs (which name
derives from the name of fractal innovator Benoit Mandelbrot). According to this
classification,

* A Heisenbug is a bug that disappears or alters its characteristics when it is probed.

* A Mandelbug is a bug whose causes are so complex that its behaviour appears to be
chaotic (but they are deterministic).

However, currently there is no agreement in the literature and the term “Heisenbug” is
used inconsistently: some authors accepts this classification; others use the term
Mandel-bugs as a synonym for Heisenbugs, since they claim that there is no way to
distinguish a bug whose behavior appears chaotic and a bug whose behaviour is
actually chaotic. On the other hand, Trivedi et al. claim in [Trivedi 2007] that
Heisenbugs are actually a kind of Mandelbugs. He identified two main sources of
complexity characterizing the occurrence of a Mandelbugs. The first one is that there
may be a long delay between the fault activation and the final failure occurrence (e.g.,
because several error state are traversed before the failure or because the fault
progressively accrues an abnormal condition until the system fails). This usually
happens with complex software systems employing one or more OTS items. The second
source of complexity is due to the system-internal environment: fault activation and/or
error propagation depend on the combination of conditions occurring inside the
application and conditions that accrue within the system-internal environment (e.g., a
fault causing failures due to side-effects of other applications in the same system, or a
race condition caused by inadequate synchronization in multi- threaded software).
According to this view, “since the system-internal environment induces the change in
the behavior -regarding to a fault-, Heisenbugs are actually a type of Mandelbug”
[Trivedi 2007]. Referring to this classification:

* Mandelbugs include those faults which activation is chaotic or non-deterministic
(including Heisenbugs);

* Heisenbugs are a special case of Mandelbugs in which system-internal environment
influences fault’s behaviour in a specific application (hence causing the bug to
“disappear” when probed).

In the following we will refer to this classification. Due to their different nature, to deal
with Bohr or Mandel-bugs implies distinct techniques to be adopted. Indeed Bohrbugs,
due to their deterministic activation conditions are more prone to be detected and fixed
during the software design and verification phase (however the largest slice of fault
activated during the operational life of systems still belongs to this class!). For instance,
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structured design, design review, formal analysis, unit testing, inspection, integration,
system and acceptance testing are techniques that are employed in the development
phase and that “usually” fix the most of Bohrbugs.

A
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Figure 1 - Evolution of reproducible and non-reproducible faults over software life cycle

For these reasons, the number of detected Bohrbugs decreases over time (as depicted in
Figure 1), becoming negligible after a long period of production. On the other hand, the
number of Mandelbugs increases over time: during the development phase this number
is very low, since the system under test runs always in the same environment and
intricate activation conditions rarely occur; during the beta testing, when the system is
delivered out of the production environment, a consistent number of Mandelbugs are
reported. In that stage, the system runs in several environments under workloads very
different from the ones applied in the testing phase. This number further increases once
the system is brought to the operational phase.

Another fundamental milestone by Chillarage and Sullivan in [Sullivan 1991] proposes a
classification of triggering condition of software faults. A Defect trigger is a condition
that allows a fault to be activated. Even if extensive testing has been performed, a series
of circumstances may allow a fault to surface after that a software system has been
deployed. The most used defect trigger categories are:

* Boundary Conditions: software faults were triggered when the systems ran in
particularly critical conditions (e.g., low memory);

* Bug Fix: the fault surfaced only after another defect was corrected: this happens
either because the first defects was covering the second one, or because the fix
was not successful, introducing a new bug;

* Recovery: the fault surfaced after the system recovered from a previous failure.

* Exception Handling: the fault surfaced after an unforeseen exception-handling
path was executed;
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Program of National Research Interest (PRIN 2008) - Project “DOTS-LCCI”

* Timing: the fault emerged when particular timing conditions occurred;

*  Workload: the fault surfaced only when particular workload condition occurred
(e.g., only after the number of concurrent requests to serve was higher than a
given threshold).

Another category of bug, which recently is gaining attention, is the so-called “Aging-
related bugs”. Often, software systems running continuously for a long time tend to
show a degraded performance and an increased failure occurrence rate. This
phenomenon is usually called Software Aging [Kintala 1995]. These bugs are very
difficult to detect during the development phase, because a failure only occurs after the
accumulation of many errors. Therefore there is a large interval of time (many hours,
often also weeks) between fault activation and failure occurrence. Some examples of
these bugs are: memory leaks (memory allocated portions of a process but no longer
used or usable), not terminated threads, poor management of shared resources, data
corruption, unreleased file-locks, the accumulation of numerical errors (e.g., round- off
and truncation) and disk fragmentation.

Also in this case, there is no complete agreement on the classification of these bugs:
some authors relegate Aging-related bugs only in the Mandelbugs category, while
others view these bugs as an intersection between Mandelbugs and Bohrbugs classes.
Indeed, Aging-related bugs can be either deterministic (e.g., a missing delete statement)
or non-deterministic (e.g., a fault which is dependent on the message arrival order).
However both kinds of bug require a long time to manifest. Hence, also deterministic
Aging-related bugs will very likely manifest at the operational time (like Mandelbugs),
being very difficult to note their effect at testing time. For this reason, in accordance
with the adopted classification for Bohrbugs-Mandelbugs, we adopt this second solution
(Aging bugs as subset of Mandelbugs), suggested by [Trivedi 2007], for placing aging-
related bugs in the classification scheme.

The most adopted technique to face this problem is known as Software Rejuvenation.
The purpose of these techniques is to restore a "clean state" of the system by surgically
releasing OS resources and removing error accumulation. Some common examples are
garbage collectors and process recycling (e.g., in Microsoft IIS 5.0). In extreme cases
these techniques result in partial or total restarting of the system: restarting the
application (also known as micro-reboot), restarting the node or activating a standby
spare.

There are several examples in the literature reporting real system failures due to
software aging faults: web-servers [Trivedi 2006], middleware [Cotroneo 2010],
spacecraft systems [Marshall 1992], and even military systems [Tai 1997] with severe
consequences such as loss of money and human lives. For these reasons, it is a crucial
task to detect and diagnose them.

2.2 Fault Tolerance basics

Over the course of the past 50 years many means have been developed to attain the
various attributes of dependability. The development of dependable systems requires
the combined use of four types of techniques:

* prevention of failure, to prevent the occurrence or introduction of faults in the
system;
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* fault tolerance, to deliver a correct service even in the presence failure;

* fault removal, to reduce the number or severity 'fault;

* fault forecasting, to estimate the number of faults in the system, their impact in
the future, or their likely consequences.

Among these “fault tolerance is determined by the system requirements and the system
safety assessment process” and it consists of using proper techniques, during the
operational life of the system, to allow the continued delivery of services at an
acceptable dependability level, after a fault becomes active [Wilfredo 2000].

The main phases that are typically executed to achieve fault tolerance can be
schematized as follows:

* Error Detection: its goal is to generate an error warning in order that an error
does not remain latent. It aims to detect errors prior them to degenerate into
failures for other system components, or for the overall system. It can be carried
out online (i.e., concurrent detection), i.e., while the system delivers the service,
or offline (i.e.,, pre-emptive detection), where the system is scanned while the
service provisioning is suspended.

e System Recovery: its goal is to lead the system in an error free and fault free
state. Recovery consists of:

o Error Handling, which aims at removing the error condition, by bringing
the system in an error-free state (i.e., through Rollback, Rollforward and
Compensation)

o Fault Handling, which aim is to prevent fault re-activation, through
various stages, i.e., Diagnosis, Isolation, Reconfiguration and Re-
initialization.

Typically, these phases may be followed by a corrective maintenance step, in order to
remove the diagnosed faults. Note also that compensation does not necessarily require
error detection; however, this can lead to a progressive loss of redundancy if not.

A widely used strategy for the implementation of fault tolerance is redundancy, either
temporal or spatial, which aim is to mask faults activation. On one hand, temporal
redundancy attempts to re-establish proper operation by bringing the system in an
error-free state and by repeating the operation which caused the failure. On the other
hand spatial redundancy exploits the computation performed by multiple system’s
replicas. The former is adequate for transient faults, whereas the latter can be effective
only under the assumption that the replicas fail independently. This can be achieved
through design diversity [Avizienis 1984].

Both temporal and spatial redundancy require error detection and recovery techniques
to be in place: upon error detection (i.e., the ability to identify that an error occurred in
the system), a recovery action is performed. Such a recovery can assume the form of
rollback (i.e., the system is brought back to a saved state that existed prior the
occurrence of the error; it needs to periodically save the system state, via checkpointing
techniques), rollforward (i.e., the system is brought to a new, error-free state), and
compensation (a deep knowledge of the erroneous state is available to enable error to
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be masked). Fault masking, or simply masking, results from the systematic usage of
compensation. Such masking will prevent completely failures from occurring.

The measure of effectiveness of any given fault tolerance technique is called coverage,
i.e., the percentage of the total number of failures that are successfully recovered by
fault tolerance means.

The key for achieving (software) fault tolerance is the ability to accurately detect,
diagnose, and recover from faults during system operation. Many works in the
literature focused on these three topics; the most relevant ones are surveyed in the rest
of the document.

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art” 14
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3 FAULT AND ERROR MODEL

An understanding if faults that may affect a system or a class of systems (depending on
the technology and on the environment) is highly needed. The definition of a fault
taxonomy, from which fault models for individual systems or for infrastructures can be
derived, must be kept in line with evolution of technology. The two main approaches
(not mutually exclusive) to understand faults and to build a taxonomy or a model are:

* Field Failure Data Analysis (FFDA): collecting and analyzing data from logs
related to errors and failures in systems already in operation. This information is
used to determine the causes of errors and failures that actually happened and
their occurrence rates. However, the FFDA requires a very long time, because of
the low frequency of occurrence of such events in real systems.

* Failure Modes and Effects Analysis (FMEA): A systematic analysis of the system,
decomposing into elementary parts and identifying for each (i) the possible
failure modes and (ii) the possible causes, effects and countermeasures each
failure mode. The failure mode of an elementary component becomes a fault in
the next abstraction layer composing the system or the infrastructure. The
identification does not take place on an experimental basis, but assuming for
each item, the possible events and scenarios that can cause a failure. This
approach is not suitable to accurately estimate the probability of occurrence and
the level of severity of a fault.

Among the existing fault types, the most frequently considered are hardware faults and
software ones.

In particular Hardware faults types are better characterized, having been the electronic
circuits the main cause of failures until the 80 [Arlat 1990]. This type of component is
subject to failure due to deterioration, manufacturing defects and external
electromagnetic interferences. Several possible failure modes have been identified
during the last 50 years. For instance, CMOS transistors are subject to the occurrence of
short-circuits and open, or the alpha rays can alter the state of capacitors used in
memory cells. These faults can cause both permanent failures, such as a fixed output on
a single logical value (stuck-at), and transient failures, such as the reversal of a memory
cell (bit-flip). However, due to the technological evolution the types and frequency
(both relative and absolute) of hardware faults is continuously changing whereby
transients are getting more and more frequent.

Software related faults represent a second class of interest. Unlike hardware faults, they
are not related to deterioration or natural phenomena, but rather to human mistakes in
the phases of analysis, design and implementation of software. They are considered as
persistent faults because they are inherent in the code. However, as mentioned in the
previous section, the conditions for the activation of software faults can be very difficult
to reproduce (elusive faults) and can be profitably modeled as transient.

Others fault classes commonly used are related to incompetence faults (e.g., errors of
human operators in systems administration), or the faults that lead to security
vulnerabilities (e.g., unauthorized access). Software faults that result in accidental
failures are discussed in Section 3.1 while faults exploited for malicious attack, also
known as intentional failures, are discussed in section 3.2.
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3.1 Unintentional Faults

The fault models used in designing and analyzing dependable distributed systems
typically make simplifying assumptions about the nature of faults in the system. Often,
the fault tolerance algorithms used treat all faults in the same way, ignoring their nature
(intentional or non intentional). Some overly optimistic single fault-type models assume
a fixed number of benign permanent faults (and perfect fault coverage). On the other
side, other models assume all faults to be malicious, even though only a small portion of
the faults is malicious in reality. These more pessimistic models, called Byzantine,
assume all faults to be arbitrary.

By distinguishing between different fault types and by considering differing
probabilities of occurrence for each type, one can develop different system models to
design algorithms capable of handling various fault types [Walter 2003]. In the
following we discuss about fault models and the implications of their assumptions.

To simplify our discussion we adopt a generalized system model: A system consists of a
set of nodes, which communicate by exchanging information (messages) across links,
with a bounded delay assumed for message generation, delivery and processing. Terms
“system”, “nodes”, “links”, and “messages” are used in an abstract sense, because some
type of information exchange often exists between a node and its components, or
between a process and its sub-processes. We point out that the examined fault models

are applicable to a several synchronous system models.

Much effort has been expended and lots of taxonomies have been proposed to capture
the important attributes of faults. In the previous section we introduce the classification
made by Avizienis [Avizienis 2004]. Avizienis et al. classify faults according to the
attributes of capability (accidental or incompetence); phenomenological cause (natural
or human-made); system boundaries (internal or external); phase of occurrence (design
or operational); persistence (permanent or transient); objective (malicious or not);
intent (deliberate or not); dimension (hardware or software). The Authors also give a
convenient taxonomy of errors, describing them in terms of the elementary service
failures that they can cause. Using the terminology of the previous section we can
distinguish the following: content vs timing error, detected vs. undetected errors,
consistent vs. inconsistent errors, minor vs. catastrophic errors. In the field of error
control codes, content errors are further classified according to the damage pattern:
single, double, triple, byte, burst, erasure, arithmetic, track, etc., errors.

The taxonomy provided by Avizienis et al. is important and commonly used in the
literature. When dealing with a specific system or infrastructure the taxonomy is
normally used a the starting point to understand which are the faults which can really
occur in the system at hand, which ones have to be removed during the design and
testing process, which have to be avoided and how, and finally those that have to be
detected and tolerated.

Being a taxonomy, it classifies faults in disjoint classes or groups; moreover so a fault in
a specific system can belong to exactly one class. However, the same type of fault can be
classified differently in two different systems. Such fault classification ambiguity can
arise because, for example, a fault lasting a few seconds can be classified as permanent
in a system and as temporary in another. Differences can also occur regarding the
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location of the fault in the systems, how long the fault is active relative to the time scale
(mission time) for each system, the workload, the technology used to construct each
system, the assumed system environment, and other related factors.

Different approaches based on the use of failure semantics are the fault models
proposed by [Bondavalli 1990], [Powell 1992][Cristian 1991].

Figure 2 - Onion Failure modes.

Bondavalli and Simoncini [Bondavalli 1990], developed a failure classification having in
mind issues related to error detection so their work aims at distinguishing faults based
on the capability or impossibility for an external observer to perceive and detect the
failures. David Powell [Powell 1992] concentrated on a hierarchy of assumptions that
can be made when considering a fault model for a specific system and on the coverage
of such assumptions and its evaluation. As an example the advantage highlighted by
Powell of the byzantine fault model does not lie on its capability to represent reality but
more on the easiness of evaluating its coverage (1 by definition). The three works
mentioned are essentially equivalent in the classes of faults considered and in the fact
that the different classes are hierarchically organized either in a total order or with
some oriented graph (Bondavalli and Powell consider also value failures, neglected by
Cristian). Error! Reference source not found., taken from [Cristian 1991], shows the
relationships among the five potential failure modes, in a sort of onion model, given in
increasing order of severity: fail-stop, crash, omission, timing and arbitrary. Under the
fail-stop assumption, a component fails by ceasing execution; no incorrect state
transition occurs, and all other good components can detect this failure. A crash or fail-
silent mode is identical to fail-stop, except that detection by all good components is not
guaranteed. An omission mode occurs when a component fails to respond to an input,
perhaps undetectably to some components. A functionally correct, but untimely
response corresponds to a timing fault. Other behaviors are classified as arbitrary. The
more restricted the assumed fault mode, the stronger the assumed failure semantics.
Thus, weak failure semantics correspond to little restriction of behavior of a faulty
component. Note that in Error! Reference source not found. the containment
relationship among different classes is such that limiting failure semantics of a host to,
say, timing, means that the host can fail in any of the modes subsumed: fail-stop, crash,
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or omission.

The onion model fails to capture the notion of a system consisting of nodes, and does
not aid in ensuring that correct system operations are sustained in the presence of a
node failure. The focus of onion model on abstract and high level faults limits its
coverage of data, or content based, faults.

Another proposal, which considers with value faults is the Customers Fault and Error
Model (CFEM) approach proposed by Walter and Suri [Walter 2003]. The CFEM model
focuses on runtime fault-effects and the methods associated with tolerating them. The
CFEM fault classes are thus determined by the fault-tolerance techniques (detection and
masking) implemented in the system and the system topology. Under the CFEM, node
faults are classified according to the ability of the system to tolerate their effects. At the
highest level, the set of all faults is partitioned into tolerable and intolerable faults
according to their effects. Intolerable fault-effects are faults whose effects cannot be
detected, masked, or otherwise tolerated by the system. Design faults, generic faults,
common mode faults, physical damage faults and other catastrophic faults that
immediately render much of a system useless would be categorized as intolerable.

In some applications, It is necessary to point out that the same fault can be classified
differently in different systems 8as in the Avizienis taxonomy: a system may be able to
tolerate a fault while another system may fail when the same fault occurs. Tolerable
fault are classified according to two perspectives: detectability (as in [Bondavalli
1990)], and consistency.

Tolerable
Faults
|
| |
Locally detectable (Benign) Globally detectable
Symmetric Value
Asymmetric Arbitrary

Figure 3 - CFEM tolerable faults classification.

As shown in Error! Reference source not found. a faulty node leading to an error
detected by some non-faulty, i.e., good node is labeled benign fault. All good nodes must
agree on this local judgment. Benign nodes have been further classified in Symmetric,
i.e., all good nodes receive the same messages (consistent behavior); Asymmetric, i.e., all
good nodes receive different messages (inconsistent behavior).

A second class of tolerable faults is the Globally Detectable faults: only by sharing or by
disseminate information in order to develop a global opinion on the fault-effect. When
the faulty node send the same messages to each good node they call the value-fault
while if the faulty node has a different behavior, i.e., it sends different messages to good
nodes, the fault is called Arbitrary.
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Besides providing fault taxonomies and models, also being able to deal with errors,
classifying them and providing error models is fundamental for achieving fault
tolerance and ultimately dependability. Chillarage et al.[Chillarage 1996] provided a
milestone work in defining an error model. They investigated failure reports pulled
from RETAIN, a database system maintained by IBM, which contains world-wide
information on hardware problems, software problems, bug fixes, release information,
in order to generate errors emulating software faults. In particular they used reports to
classify the erroneous system state of IBM OS, which are caused by software faults.
Their error classification was similar to the one proposed in [Iyer 1991] thus allowing
to compare error distribution of IBM operating systems and of the Tandem Guardian90.
The distribution of errors was surprisingly similar adding flavor to the generality of
analyzed data, thus the proposed error model can be considered appropriate to mimic
representative software faults for OS. However error classification is so general that can
be used also for different software systems (e.g.,, middleware, web server, database).
Error types were not classified for all faults but only for: (i) faults related to the
development, namely related to coding; (ii) faults causing an erroneous system state;
and (iii) faults having impact on the user, i.e., the provided service is degraded or totally
unavailable. Erroneous states are grouped into the following error categories:

* Single address error. An error falls into this category if the software fault
caused an incorrect address word. Errors in this category were further divided
into the following types of address word: control block address, storage pointer,
module address, linking of data structures and register.

* Single non-address error. An incorrect non-address word (e.g. data word) is
caused by the software fault. This error was divided into the following types:
value, parameter, flag, length, lock, index and name.

e Multiple errors. A software fault can generate multiple errors at the same time.
The errors generated can be any combination of single errors or be related to a
data structure. These errors were divided into the following types: values,
parameters, address and something else, flag and something else, data structure
and random. It was noteworthy that they did not classify address and flag
because it was not revealed.

* Control errors. Software faults affecting the memory content in a very subtle
and non-deterministic way. These errors impact on the memory in a non-
deterministic way, that is, it was not possible to identify and classify the error in
any of the first three categories. Furthermore, some faults did not affect the
memory at all, e.g. interaction with a user or terminal communication. These
errors were divided into the following types: program management, storage
management, serialization, device management, user /O and complex. For
instance, the error type storage management tells us that one module deallocates
aregion of memory before it has completely finished using the region.

3.2 Intentional Faults
The intentional faults are due to malicious human behaviors, committed in order to
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cause damage to the system or to obtain secret information. Intentional faults affecting
software usually fall in two categories: i) the malicious logics (or malicious software or
malware) [Bishop 1991], which are set of instructions that cause violation of system
security policies, ii) and the intrusions [Verissimo 2003], which are violation of the
system security requirements by exploiting some well-known vulnerabilities.

Malicious logic concerns an internal malicious fault, which can be introduced in the
system either during the system development or while the system is in operation. In
spite of a bug, which accidentally occurs, the malicious logic are deliberately introduced
in the system in order to generate a failure. These faults include:

* virus, which replicates itself and joins other programs when they are executed in
order to compromise the system functionalities;

* worm, which replicates itself and propagates without the users are aware of that;

* logic bomb, which “sleeps” until an event occurs or a timer expires, and it can
seriously damage the system;

e zombie, which can be activated by an attacker for remotely launching malicious
activities against a specific target;

* Trojan horse, which is capable to perform illegal activities while it gives the
impression to be legitimate.

The malicious logics can be also classified into intentionally installed vulnerabilities and
attack agents. The attack agents, in particular, can be further classified based on four
characteristics:

* propagation, it is possible to distinguish between self-propagating malwares and
no-propagation malwares;

* trigger conditions, they represent the condition that can activate the malware;

* target of the attack, it represents the potential victim of the attack and it can be
local or remote;

* aim of the attack, it concerns the objective of the attack against a particular
security requirement of a system.

All the activities aiming at carrying out an unauthorized operation on a specific resource
that can compromise security requirements is classified as intrusion, both external and
internal to the system boundaries. Another word commonly used to define an intrusion
is attack. Actually the two terms differ in the mean. An intrusion is just the final result of
a successful attack, which represents an intentional attempt to cause a fault in a
computing or communication system.

In order to perform an intrusion, an attack exploits a vulnerability, which is a weakness
into the system. The vulnerability may be introduced during the development phase, or
during the system operations. Furthermore, the vulnerabilities can be introduced
accidentally or deliberately, with or without malicious intent. The AVI (Attack-
Vulnerability-Intrusion) chain model [Verissimo 2003] is reported in Figure 4.
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Figure 4: The AVI chain model

Based on this model the intrusions can be described in terms of both attack and
vulnerability. In the following few example are reported.

1. An hacker can remotely introduce itself into a system by guessing user
password. This attack exploits the vulnerability in the password selection
process (common words, too short password, etc.).

2. An insider can abuse of its privileges to compromise the system. The
vulnerability consists in a weakness in the configuration or the design of the
system.

3. An hacker can make a network resource unavailable by a request overload
(Denial of Service). Vulnerabilities are in the network protocol design and in
implementation or misconfiguration of the hosts in the network.

In the following of this section some typical taxonomies of intrusions will be detailed. In
particular, the main intrusions, which can affect a complex distributed system are
reported. According to the classification proposed in [Mazzariello 2007], there are just
three consequences that can result from a successful attack. First, otherwise defect-free
information can become corrupt. Second, services that should be available can be
denied, and last but not least, information can get to places it should not go. According
to Cohen [Cohen 1995], each of the named events, can be considered as a disruption of
information. He explicitly calls those events corruption, denial, and leakage of
information.

Many taxonomies have been proposed, focusing on different aspects of the problem of
attack categorization. Some are aimed at giving lists, which define all the possible
attacks [Cohen 1995] or a list of possible categories. In [Cheswick 2003] attacks are
classified in the following seven categories:

* Stealing passwords methods used to obtain other users’ passwords;

* Social engineering talking your way into information that you should not have;

* Bugs and backdoors taking advantage of systems that do not meet their
specifications, or replacing software with compromised versions;

* Authentication failures defeating of mechanisms used for authentication;

* Protocol failures protocols themselves are improperly designed or
implemented;

* Information leakage using systems such as finger or the DNS to obtain
information that is necessary to administrators and the proper operation of the
network, but could also be used by attackers;
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* Denial-of-Service efforts to prevent users from being able to use their systems.

By observing this taxonomy, it is clear that it can possibly include almost every type of
known attack. Indeed, it is often confusing, since categories represent either the target
of the attack, its final purpose, or the strategy used to obtain the desired effect. Also,
large lists of items are rarely fully comprehensive, since it is difficult to keep the pace at
which novel attacks are introduced.

Information Information
Source Destination

Figure 5: Normal Information Flow

In an effort to overcome taxonomies based on mere listings, Stallings proposed an
attack categorization based on modification to the information flow [Stallings 1995]
resulting from the attacker’s actions. Given the model of normal information exchange
between two entities, as represented in Figure 5, he individuates four possible
modification of such flow. In Stalling’s taxonomy, a distinction is made between active
and passive attacks. Passive attacks are those which don’t interfere with the normal
information flow. What they do is just collect the information, without any effect on its
normal transmission.

Interception (Figure 6(b)) is viewed as a passive attack, since it only intercepts the
information flow, directing it towards a collecting node. The natural information flow is
preserved unmodified. On the other hand, interruption (Figure 6(a)), modification
(Figure 6(c)) and fabrication (Figure 6(d)) are viewed as active attacks. This taxonomy
is particularly interesting since it expresses the properties of attacks as processes,
individuating their algorithmic nature, focusing on the general problem of information
exchange, and trying to find common properties in their life cycle.
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Figure 6: Attacks as Flow Information Modification

Howard [Howard 1995], instead gives a more operational view of attacks. He groups
attacks according to the type of attacker, the implemented access strategy, the tools
used and the expected results.

In [Hansman 2005] a taxonomy of threats to computer and network security is
presented. According to previous well known taxonomies, Hansman and Hunt introduce
a number of properties which a good taxonomy should have, such as:

Accepted The taxonomy should be structured so that it can be become generally
approved.

Comprehensible. A comprehensible taxonomy will be able to be understood by
those who are in the security field, as well as those who only have an interest in
it.

Completeness/Exhaustive. For a taxonomy to be complete/exhaustive, it
should account for all possible attacks and provide categories for them. While it
is hard to prove a taxonomy is complete or exhaustive, they can be justified
through the successful categorization of actual attacks.

Determinism The procedure of classifying must be clearly defined.

Mutually exclusive. A mutually exclusive taxonomy will categorize each attack
into, at most, one category.

Repeatable. Classifications should be repeatable.

Terminology complying with established security terminology. Existing
terminology should be used in the taxonomy so as to avoid confusion and to
build on previous knowledge.

Terms well defined. There should be no confusion as to what a term means.
Unambiguous. Each category of the taxonomy must be clearly defined so that
there is no ambiguity as to where an attack should be classified.

Useful. A useful taxonomy will be able to be used in the security industry. For
example, the taxonomy should be able to be used by incident response teams.
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These properties are the result of an accurate study of previous models, and try to
respect all the good accomplishments of earlier research in the field of attack
categorization. They propose to use a somewhat geometrical framework in order to
identify attack types and a structure using four dimensions. The first dimension, also
referred to as base dimension, categorizes attacks according to the attack vector. The
second dimension covers the attack target. Classification can either be very fine-
grained, down to the program version number affected by a specific vulnerability, or
cover a class of targets, such as entire operating systems’ processes. The third
dimension covers the vulnerabilities and exploits, if they exist, that the attack uses.
There is no structured classification for vulnerabilities and exploits due to their possible
infinite number. The fourth dimension takes into account the possibility for a side effect
for a specific attack. Some attacks, like trojan horses for example, carry the burden of
what’s hidden in the horse, which is usually the most dangerous part of it.

In the remainder of this section we will report some example of potential intentional
failures affecting complex critical system focusing on the attacks to control systems
based on SCADA (Supervisory Control And Data Acquisition) technology.

3.2.1 Example of intentional failures in Complex Distributed System based on SCADA

A SCADA system is in charge of controlling and monitoring infrastructures, facilities,
and industrial processes through a distributed computing system. During the years the
SCADA systems have evolved from the pioneering “centralized” system to “distributed
system” with proprietary communication protocols, to “networked” architectures
consisting of COTS equipment and adopting open communication protocols. While this
evolution has allowed the operators to reduce the Operational Expenditure (OPEX) and
to optimize the business, on the other hand it has also revealed the weaknesses of these
systems and what is even worse, it has incorporated lots of new and old well-known
vulnerabilities coming from the ICT world [Byres 2004]. Initially, SCADA systems,
indeed, had little resemblance to ICT systems in that they were isolated systems
running proprietary control protocols using specialized hardware and software. Widely
available, low-cost Internet Protocol (IP) devices are now replacing proprietary
solutions, which increases the possibility of cyber security vulnerabilities and incidents.
As SCADA systems are adopting ICT solutions to promote corporate connectivity and
remote access capabilities and are being designed and implemented using industry
standard computers, operating systems (OS) and network protocols, they are starting to
resemble ICT systems.

To understand the vulnerabilities associated with control systems, it is of paramount
importance to first know all the possible communications paths into and out of the
SCADA. There are many ways to communicate with an SCADA network and components
using a variety of computing and communications equipment. A person who is
knowledgeable in process equipment, networks, operating systems and software
applications can use these and other electronic means to gain access to the SCADA
system. Basically, an attacker who wishes to assume control of a control system is faced
with three challenges:

1. Gain access to the control system LAN
2. Gain understanding of the process through discovery
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3. Gain control of the process.

Therefore, when describing all the possible communications paths into and out of the
SCADA system it is logical to do so from a control network perspective. Before
introducing these concepts it is quite convenient to refresh what the basic components
of the control system LAN are. Basically, in most installations there are six different
components: the Data Acquisition Server, sometimes also called Master Terminal Unit
or SCADA server; the Advanced Applications Server; the Master Database Server,
sometimes called Historian server; the Human-Machine Interface (HMI) console; and
the engineering workstation. The SCADA network is often connected to the business
office network to provide real-time transfer of data from the control network to various
elements of the corporate office.

The following subsections describe how the underlying technology may be exposed or
introduce cyber vulnerabilities to the SCADA environments.

3.2.1.1  Vulnerabilities affecting the Control System LAN

The first thing an attacker needs to accomplish is to bypass the perimeter defences and
gain access to the control system LAN. Most control system networks are no longer
directly accessible remotely from the Internet. Common practice in most industries is to
have a firewall separating the business LAN from the control system LAN. Not only does
this help to keep hackers out, but it also isolates the control system network from
outages, worms, and other afflictions that occur on the business LAN. Most of the
attacker's off-the-shelf hacking tools can be directly applied to the problem. There are a
number of common ways an attacker can gain access, but the miscellaneous pathways
outnumber the common pathways.

Vulnerabilities affecting Common Network Architectures

There are three common architectures found in most control systems. Every business
has its own minor variations dictated by their environment. All three are securable if
the proper firewalls, intrusion detection systems, and application level privileges are in
place.

By far, the most common architecture is the two-firewall architecture. The business
LAN is protected from the Internet by a firewall and the control system LAN is protected
from the business LAN by a separate firewall. The business firewall is administered by
the corporate IT staff and the control system firewall is administered by the control
system staff.

Large DCS often need to use portions of the business network as a route between
multiple control system LANs (see Figure 7). Each control system LAN typically has its
own firewall protecting it from the business network and encryption protects the
process communication as it travels across the business LAN. Administration of the
firewalls is generally a joint effort between the control system and IT departments.
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Figure 7 - Use of firewalls to protect control system networks

The second most common architecture is the control system network as a Demilitarized
Zone (DMZ) off the business LAN. A single firewall is administered by the corporate IT
staff that protects the control system LAN from both the corporate LAN and the

Internet.

Finally, a new trend is to install a data DMZ between the corporate LAN and the control
system LAN (see Figure 8). This provides an added layer of protection because no
communications take place directly from the control system LAN to the business LAN.
The added strength of a data DMZ is dependent on the specifics of how it is

implemented.
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Figure 8 - DMZ between the corporate LAN and the control system LAN

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art”

26



Program of National Research Interest (PRIN 2008) - Project “DOTS-LCCI”

Vulnerabilities introduced by Dial-up Access to the RTUs

One of the most common routes of entry is directly dealing modems attached to the field
equipment. Modems are used as backup communications pathways if the primary high-
speed lines fail. The attacker dials every phone number in a city looking for modems.
Additionally, an attacker will dial every extension in the company looking for modems
hung off the corporate phone system. Most RTUs identify themselves and the vendor
who made them. Most RTUs require no authentication or a password for authentication.
It is common to find RTUs with the default passwords still enabled in the field.

The attacker must know how to speak the RTU protocol to control the RTU. Control is
generally, but not always, limited to a single substation.

Vulnerabilities introduced by Vendor Support

Most control systems come with a vendor support agreement. There is a need for
support during upgrades or when a system is malfunctioning. The most common means
of vendor support used to be through a dial-up modem (see Figure 9). In recent years,
that has transitioned to Virtual Private network (VPN) access to the control system LAN.
An attacker will attempt to gain access to internal vendor resources or field laptops and
piggyback on the connection into the control system LAN.
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Figure 9 - Vendor support access to the SCADA system

Vulnerabilities affecting IT Controlled Communication Gear

Often, it is the responsibility of the corporate IT department to negotiate and maintain
long-distance communication lines. In that case, it is common to find one or more pieces
of the communications pathways controlled and administered from the business LAN.
Multiplexers for microwave links and fibre links are the most common items. A skilled
attacker can reconfigure or compromise those pieces of communications gear to control
field communications.
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Vulnerabilities affecting Corporate VPNs

Most control systems have some mechanism for engineers on the business LAN to
access the control system LAN. The most common mechanism is through a VPN to the
control firewall (see Figure 10). An attacker will attempt to take over a machine and
wait for the legitimate user to VPN into the control system LAN and piggyback on the
connection.
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Figure 10 - Corporate VPNs

Vulnerabilities affecting Database Links

Nearly every production control system logs to a database on the control system LAN
that is then mirrored into the business LAN. Often administrators go to great lengths to
configure firewall rules, but spend no time securing the database environment. A skilled
attacker can gain access to the database on the business LAN and use specially crafted
SQL statements to take over the database server on the control system LAN (see Figure

11). Nearly all modern databases allow this type of attack if not configured properly to
block it.
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Figure 11 - Database mirroring

Vulnerabilities affecting Poorly Configured Firewalls

Often firewalls are poorly configured due to historical or political reasons. Common
firewall flaws include passing Microsoft Windows networking packets, passing remote
services, and having trusted hosts on the business LAN. The most common
configuration problem is not providing outbound data rules. This may allow an attacker
who could sneak a payload onto any control system machine to call back out of the
control system LAN to the business LAN or the Internet

Vulnerabilities in Peer Utility Links

Often, the easiest way onto a control system LAN is to take over neighbouring utilities
or manufacturing partners. Historically, links from partners or peers have been trusted.
In that case, the security of the system is the security of the weakest member (see
Figure 12). Recently, peer links have been restricted behind firewalls to specific hosts
and ports.
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3.2.1.2
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Figure 12 - Peer utility links

Vulnerabilities in control system communication protocols

The core precepts of IT security are confidentiality, integrity and authentication,
precepts not present in the design of most control systems. Currently, in the majority of
control systems, if an attacker can penetrate into the control system network segment,
the lack of the core security principle allows the attacker to “own the system”. These
failures are most notably:

The use of poor (or lack of) authentication schemas (e.g. no passwords,
default passwords, and clear text password exchanges). Authentication is critical
in any system as it ensures that a user is who they “appear” to be. Authentication
also helps in the authorization process, limiting the privileges that a user has to
modify data and interact with system processes. Moreover, authentication goes
beyond the user-centric point of view. On network communications,
authentication can mean ensuring that both communication ends are legitimate.
Control systems and their communication protocols do present a lack of or poor
authentication schemas. This inherent weakness in control systems allows
attackers a variety of attack pathways including firmware attacks and simple
vectors into “rooting” control system services on both field devices and pc based
servers and workstations.

No use of data integrity schemas. The lack of integrity controls allows
attackers to manipulate the data communicated on the system through man in
the middle, IP spoofing and various other attacks. This is critical for ICS systems
since most of the automated decisions are taken based on this information. A
modification of these data can cause the system to take the wrong decision.

No encryption. Though confidentiality of the control system communication
may not be of the upmost importance, the encryption of password and key
exchanges would serve to greatly improve the security postures of control
systems.
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The lack of encryption and of authentication or integrity validation mechanisms is not
exclusive of control systems’ protocols. In fact, the Ethernet or the TCP/IP protocol
suite, including ICMP, IGMP and the initial versions of the routing protocols (OSPF, RIP,
etc.) are affected by exactly the same design vulnerabilities. Nevertheless, networks and
systems based on the TCP/IP protocol suite have evolved during the last years and new
versions or even new protocols have appeared to solve this problem. For instance, at
the data plane of the network level of the OSI model we have the IPSec protocol. At the
control plane, routing protocols now include in their lasts versions brand-new security
mechanisms for message authentication and data integrity validation.

Nowadays the new trend in control systems’ communication protocols is to migrate
from specific protocol stacks (e.g. IEC-101, DNP3, Modbus, etc.) to IP-based protocols
(e.g. IEC-104, DNP3 over TCP/IP, Modbus/TCP, etc.). However, while some of the
security solutions design for typical IT systems could now be useful for the control
systems’ world, special precautions must be taken when introducing them to ICS
environments. ICS have many characteristics that differ from traditional IT systems.
Therefore, in some cases new security solutions are needed that are tailored to the ICS
environment. Some of these differences that can condition protocol security measures
but also the whole control system design include:

* Performance Requirements. ICS are generally time-critical, with the criterion
for acceptable levels of delay and jitter dictated by the individual installation.
Some systems require deterministic responses. High throughput is typically not
essential to ICS. In contrast, IT systems typically require high throughput, and
they can typically withstand some level of delay and jitter.

* Availability Requirements. Many ICS processes are continuous in nature.
Unexpected outages of systems that control industrial processes are not
acceptable. Outages often must be planned and scheduled days/weeks in
advance. Exhaustive pre-deployment testing is essential to ensure high
availability for the ICS. In addition to unexpected outages, many control systems
cannot be easily stopped and started without affecting production. In some
cases, the products being produced or equipment being used is more important
than the information being relayed. Therefore, the use of typical IT strategies
such as rebooting a component, are usually not acceptable solutions due to the
adverse impact on the requirements for high availability, reliability and
maintainability of the ICS. Some ICS employ redundant components, often
running in parallel, to provide continuity when primary components are
unavailable.

* Time-Critical Responses. In a typical IT system, access control can be
implemented without significant regard for data flow. For some ICS, automated
response time or system response to human interaction is very critical. For
example, requiring password authentication and authorization on an HMI must
not hamper or interfere with emergency actions for ICS. Information flow must
not be interrupted or compromised. Access to these systems should be restricted
by rigorous physical security controls.

* System Operation. ICS Operating Systems (0OS) and applications may not
tolerate typical IT security practices. Legacy systems are especially vulnerable to

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art” 31



Program of National Research Interest (PRIN 2008) - Project “DOTS-LCCI”

resource unavailability and timing disruptions. Control networks are often more

complex and require a different level of expertise (e.g., control networks are

typically managed by control engineers, not IT personnel). Software and
hardware are more difficult to upgrade in an operational control system

network. Many systems may not have desired features including encryption

capabilities, error logging, and password protection.

3.2.1.3

Network Vulnerabilities

In this section we will briefly report some network level vulnerabilities for different
technologies and equipment in used at many real SCADA systems. The source of the
research has been the National Vulnerability Database. The section also includes flaws
identified as network level cyber-weaknesses. We have mainly based our research on
the Common Weaknesses and Exposures dictionary.

ID Title Description
IV-00036 Stop alarm events using DNP3 An attacker stops unsolicited responses
protocol from field devices to prevent alarms
and other critical events.

IV-00037 Unsolicited response Store An established connection between a
HMI or control server and a PLC is
hijacked or spoofed to send other
attacks to either device.

IV-00038 Unauthorized client may restart | An attacker can force a PLC or other

devices using DNP3 protocol DNP3 server to power cycle by issuing
a response packet with function code
oD.

IV-00039 Unauthorized access to DNP3 An unauthorized DNP3 client attempts

devices to read or write information from a PLC
or other field device.

IV-00040 DNP3 device listing An attacker may list what DNP3 data
points are available in due to
insufficient authentication protocol

IV-00041 Unauthorized access to Modbus | An attacker learns the vendor, product,

server information version number and other information
about a PLC or other MODBUS server.

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art”

32



Program of National Research Interest (PRIN 2008) - Project “DOTS-LCCI”

IV-00042

Unauthorized access to Modbus
Devices information

An attacker gains information on a PLC
or other Modbus server by issuing the
function code 17 Report Slave ID
request.

IV-00043

Modbus device listing

An attacker may list what Modbus data
points are available in due to
insufficient authentication protocol

IV-00044

Takebishi Electric DeviceXPlorer
OPC Server fails to properly
validate OPC server handles

The Takebishi Electric DeviceXPlorer
OPC Server fails to properly validate
server handles. This vulnerability may
be triggered by an attacker with access
to the server's OPC interface.

The following versions of DeviceXPlorer
OPC Server are affected by this
vulnerability:

* DeviceXPlorer MELSEC OPC Server

* DeviceXPlorer SYSMAC OPC Server

* DeviceXPlorer FA-M3 OPC Server

* DeviceXPlorer TOYOPUC OPC
Server

* DeviceXPlorer HIDIC OPC Server

* DeviceXPlorer MODBUS OPC Server

IV-00045

NETxAutomation Vulnerabilities

NETxAutomation NETxEIB OPC Server
before 3.0.1300 does not properly
validate OLE for Process Control (OPC)
server handles, which allows attackers
to cause a denial of service or possibly
execute arbitrary code via unspecified
vectors involving the (1)
IOPCSynclO::Read, (2)
IOPCSynclO::Write, (3)
IOPCServer::AddGroup, (4)
IOPCServer::RemoveGroup, (5)
IOPCCommon::SetClientName, and (6)
IOPCGroupStateMgt::CloneGroup
functions, which allow access to
arbitrary memory. NOTE: the vectors
might be limited to attackers with
physical access.

Table 1 - Cyber-vulnerabilities description
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ID

Title

Summary

IW-0043

Predictable from Observable
State

A number or object is predictable
based on observations that the
attacker can make about the state of
the system or network, such as time,
process ID, etc.

IW-0044

Interpretation Conflict

Product A handles inputs or steps
differently than Product B, which
causes A to perform incorrect actions
based on its perception of B's state.
This is generally found in proxies,
firewalls, anti-virus software, and other
intermediary devices that allow, deny,
or modify traffic based on how the
client or server is expected to behave.

IW-0045

Insufficient Control of Network
Message Volume

The object does not sufficiently
monitor or control transmitted
network traffic volume, so that an
actor can cause the software to
transmit more traffic than should be
allowed for that actor.

IW-0046

Insufficient Resource Pool

The software's resource pool is not
large enough to handle peak demand,
which allows an attacker to prevent
others from accessing the resource by
using a (relatively) large number of
requests for resources

IW-0047

Insufficient Verification of Data
Authenticity

The target does not sufficiently verify
the origin or authenticity of data, in a
way that causes it to accept invalid
data.

IW-0048

Use of a Broken or Risky
Cryptographic Algorithm

The use of a broken or risky
cryptographic algorithm is an
unnecessary risk that may result in the
disclosure of sensitive information. The
use of a non-standard algorithm is
dangerous because a determined
attacker may be able to break the
algorithm and compromise whatever
data has been protected. Well-known
techniques may exist to break the
algorithm.

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art”

34



Program of National Research Interest (PRIN 2008) - Project “DOTS-LCCI”

IW-0049

Failure to Enforce that Messages
or Data are Well-Formed

When communicating with other
components, the software does not
properly enforce that structured
messages or data are well-formed
before being read from or sent to that
component. This causes the message
to be incorrectly interpreted.

IW-0050

Improper Handling of
Syntactically Invalid Structure

The product does not handle or
incorrectly handles input that is not
syntactically well-formed with respect
to the associated specification.

IW-0051

Improper Authentication

The protocol does not properly ensure
that the user has proven their identity.

IW-0052

Error Message Information Leak

The protocol generates an error
message that includes sensitive
information about its environment,
users, or associated data.

IW-0053

Covert Timing Channel

Covert timing channels convey
information by modulating some
aspect of system behavior over time,
so that the program receiving the
information can observe system
behavior and infer protected
information.

IW-0054

Interpretation Conflict

Product A handles inputs or steps
differently than Product B, which
causes A to perform incorrect actions
based on its perception of B's state.

IW-0055

Misinterpretation of Input

The software misinterprets an input,
whether from an attacker or another
product, in a security-relevant fashion.

IW-0056

Insufficient Type Distinction

he software does not properly
distinguish between different types of
elements in a way that leads to
insecure behaviour.

IW-0057

Incomplete Model of Endpoint
Features

A product acts as an intermediary or
monitor between two or more
endpoints, but it does not have a
complete model of an endpoint's
features, behaviours, or state,
potentially causing the product to
perform incorrect actions based on this
incomplete model.
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IW-0058 Behavioural Change in New A's behaviour or functionality changes
Version or Environment with a new version of A, or a new
environment, which is not known (or
manageable) by B.

Table 2 - Cyber-weaknesses description
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4q DETECTION

Error detection stage is crucial to recognize that something unexpected has occurred in
the system and to trigger error and fault handling procedures. It can be addressed at
different levels, from the lowermost one, the hardware (e.g., machine check, division by
zero, etc.), to the uppermost, i.e., the applications. In any case, its aim is to detect errors
before they can propagate to errors or failures for other different component(s) or to
failure for the overall system.

Anderson [Anderson 1981] has proposed a check-based classification for error
detectors, which include:

* Replication checks make use of matching components with error detection based
on comparison of their outputs. This is applicable only when sufficient
redundancy is provided with the assumption of independent faults.

* Timing checks are applicable to systems and components whose specifications
include timing constraints, including deadlines. Based on these constraints,
checks can be developed to look for deviations from the acceptable component
behaviour. Watchdog timers are a type of timing detector with general
applicability that can be used to detect anomalies in component behavior.

* Reversal checks use the output of a component to compute the corresponding
inputs based on the function of the component. An error is detected if the
computed inputs do not match the actual inputs. Reversal checks are applicable
to modules whose inverse computation is relatively straightforward.

* (Coding checks use redundancy in the representation of information with fixed
relationships between the actual and the redundant information. Error
detection is based on checking those relationships before and after operations.
Checksums are a type of coding check. Similarly, many techniques developed for
hardware (e.g, Hamming, M-out-of-N, cyclic codes) can be used in software,
especially in cases where the information is supposed to be merely referenced or
transported by a component from one point to another without changing its
contents. Many arithmetic operations preserve some particular properties
between the actual and redundant information, and can thus enable the use of
this type of check to detect errors in their execution.

* Behavioral checks use known semantic properties of data (e.g., range, rate of
change, and sequence) to detect errors. These properties can be based on the
requirements or the particular design of a component.

e Structural checks use known properties of components structure. For example,
lists, queues, and trees can be inspected for number of elements in the structure,
their links and pointers, and any other particular information that could be
articulated. Structural checks could be made more effective by augmenting data
structures with redundant structural data like extra pointers, embedded counts
of the number of items on a particular structure, and individual identifiers for all
the items ([Taylor 1980] [Taylor 1980b]).

Starting from the discussed error model (see Section 3), error detectors can be
implemented, as local or remote modules, within software components or at their
outputs. Based on the type of interaction these strategies can be grouped into: push-
mode, pull-mode or log-based techniques.
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Push-mode techniques trust on the component, which after the execution of operation
provide some information that specify if the requested services could not be satisfied
[Randel 1995]. For instance, exceptions can be signaled by a component when its error
detection mechanisms detect an invalid service request, i.e., an interface error, or when
errors in its own internal operations (i.e., local error) are discovered.

Pull-mode techniques rely on the presence of an external module, which is in charge of
interrogating (i.e. by means of pre-planned queries) the monitored component, to
discover latent errors. The query can be explicitly performed at predetermined time, by
sending a “control” request and waiting for the reply, [Tanebaum 2006], or, it can be
implicitly send each time another component tries to invoke the monitored component
[Aguilera 2002].

Log-based techniques, instead, consist in examining the log files produced by the
components, in order to understand the system behavior by correlating different events
[Simache 2002] [Iyer 2007]. Logs are the only direct source of information available in
the case of OTS items where no other internal monitor can be added.

These techniques belong to direct detection strategies: they try to infer the system
health status by directly querying it, or by analyzing events it is able to produce (e.g.,
logs, exceptions). However, some problems arise with these approaches because of the
nature of software faults. According to Abbott [Abbott 1990], it is impossible to
anticipate all the faults and their generated errors in a system:

“If one had a list of anticipated faults, it makes much more sense to eliminate those
faults during design reviews than to add features to the system to tolerate those faults
after deployment. The problem, of course, is that it is unanticipated faults that one
would really like to tolerate.”

For instance, we observe that when a fault is activated it leads to an incorrect state, i.e.,
an error; however, this does not necessarily mean that the system knows about it.
Therefore we have to deal not only with detected errors (i.e., errors which presence is
indicated by an error message or error signal) but also with latent errors (i.e., errors
which are present but not yet detected). However besides causing a failure, both latent
and detected errors may cause the system/component to have an out-of-norm behavior
as a side effect. This out-of-norm behavior is called anomaly. For these reasons,
anomaly-based detection approaches have also been considered to detect errors.

Anomaly-based detectors consist in comparing normal and anomalous runs of the
system. These approaches are quite different with the respect to the previous one,
because they try to infer the health of the observed components by monitoring system
parameters and their interactions with the environment. These approaches can be also
labeled as indirect detection strategies. As an example, the work in [Iyer 2007] exploits
hardware performance counters and OS signals to monitor the system behavior and to
signal possible anomalous conditions. A similar approach is followed in [Khanna 2006],
which provides detection facilities for large-scale distributed systems running legacy
code. The detection system proposed here is an autonomous self-checking monitor,
which is architecture-independent and has a hierarchical structure. The monitors are
designed to observe the external messages that are exchanged between the protocol
entities of the distributed system under study. They use the observed messages to
deduce a runtime state transition diagram (STD) that has been executed by the all the
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entities in the system. Indirect techniques have been especially adopted for intrusion
detection systems. In [Forrest 1996] the execution of a program is characterized by
tracing patterns of invoked system calls. System call traces produced during the
operational phase are then compared with nominal traces to reveal intrusion
conditions. Other solutions, such as [Stolfo 1998] [Srinivasan 2005], are based on
statistical learning approaches. They extract recurrent execution patterns (using system
calls or network connections) to model the application under nominal conditions, and
to classify run-time behaviors as normal or anomalous.

When detectors trigger an alarm to signal a deviation from the norm, one has to
evaluate if this alarm is due to the activation of a dormant fault. Therefore to evaluate
detectors performance we can use quality metrics in order to evaluate the effectiveness
of detection mechanisms, as well as to make comparisons among different approaches.

In order to provide a fair and sound comparison between several approaches we
analyze criteria that should be used to characterize on-line detectors performance for
LCCI. We first summarize some of the most used metrics in literature then we must
specify, which metrics are the most representative in our scenario and why.

Roughly speaking the goal of an on-line failure detector is to reveal all the occurring
failures, to reveal them timely and not to commit any false alarm.

To ease the description of metrics and to better understand their meaning we introduce
some definitions:

* True Positive (TP): if a failure occurs and the detector triggers an alarm;
* False Positive (FP): if no failure occurs and an alarm is given;

* True Negative (TN): if no real failure occurs and no alarm is raised;

* False Negative (FN): if the algorithm fails to detect an occurring failure.

Clearly high number of TP and TN are good, while the vice versa for FP and FN.

Metrics coming from diagnosis literature are usually used to compare the performance
of detectors [Daidone 2009]. For instance coverage measures the detector ability to
reveal a failure, given that a failure really occurs; accuracy is related to mistakes that a
failure detector can make. Coverage can be measured as the number of detected failures
divided by the overall number of failures, while for accuracy there are different metrics.

Basseville et al. [Basseville 1993] consider the mean delay for detection (MDD) and the
mean time between false alarms (MTBFA) as the two key criteria for on-line detection
algorithms. Analysis are based on finding algorithms that minimize the mean delay for a
given mean time between false alarms and on other indexes derived from these criteria.

In [Malek 2010] metrics borrowed from information retrieval research are used,
namely precision and recall. In their context recall measures the ratio of the failure that
is correctly detected, i.e., TP/(TP+FN), while precision measures the portion of the
predicted events, which are real failure, i.e.,, TP/(TP+FP). Thus perfect recall (recall=1)
means that all failures are detected and perfect precision (precision=1) means that
there are no false positives. A convenient way of taking into account precision and recall
at the same time is by using F-measure, which is the harmonic mean of the two
quantities. Since in diagnosis the ratio of failures correctly detected (recall) is also
called coverage, in the following we refer to it as coverage
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However using solely precision and coverage is not a good choice because they do not
account for true negatives, and since failures are rare events we need to evaluate the
detector mistake rate when no failure occurs. Hence, in combination with precision and
coverage, one can use False Positive Rate (FPR), which is defined as the ratio of
incorrectly detected failures to the number of all non-failures, thus FP/(FP+TN). Fixing
Precision and Coverage, the smaller the false positive rate, the better. Another metric is
Accuracy [Malek 2010], which is defined as: the ratio of all correct decision to the total
number of decisions that have been performed, i.e., (TP+TN)/(TP+TN+FP+FN).

Chen, Toueg and Aguilera [Aguilera 2002] propose three primary metrics to evaluate
detectors quality, in particular their accuracy. The first one is Detection Time (DT),
which informally accounts for the promptness of the detector. The second one is the
Mistake Recurrence Time (Twmr), which accounts for time elapsed between two
consecutive erroneous transitions from Normal to Failure. Finally they define Mistake
Duration (Twm), which is related to the time that detector takes to correct the mistake.
Other metrics can be simply derived from the previous one. For instance, Average
Mistake Rate (1)), represents the number of erroneous decisions in the time unit; Good
period duration (T¢) measures the length of period during which the detector does not
trigger a false alarm; Query accuracy probability (Pa) is the probability that the failure
detector's output is correct at a random time.

Bearing in mind classes of our target applications we believe that, when dealing with
long running and safety critical systems, mistake duration (and thus Tg) is less
appropriate than Coverage, accuracy and A, since just an alarm may be sufficient to
trigger the needed actions (e.g., put the system in a safety state). Coverage is essential
because if the detector does not reveal a failure, then more severe (and potentially
catastrophic) consequences may happen. Accuracy and A, are useful to take into
account false positives because each failure detector mistake may result in costly
actions (such as shut down, reboot, etc.).

The query accuracy probability is not sufficient to fully describe the accuracy of a failure
detector, in fact, as discussed in [Aguilera 2002], for applications in which every mistake
causes a costly interrupt the mistake rate is an important accuracy metric.

We point out the differences between Accuracy, defined in [Malek 2010], and Pa defined
in [Aguilera 2002]. Since we consider a fail stop model, TP<<TN, so if FP<<TN, then
Accuracy=1. For these reasons we consider P as more representative than Accuracy to
compare SPS algorithm with Static Thresholds Algorithm.

Table 3. Metrics for performance evaluation of failure detectors.

Metric Formula Metric Formula
Coverage (C) TP/(TP + FN) Accuracy-Coverage TradeOff C-A
. MTBFA
Precision (P) TP/(TP + FP) (Mean Time Between Mistakes) E (TMR)
F-M @-P-c)/P+c) |MP E(T
“Veasure (Mean Delay for Detection) ( D)
FPR .
(False Positive Rate) FP/(FP + TN) A M (Average Mistake Rate) 1/E (TMR)
TP+ TN E(Tyr — T
Accuracy (A) + P4 (Query accuracy probability) M
TP+ FP +TN + FN E(Tug)
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4.1 Middleware Detection

To monitor or monitoring generally means to be aware of the state of a system,
especially if the system is in a safe state or it entered into an unexpected, or unwanted,
state that implies outages. At the middleware level, the state is represented by two
different aspects: (i) received messages and (ii) connectivity among the different
components of the middleware.

In the first case, monitoring the received messages implies that the source constantly
checks if the destinations have received the same messages or that some message losses
occurred. This can be done by sequencing the produced messages and periodically
sending a command, named Hearbeat, that force the receiver to reply about the
identifications of the latest received messages or even of the unreceived ones. A
concrete example of a protocol that adopts such monitoring scheme is the Automatic
Repeat request (ARQ) [Lin 1984], adopted in several kind of middleware such as the
recent OMG Data Distribution Service (DDS) [OMG 2007]. An other loss-detection
mechanisms can be receiver-based, rather than sender-based as the previously
introduced one. Specifically, the destination can detect a message loss if the expected
message does not arrive within a certain time frame, or even if the received message
does not contain the expected identification, or even other destinations notify the
messages they have received so far, named notification history, and the given one infers
a loss from such received histories. Receiver-based techniques allow providing higher
scalability guarantees and are preferred in large-scale systems, and adopted in
advanced protocols such as Gossiping Protocols [Costa 2000].

In the second case, let us consider a particular kind of middleware such as a Distributed
Event-Based Systems (DEBS), but the following considerations can be easily generalize
to any other kind. The Notification Service that glues together publishers and
subscribers by enabling the communication among each other, is typically the target of
any monitoring activities. The architecture of Notification Service is based on the Broker
design pattern, and consists into a network of brokers interconnected by an overlay
network. In this case, the goal of any monitoring activities is to check the liveliness of
brokers and the correctness of the overlay links. In the first case, entities connected to a
certain broker (i.e., other brokers or publishers and subscribers) send a particular
command named Keep_Alive. At the reception of such message, the broker has to
immediately respond. If a response to such a command is not received within a certain
time period, then the broker is considered down. Such simple monitoring mechanism is
commonly adopted in all DEBS products, such as the ones compliant to OMG DDS
specification. On the other hand, in case of link monitoring, each end-point of a given
link holds statistics of the perceived quality of the notification delivery along the given
link (such as latency or success rate). In this case, the end-point is aware of any possible
degradation due to networking failure of even link crash, and able to react with proper
countermeasures. Such mechanism is adopted in several solutions to achieve reliable
event notification, such as [Kazemzadeh 2009].
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4.2 Network Detection

Due to the complexity of a network infrastructure, the failure detection at this level
presents a variety of solution depending on the specific fault to identify. We can
distinguish between solutions for unintentional and intentional failures. However,
similar approaches can be exploited for both the fault typology.

As concerns the former issue, several mechanisms have been implemented for detecting
either error of communication process and failures of network components. In
communication, an error is a situation in which the received data does not match whit
the sent data. Errors can occur for many reasons, including the signal problems, such as
noise, interference, or distortion, and protocol problems. Usually, the communication
errors are at the level of individual bits, so the task becomes to ensure that the bit
sequence received matches the one sent. Several solutions have been proposed to
identify communication errors. Such solutions vary in how effective they are, and all of
them impose a transmission penalty in the form of extra bits that must be sent.
Detecting errors involves the identification of an incorrect or invalid transmission
element, such as an impossible character or a garbled (but not encrypted) message. In
general, error-detection strategies rely on a numerical value (based on the bytes
transmitted in a packet) that is computed and included in the packet. The receiver
computes the same type of value and compares the computed result with the
transmitted value. Error-detection strategies differ in the complexity of the computed
value and in their success rate. Error-detection methods include cyclic or longitudinal
redundancy checks and the use of parity bits.

As concerns the unintentional failures in network components, detection mechanisms
usually retrieve and analyze a large amount of diagnostic information about the
infrastructure status coming from the network. This information can be either acquired
using proper monitoring tools [Brodie 2001][Natu 2006][Natu 2007], or received from
network entities in the form of network alarms [Yemini 1996][Gardner
1997][Bouloutas 1993][Wang 1993]. Indeed, two main approaches for fault detection
systems can be identified: (i) fault detection systems that actively sample performance
data from network components, commonly referred to as probe-based systems or active
systems, and (ii) fault detection systems that utilize network alarms, commonly referred
to as alarm correlation-based systems or passive systems. Both paradigms address
certain challenges and offer alternative solutions to the fault network detection
problem.

In a probe-based fault detection dedicated software tools (e.g., pinging, trace routing,
system log analyzer, etc.) are used for monitoring network infrastructure. Probing
stations are first determined and located in different parts of the network. The results of
probing activities are periodically sent from the probing station to a network
management system. These probes are collectively analyzed to determine whether a
failure has been detected. To effectively isolate the malfunctioning network component,
the set of probes must cover all the nodes in the managed network. Depending on the
number and locations of available probing stations this set has to include a large
number of probes to be used. Employing a large number of these probes for fault
identification tasks certainly increases the accuracy of locating network malfunctioning
components; nevertheless, the fault identification task will become more time-
consuming. Furthermore, a large set of probes generates excessive management traffic
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injected into the managed network. Hence it is desirable to minimize the negative
impact of the extra management traffic induced by these probes.

Alternative solutions for faults detection are based on network alarms generated by
network entities as a response to network failures. Usually the alarms are based on the
information provided by the SNMP traps and the management information base (MIB)
variables. This variable describes the behavior of the network. Fault detection is
performed by tracking a set of inherently invariant properties of the system: a fault is
detected whenever invariant properties are violated whereas faults are identified by
correlating these violations, or alarms, with a unique fault in the system. Common
approaches for alarm correlation artificial intelligence [Hood 1996][Ho 2000], Petri net
models [Silva 1985], finite state machine [Bouloutas 1992].

With respect to system architecture, traditionally network fault detection frameworks
consist of two main components: the agents and the managers. Agents are basically
monitoring software components that are installed in every monitored entity in the
computer network. The fault detection activities, instead, are performed by the
managers, upon retrieving some of these variables from their subordinate agents. This
centralized framework can be tolerated in small size networks. As networks grow larger
and become more heterogeneous, the centralized model creates a bottleneck. Recently,
more advanced fault detection techniques have adopted a distributed approach by
which the managed network is partitioned into distinct management domains, each
managed by an independent management center. In this way, faults may be handled
locally; thus reducing the amount of traffic that should be transmitted across the
network.

As concerns the intentional faults, the intrusion detection system (IDS) represents a
common approach for identifying malicious failure in network infrastructure. The
network monitoring and traffic inspection are the critical tasks for a intrusion detection
system. Generally an IDS provides network traffic monitoring in order to identify
inappropriate, incorrect or anomalous activity within a system, be it a single host or a
whole network. As like a “bouncer”, IDS observes the traffic passing through the
network, discriminates among different users by analyzing properly the different
packets flows, and finally classifies them in normal or malicious based on well-known
classification criteria. All this must be done in a transparent fashion, without interfering
with legitimate user activities.

Several IDS classification criteria have been proposed. Usually an IDS can be grouped
into three main categories:

* Network-based Intrusion Detection Systems (N-IDS),
* Host-based Intrusion Detection Systems (H-IDS),
» Stack-based Intrusion Detection Systems (S-IDS).

This classification depends on the information sources analyzed to detect an intrusive
activity. N-IDS [Paxson 1999][Vigna 1999] analyzes packets captured directly from the
network. By setting network cards in promiscuous mode, an IDS can monitor traffic in
order to protect all of the hosts connected to a specified network segment. On the other
hand, H-IDS [Andersson 1995][Tyson 2000] focuses on a single host’s activity: the
system protects such a host by directly analyzing the audit trails or system logs
produced by the host's operating system. Finally, S-IDS [Laing 2000] are hybrid
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systems, which operate similarly to a N-IDS, but only analyze packets concerning a
single host of the network. They monitor both inbound and outbound traffic, following
each packet all the way up the TCP/IP protocol stack, thus allowing the IDS to pull the
packet out of the stack even before any application or the operating systems processes
it. The load each IDS must afford is lower than the total traffic on the network, thus
keeping the analysis overhead into reasonable bounds; hypothetically, each host on the
network might run a S-IDS.

Intrusion Detection Systems can be roughly classified as belonging to two main groups
as well, depending on the detection technique employed:

* anomaly detection,
* misuse detection,
* signature-based detection.

The first two techniques rely on the existence of a reliable characterization of what is
normal and what is not, in a particular networking scenario. More precisely, anomaly
detection techniques base their evaluations on a model of what is normal, and classify
as anomalous all the events that fall outside such a model. Indeed, if an anomalous
behavior is recognized, this does not necessarily imply that an attack activity has
occurred: only few anomalies can be actually classified as attempts to compromise the
security of the system. Thus, a relatively serious problem exists with anomaly detection
techniques, which generate a great amount of false alarms. On the other side, the
primary advantage of anomaly detection is its intrinsic capability to discover novel
attack types. Numerous approaches exist which determine the variation of an observed
behavior from a normal one. A first approach is based on statistical techniques. The
detector observes the activity of a subject (e.g. number of open “les or TCP state
transitions), and creates a profile representing its behavior. Every such profile is a set of
“anomaly measures”.

Statistical techniques can then be used to extract a scalar measure representing the
overall anomaly level of the current behavior. The profile measure is thus compared
with a threshold value to determine whether the examined behavior is anomalous or
not. A second approach, named predictive pattern generation, is based on the
assumption that an attack is characterized by a specific sequence, i.e. a pattern, of
events. Hence, if a set of time-based rules describing the temporal evolution of the
user's normal activity exists, an anomalous behavior is detected in case the observed
sequence of events significantly differs from a normal pattern.

Misuse detection, also known as signature detection, is performed by classifying as
attacks all the events conforming to a model of anomalous behavior. This technique is
based on the assumption that an intrusive activity is characterized by a signature, i.e. a
well-known pattern. Similarly to anomaly detection, misuse detection can use either
statistical techniques or even a neural network approach to predict intrusions.

Signature-based detection is the most used to detect an attack. SNORT [Baker 2004] and
Bro [Paxson 1999] are well-known systems based on this approach. Intrusions are
coded by means of a set of rules: as soon as the examined event matches one of the
rules, an attack is detected. A drawback of this approach is that only well-known
intrusive activities can be detected, so that the system is vulnerable to novel
aggressions; sometimes, few variations in an attack pattern may generate an intrusion
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that the IDS is not able to detect.

The main problem related to both anomaly and misuse detection techniques reside in
the encoded models, which define normal or malicious behaviors. Although some recent
open source IDS, such as SNORT or Bro, provide mechanisms to extend the detection
ability of the system in order to include either anomaly or misuse approaches [Esposito
2005a][Esposito 2005b], behavior models are usually hand-coded by a security
administrator, representing a weakness in the definition of new normal or malicious
behaviors. Recently, many research groups have focused their attention on the
definition of systems able to automatically build a set of models. Data mining techniques
are frequently applied to audit data in order to compute specific behavior models
(MADAM ID [Lee 2000], ADAM [Barbara 2001]). Data mining algorithms are used for
extracting specific models from large stored data. In particular machine learning or
pattern recognition processes are usually exploited in order to realize this extraction.
These processes may be considered off-line processes. In fact, all the techniques used to
build intrusion detection models need a proper set of audit data. The information must
be labeled as either “normal” or “attack” in order to define the suitable behavioral
models that represent these two different categories.
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5 DIAGNOSIS

Fault Diagnosis is one of the most important phases of Fault Handling because its aim is
to identify the nature, the type location of the cause of errors. The issue of diagnosis has
been faced since a long time, maybe since computers came. The first attempt to
formalize the problem is due to Preparata et al, which introduced system level
diagnosis in [Preparata 1967]. Since then, diagnosis has been faced by following several
approaches and in many research fields. Although significant progresses have been
done, the problem is still far away from the solution (this is especially for diagnosis of
software faults).

Existing diagnosis approaches mainly cope with hardware-induced errors and their
symptoms within a software system, thus they have to be revised in order to deal with
software faults. Several challenges have to be faced when designing and implementing
strategies for Software Fault Diagnosis. First of all, the presence of software faults
hampers the definition of a synthetic and accurate mathematical model able to describe
system failure behavior. Since software is intangible (i.e., it does not exist in a physical
sense), it cannot degrade in the same manner as physical hardware components do. For
this reason is not realistic to adopt the failure distributions (e.g., weibull or a log-
normal) which are used to model hardware components. Second, software systems are
often the result of the integration of many OTS (Off-The-Shelf) components, and a priori
fault model may be not available for such components. Third, software fault activation
can be very difficult to reproduce since may depend on the complex combination of user
input, system state and environmental state.

In the last decade or so, there has being an increasing work focusing on the diagnosis.
This problem is getting faced by several perspectives and by means of quite different
techniques from a variety of research fields. On the one hand, such a generous literature
is a benefit since approaches and techniques exist and can be leveraged and improved
with respect to the particular domain. On the other hand, this can be disorienting and
drawing a systematic picture of the existing literature becomes a hard task. The
bibliographic analysis conducted in this section is aimed at giving a clearer overview of
the available research results, by identifying common aspects and assumptions of the
existing works.

In the next section before discussing the most common approaches to diagnosis of
faults, it is presented an overview of the techniques that each diagnosis approach
usually adopts.

5.1 Techniques adopted in fault diagnosis

In the following some techniques commonly exploited when dealing with fault diagnosis
are briefly described. Diagnosis approaches illustrated in the next sections typically
adopt one, or a combination, of these techniques, by customizing them according to
their specific needs.

5.1.1 Bayesian Inference

Bayesian inference is a method of statistical inference in which some kind of evidence
or observations are used to calculate the probability that a hypothesis may be true, or
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else to update its previously calculated probability. The Bayesian inference is exploited
for diagnostic reasoning as described hereafter.

Recalling the Bayesian formula:

P(e | F*)P(F*) (3.1)
E P(el F)P(F)

Fe@

P(F¥le) =

Where Q is the universe of all the possible hypothesis (e.g. all the faults listed in the
fault model); F*is the adjudged hypothesis; P(F/e) is the degree of belief in hypothesis F
after observing the evidence e (i.e., the posterior probability of hypothesis F). P(F) is the
degree of belief in hypothesis F before observing the new evidence e (i.e.,, prior
probability of hypothesis F). P(e/F) is the probability of observing some evidence e,
given that the hypothesis F is true. According to the diagnosis problem:

* P(Fle) is the probability that the component is affected by a certain fault
(information related with hypothesis F) given that a certain exceptional event
(an anomaly or an error) was collected (evidence e);

* P(F) is the probability that the component was affected by a certain fault
(hypothesis F) before collecting the last evidence e;

* P(efF) is the probability that the detection mechanism trigger the evidence e,
given that the monitored component is affected by a certain fault (hypothesis F).

This last term, P(e[F), is in some sense related to the imperfection of the detection
mechanism.

Assuming (i) all fault-related events occur at discrete points in time and that two
successive points in time differ by a constant time unit (or step) and (ii) the detection
mechanism evaluates at each step i if the component is behaving correctly or not,
triggering a boolean event towards the diagnostic mechanism. Therefore the prior
probability of a hypothesis F* at step i can be obtained as the posterior probability of
the same hypothesis F* at the previous step i - 1, adjusted based on the evidence
observed in the meanwhile. The probability of the monitored component being affected
by a certain fault at step i is hence obtained based both on the probability values
evaluated at round i - 1 and the evidences collected in the meanwhile:

P(el F*)P_,(F*) (3.2)
E P(el F)P_,(F)

Fe@

P(F*le) =P(F*/e)=

5.1.2 Data Mining

The process of applying algorithms to data with the intention of uncovering hidden
patterns is called Data mining. The extraction of patterns from data consists in data
collection, storage and manipulations. Many techniques can be exploited to accomplish
this task. The most relevant are: neural networks, clustering, genetic algorithms,
decision trees and support vector machines (SVM). Data mining techniques have the
potential to tackle voluminous data and assist in fault management. Hereafter some
common methods used for data mining are introduced.
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5.1.3 Neural Network

Neural networks (NN) were first created in an attempt to reproduce the learning and
generalization processes of the human brain. The main strengths of NN are: the ability
to easily deal with complex problems; the ability to generalize the results obtained from
known situations to unforeseen situations; the ability to carry out “classifications” of the
elements of a given set; low operational response times due to a high degree of
structural parallelism. These characteristics allow NN's to be used in many applications.
For these, NN's can represent a means to resolve not only pattern recognition problem,
but also problems involving complex systems and/or require an immediate response
(for example, simulation, control problems, fault detection, online fault diagnosis, and
reconfiguration in fault tolerant systems). The basic element of an NN is the “artificial
neuron” also known as a “Processing Element” (PE). The PEs may have a local memory
and are able to process information received as input. The memory is usually "built" at
an early stage, called learning phase, and no longer changes (except in the case of NN
models to adaptive learning).

One of the most used schematizations is the one shown in Figure 13.

Figure 13 - General schema of NN Processing Element.

The PE y output is given by
y=F(), xw,~b) (3.2)

where x; is the PE input supplied by weight links w;, b is the characteristic PE offset
(bias), and fis the transfer function. The transfer function in addition to changing the
output of the neuron can change its local memory (typically in the learning phase).
There are various types of transfer functions (e.g., step function, sigmoidal, gaussian,
radial basis) which use can depend from the applications. For instance, applications that
require an NN with continuous outputs, the transfer functions are sigmoidal. Lots of
interconnection scheme are been proposed for NNs. Neurons are interconnected via
unidirectional channels, which transmit the signals. Each neuron has one output that
can send out to many connections (carrying the same signal). Typically, models for
interconnection can fall into two main categories: feed-forward networks and
recurrent/feedback network. The feed-forward networks are characterized by a single
one-way flow (i.e.,, no cycles), while the recurrent networks provide feedback channels.
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Figure 14 - Feed-forward NN.

For instance in Figure 14 is depicted the “feed forward” neural network. It is made up of
a given number of layers, each of which has a specified number of nodes; the
interconnections are only between nodes of adjacent layers, and each node belonging to
a layer is connected to all the nodes of adjacent layers. The nodes connected directly to
the network inputs all belong to the same layer, known as the “input layer,” these nodes
do not have offset. The nodes that furnish the network outputs also belong to a single
layer, called the “output layer.” The other nodes are organized in one or more layers,
called “hidden layers,” because they cannot directly be reached from outside the
network. More details can be found in [Russell 2003].

5.1.4 SVM

Support vector machines (SVMs) are a set of learning methods that analyze data and
recognize patterns. SVMs are used with significant success for classification (e.g.
document classification [Larry 2002], and speech recognition [Smith 2002]) and
regression analysis. Vladimir Vapnik invented the original SVM algorithm while Corinna
Cortes and Vladimir Vapnik has proposed the current standard incarnation (soft
margin).

To explain how SVMs work we start to discuss the case of linearly separable patterns,
i.e,, the pattern classification problems. In this context the problem of finding the class
to which belongs the pattern is turned in solving a quadratic optimization problem: we
have to find the hyperplan (see Figure 15), i.e., a decision surface, which maximize a
given objective function. This objective function is related to the concept of margin of
separation between patterns of the two classes. However the optimal hyperplane is
limited to be used only in linear separable patterns identification.
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Figure 15 - Decision surface hyperplane (2 dimension).

To overcome this limitation two mathematical operations are exploited: (i) non linear
mapping of the input vectors into a high-dimentional feature space (hidden from both
input and output); (ii) build an optimal hyperplane (as in the linear separable problem)
with the features discovered at the previous step.

The rational for these operations is based on a strong mathematical basis (see [Vapnik
1995]). Intuitively the first step tries to discover a high-dimensional space (theoretically
infinite), i.e., the feature space where the pattern can be separate by a hyperplane. The
second step follows the procedure of the linear separable case with the difference that
the hyperplane belongs to the new feature space. To identify new patterns, they are first
mapped into the feature space and then predicted to belong to a category based on
which side of the hyperplane they fall on. More details are given in the [Haykin 1998].

5.1.5 Decision Tree

Decision tree induction is one of the simplest, and yet most successful forms of learning
algorithm. In data mining a decision tree is used to classify instances of large amounts of
data (this is also called classification tree). In this context, a decision tree describes a
tree where leaf nodes represent classifications and branches all the properties that lead
to those classifications. It takes as input an object or situation described by a set of
attributes and returns a "decision": the predicted output value for the input. The input
attributes can be discrete or continuous. The output value can also be discrete or
continuous; learning a discrete valued function is called classification learning; learning
a continuous function is called regression. A decision tree reaches its decision by
performing a sequence of tests. Each internal node in the tree corresponds to a test of
the value of one of the properties, and the branches from the node are labeled with the
possible values of the test. Consequently, each internal node appears to be a macro-class
made by the union of the classes associated with its child nodes. The predicate, which is
associated with each internal node (which is based on the distribution of data), is called
the split condition. When the leaf node in the tree is reached it specifies the value to be
returned.

In many situations it is useful to define a criterion for stopping (halting), or criterion of
pruning (pruning) in order to determine the maximum depth. This is because the
increase of the depth of a tree (or even its size) does not directly affect the goodness of
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the model. In fact, an overgrowth of tree size alone could lead to disproportionate
increase in computational complexity compared to the benefits regarding the accuracy
of the predictions / classifications. Although decision trees are simple to manage and to
understand, the performances are not good if compared to other classification methods
(e.g., NN or SVM) because they cannot learn complex patterns without lose in
generalization.

5.1.6 Model-based

Modeling techniques are often used to define a synthetic representation of a system,
which can be useful to (i) abstract its principal proprieties, by characterizing its
behavior, (ii) to correlate events and (iii) to control the system by choosing the most
proper countermeasures. The models are usually developed on the basis of knowledge
on the principles of operation of the system to be observed. Knowledge is expressed in
mathematical terms, i.e., relations between the inputs and outputs, (quantitative
models) or by qualitative features (qualitative models). Some modeling technique and
formalisms commonly used when dealing with diagnosis of faults are hereafter
discussed.

HMM

A hidden Markov model is a formalism able to represent probability distributions over
sequences of observations; an HMM is basically a Markov chain whose state is “not
observable” (the state is indeed “hidden”) but emits “observable” symbols depending on
a probabilistic function of the state. A good tutorial about HMM and its use can be found
in [Rabiner 1990]. Let Q be the finite discrete set of states and Z be the finite discrete set
of observable symbols; an HMM M can be expressed by the following quintuple:

{Q, A m(1),2}

Q, A and m(1) are the basic elements describing a first-order time-homogeneous
DTMC17 [Bolch 2005], that is:

* the discrete set of (hidden) states Q = {wy, ..., wn};

* the n x n state transition probability matrix A, where A(j, j) = ajj is the conditional
probability that the model moves to state w; given that it is in state w;at time ¢;

* the initial state probability vector 7(1).

2 ={o0y,..., om} is the set of distinct (observable) symbols emitted by the HMM (the so-
called alphabet of the model).

B is the n x m observable symbol probability matrix, where the element B(i, k) = b; (o« )
is the conditional probability that the model emits the symbol ok at time t given that the
model is in the state w; .

The use of the formalism of HMM allows both the definition of a framework through
which the diagnosis problem can be approached, and the definition of a diagnostic
mechanism; its application is discussed in the Section 5.2.4.

Fault Tree
Fault trees were developed in the 1960s and have become a standard tool reliability
modeling. Vesely et al. [Vesely 1981] have given a comprehensive treatment of fault

trees. The purpose of fault trees is to model conditions under which failures can occur
using logical expressions. Expressions are arranged in the form of a tree, and
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probabilities are assigned to the leaf nodes, facilitating the computation of the overall
failure probability. However fault tree analysis is a statically that does not take the
current system status into account. However, if the leaf nodes are combined with online
error detectors, and logical expressions are transformed into a set of rules, they can be
used as a rule-based online diagnosis system. Although such an approach has been
applied to chemical process fault diagnosis [Ulerich 1988] and power systems [Rovnyak
1994], it has not yet applied to IT systems.

MBR

Systems that reason with causal rules are called model-based reasoning systems,
because the causal rules form a model of how the observed system operates. The
model-based reasoning (MBR) [Weissman 1993] [Lewis 1999] [Wietgrefe 1997]
represents a system by modeling each component. A model can represent an entity or a
natural or logical entity. The models for the physical entities are called functional
models, and models for all the logical entities are called logical models. The description
of each model contains three categories of information: attributes, relations with other
models and behavior. The event correlation is the result of collaboration between the
models. Once all the components of the system represented by their behavior, you can
run simulations to predict the behavior of the system. However, for large and complex
system, it can be hard to model properly and completely the behavior of all components
and their interactions. In fact, these models do not capture all aspects of the system but
only identify those aspects that help to identify system failures and shape them
properly [Pieschl 2003]. The system NetExpert [NETeXPERT] is an example of MBR.

5.1.7 Automatic Debugging

Automated debugging techniques try to simply the activities commonly performed by
developers during debugging providing them a set of differences between normal and
faulty executions that permit to localize the fault within a software component. These
techniques, commonly used during off-line diagnosis, focus on the identification of the
faulty instructions but do not provide any description of the misbehavior. However such
techniques when combined with others methods (e.g., log analysis, symbolic debagging)
can still be useful. The most commonly used by developer are introduced as follow.

In [Zeller 1999] Zeller introduced the Delta Debugging algorithm to identify the smallest
set of changes that caused a regression in a program. The technique requires the
following information: a test that fails because of a regression, a previous correct
version of the program and the set of changes performed by programmers. The Delta
Debugging algorithm works in this way: it iteratively applies different subsets of the
changes to the original program to create different versions of the program and identify
the failing ones. The minimal set of changes that permit to reproduce the failure is
reported. Delta Debugging has been applied in different contexts (e.g. in [Tucek 2006]
discussed in the Section 5.2.7).

Another effective technique is presented in [Zeller 2002]. Given two executions of a
program, one failing one not, the algorithm identifies, with the help of a debugger, a set
of differences between the memory graph of the program in different execution states
(for example after the start, in the middle of the execution and before the failure). The
algorithm repeats a legal execution and alters the state of the program by changing the
value of program variables with values in the difference set till the minimum set of
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variables that lead to the failure is found. Although this approach completely automates
the debugging process usually performed by developers manually, it still leaves to
developers the task of understanding what is causing these differences. Other
automated debugging approaches present adaptations of the Delta Debugging algorithm
to identify program inputs leading to failures [Choi 2002] [Misherghi 2006] [Zeller
2002b] and to identify the fault(s) not only in case of regression faults [Sterling 2007].

Program Slicing was first introduced by Weiser in 1979 [Weiser 1979] as a
decomposition technique that automatically extracts the program statements relevant
to a particular computation. A program slice consists of the parts of a program that
potentially affect the values computed at some point of interest referred to as a slicing
criterion. Typically, a slicing criterion consists of a pair <p, V>, where p is a program
point and V is a subset of program variables. The parts of a program that have a direct
or indirect effect on the values computed at a slicing criterion C are called the program
slice with respect to criterion C. Program slicing approaches can be grouped according
to the nature of data considered to derive the slice: static, dynamic, or both. A broad
description of the different slicing approaches is provided in [Baowen 2005]. Static
slices are built by analyzing variables reachability through the inspection of abstract
representation of the program such as Control Flow Graphs [Weiser 1984], Program
Dependence Graphs [Ottestein 1984], Value Dependence Graphs [Ernst 1994], System
Dependence Graphs [Binkley 2003] or Data Dependencies [Orso 2001]. Effectiveness of
static slicing approaches is often limited by programming language features like indirect
access, pointers, function, polymorphism and concurrency. These features make
complex pointer analysis or conservative approximations necessary thus increasing
both slices size and computation time. Dynamic slicing approaches have been
introduced to reduce the size of the computed slice. Dynamic slicing approaches
monitor the system during an execution and trace the program elements covered. Only
the statements covered at runtime are considered to build the slices [Korel 1988]
[Kamar 1993]: this lead to smaller slices with respect to those generated by static
approaches. Despite the reduced size of generated slices, dynamic slicing is seldom
applied because of the impact on system performance and memory consumption caused
by the runtime monitoring. Combined dynamic-static approaches have been proposed
in order to overcome the limitations of static and dynamic approaches. Hybrid slicing
reduces monitoring costs by focusing only on the statements covered between the
breakpoints set in a debugging session [Gupta 1995]. Other approaches reduce the
slicing overhead by identifying data dependencies relationships at runtime [Umemori
2003], tracing executed method calls [Nishimatsu 1999] or reduce the amount of
monitored data by executing only the statements in the static slice [Rilling 2001].

Spectra based techniques overcome the limitations of slicing techniques by identifying
and comparing the set of instructions executed during correct and failing executions
without considering data dependence relations [Harrold 1998]. For example developers
collect the set of code blocks executed during correct and failing executions (these sets
are known as Block Hit Spectra) and manually compare the blocks contained in the two
sets. Code blocks present in the failing sets only are considered suspicious and are
manually inspected by developers to look for erroneous instructions. Researchers
adopted resemblance coefficients [Romesburg 1984] to automatically identify the
suspicious instructions. Three most effective resemblance coefficients presented in
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software engineering literature: Jaccard [Chen 2002], Tarantula [Harrold 2002] and
Ochiai [Abreu 2007]. Resemblance coefficients are used in combination with block hit
spectra to identify the program statements mostly related with the fault. Each
coefficient calculates a score for each program statement that indicates how much
related to the fault is. Statements are presented to developers sorted in descending
order: statements with the highest score present the greater probability to contain the
fault. Spectra coefficients differ for the way the score is calculated, but in general they
relates the number of faulty executions in which each statement is executed or not with
the number of correct executions in which the statement is executed or not. In [Abreu
2008] Abreu presents an approach that combines resemblance coefficients with model
based debugging in order to filter the results provided by spectra and augment the
efficacy of the analysis.

Program spectra can be quite effective in localizing faults within a component, however
they are limited in case only small program portions are analyzed (e.g. unit tests during
development). Furthermore these techniques only highlight suspicious faulty locations
but do not provide any additional information to help in the final diagnosis of the
problem.

5.1.8 Probing

A probe is a test transaction whose outcome depends on some of the system’s
components; diagnosis can be performed by appropriately selecting the probes and
analyzing the results. For instance, in the context of distributed systems, a probe is a
program that executes on a particular machine (called a probe station) by sending a
command or transaction to a server or network element and measuring the response.
The ping and traceroute commands are probably the most popular probing tools that
can be used to detect network availability. Other probing tools, such as IBM’s EPP
technology ([Frenkiel 1999]), provide more sophisticated, application-level probes. For
instance, probes can be sent in the form of test e-mail messages, web-access requests, a

database query, and so on.
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Figure 16 - Examples of probing at different layer.
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Figure 16 taken from [Rish 2005] illustrates the core ideas of probing technology. The
bottom left of the picture represents an external cloud (e.g. the Internet), while the
greyed box in the bottom middle and right represents an example intranet e.g. a web
site hosting system containing a firewall, routers, web server, application server
running on a couple of load balanced boxes, and database server. Each of these contains
further substructure the figure illustrates the various layers underlying the
components. Probing can take place at multiple levels of granularity; the appropriate
choice of granularity depends on the task probing is used for. For example, to test a
Service Level Agreement (SLA) stating response time we need only probe one point of
Figure 16, the point of contact of the external cloud and the intranet. In order to find
more detailed information about the system one could probe all network segments as
well the web server, application server, database server all the elements of the intranet
in the network layer. If we need to do problem determination or tune up the system for
better performance, we may also need to consider more detailed information; e.g. from
the system layer (some systems allow instrumentation to get precise information about
system components) or component and modules layer, and so on. For each task
appropriate probes must be selected and sent and the results analyzed.

In practice, probe planning (i.e., choice of probe stations, targets and particular
transactions) is often done in an ad-hoc manner, largely based on previous experience
and rules-of-thumb. Thus, it is not necessarily optimized with respect to probing costs
(related to the number of probes and probe stations) and diagnostic capability of a
probe set. More recent work [Brodie 2001], [Rish 2002] on probing-based diagnosis
focused on optimizing the probe set selection and provided simple heuristic search
techniques that yield close-to-optimal solutions. However, the existing probing
technology still suffers from various limitations:

1. Probes are selected off-line (pre-planned probing), and run periodically using a
fixed schedule (typically, every 5 to 15 min). For diagnostic purposes, this
approach can be quite inefficient: it needs to construct and run repeatedly an
unnecessarily large set of probes capable of diagnosing all possible problems,
many of which might in fact never occur. Further, when a problem occurs, there
may be a considerable delay in obtaining all information necessary for diagnosis
of this particular problem. Thus, a more adaptive probe selection is necessary.

2. Another limitation of existing techniques, including both event correlation
[Kliger 1997] and probing [Brodie 2001], [Rish 2002], is their non-incremental
(“batch”) processing of observed symptoms (alarms, events, or probes), which is
not quite suitable for continuous monitoring and real-time diagnosis. An
incremental approach is required that continuously updates the current
diagnosis as more observations become available.

Finally, existing approaches typically assume a static model of the system (i.e., the
system state does not change during diagnostic process). While “hard” failures of
components are indeed relatively rare, “soft” failures such as performance degradations
(e.g., response time exceeding certain threshold) may happen more frequently; in a
highly dynamic system ‘failure” and “repair” times may get comparable with the
average diagnosis time. This can lead to erroneous interpretation of some contradictory
observations as “noise” [Kliger 1997] when in fact they may indicate changes in the
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system. A more sophisticated model that accounts for system dynamics can provide a
more accurate diagnosis in such cases.

5.2 Approaches to Fault Diagnosis

In this section a broader classification of diagnosis approach is discussed, then some of
most common approaches, which exploit one or a combination of the previous
discussed techniques, are surveyed.

5.2.1 Offline vs. Online approaches

The diagnosis approaches, which we are going to discuss, can be broadly grouped into
two categories: off-line and on-line.

A large slice of the work on software faults diagnosis proposed off-line diagnosis
approaches. Off-line approaches consist of two distinct operations. On one hand, the
analysis of data gathered from (i) monitoring devices and logs during system execution
and (ii) reports of off-line diagnostic tests (i.e., core dump, cache, RAM and CPU tests).
On the other hand, there is the inference process, which provides the fault hypothesis,
i.e, the cause and type of occurred failure. Starting from the output of the diagnosis
some maintenance activities must be performed to fix the problem (e.g., software
update, component overhaul/replacement, etc.) and preventing it to occur again. Off-
line approaches assume that the system, or one of its parts, is no more operative or that
the monitored components are temporarily isolated from the rest of the system (thus
depriving it of some resources). Moreover expertise involvement could be required to
conduce the diagnosis activities. The category of off-line analysis procedures includes
(i) all automatic and semi-automatic debugging technique and (ii) more or less
sophisticated procedures which analyze system error logs to derive trend analysis and
predictions of future permanent faults, as proposed in [Lin 1990], [Iyer 1991]. However
some issues arise when performing off-line diagnosis. For instance, it could be difficult
to reproduce a failure during off-line diagnosis because of different conditions of in-
house environment or because the occurred failure is due to the activation of elusive
fault(s).

On-line approaches are performed while the system is still running and rely on the
continuous analysis of data coming from on-line monitoring and detectors. They require
that part of system resources (e.g. time, CPU cycles, etc.) are dedicated to the diagnosing
activity and, most important, require the use of not-destructive detection mechanisms;
sometimes these requirements cannot be met. Since on-line mechanisms work while
the monitored system is working, the diagnostic judgments can be exploited at run-
time to act on the system by triggering the most proper countermeasures aiming to
tolerate the diagnosed fault(s). On-line diagnostic mechanisms include a variety of
threshold-based over-time diagnostic mechanisms [Spainhower 1992] [Mongardi
1993], [Bondavalli 2000], [Bondavalli 2004], [Daidone 2006], [Serafini 2007],
[Nickelsen 2009], using either heuristic or probabilistic approaches.

With the respect to the off-line case, on-line diagnosis has much more rigid timeliness
requirements to give the fault hypothesis. Moreover, since the system is still running,
only non-invasive diagnostic tests (i.e., test performed to check the presence of errors)
can be performed because the state of the system has to be preserved at the completion
of the tests (e.g, in power grid context, we cannot use on-line the Degree of

Deliverable D2.1 “Diagnosis and Reconfiguration: State-of-the-art” 56



Program of National Research Interest (PRIN 2008) - Project “DOTS-LCCI”

Polymerization test [US BR 2000] for assessing the paper degradation in a transformer).
On-line diagnosis may also need to dedicate a part of system resources (e.g., a fraction
of operational cycle [Coccoli 2003]) to the diagnostic activities, thus penalizing system
performance. In [Coccoli 2003] the problem of choosing between an on-line or off-line
approach for implementing Diagnosis in a control systems for critical applications has
been analyzed.

5.2.2 One-shot approach

The model proposed by Preparata et al. (also known as the PMC model) assumed the
system to be made up of several components, which test one another. The fault model
assumed is permanent and independent faults. Test results are leveraged to diagnose
faulty component(s). This model is still the subject of a lot of research work (e.g. [Manik
2009]).

[Barsi 1976] is another seminal work, which is based on many premises of the PMC
model; the “BGM model” differs from the PMC model because of the interpretation of
test results, simplifying the diagnostic procedure. Also the BGM model is still the subject
of a lot of research work (e.g. [Vedeshenkov 2002]). In the above mentioned works
diagnosis was based on the so called “one-shot diagnosis of a collected syndrome”, so
that the component was diagnosed as “failed” as soon as an error was observed,
immediately triggering reconfiguration operations devoted to isolate, repair or replace
the failed component.

5.2.3  Heuristic approach

Heuristic approaches are simple mechanisms suggested by intuitive reasoning and then
validated by experiments or modeling; for example, they count errors, and when the
count crosses a pre-set threshold a permanent fault is diagnosed. An example of
heuristic mechanism for the discrimination between transient and permanent faults is
the a-count mechanism [Bondavalli 2000].

These approaches emerged in those application fields where components oscillate
between faulty and correct behavior because a large fraction of faults are transient in
nature; in those application fields one-shot diagnosis is not effective, because the cost
for treating a transient fault as a permanent one is very disadvantageous. The idea of
counting the number of errors accumulated in a time window has long been exploited in
IBM mainframes: in the earlier examples, as in IBM 3081 [Tendolkar 1982], the
automatic diagnostics mechanism uses the above criteria to trigger the intervention of a
maintenance crew; in later examples, as in ES/9000 Model 900 [Spainhower 1992], a
retry—and-threshold scheme is adopted to deal with transient errors. In the TMR11
MODIAC railway interlocking system by Ansaldo, the architecture proposed in
[Mongardi 1993], two failures experienced in two consecutive operating cycles by the
same hardware component, which is part of a redundant structure, make the other
redundant components consider it as definitively faulty. In [Sosnowski 1994] big
attention is given to the error detection and error-handling strategies to tolerate
transient faults: a fault is labeled as transient if it occurs less than k times in a given
time window.

The most sophisticate representative of the heuristic mechanisms is a-count
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[Bondavalli 2000]. It is a general approach that encompasses all the heuristic presented
above. The details about the a-count mechanisms are given hereafter.

The a-count heuristic implements the “count-and-threshold” criteria. It has been
proposed to discriminate between transient, intermittent and permanent faults. The
fallowing assumption are made: many repeated errors within a little time window are
easily evidence for a permanent or an intermittent fault, while some isolated errors
collected over-time could be evidence for transient faults. a-count hence counts error
messages and signals collected over-time, raising an alarm when the counter passes a
predefined threshold, and decreasing the counter when not-error events are collected.

Assuming that (i) all fault-related events occur at discrete points in time and that two
successive points in time differ by a constant time unit (or step) and (ii) the detection
mechanism evaluates at each step i if the component is behaving correctly or not,
triggering a boolean event, ], towards the diagnostic mechanism. J® is defined as
follows:

6 = {O if correct behavior is detected at step i

1 if incorrect behavior detected at step i

a-count collects over-time the signals coming from the deviation detection mechanism
in a score variable o associated with the monitored component; at each step the score
variable a is updated and compared with a threshold value a: if the current score value
exceeds the given threshold a (a = ar), the component is diagnosed as affected by a
permanent or an intermittent fault, otherwise it is considered healthy or hit by a
transient fault.

The score variable a is evaluated at each step i by using the following formula:
a® =0

o a™KifJ?=0 (0=K=<l)
a =

a1 ifJP =1

K is the rate at which memory of past errors disappears. Extended studies about the
tuning of the internal parameters (K and ar ) are described in [Bondavalli 2000], where
the trade-off between promptness and accuracy is evaluated. A discussion about the
dynamic selection of thresholds for QoS adaptation could be find in [Casimiro 2008].
Applications and variants (e.g. the double-threshold variant12) are described in
[Bondavalli 2004 ][Serafini 2007]. Practical applications of the a—count heuristic can be
found also in the following works: [Powell 1998], where a-count has been implemented
in the GUARDS13 architecture for assessing the extend of the damage in the individual
channels of a redundant architecture; [Romano 2002], where a-count is used in a COTS
based replicated system to diagnose replica failures based on the result of some voting
on the replica output results.

5.2.4  Probabilistic approach

Probabilistic approaches are tailored to evaluate the probabilities of the monitored
component being faulty, based on information collected. Diagnostic mechanisms
following a probabilistic approach are tailored to evaluate over-time the probability of
the monitored component being faulty. Moreover they reach a good compromise
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between diagnosis accuracy and responsiveness because they use the available
knowledge about the system to improve diagnosis accuracy in the best way [Pizza
1998].

Different fault models are used for diagnosis. For instance, [Pizza 1998] takes into
account permanent, transient and propagation fault (i.e., an error occurred into a
component activate a fault into another component). The authors use a diagnostic
mechanism which exploits the Bayesian inference to compute the probability P(f) of the
monitored component being affected by a certain fault (hypothesis f) is computed. This
probability is updated when new detection event (evidence e) comes from the detection
mechanism. Then the evaluated probabilities are exploited to trigger the proper
countermeasures. In [Sanders 2005] an automatic model driven recovery in distributed
systems is proposed. Authors exploit a set of a limited coverage monitors whose
outputs are correlated to diagnose the faulty component. The reasoner exploits the
Bayesian inference to update the probabilities of having a faulty component.

[Nickelsen 2009] applies Bayesian Networks (BN) for probabilistic fault diagnosis for
TCP end-to-end communication both in the wireless and wired domain. Bayesian
networks are used to infer system insights and a priori system knowledge, by using
probabilistic reasoning systems. The structures and initial parameters of the Bayesian
networks depend on the prior knowledge of the domain expert, however if the system is
properly modeled, these techniques lead to high diagnosis quality, in terms of accuracy
and latency.

Other examples of diagnosis, which follows the probabilistic approach, is the
mechanism based on Hidden Markov Model (HMM) [Daidone 2006] presented as
follow. Daidone et al. proposed using a hidden Markov model approach to infer whether
the true state of a monitored component is healthy or not. The diagnostic mechanism
thus follows the probabilistic approach presented in the previous section, taking
advantage of the peculiarities of the hidden Markov models in order to give an intuitive
but formal way of solving the diagnosis problem. Observation symbols are associated to
outcomes of component probing, and hidden states (i.e., not observable directly) are
related to the component’s true state. The true state (in a probabilistic sense) was
inferred from a sequence of probing results by the so-called forward algorithm of
hidden Markov models. The diagnostic mechanism is flexible enough to take into
account the uncertainty of both observed events and observers, so that it can be also
used to diagnose malicious attacks: e.g., in [Jecheva 2006] HMMs are used to implement
an anomaly-based intrusion detection system. In order to better comprehend the
rationale behind the diagnostic framework based on HMM, more details can be found in
[Daidone 2009].

To avoid problems related to event correlation, alternative probabilistic-based
diagnostic approaches rely on end-to-end probing technology [Frenkiel 1999], [Brodie
2001], [Rish 2002].

However probe planning (i.e, choice of probe stations, targets and particular
transactions) is often done in an ad-hoc manner, largely based on previous experience
and rules-of-thumb. Thus, it is not necessarily optimized with respect to probing costs
(related to the number of probes and probe stations) and diagnostic capability of a
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probe set. More recent work [Brodie 2001], [Rish 2002] on probing-based diagnosis
focused on optimizing the probe set selection and provided simple heuristic search
techniques that yield close-to-optimal solutions. However, the existing probing
technology still suffers from various limitations:

1. Probes are selected off-line (pre-planned probing), and run periodically using a
fixed schedule (typically, every 5 to 15 min). For diagnostic purposes, this
approach can be quite inefficient: it needs to construct and run repeatedly an
unnecessarily large set of probes capable of diagnosing all possible problems,
many of which might in fact never occur. Further, when a problem occurs, there
may be a considerable delay in obtaining all information necessary for diagnosis
of this particular problem. Thus, a more adaptive probe selection is necessary.

2. Another limitation of existing techniques, including both event correlation
[Kliger 1997] and probing [Brodie 2001], [Rish 2002], is their nonincremental
(“batch”) processing of observed symptoms (alarms, events, or probes), which is
not quite suitable for continuous monitoring and real-time diagnosis. An
incremental approach is required that continuously updates the current
diagnosis as more observations become available.

3. Finally, existing approaches typically assume a static model of the system (i.e.,
the system state does not change during diagnostic process). While “hard”
failures of components are indeed relatively rare, “soft” failures such as
performance degradations (e.g., response time exceeding certain threshold) may
happen more frequently; in a highly dynamic system ‘failure” and “repair” times
may get comparable with the average diagnosis time. This can lead to erroneous
interpretation of some contradictory observations as “noise” [Kliger 1997] when
in fact they may indicate changes in the system. A more sophisticated model that
accounts for system dynamics can provide a more accurate diagnosis in such
cases.

In [Rish 2005], the focus is on a more adaptive and cost-efficient technique, called active
probing, that is based on information theory. It avoids the waste inherent in the pre-
planned approach since always selects and sends probes as needed in response to
problems that actually occur. Also, active probes are only sent few times in order to
diagnose the current problem and can be stopped once the diagnosis is complete. Only a
relatively small number of probes needed for fault detection should circulate regularly
in the network. Combining probabilistic inference with active probing yields an
adaptive diagnostic engine that “asks the right questions at the right time”, i.e.
dynamically selects probes that provide maximum information gain about the current
system state. They approach diagnosis problem as the task of reducing the uncertainty
about the current system state X (i.e.,, reducing the entropy H(X)) by acquiring more
information from the probes, or tests T. Active probing repeatedly selects the next
most-informative probe Ti that maximizes the information gain I(X; Tk [Ty, ..., Tk-1) given
the previous probe observations Tj, .., Tk-1. Probabilistic inference in Bayesian networks
is used to update the current belief about the state of the system P(X).
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5.2.5 Rule-based approach

The diagnosis based on rule-based approaches uses a set of rules (also called
knowledge) for event correlation. These methods were developed in the mid-1970s and
formed the basis for a large number of expert systems in medicine and other areas
[Russel 2003]. The knowledge can be represented by rules of the form "IF condition
THEN action" and formalized by the use of the first order logic or more powerful
expressive languages (e.g, OWL). The condition uses the events received and the
information system functions, while action contains proper countermeasures that can
lead to system changes or the use of parameters for choosing the next rule.

Li and Malony applied Rule-based reasoning, by using rules in the CLIPS expert system,
based on architectural patterns [Li 2006] for performance bottleneck diagnosis. Benoit
et al. applied the same approach for database system diagnosis [Benoit 2003].

Another rule-based approach is proposed in Hatonen et al. [1996]. It is based on
reported error events. The authors described a system that identifies episode rules
from error log. They correlate errors in log by counting the number of similar
sequences. For instance an episode rule expresses temporal ordering of events in the
form “if errors A and B occur within five seconds, then error C occurs within 30 s with
probability 0.8.” Several parameters such as the maximum length of the data window,
types of error messages, and ordering requirements have to be specified a-priori.
However, the algorithm returned too many rules such that they had to be presented to
human operators with system knowledge in order to filter out informative ones.

In the field of power system process fault diagnosis a rule-based on-line diagnose has
been proposed in [Rovnyak 1994]. Here the authors exploited fault tree analysis: the
leaf nodes are combined with online error detectors, and logical expressions are
transformed into a set of rules.

An advantage of rule-bases approaches is that rules are easily readable by the user, and
then their effect is intuitive. The rule-based correlation is suitable for cases in which
relations between events are well known and can be formulated clearly. Despite the
advantages of rule-based systems, there are some limitations on the frequent changes in
the environment that could be modeled. This forces the user to make updates to the
rules. In other words, if the system changes rapidly, it is hard to maintain an accurate
set of rules. Moreover, these approaches do not deal with incomplete and incoherent
error messages or signals of a complex software system, and thus it is difficult to
determine the faulty component among the inferred possibilities.

5.2.6 Machine Learning approach

Accurate diagnosis of faults in complex systems requires acquiring data, processing the
information using advanced algorithms, extracting required features for efficient
identification of faults. Machine learning approach which involve feature extraction,
feature selection and classification of faults give a systematic methodology to fault
diagnosis and can be used in automated or unmanned environment. Especially
classification algorithm can be used to deal with diagnosis problem. The most
significant works are surveyed as follow.

The goal of identifying the root cause of a failure automatically is pursued in [Yuan
2006] by means of statistical learning techniques, based on Support Vector Machines
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(SVMs). Authors propose to trace low-level system behaviors to deduce problems of
computer systems. Events occurring in the system (e.g., system calls, [/O requests, call
stacks, context switches) are collected in order to (i) identify the correlations between
system behaviors and known problems and (ii), use the learned knowledge to solve new
coming problems. [Murray 2003] applied SVMs and naive Bayes approach in order to
diagnoses failures of hard-disk drives. In the case of hard-disk failure prediction, five
successive samples of each selected SMART attribute set up the input data vector. The
training procedure of SVMs adapts the classification boundary such that the margin
between the failure-prone and non-failure-prone data points becomes maximal. In
[Carrozza 2008] a diagnosis framework exploiting an SVM supervised classifier to
determine the source of failure, (i.e., the faulty component) is proposed. In the training
phase a large number of features are extracted from anomaly-based detector outputs
and application and system logs. The anomaly-based detectors are tailored to analyze
data gathered from monitors, which observe low-level OS and components variables
such as the scheduling time between processes, the number of syscall errors, the
throughput, the waiting time on mutex and semaphores, etc. During the operational
phase, when a detector triggers a detection event, features are extracted from the
system. This detector exploits the Bayesian Estimation to compute the conditional
probability that a fault has been activated, given the received alarms. An alarm, 4, here,
represent the event: an anomaly (e.g., number of syscall errors > T;) has been detected.
This approach seems promising because the detection and diagnosis infrastructure are
not application specific,c however it needs further improvements for the Feature
Selection issue (they could jeopardize the diagnosis) and the threshold mechanism (the
static threshold approach is not well suited for dynamic systems).

Bayesian classification algorithms can be used too. However they requires that input
variables take on discrete values. Therefore, monitoring values are frequently assigned
to finite number of bins [Hamerly 2001]. However, this can lead to bad assignments if
monitoring values are close to a bin’s border. Fuzzy classification addresses this
problem by using probabilistic class membership. [Turnbull 2003] used radial basis
functions networks (RBFNs) to classify monitoring values of hardware sensors such as
temperatures and voltages on motherboards. More specifically, all N monitoring values
occurring within a data window were represented as a feature vector which was then
classified as belonging to a failure-prone or non-failure-prone sequence using RBFNs.
Experiments were conducted on a server with 18 hot-swappable system boards with
four processors, each. The authors achieved good results, but failures and non-failures
were equally likely in the data set. In [Berenji 2003] Authors used an RBF rule base to
classify whether a component is faulty or not: using Gaussian rules, a so-called
diagnostic model computes a diagnostic signal based on input and output values of
components ranging from zero (fault-free) to 1 (faulty). The rule base is algorithmically
derived by means of clustering of training data, which consists of input/output value
pairs both for the faulty and the fault-free case. The training data is generated from so-
called component simulation models that try to mimic the input/output behaviour of
system components (fault-free and faulty). The same approach is then applied on the
next hierarchical level to obtain system-wide diagnostic models. The approach has been
applied to model a hybrid combustion facility developed at the NASA Ames Research
Centre. The diagnostic signal can be used to predict slowly evolving failures.
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A decision tree based technique is presented in [Zheng 2004] to diagnose problems in
Large Internet Services. Runtime properties of the system (e.g., clients requests) are
monitored; automated machine learning and data mining techniques are used to
identify the causes of failures. To validate the proposed approach they measure only
precision and recall, without consider false alarm rate. In [Kiciman 2005] Authors
proposed constructing a decision tree from runtime paths in order to diagnose faulty
components. The term runtime path denotes the sequence of components and other
features for identification of the node (e.g., IP addresses of server replicas in the
cluster). Runtime paths are obtained using Pinpoint. Having recorded a sufficiently
large number of runtime paths including failed and successful requests, a decision tree
for classifying requests as failed or successful.

In [Chen 2002] Pinpoint diagnosis framework is proposed with the goal of recognizing
the most likely faulty component of a distributed system. It employs statistical learning
techniques to “learn from system behavior” and to diagnose failures in a Web farm
environment. This approach relies on collecting traces of system run-time behaviour,
with respect to different client requests. Then data mining algorithms are used to
identify the components most relevant to a failure. The major limitations of this
approach are that (i) it is suitable only for small-scale software programs, and (ii) it
exhibits a significant logging. Thus only off-line diagnosis could be performed.

5.2.7 Other approaches

Triage

Authors in [Tucek 2006] propose a protocol for automatic on-line diagnosis of software
failures (TDP), which occur during production runs. The idea is to exploit a lightweight

checkpoint to reproduce the failure condition and execute a first step diagnosis to help
subsequent effort to fix the bug. The key aspects are summarized as follow:

e Capture variable related to the moment of failure: the failure state and the
failure-triggering environment. The aim is to perform diagnosis immediately
after the failure.

* Exploit sandboxed re-execution to reduce normal run overhead (rather than
instrumenting continuously system). Support for rollback and re-execution from
a recent checkpoint allows analysis only after a failure has occurred and greatly
reduces the overhead. Also, failure symptoms and the results of previous
analysis can allow a dynamic determination of what needs to be done.

* Automatically perform human-like top-down failure diagnosis. Based on the
failure symptom and previous diagnosis results, TDP automatically decides the
next step of instrumentation or analysis.

* Combine TDP with re-execution, to allow many existing (or future) bug detection
and fault isolation techniques to be applied.

Delta generation and delta analysis are exploited to speculatively modify the inputs and
execution environment to create many similar but successful and failing replays to
identify failure-triggering conditions. Although it seems a promising approach, some
assumptions limit its applicability. For instance, when a fault is activated the rollback to
the previous checkpoint presumes that a fault has not yet been activated. Although the
checkpoint-approach permits to reduce the overhead of other methods that monitor
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heavily the environment, it may be unfeasible for applications, which require many
operations that cannot be repeated and thus it is needed to record them. Moreover,
such an approach cannot deal with elusive fault because their conditions of activation
are hard to identify, thus to reproduce. Furthermore, long time is required to complete
the process.
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6 RECOVERY AND RECONFIGURATION

In the system dependability the recovery concerns the capability of the system to evolve
from a state containing errors and faults in a state without them. The system recovery
can be aimed by using techniques for both errors and faults handling. The former
usually eliminates the system errors through either a rollback approach, which
regresses the system to a “safety” state before the error detection called checkpoint, or a
rollforward approach, which evolves the system in a new state without errors. The fault
handling, instead, prevents that a localized fault can occur again in the system. The
detection and the isolation are the first two steps in a fault management process. The
system reconfiguration mainly concerns the capability of the fault-tolerant system
either to switch from failed components to spare components, or to reassign system
tasks among the non-failed components. Usually a corrective maintenance is required
after the faults are handled in order to definitively remove them from the system.

Usually the least costly and most effective recovery action is triggered based on an
estimate of the nature of the fault affecting the system [Bondavalli 2004]. Such
approach is adopted in order to limit error accumulation and ultimately contrast the
propagation of failures among the system components. Note that, in many cases, given
two recovery actions R;j and R;j (where R;j has a greater cost than R;), the execution of R;
also fixes inconsistent states which could be cured by Ri.

Underlying any reconfiguration techniques is the basic concept of the redundancy. It
provides "alternative" solutions, which allow the system to operate even if a failure
occurs. The redundancy can be implemented through the use of parallel components.
Such technique, called hot redundancy, requires that two or more elements with the
same functionalities simultaneously work at the same job. An alternative redundancy
approach consists to have an element on-line and another one powered down which
can be switched in use, either automatically or manually, whenever the on-line
component fails. Such approach is called standby redundancy or cold redundancy.

The growing complexity of the systems requires more and more to define innovative
strategies for their recovery and reconfiguration. Unfortunately, mechanisms based on
single strategy usually result inappropriate for correctly restoring the functionalities of
a systems as whole. In particular, in the area of Critical Infrastructure, for example, the
systems are complex distributed architectures, consisting of heterogeneous
components and technologies interacting among them, which can be affected by specific
faults and errors. Clearly, such peculiarity calls for recovery mechanisms, which can be
capable to operate on single component of the architecture, by reducing the risks that a
single fault affecting a part can be propagated to the overall infrastructure.

In the recent years multi-level reconfiguration approaches has been more and more
adopted in order to improve the capabilities of a system to properly recover from a
fault. At each level a different strategy is implemented in order to adequately response
to the faults. In order to improve the reliability of the recovery mechanisms, any
strategy should be completely independent from the other strategies at different levels.

It is possible to identify four main levels where recovery mechanisms can be
implemented: Network-level, OS-level, Middleware-level, Application-level. In the
following section we will analyse the strategies proposed for each level.
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6.1 OS Recovery and Reconfiguration

The Operating System (0OS) is a fundamental layer of any computer system. OSs provide
services, such as process scheduling, memory/network management, device interfacing,
and filesystem organization: current software systems strongly rely on these services.

OSs are inherently concurrent since they allow managing several hardware devices and
user processes simultaneously. Furthermore, they are made up of millions of lines of
code providing support services/libraries to the applications. As a result, OSs are prone
to software faults like every complex software system. This issue has been shown by
studies on field failure data and static code analysis [Sullivan 1991][Chou 2001].

A first class of systems is represented by OSs enhanced with fault tolerance
mechanisms. This class of 0Ss has not been designed to be fault tolerant, but their
native architecture is extended with additional components that increase dependability.
Nooks [Swift 2005] provides isolation for device drivers in order to prevent kernel
memory corruption and the vast majority of driver-caused crashes. This is achieved
with little or no change to existing driver and system code. In particular, Nooks isolates
drivers within lightweight protection domains inside the kernel address space, where
hardware and software prevent them from corrupting the kernel. Nooks also tracks a
driver's use of kernel resources to hasten automatic clean-up during recovery. Nooks
has subsequently been extended with shadow drivers. A shadow driver is a kernel agent
that (1) conceals a driver failure from its clients, including the operating system and
applications, and (2) transparently restores the driver back to a functioning state. In
this way, applications and the operating system are unaware that the drivers failed, and
hence continue executing correctly themselves.

Other works focus on fast recovery techniques. For example, in [Baker 1992] the
“recovery box” technique is proposed to increase availability by storing system data in a
stable area of memory, which is exploited to avoid a full reboot. In [Cotroneo 2009],
hang detection in the Linux kernel is improved by introducing a monitor implemented
as a kernel module. The module tries to detect whether the system is stuck or not, by
monitoring the interface between the drivers and the kernel. However, this approach
was not aimed at hang detection in individual OS components. In [Wang 2007], the
support of special hardware (e.g., performance counters in the CPU) is exploited to
detect hangs in the OS and in user programs. In [Pelleg 2008], a machine learning
approach is proposed to identify anomalies in virtual machines, by monitoring
information collected by the hypervisor such as CPU usage and [I/O operations.
However, this approach comes with the overhead and complexity of virtualization, and
it needs to be preliminarily tuned for a specific system workload. Another class of
systems is represented by OSs designed to be reliable. For these OSs, the design is
driven by specific reliability requirements. For example, the kernel memory protection
feature has been added into the design of the Windows 2000 OS since, in the previous
releases of the Windows OS, errant applications could access the kernel space during
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the installation procedure. Consequently, in order to protect the kernel space from
misbehaving applications Windows 2000 has been designed with a kernel address
space protection [Murphy 2000]. This approach is effective to increase the availability
of Windows 2K systems: a comparative analysis of Windows NT and 2K machines
proposed in [Simache 2002] shows that the number of reboots needed to recover from
system failures is reduced by 16%.

Minix 3 is a microkernel OS whose design is specifically devoted to achieve high
reliability. Its architecture has been recently revisited and loosely resembles Minix 2.
The first improvement was to execute all the servers and device drivers in user space on
the top of a microkernel [4, 16]. Minix 3 has the capability to recover faulty device
drivers without user intervention [9]. This feature is achieved by means of a dedicated
component (namely Reincarnation Server, RS, or Driver Manager) that monitors drivers
and recovers them when needed. If a monitored process is stuck or unexpectedly exits,
RS restarts it. In [Mancina 2008], a resource reservation framework is introduced in
order to add "temporal protection” to Minix 3. A new server (Constant Bandwidth
Server, CBS) guarantees that a process executes within a given interval, and no one can
monopolize the CPU. CBS implements a CPU reservation algorithm that replaces the
native Minix scheduler. The reliability-driven design also involved the Minix Inter
Process Communication system (IPC) [Herder 2008]. The native IPC is enhanced with
new primitives and rules that restrict the communication among trusted processes (e.g.,
file system server) and untrusted ones (e.g., drivers). In [Herder 2009], the device
driver isolation mechanism has been assessed using a practical approach based on
extensive SoftWare-Implemented Fault-Injection (SWIFI) testing. SWIFI testing was
also helpful to fix rare bugs that occurred even in the microkernel, and the results
showed the high dependability level achieved by Minix 3. In [Herder 2009.B] a filter
driver, settled between the file system and disk driver, controls the integrity and the
sequence of exchanged messages. The filter driver aims at protecting the file system
from data corruption. Moreover, in Minix 3 RS constantly monitors device drivers by
sending heartbeat messages. The RS heartbeat mechanism has been improved in
[Cotroneo 2010]; it evolved in an adaptive heartbeat mechanism, in which the timeout
is estimated from past response times.

6.2 Middleware Recovery and Reconfiguration

Reconfiguration and Recovery aim at returning the middleware to a safe state by
counter measuring the occurred failure. As mentioned previous in this document, there
can be two different kinds of malfunctioning that needs to be taken care. First, we have
message losses that compromise the quality of the event notifications; second, there are
disconnections due to link and/or broker failures.

In the first case, the correct history of received messages is recovered by commencing
retransmission actions, as in ARQ schemes [Lin 1984] or Gossiping Protocols [Costa
2000]. Specifically, if a sender is aware that one of its destinations has lost a certain
message, it promptly resends it. Otherwise, if a destination detects a loss, it can ask for
retransmission to the sender, as in the ARQ schemes, or it can ask to other destinations
that have successfully received the dropped message, as in the Gossiping Protocols.
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In the second case, broker and link can be reconfigured by replacing the failed element
with another one. Reconfigurable Dispatching System (REDS) [Jafarpour 2008]
performs link substitution for reconfiguring the broker network. Specifically, It uses
subscription and unsubscription commands to reconfigure the topology, when one of
the previous events are detected by the listeners. In particular, link removal is
addressed using unsubscriptions, while link insertion is carried out in a dual way by
using subscriptions. Another reconfiguration approach is adopted by Reliable Routing
of Event Notifications over Peer-to-Peer [Mahambre 2008]. Its key idea is to have
several paths from a source to a destination, which differ each other with respect to
route reliability. When the monitoring of a link returns notification of a strong
degradation and may compromise the satisfaction of the application requirements, then
the middleware switch from the current link to a new one (among the several known
ones), with a suitable quality level. The work presented by M.A. Jaeger et al. in [Jaeger
2008] proposes a novel approach, called Self-Stabilizing Publish/Subscribe (referred as
SelfStab in this section), to perform topology reconfigurations of notification
architecture due to link and node crashes (the fault assumptions of this work do not
include notification losses) by using self-stabilization theory. Such theory has been
introduced by E. W. Dijkstra in his work [Dijkstra 1974] dated back to 1974, and later
on S. Dolev has drawn on this concept in [Dolev 2000] to design self-stabilizing
distributed systems able to recover from the faults that brought them to an arbitrary
and incorrect state. SelfStab provides tolerance to node and link crashes by assuming
the routing information within each broker as leased, i.e., it is valid only for a time
period, whose expiration causes its removal. If clients want to keep such information
within the brokers, they have to renew the lease by resubmitting their subscriptions to
the Notification Service. Switching from a failed broker to a new one implies a high
failover time, due to the time needed to select a new broker and to re-establish all the
connections and the internal state of the broker (made of routing and subscribing
information and past received messages). To speed-up this process, a solution is to have
a passive replication of brokers, so that when the master broker fails, the
reconfiguration implies only to elects one of its replicas as master without needing to
re-establish the internal state of the broker. Such solutions in adopted in several
approaches, such as XNET [Chand 2004].

6.3 Network Recovery and Reconfiguration

Communication network represents a fundamental component of any complex
infrastructure. A distributed system, indeed, requires a reliable communication network
to correctly operate. For this reason network-level recovery strategies become
mandatory.

A communication infrastructure can be affected by a variety of failures including
unintentional failures, due to natural disasters, software bugs, human errors, and
intentional failures, usually caused by attacks or sabotages. Generally the faults can
affect either the transmission or switching elements. Unfortunately not all the possible
faults affecting a communication infrastructure can be prevented. According with this
assumption, alternative strategies are needed to increment the network reliability.

Although duplication of vulnerable network elements, most helpful in hardware
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failures, and dual homing principle, which duplicates the network access link, are
common solutions widely adopted in the modern communication networks, in many
cases these are insufficient for guaranteeing an acceptable network reliability level.
Furthermore, such approaches are extremely expensive, and they are unable to
differentiate between critical traffic and less important traffic.

Innovative recovery mechanisms, or resiliency schemes, have been designed in the last
years for increasing the network reliability. When a fault is detected these mechanisms
automatically divert the traffic allocated on the path where the failure occurs on an
alternative fault-free path. In this way the traffic can reach the destination also when a
fault happens, and this assures the availability of the services, especially the critical
ones, transported by the network infrastructure. In contrast with the common
duplication approaches, the resiliency schemes adopt network level solutions instead of
element level mechanisms.

Under normal conditions the data are transported along the working or primary paths.
When a fault is detected at a network element belonging to the primary path, a recovery
mechanism is activated to remedy such problem. Through a resiliency scheme the
working path subject to the fault, the so-called recovered network segment, is entirely or
partially replaced by a recovery or alternative path. All the traffic flowing into the
damaged element is diverted along the backup path at the recovery head-end (RHE), the
last node in the working path shared with the recovery path. This operation is called
switch-over operation. When the traffic passes the recovery tail-end (RTE), the first node
beyond the fault point shared between the working and the recovery paths, it is again
forwarded along the primary path. In order to assure that a single fault does not affect
both the recovery and primary path, diverse routing solutions are adopted for selecting
a backup path completely disjointed from the working path.

Any network recovery mechanism needs some requirements on the network
infrastructure in order to be implemented. For example topology requirements are
considered since for any failure to recover, an alternative route is need for serving as
backup path. Such requirement is fundamental to avoid single point of failure, which
can disconnect part of the network from the rest when a fault occurs. Also QoS
parameters must be preserved by any resiliency scheme. An equivalent QoS should be
assured when the traffic is rerouted on alternative path. This imposes further
requirements on the network resources. Indeed, a recovery scheme needs additional
capacity in term of available bandwidth, the backup or spare capacity, to satisfy QoS
requirements. Furthermore, recovery mechanism must minimize the increase of
propagation delay from source to destination.

A wide variety of recovery and reconfiguration mechanisms exist. Every solution has its
strengths and weaknesses. In order to evaluate these mechanisms several design and
evaluation criteria have been defined. Firstly, a recovery mechanism should be designed
for covering a well-known failure scenario. Typically, the more are the concurrent faults
covered by a resiliency scheme, the higher is the network availability that can be
guaranteed.

Another important parameter for the evaluation of a network recovery mechanism is
the percentage of coverage. In some scenario, indeed, a fault in a specific network area
can be entirely or partially solved by the recovery mechanism. For example a fault
occurring at edge node can compromise the network availability more than a fault
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involving a core node. An appropriate strategy should provide high percentage of
coverage.

The recovery time also represents a fundamental issue for any resiliency mechanism.
Usually, the smaller is the recovery time, the less is unavailability of the network
services.

Traditionally every network recovery strategy presents a different backup capacity
needed for recovering from a specific network failure. The backup recovery
requirement differs based on the mechanism implemented, and it depends on the
algorithm adopted for recovery path selection, the profiles of the traffic flowing into the
network, and the layer where the mechanism is implemented.

Recovery mechanisms can be also distinguished according their capacity to assure full
bandwidth availability when the traffic is rerouted on alternative paths. This issue is
strictly related to the backup capacity.

When a fault occurs in the network a resiliency scheme can severally impact on the data
duplication and reordering. The ability to reduce the packets duplication as well as the
possibility to reorder the data represent important issues of a network recovery
strategy, which increase the complexity of the designed solution.

A recovery mechanism can also introduce latency and jitter on data traffic. Based on the
services supported by the network an appropriate solution should be adopted in order
to guarantee the latency and jitter requirements.

The more are the backup resources used by a recovery strategy, the more are the
information to be stored in the individual network element for implementing the
reconfiguration mechanism. A network recovery strategy should also consider the
overhead introduced by this information.

Another important parameter is the scalability. It represents a fundamental
characteristic for any resiliency scheme. Specifically, a recovery mechanism is
considered scalable if the performance does not depend on the size of the network and
the traffic transported.

Usually, each network technology imposes particular constraints on the implementation
of a recovery mechanism. With respect to the criteria described above, several design
choices can be adopted in order to satisfy specific requirements.

With respect to the backup capacity a dedicated or shared solution can be designed. In
the first case a one-to-one relationship exists between a specific backup resource and a
specific working path. In the second approach, instead, a backup capacity is shared
among different working paths. In this case a one-to-many relationship is realized.
Clearly the shared solution is more complex than the dedicated one: when a failure
occurs the mechanism should guarantee that enough resources are still available to
allow the recovery in case of further failures. On the other hand, a shared resources
mechanism is much more efficient and flexible than a dedicated resources approach.

Another design option is related to when the recovery path is selected. In the
preplanned solution for each failure scenario the recovery path is calculated in advance.
With dynamic approach, instead, the path is calculated when the fault occurs by the RHE
and RTE nodes. The recovery mechanism starts to search in the network an alternative
path when a failure on the working path is detected. Clearly a preplanned mechanism
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allows fast recovery with respect to dynamic one, which requires time to identify the
alternative path. On the other hand, a dynamic solution is capable to handle also
unexpected faults (i.e. the uncovered failure scenarios). The dynamic approach is
usually adopted for recovery mechanisms that implement shared backup capacity.

The recovery mechanisms can be classified based on the main goals of their strategies.
In particular we can distinguish between protection approaches and restoration
approaches. Both the options require signaling, but the main difference is related to the
timing when the messages are exchanged. In case of protection schemes the recovery
paths are preplanned and signaled before the failure occurs. This reduces the time of
reconfiguration since no additional signaling is required in case of fault. With
restoration approach, instead, the backup path can be both preplanned and dynamic,
but additional signaling is required to establish the path when the failure occurs. Such
solution needs more recovery time, but at the same time it is more flexible and it
requires less backup capacity.

In order to bypass a failed network element, the recovery mechanisms change the path
affected by the failure. The recovery extent represents the portion of the working path
affecting by rerouting. In a local recovery scheme only the failed elements are bypassed.
In this case the RHE and the RTE are chosen as close to the failed point. In other words,
a local strategy establishes a recovery path between the neighbor nodes of the failed
network element, ether a node or a link. With a global recovery, instead, the complete
path between the source and the destination is replaced by an alternative path. In other
words, the source and the destination represent respectively the RHE and the RTE. With
a preplanned mechanism, a global recovery strategy requires alternative paths to be
completely disjointed from the working paths, which imposes more complexity in the
scheme. Local strategies are usually much faster than global ones. On the other hand,
global recovery mechanism optimizes alternative path in terms of hops and bandwidth
with respect to a local mechanism.

Another important issue that classifies the recovery mechanisms is related to which
entity implements the reconfiguration strategy. In a centralized recovery scheme a
central controller determines which action to perform in case of fault. It has a global
view of the network by periodically gathering information about the status of the
infrastructure. The controller performs commands for reconfiguration of all the
elements involved in the recovery process. In a distributed recovery scheme, instead, no
central controller is implemented. The control is distributed over the network and each
node is capable to autonomously initiate the recovery actions. This requires just a local
view of the network, and a messages exchange provides each other with sufficient
information about the network status and for coordinating the recovery strategy. A
centralized approach is simpler to implement and it has a better global view of the
network. On the other hand, a distributed solution is more scalable and robust with
respect to centralized one.
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