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1 EXECUTIVE SUMMARY 
	

The aim of D3.3 of the ICEBERG project “Model-based Process Definition” is to 
extend the deliverable D3.1 [1] by providing a more detailed presentation of the 
model-based decision making process and the generic framework, which have 
been under development in the ICEBERG project. In particular, we describe raw 
measurement/prediction models that would help in determining the cost of quality 
(and not-quality) and allow making best decisions for the trade-off between cost 
and quality, as well as a generic process definition for how to utilize such models 
in industrial settings.  
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2   INTRODUCTION 
 

The goal of our work is to assist project managers and quality managers in 
making informed decisions during software development and maintenance. 
Informed decision-making requires collecting and analyzing quantitative data and 
providing the resultant information in an understandable way to decision makers.  

Such assistance requires not only evaluating the dimensions of the well-
known project management iron triangle, which are cost (e.g. cost to correct a bug 
during testing, or the cost of testing per unit testing-effort expenditures), time (e.g. 
time to detect and fix a bug), and quality (e.g. level of reliability), but also 
understanding the nature of interactions and tradeoffs among them to be able to 
make better decisions under different constraints.  

In this document, first, we present the generic models-based decision 
making framework and process, which have been under development in the 
ICEBERG project during the last three work packages. Then, in the following 
chapters, we also provide three different instantiation of the models-based process 
defined for making various quality management decisions.  

 
The	following	aspects	characterize	the	novelty	of	each	of	these	instantiation:	
	
 

• Optimal Allocation of Testing Resources. We developed an automated 
optimization process for dynamically allocating testing resources to 
software modules (functionalities) based on trade-offs among software 
quality, cost, and schedule/time requirements. We also explicitly consider 
uncertainty in the testing process in order to evaluate the robustness 
of the testing resource allocation. 
 
In particular, our approach helps to: (i) select (and use) Software 
Reliability Growth Models (SRGMs) in order to make the software testing 
process more effective; and (ii) handle parameters uncertainty, which, as 
shown through our real world software project, plays a critical role in 
accurately describing a testing resource allocation process. It is well 
known that SRGMs sometimes show good performance in terms of 
predictability of the software reliability, but sometimes they do not. In this 
work, we show that the handling of uncertainty is a key factor for a 
trustworthy prediction of the reliability of a software system, and leads an 
optimization model to a more precise (and less pessimistic) estimation of 
the system reliability, as well as to a more effective and efficient testing 
resource allocation activity.  
 
 

• Optimal Regression Functional Testing. Based on the generic models-
based decision making process, we proposed an automated prioritization 
approach for large software systems that embeds the “code churn” 
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measure. Code churn represents a measure of the amount of code change 
taking place within a software system over time. Thus, we propose to use 
code-coverage measures (produced by static code analysis) by considering 
software system evolution metrics (extracted from system’s change 
history).  
 

• Architectural Decision Making. We developed an automated approach 
for	 making	 architectural	 decisions.	 Specifically, our focus is on (i) 
modeling and analysis of QoS tradeoffs of a software architecture based 
on optimization models,	and	(ii) definition of framework for supporting the 
software architects/maintainers. Thereby, we support software 
architects/maintainers to manage the interactions and conflicts between 
requirements, between design decisions, and between requirements and 
design decisions. The support includes automatic detection (by model 
checking techniques) of interactions and conflicts mostly in the part of the 
architecture design decisions and propagation of interaction between 
different levels. Our approach also allows producing the space of possible 
feasible architectural solutions obtained by instantiating parametric design 
decisions. Each solution is computed taken into account the specification 
constraints associated with the design decisions and the known 
interactions and conflicts between concrete design options. 

 
This document is organized as follows: In Chapter 3, we present the 

generic decision making framework and models based process of the ICEBERG 
project; in Chapter 4 we discuss in detail the optimal testing resources allocation 
process.; in Chapter 5 we present the optimal regression functional testing process 
using coverage and churn metrics; in Chapter 6, we introduce the architectural 
decision making process. Finally in Chapter 7, we present the conclusions of this 
work package. 
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3 A GENERIC MODELS-BASED PROCESS AND DECISION 
MAKING FRAMEWORK 

	

In the previous work packages of the ICEBERG project, a comprehensive 
literature review and an industrial survey were carried out to identify the state of 
the art on: 

• Quality management and decision-making needs of software 
companies,  

• Commonly used software tools and commonly collected measures for 
time, cost and quality 

• Potential analysis techniques, methods and tools that could be used for 
analyzing tradeoffs between cost, time and quality 

 
These were altogether provided a basis when defining a generic models-

based process (see Figure	1) and quality decision making framework  (see Figure 
2) for software companies.  

We based the generic process on ISO/IEC 15939 Standard on Software 
Measurement Process so as to enable companies to be able to use the decision-
making framework integrated with their measurement processes.  The Models 
Based Decision Making Process provides a concrete support to software 
companies when planning their measurement process.  

	

	

FIGURE	1:	A	GENERIC	MODELS	BASED	DECISION	MAKING	PROCESS	DEFINITION	
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By following the steps of this process, the generic decision making 
framework could be instantiated for a supporting the companies for their specific 
decision making needs.  
	

	

FIGURE	2:	A	GENERIC	DECISION	MAKING	FRAMEWORK	AND	ITS	ENVIRONMENT	

    

The generic decision making framework comprises a Model Builder, a 
Model solver and a Database. Primary inputs to this framework include  for 
example, (i) system models (e.g., an UML-based architectural model composed of 
a Component Diagram, Sequence Diagrams, and a Deployment Diagram), (ii) 
causes of quality decision-making, and (iii) dependencies among quality 
decisions, defects issues, cost factor and schedule factor. In particular, we 
identify: (i) quality decisions (and causes), and (ii) schedule/time/cost-related 
properties.    

The Model Builder generates the analysis model (e.g optimization model) 
in the format accepted from the solver. The Model solver processes the model 
received from the builder and produces the results, which consist of a set of 
quality decisions. It suggests, for example, how to design (or re- design) the 
software architecture in order to minimize the costs while keeping the software 
quality within a given threshold.  In addition, the model, for example, could also 
suggest the best shift allocations to people in order to achieve the required level of 
software quality. The inferences and relationships detected for this model should 
be created by defining and applying the most appropriate methods for data 
analysis. Any combination of quality decisions may have a considerable impact 
on the cost, time and software quality. Therefore, the optimization model aims to 
quantify such impact in order to suggest the best quality decision, which 
minimizes the costs while satisfying the schedule/time, and quality constraints. 

In order to achieve the right tradeoff among schedule/time constraints, 
software qualities and costs requirements, the quality decisions should involve the 
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evaluation of new alternatives to the current (i) software application level (e.g., by 
the configuration of software components, the introduction of new components 
into the system, etc.) and (ii) project management level (e.g., the shift allocations 
to people). A decision, for example, taken for modifying a system functionality 
may be good for the satisfaction of a certain level of software quality, but at the 
same time it may require a high cost for implementing static code analysis (e.g. 
tools, new processes, training, etc.). A major challenge is then finding the best 
balance among many different competing and conflicting constraints.  

   For these multi-attribute problems, there is usually no single global 
solution, and the generation and evaluation of quality decisions alternatives can be 
error-prone and lead to suboptimal decisions, especially if carried out manually by 
system architects or maintainers.  

   In order to address such problems, we investigate the application of: (1) 
SBSE search methodologies (e.g., genetic algorithms, evolutionary algorithms and 
other metaheuristics) and, (2) the multi-objective optimization, where objectives 
represent different properties (e.g., cost, time and other software quality-related). 
Specifically, a set of solutions is devised, called Pareto optimal solutions or Pareto 
front, each of which assures a tradeoff between the conflicting constraints. In 
other words, while moving from one Pareto solution to another, there is a certain 
amount of sacrifice in one objective(s) to achieve a certain amount of gain in the 
other(s). Each point of a Pareto curve would be a chain of quality decisions 
(leading changes either to the application level or the project management level).. 

As shown in Figure Figure	 3, a decision-making framework is 
characterized by input parameters, output parameters, and techniques (e.g., 
optimization models, algorithms) to make the decisions.  
 

 
 

FIGURE	3:	A	GENERIC	DECISION	MAKING	FRAMEWORK	

	

Below, we provide some examples, which show how to use the models-
based process when creating an instant of the decision-making framework for 
specific decision-making needs. The details of these models are presented in the 
next chapters: Chapter 4, Chapter 5 and Chapter 6. 
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3.1 AN EXAMPLE DECISION MAKING FRAMEWORK FOR OPTIMAL 
ALLOCATION OF TESTING RESOURCES 

	

In this section, we present the framework we developed for making 
decisions on how to allocate testing resources (see Figure	 4). The details of the 
model are given in Chapter 4. 

A primary input to this framework is represented, for example, by from (i) 
the SRGMs chosen to represent the testing process of the system functionalities, 
(ii) defect data collection used, for example, to estimate parameters specific to 
debuggers (e.g., the average amount of bugs that a debugger can fix per man-day), 
and (iii) requirements on the time and cost of testing (such as on the total amount 
of testing-effort eventually consumed). 
	

	

	 FIGURE	4:	AN	EXAMPLE	FRAMEWORK	FOR	TESTING	RESOURCES	ALLOCATION	

 

   The Model builder, through a Parameter Specification module, gets input 
model parameters. After receiving the parameters’ specification, the Model 
builder generates the optimization model in the format accepted by a solver (such 
as the combination of the NSGA-II algorithm and the MC simulation). 

  The Model solver processes the optimization model received from the 
builder and produces the results, which consist, for example, of the testing-effort 
allocation (i.e., the amount of testing-effort to be performed for the system 
functionalities) and bug assignment allocation (i.e., the amount of bugs assigned 
to each of the debuggers). 
 
 
 
 
 
Inputs 
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The inputs required to implement the defect analysis approach for quality 
decision support are the ones typically collected in a bug-tracking tool. Depending 
on the details tracked about the defects, several analyses can be carried out.  

The minimum requirement is the Date and time of the defect (or, more 
generically, issue) detection and effort measures (e.g., man-months for 
implementation and man-months for testing).  

Optionally, the method can take as input: Defect Priority, Defect Severity 
(impact), Defect Detection Phase (i.e., Design Review, Code Review, Unit 
Testing, Integration testing ,…), the Defect Type (according to some 
classification, such as IBM ODC, HP), Age of the code module (e.g., new, base, 
rewritten, re-fixed),  Defect Trigger, Defect Source (in-house, outsourced, library, 
…), Reproducibility (e.g., always or not always reproducible).  

These input parameters can be used for deriving quality vs. effort 
indicators, and for identifying problems and criticalities in the lifecycle (e.g., 
phase/activity/team causing low index value). 

Table	1 summarizes the potential inputs to the model. This is a superset, 
meaning that different analyses can be done depending on the input information.  

 
TABLE	1:			MODEL’S	POTENTIAL	INPUTS	

 
Source Measure Category Measures  

Bug Repository Defect  Severity/Reproducibility/Priority, Defect 
Triggering (and/or activity that made the 
defect surface, e.g., code review, inspection, 
unit testing, workload/stress testing, 
concurrency testing, operational usage), 
Defect Detection Phase, Supposed Defect 
Injection Phase, Fixing time, Defect fixing 
Phase, Defect Type, Defect Impact, Defect 
mode (wrong, missing), defect source, 
source age, work/Rework 

Source Code 
Repository 

Product Size Measures (LoC, #Req, Function 
Points), Complexity metrics (McCabe, 
Halstead’s), Source File metrics, code 
churn/change metrics, version 

Personnel through 
time sheets or other 

records 

Process 
 

Testing effort (e.g., man-months dedicated 
to testing) 
 
T  Maximum threshold given to the delivery 
time of the system. 

 
Note that some of the specified analyses are also detailed in the subsequent 

sections, being this defect analysis model at higher level. Table	2 summarizes the 
potential outputs of the model. 

With a greater detail, Table	3 summarizes the analyses that can be done by 
joining more input information pieces, and their output depending on the 
information recorded by the tester and/or the person in charge of fixing a defect 
(with minimum requirement being only the detection time and date with effort 
measures). The analysis that we will carry out will depend on the availability of 
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such information in the case studies. The analysis are intended as “statistical” 
analysis, with output always accompanied by a “confidence level” indication (e.g., 
a given metric value is greater than another, with 95% of confidence).  
 

TABLE	2:			MODEL’S	POTENTIAL	OUTPUTS	

Decision Type 	 Description	
Release policy	 Quality (reliability) analysis/assessment and time 

to get a given quality	
How much effort to invest?	 From the analysis of the testing process (test 

efficacy, efficiency) and of the product quality 
(detected/expected defects) with respect to the 
effort devoted so far, decide on investing more or 
less resources	

Whether to change  the current process 
based on defect data and if so, how?	

Analysis of defects per 
severity/reproducibility/priority, of 
detection/injection phase, of defect triggering 
phase and activity, defect type, in order to identify 
mismatch (expected vs actual patterns)	

Testing effort allocation	 Prediction of defective modules from code/process 
metrics	

Whether to improve the debugging 
process and/or development process	

Analysis of the bug fixing time, defect type, defect 
impact, defect source, defect source age, 
prediction of defective modules from code/process 
metrics to focus design efforts, analysis of defect 
features to get feedback  on implementation	

	
	
TABLE	3:	INPUT-OUTPUT	MATRIX	DESCRIBING	THE	POSSIBLE	ANALYSES	AND	OUTPUTS	IN	
RELATION	TO	PROVIDED	INPUTS 

Input Info  Joined with: Type of Analysis Output Info 

On detection, 
tester will 
record: 

   

Opening Time  Reliability Analysis Estimate of Expected Defects, Estimate 
of (expected) Reliability (i.e., non-failure 
probability), Estimate of Residual Defects 
(Both during testing and during 
operational phase) 

  Release Policy 
Analysis 

Decisions on "When to stop testing, when 
to release", "What is the quality, under 
the current testing process, expected at 
the end of testing" 

 Size measures: 
LoC, #Req, 
Function Points 

"Normalized" 
reliability analysis 

Estimated Expected Defects Density, 
Estimated Expected Residual Defects 
Density 

 Effort measures: 
testing effort 
(e.g., man-
months) 

Test Efficacy and 
Efficiency Analysis 

Test maturity (%): detected defects so far 
over the total expected defects, Test 
Efficiency: defect detection rate, Test 
Efficiency: percentage detection 
efficiency (progress in terms of "test 
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maturity increase" per effort unit), Test 
Efficiency: relative efficiency in terms of 
"effort units (e.g., man-weeks) required to 
achieve a maturity of x%" 

 Defect severity/ 

reproducibility 

severity/ 

reproducibility 
analysis;  

Cross-analysis with 
the previous ones 

Defects per category: "which 
implementation has higher severe defects 
in the average? what is the trend of high-
severe defects per implementation item? 
Do testers of different implementation 
use the same criteria to assign severity? 
Which testing activity exposes the most 
severe defects? Which percentage of 
"not-always reproducible" defects is 
found during testing and which 
percentage during operation (high-cost 
defects)? What testing activity exposes 
the "not-always" reproducible defects?  

Defect 
Triggering 
(and/or 
activity) 

 V&V Analysis Identification of critical phases of testing 
(e.g., function review, code review, 
testing) and operational conditions in 
which defects are found (during testing or 
at runtime); Identification of critical 
environmental conditions (e.g., high 
workload-stress greatly contributing to 
expose defects); "Signature" of testing 
techniques with respect to defects they 
are able to find (how many, of what type, 
of what impact in terms of severity) 

Defect 
Detection 
Phase 

 V&V (Phase) 
Analysis 

Identification of critical phases of testing 
- analysis of expected detection phase vs. 
actual detection phase; "Delay" and cost 
analysis of testing - thus cost analysis 
referred to defects that should have been 
detected earlier  

Supposed 
Defect 
Injection 
Phase 

 Development and 
V&V Analysis; 
Defect Flow 
Analysis 

Development Phase Analysis - which 
phase introduces more defects (and of 
what type, impact); Defect flow analysis: 
analysis of the latency (and cost) required 
to detect defects (for how many phases 
the defect flows and survives); analysis of 
V&V activities vs. latency 

On fixing, 
debugger will 
record:  

   

Fixing time  Fixing process 
(debug) analysis 

Efficacy: percentage of closed (or 
pending) defects; Efficiency; mean time 
to fix 

  Fixing process 
evolution over time  

Efficacy and Efficiency over time; 
Continuity of the process over time; 
homogeneity of the process (e.g., 
peakedness and skew of the fixing time 
distribution) 
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 Defect severity/ 

priority/ 

reproducibility 

Fine-grained Fixing 
process analysis 
(analyse potential 
causes for 
experienced time to 
fix)  

Previous metrics normalized per average 
severity (have more severe defects 
required more time to be fixed)?; priority 
analysis (have defects at higher priority 
been fixed earlier?) ; reproducibility: 
have "not-always reproducible" been 
actually more difficult to fix (thus 
justifying higher Time to fix)? 

Actual 
working Time 

 Detailed Fixing 
process (debug) 
analysis; Latency 
Analysis 

Analysis of the bug tracking tool usage (it 
is expected a small difference between 
actual and recorded time to fix); Latency 
analysis: when the actual fixing work 
starts with respect to the claimed time; 
percentage of actual time over recorded 
time 

Defect fixing 
Phase 

 Detailed Fixing 
process (debug) 
analysis 

When the defect has been fixed w.r.t. 
when it was to expected to be fixed (cost 
analysis like "detection vs. injection" 
analysis: in this case it is "correction vs. 
detection") 

Defect Type  Development 
Analysis 

"Signature" of defect types over the 
development phases: expected vs. 
experienced defect. Analysis of patterns 
of defect types vs. development phases in 
which they have been injected. Cross-
analysis with many previous and 
following attributes: defect type vs. 
trigger, vs. V&V activities, vs. impact, 
vs. source , vs. age, vs. target; type-based 
defect prediction (see below) 

Defect Impact  Development and 
V&V Impact 
Analysis 

Crossed analysis with: development 
phases, V&V phases and activities, defect 
type and triggers, and others… 

Defect Mode 
(missing, 
wrong) 

 Detailed 
Development and 
V&V Analysis 

As above, differentiated per "missing" 
defects and "wrong" defects; feedback to 
developers 

Source  (in-
house, 
outsourced, 
library)  

 "Source Defect" 
Analysis  

How many defects per source item type 
(in-house, outsources); crossed analysis 
with previous attributes 

Source Age 
(new, base, 
rewritten, 
refixed) 

 "Source Age" 
Analysis 

Age is intended the age of the code 
affected by the defect as development 
history: base code from the previous 
release, new code from the current 
release, rewritten code or refixed code. 
This allows analysing the impact of 
reusing code, of regression bugs, of 
writing completely new code, of using a 
baseline. Crossed analysis with previous 
attributes makes sense also.  

Target of the  Code-defect How many defect (density) per target; 
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fix (e.g., 
source file) 

Relationship 
Analysis 

how target (metrics) are related to 
defectiveness 

Version  Defect Pattern 
Evolution across 
versions; release 
policy analysis  

How defects (type, trigger, impact, 
age,…) evolves across versions; how 
releases relate to defects found in 
operation; how releases are related to 
fixing (e.g., release train effect ) 

Work-rework  Regression 
Likelihood 
Analysis 

How many defects are opened during a 
re-work; likelihood of introducing 
regression bugs; crossed analysis with 
triggers (environmental conditions in 
which defects surface) 

More 
advanced 
analysis. For 
internal 
quality and 
prediction 

   

Size and 
complexity 
metrics; CVS 
metrics (code 
churns, etc.) 

 Code-defects 
Relationship; 
Defect Prediction 

Empirical models to build predictors of 
defectiveness in modules; can be 
customized per defect type 

Requirements, 
design-, 
organizational 
metrics 

 Process metrics-
defects 
Relationship; 
Defect Prediction; 
Detailed phase 
analysis (relation 
between phases 
metrics and defects)  

How metrics at each level are related to 
defects; this can be specialized per phase 
(e.g.,: how requirements metrics are 
related to, and can predict, defects of a 
given type, or defects injected in 
requirements phase, …) 

Description of 
the defect; 
notes; 
discussions; 
number of 
state changes 
in the report, 
… 

 Communication; 
Topic analysis, 
semantic analysis 

Relating communication patterns (length 
of discussion, topics inside, number of 
participants to the discussion) with time 
to fix 

Test Effort per 
component 

 Optimal test effort 
allocation 

Allocate effort to projects with higher 
expected defectiveness 

 
In Chapter 4, we discuss how to estimate these parameters by using 

information collected with a bug-tracking tool (e.g., Jira). We have also 
instantiated the optimization model for the fault correction with the bug 
assignment activity prediction, but its elements (e.g., cost function and reliability 
constraints) combined with the method for uncertainty analysis could be re-used 
in another phase of the testing process. This adoption may require specializing 
(appropriately modifying) the model in order to capture typical aspects of the new 
phase. Testing-effort allocation prediction under testing-effort time/cost and 
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reliability constraints with uncertain model parameters, for example, could be 
used for enhancing existing approaches (discussed in Section 4) for scheduling 
developers/testers to activities to be performed to fix a bug repository.  

In Table	 4 and Table	 5, we discuss in detailed examples for the testing 
model which we discussed in deliverable D3.1 [1].  In particular, we summarize 
inputs and outputs of these models. 

 
TABLE	4:	MODELS’	INPUTS		

Model Input Reference 

Release planning For each component, Opening time of defects 
ddiscovered during testing (and/or during 
operation). 

 

D3.1 – 7.1 

Debugging analysis for 
improved release planning 

Input data are the same as the release planning 
model, as this model is based again on SRGM, 
augmented by data on closing time of the issues, 
being the model conceived to include the impact 
of debugging. 

D3.1 – 7.2 

Resources allocation For this model, the required inputs come from 
the bug-tracking repository from which the 
opening times of defects that are detected during 
testing are used to build the SRGMs online. 
From these, given a testing budget (as further 
input) that managers want to spend for testing, 
the allocation is performed dynamically, at any 
time the tester wants, by using the prediction of 
residual number of defects expected in each 
component. 

D3.1 – 8.1 

	

TABLE	5:	MODELS’	OUTPUTS		

Model Output Reference 

Release planning Prediction of the optimal time to release, given a 
quality to achieve 

D3.1 – 7.1 

Debugging analysis for 
improved release planning 

Prediction of the optimal time to release, given a 
quality to achieve and analysis of debugging 
causes  

D3.1 – 7.2 

Resources allocation The amount of effort to allocate to each system’s 
components/modules in order to minimize the 
expected number of residual defects 

D3.1 – 8.1 

	

Table	 6 below presents how input information could be represented in a 
database. 
 

 

TABLE	6:	MODEL’S	INPUTS	AND	THE	DATABASE	

Model Input Database 
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Release planning For each component, opening time 
of defects discovered during testing 
(and/or during operation). 

The tab  The table Issue and the relationship 
Issue-Version allow to obtain 
information related to opening time 
of defects discovered during 
testing. Moreover, relationships in 
the database allow to get 
information related to the 
components, products, projects and 
companies associated with a 
certain issue.   

Debugging analysis 
for improved release 
planning 

Input data are the same as the release 
planning model, as this model is 
based again on SRGM, augmented 
by data on closing time of the issues, 
being the model conceived to 
include the impact of debugging. 

Similarly to the previous decision 
model, Information related to 
issues can be found in the database. 

 

Resources 
allocation 

For this model, the required inputs 
come from the bug tracking 
repository from which the opening 
times of defects that are detected 
during testing are used to build the 
SRGMs online. From these, given a 
testing budget (as further input) that 
mangers want to spend for testing, 
the allocation is performed 
dynamically, at any time the tester 
wants, by using the prediction of 
residual number of defects expected 
in each component. 

Other than the information of the 
previous two decision modes, 
information related to the 
components (modules) can be also 
found.  Such information can be 
obtained by using the tables 
Version, Component and Product 
involved in the relationship 
Version-Component.  

 

	

Figure	 5	 shows	 the	 information	 in	 and	 out	 of	 the	 testing	 decision	
frameworks	listed	in	Table	4	and	Table	5.	
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FIGURE	5:	INPUTS	AND	OUTPUTS	TO	THE	DECISION	MAKING	FRAMEWORK 

 

3.2 AN EXAMPLE ARCHITECTURAL DECISION MAKING 
FRAMEWORK 

	

Below	 is	 an	 example	 framework	 we	 developed	 for	 making	 decisions	 on	
architecture	(see	Figure	6).	The	details	of	the	model	are	given	in	Chapter 6.	
	

	

FIGURE	6:	AN	EXAMPLE	DECISION	MAKING	FRAMEWORK	FOR	ARCHITECTURAL	DECISIONS	

	
In	 Table	 7	 and	 Table	 8	 we	 discuss	 examples	 of	 architectural	 decisions	

models,	 which	 we	 have	 discussed	 in	 the	 deliverable	 D3.1	 [1].	 	 In	 particular,	 we	
summarize	inputs	and	outputs	of	the	models.	
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TABLE	7:	MODELS	INPUTS	

Model Input Reference 

Build-or-buy decisions 
models 

Average number of invocations of a software 
component, number of existing software 
components, maximum number of COTS 
instances available for each component, number 
of existing software components, minimum 
threshold given to the reliability on demand of 
the system, maximum threshold given to the 
delivery time of the system, cost of a component 
instance, delivery time of a component instance, 
unitary development cost (time) of a component 
instance, average time required to perform a test 
case of the instance, testability of a component 
instance.  

D3.1 – 6.2 

Quantifying the influence of 
failure repair/mitigation costs 

Average number of invocations of an elementary 
service across all considered interaction 
scenarios, minimum threshold given to the 
reliability on demand of the system,  number of 
nominal services,  maximum number of service 
implementations available for purchase  by 
providers for each nominal service, cost of the 
service instance, probability of failure on 
demand of a service instance, unitary 
development cost of an in-house service,  
testability of an in-house instance. 

D3.1 – 6.2.1 

Optimization of adaptation 
plans with cost and quality 
tradeoff 

Set of new requirements that induce changes in 
the structural and behavioral architecture of the 
software system, set of actions that address a 
certain requirement, average number of 
invocations of an elementary service, average 
number of invocations of a new service, number 
of elementary software services, set of 
alternative instances for an existing service, cost 
of a service instance, reliability (availability) on 
demand of a service instance, response time of a 
service instance, set of new available services, 
cost of a new service, reliability (availability) on 
demand of a new service, response time of a 
new service, minimum threshold given to the 
reliability (availability) on demand of the 
system, maximum threshold given to the system 
response time. 

D3.1 – 6.3 

	

TABLE	8:	MODEL’S	OUTPUTS	

Model Output Reference 

Build-or-buy decisions 
models 

Build-or-buy decisions for each component and 
the amount of unit testing to be performed on 
each in-house developed component 

D3.1 – 6.2 

Quantifying the influence of 
failure repair/mitigation costs 

Build-or-buy decisions for each service 
(component as a service) and the amount of unit 

D3.1 – 6.2.1 



FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 20	
	

Deliverable D3.3: “Models-based Process Definition” 

testing to be performed on each in-house 
developed service.  The solution of the set of 
optimization models can give insights on 
the service composition that best fit the 
requirements considering an explicit cost 
model and the possibility to define repair 
actions to improve the system reliability.  

Optimization of adaptation 
plans with cost and quality 
tradeoff 

The model suggests a new system 
architecture. A new architecture is, thus, 
obtained by modifying both its structure and 
its behavior. Specifically, in order to modify 
the software structure, the model replaces 
existing software services with different 
available services and/or embeds new 
software services into the system With 
respect to the changes in the system 
behavior, it modifies the system scenarios 
(represented, for example, as BPEL 
processes) by removing or introducing 
interactions between existing services 
and/or between existing and new services. 

D3.1 – 6.3 

	

Table	 9	 describes	 how	 input	 information	 of	 the	 architectural	 decision	
frameworks	can	be	represented	in	a	database.		

	
TABLE	9:	MODEL’S	INPUTS	AND	THE		DATABASE	

Model Input Database 

Build-or-buy decisions 
models 

Average number of invocations of 
a software component, number of 
existing software components, 
maximum number of COTS 
instances available for each 
component, number of existing 
software components, minimum 
threshold given to the reliability on 
demand of the system, maximum 
threshold given to the delivery time 
of the system, cost of a component 
instance, delivery time of a 
component instance, unitary 
development cost (time) of a 
component instance, average time 
required to perform a test case of 
the instance, testability of a 
component instance. 

Information related to existing and 
new components can be found in 
the database. In particular, for 
each component instance 
(represented with tables Version-
Component) data are stored. Its 
information (e.g., related to the 
delivery time or average time 
required to perform a test case) 
are stored in the relationship 
Metric-Version.   Input data 
inserts by users are related to the 
number of components, minimum 
threshold given to the reliability 
on demand of the system, 
maximum threshold given to the 
delivery time of the system.   

Quantifying the 
influence of failure 
repair/mitigation costs 

Average number of invocations of 
an elementary service across all 
considered interaction scenarios, 
minimum threshold given to the 
reliability on demand of the 

Similarly to the previous model, 
information related to services can 
be found in the database. In 
particular, for each service 
instance (represented with tables 
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system, number of nominal 
services, maximum number of 
service implementations available 
for purchase by providers for each 
nominal service, cost of the service 
instance, probability of failure on 
demand of a service instance, 
unitary development cost of an in-
house service, testability of an in-
house instance. 

Version-Component) data are 
stored. Its information (e.g., 
related to the cost of the service 
instance, probability of failure on 
demand) are stored in the 
relationship Metric-Version.   
Input data inserts by users are 
related to the number of services, 
minimum threshold given to the 
reliability on demand of the 
system. 

Optimization of 
adaptation plans with 
cost and quality 
tradeoff 

Set of new requirements that 
induce changes in the structural 
and behavioral architecture of the 
software system, set of actions that 
address a certain requirement, 
average number of invocations of 
an elementary service, average 
number of invocations of a new 
service, number of elementary 
software services, set of alternative 
instances for an existing service, 
cost of a service instance, 
reliability (availability) on demand 
of a service instance, response time 
of a service instance, set of new 
available services, cost of a new 
service, reliability (availability) on 
demand of a new service, response 
time of a new service, minimum 
threshold given to the reliability 
(availability) on demand of the 
system, maximum threshold given 
to the system response time. 

Information related to existing and 
new services can be found in the 
database. In particular, for each 
service instance (represented with 
tables Version-Service) data are 
stored. Its information (e.g., 
related to the reliability, 
availability) are stored in the 
relationship Metric-Version.   
Input data inserts by users are 
related to the number of services, 
minimum threshold given to the 
reliability (availability) on 
demand of the system, maximum 
threshold given to the system 
response time. 

 

	
Figure	 7,	 Figure	 8	 and	 Figure	 9	 show	 the	 inputs	 and	 outputs	 of	 the	

architectural	decision	frameworks	listed	in	the	above	tables.		
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FIGURE	7:	INFORMATION	IN	AND	OUT	OF	THE	BUILD-OR-BUY	DECISION	MODEL	

	

	

	

FIGURE	8:	INFORMATION	IN	AND	OUT	OF	THE	QUANTIFYING	THE	INFLUENCE	OF	FAILURE	
REPAIR/MITIGATION	COSTS	MODEL	

	

	



FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 23	
	

Deliverable D3.3: “Models-based Process Definition” 

	

FIGURE	9:	INFORMATION	IN	AND	OUT	OF	THE	OPTIMIZATION	OF	ADAPTATION	PLANS	WITH	
COST	AND	QUALITY	TRADEOFF	MODEL	

	

3.3 AN EXAMPLE REGRESSION TESTING DECISION FRAMEWORK 
	

In this section, we present the example framework we developed for 
making decisions on regression testing (see Figure	10). The details of the model 
are provided in Chapter 5. 

	

	

FIGURE	10:		AN	EXAMPLE	DECISION	MAKING	FRAMEWORK	FOR	REGRESSION	TESTING	

	

In Table	 10, Table	 11 and Table	 12 we discuss examples of regression 
decision models. In particular, we summarize inputs and outputs of the models. 
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TABLE	10:	MODEL’S	INPUTS	

Model Input Reference 

Regression test suite 
prioritization 

Test cases, analysis of code coverage is 
collected for each of the version of a 
software product, Churn metrics are 
collected  for each of the version of a 
software product (e.g., Cyclomatic 
Complexity, number of added or modified 
LOC).  
 

 

More details can be 
found in Section 5.2 

	

	

TABLE	11:	MODEL’S	OUTPUTS	

Model Output Reference 

Regression test suite 
prioritization 

Test cases prioritization. More details can be found in Section 
5.2 

	

	

TABLE	12:	MODEL’S	INPUTS	AND	THE	DATABASE	

Model Input DB 

Regression test suite 
prioritization 

Test cases, analysis of code 
coverage is collected for each of the 
version of a software product, Churn 
metrics are collected for each of the 
version of a software product (e.g., 
Cyclomatic Complexity, number of 
added or modified LOC). 

Similarly to the architectural 
decision models, information 
related to components can be found 
in the database. In particular, for 
each component instance 
(represented with tables Version-
Component) data are stored. 

	

Figure	 11 shows the information in and out of the regression testing 
decision framework listed in the above tables.  
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FIGURE	11:	INFORMATION	IN	AND	OUT	OF	THE	REGRESSION	TESTING	MODEL	

	

3.4 DATA GATHERING 
	

In this section, we provide more information for the database, which is to 
be designed and implemented for collecting the data required by the decision-
making models. The ER scheme can be found in deliverable D3.2.  

The following diagram illustrates the process of creating the database. 
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FIGURE	12:	THE	PROCESS	OF	DATABASE	CREATION 

The data collected from the industrial scenarios (provided by our industrial 
partners) will be used for populating the database, as sketched in Figure	13. 

 

 

 

FIGURE	13:	THE	PROCESS	OF	DATABASE	POPULATION 

     

Information can be categorized in three main categories: 

• Metrics 
• Products 
• Defects 

 

a) Metrics   

Figure	14 shows the ER schema related to Metrics information.  

	

	

FIGURE	14:	ER	SCHEMA	RELATED	TO	METRICS	
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Table Metric. This table encompasses the software metrics. In the deliverable 
D2.2, a quite extensive list of software metrics can be found. Example of metrics 
is LOC (number of lines of code). Different metrics can be used for different 
software versions and for different projects. Moreover, two versions of the same 
components may have different values for the same metric.  

The following table summarizes the data related to code churn, which are used for 
populating the database. 

TABLE	13:	CODE	CHURN	METRICS	

Classification Type	 Characteristic	 Name	 Description	 Feasibility UM	

Change	 Process Schedule HOURS Time in hours to 
develop/maintain the 
software system. 

 number 

Change Process Frequency REVISI
ONS 

Number of revisions 
of a file 

good number 

Change Process Frequency REFACT
ORINGS 

Number of times a 
file has been 
refactored 

good number 

Change Process Frequency BUGFIX
ES 

Number of times a 
file was involved in 
bug-fixing 

good number 

Change Process Size AUTHO
RS 

Number of distinct 
authors that checked 
a file into the 
repository 

 number 

Change Process Size LOC_A
DDED 

Sum over all 
revisions of the lines 
of code added to a 
file 

 number 

Change Process Size MAX_L
OC_AD
DED 

Maximum number of 
lines of code added 
for all revisions 

 number 



FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 28	
	

Deliverable D3.3: “Models-based Process Definition” 

Change Process Size AVE_ 
LOC_A
DDED 

Average lines of 
code added per 
revision 

 number 

Change Process Size LOC_DE
LETED 

Sum over all 
revisions of the lines 
of code deleted from 
a file 

 number 

Change Process Size MAX_L
OC_DEL
ETED 

Maximum number of 
lines of code deleted 
for all revisions 

 number 

Change Process Size AVE_LO
C_DELE
TED 

Average lines of 
code deleted per 
revision 

 number 

Change Process Size CODEC
HURN 

Sum of (added lines 
of code – deleted 
lines of code) over 
all revisions 

 number 

Change Process Size MAX_C
ODECH
URN 

Maximum 
CODECHURN for 
all revisions 

 number 

Change Process Size AVE_C
ODECH
URN 

Average 
CODECHURN per 
revision 

 number 

Change Process Size MAX_C
HANGE
SET 

Maximum number of 
files committed 
together to the 
repository 

 number 

Change Process Size AVE_C
HANGE
SET 

Average number of 
files committed 
together to the 
repository 

 number 

Change Process Size AGE Age of a file in 
weeks (counting 
backwards from a 
specific release) 

 number 
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Change Process Size WEIGH
TED_AG
E 

 
𝐴𝑔𝑒 𝑖 ×𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)!

!!!

𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)!
!!!

 

(Pg.42 Doc. D2.2) 

 number 

Change Resour
ce 

Effort PERSON
-HOUR 

Cost per hour to 
develop/maintain the 
software system. 

high euro 

Change Resour
ce 

Effort PERSON
-DAYS 

Cost per day to 
develop/maintain the 
software system. 

high euro 

Change Resour
ce 

Cost MONEY Money value (per 
hour/day/week/mont
h) average or 
differentiated by 
employee. 

high euro 

Source	 Product Size MB Megabyte high number 

Source	 Product Size FP Function Point high number 

Source	 Product Structure WMC Weighted Method 
Count 

high number 

Source Product Structure DIT Depth of Inheritance 
Tree 

high number 

Source Product Structure RFC Response For Class high number 

Source Product Structure NOC Number Of Children high number 

Source Product Structure CBO Coupling Between 
Objects 

high number 

Source Product Structure LCOM Lack of Cohesion in 
Methods 

high number 

Source Product Structure FAN_IN Number of other 
classes that reference 
the class 

high number 
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Source Product Structure FAN_O
UT 

Number of other 
classes referenced by 
the class 

high number 

Source Product Structure NOA Number of attributes high number 

Source Product Structure NOPA Number of public 
attributes 

high number 

Source Product Structure NOPRA Number of private 
attributes 

high number 

Source Product Structure NOAI Number of attributes 
inherited 

high number 

Source Product Size LOC Number of lines of 
code 

high number 

Source Product Structure NOM Number of methods high number 

Source Product Structure NOPM Number of public 
methods 

high number 

Source Product Structure NOPRM Number of private 
methods 

high number 

Source Product Structure NOMI Number of methods 
inherited 

high number 

Source Product  Structure AHF Attribute Hiding 
Factor 

high percentag
e 

Source Product  Structure MIF Method Inheritance 
Factor 

high percentag
e 

Source Product  Structure AIF Attribute Inheritance 
Factor 

high percentag
e 

Source Product Structure MHF Method Hiding 
Factor 

high percentag
e 

Source Product  Structure POF Polymorphism Factor high percentag
e 

Source Product  Structure COF Coupling Factor high percentag
e 
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Source Product  Structure SIX Specialisation Index 
per Class 

high percentag
e 

Source Product Structure CCN Cyclomatic 
complexity 

high number 

Source Product Structure LOCM4 Lack Of Cohesion of 
Methods version 4 

high number 

Source Product Structure Package 
tangle 
index 

cyclical 
dependencies 
between packages 
and files 

 percentag
e 

Source Product Size PLOC Number of  physical 
lines of code 

high number 

Source Product Size LLOC Number of logical 
lines of code 

high number 

Source Product Structure NOC Number of class high number 

Source Product Structure NOP Number of packages high number 

Source Product Structure NOF Number of files high number 

Source Product Structure BRANC
HES 

Number of branches 
(for all if and switch 
statements) 

high number 

	

	

Table Tool. This table encompasses the tools for metrics evaluation (e.g., the 
Sonar tool). A raw list of these tools can be found in the deliverable D2.2. A tool 
can be used to collect several metrics. Therefore, there is a relationship N:N 
between the tables Metric and Tool. 

Examples of tools are shown below in Table	14. 
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TABLE	14:	EXAMPLE	TOOLS	

Name Description YearFirst
Version 

YearLast
Version 

Jdepend JDepend traverses Java class file 
directories and generates design 
quality metrics for each Java 
package. JDepend allows you to 
automatically measure the quality 
of a design in terms of its 
extensibility, reusability, and 
maintainability to manage package 
dependencies effectively. 

2006 2014 

JCSC JCSC is a powerful tool to check 
source code against a highly 
definable coding standard and 
potential bad code. It is a highly 
configurable checking tool for 
your Java source code. It checks 
the compliance to a defineable 
coding standard like naming 
conventions and code structure. 
Also signs of bad coding, potential 
bugs are found. 

2002 2005 

QALab QALab consolidates data from 
Checkstyle, PMD, FindBugs and 
Simian and displays it in one 
consolidated view. QALab keeps a 
track of the changes over time, 
thereby allowing you to see trends 
over time. You can tell weather the 
number of violations has increased 
or decreased - on a per file basis, 
or for the entire project. It also 
plots charts of this data. 

2006 2006 

CKJM CKJM calculates Chidamber and 
Kemerer object-oriented metrics 
by processing the bytecode of 
compiled Java files. The program 
calculates for each class the 
following metrics: weighted 
methods per class, depth of 
inheritance tree, number of 
children, coupling between object 
classes, response for a class, lack 
of cohesion in methods, afferent 
couplings and number of public 
methods 

2005 2012 

Panopticode The Panopticode project provides 
a standardized format for 
describing the structure of 
software projects and integrates 
metrics from several tools into that 

2007 2007 
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format. Reporting options provide 
correlation, historic analysis, and 
visualization. Panopticode uses 
Tree Maps to display the code 
complexity and coverage. 

Same Same is a tool to find duplicate 
lines in multiple text files. Very 
useful to find and fix copy-and-
paste programming. It has been 
designed to be simple, portable, 
and fast. 

 2001 

FindBugs It uses static analysis to look for 
bugs in Java code. Potential errors 
are classified in four ranks:  
scariest, scary, troubling and of 
concern. This is a hint to the 
developer about their possible 
impact or severity. 

2007 2015 

JavaNCSS JavaNCSS is a simple command 
line utility which measures two 
standard source code metrics for 
the Java programming language. 
The metrics are collected globally, 
for each class and/or for each 
function. It can optionally present 
its output with a little graphical 
user interface. 

1997 2009 

PMD/CPD PMD is a source code analyzer. It 
finds common programming flaws 
like unused variables, empty catch 
blocks, unnecessary object 
creation, and so forth. It supports 
Java, JavaScript, PLSQL, Apache 
Velocity, XML, XSL.  
CPD is a copy-paste-detector. 
CPD finds duplicated code in Java, 
C, C++, C#, PHP, Ruby, Fortran, 
JavaScript, PLSQL, Apache 
Velocity, Ruby, Scala, Objective 
C, Matlab, Python, Go. 

2002 2015 

Xradar XRadar is an open extensible code 
report tool currently supporting all 
Java based systems. The batch-
processing framework produces 
HTML/SVG reports of the systems 
current state and the development 
over time - all presented in tables 
and graphs. It gets results from 
several open source projects and a 
couple of in house grown projects 
and presents the results as massive 
unified html/svg reports.  

2008 2009 
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Checkstyle Checkstyle is a development tool 
to help programmers write Java 
code that adheres to a coding 
standard. It automates the process 
of checking Java code. It is highly 
configurable and can be made to 
support almost any coding 
standard.  It can find class design 
problems, method design 
problems. It also has the ability to 
check code layout and formatting 
issues. 

2007 2015 

Sonar It is an open source platform for 
continuous inspection of code 
quality. Offers reports on 
duplicated code, coding standards, 
unit tests, code coverage, complex 
code, potential bugs, comments 
and design and architecture. 
Records metrics history and 
provides evolution graphs and 
differential views. 

2007 2015 

Classycle Classycle's Analyser analyses the 
static class and package 
dependencies in Java applications 
or libraries. It is especially helpful 
for finding cyclic dependencies 
between classes or packages. 
Classycle's Dependency Checker 
searchs for unwanted class 
dependencies described in a 
dependency definition file. 
Dependency checking helps to 
monitor whether certain 
architectural constrains are 
fulfilled or not. 

2003 2014 

Jlint Jlint will check your Java code and 
find bugs, inconsistencies and 
synchronization problems by 
doing data flow analysis and 
building the lock graph. Jlint is 
extremely fast - even on large 
projects, it requires only one 
second to check all classes. It is 
easy to learn and requires no 
changes to the class files. 

2004 2011 

Sonar 
Plugins 

Sonar includes several plugins 
such as language plugins, plugins 
for developer tools, governance, 
integration, autentication and 
authorization, additional metrics, 
SCM engines, external analizers, 
visualization, reporting, etc. 

2014 2015 
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Squale Assists developers in improving 
the code of their projects. Helps 
project managers to meet quality 
requirements for their applications. 
Gives top-managers dashboards to 
monitor the overall health of their 
information system. Works on 
enhanced quality models. Helps 
assessing software quality and 
improving it over time. 

2009 2011 

JaCoCo JaCoCo is an open source toolkit 
for measuring and reporting Java 
code coverage. It offers line and 
branch coverage. JaCoCo 
instruments the bytecode while 
running the code. To do this it runs 
as a Java agent, and can be 
configured to store the collected 
data in a file, or send it via TCP. 

2009 2015 

	

Relationship Tool-Metric. This relationship is used for obtain metrics values. In 
particular, this relationship can be obtained from Table 19 of the deliverable D2.2. 
For example, the JaCoCo tool (see Section 6) provides code coverage metrics.   

Table Qualitymodel. This table encompasses quality models, for example ISO 
9126 (see Deliverable 2.2). A tool may be related to one (or more) quality models. 
Therefore, there is a relationship N:N between the tables Qualitymodel and Tool.  

Examples	of	quality	models	are:	

Name Description 

ISO 9126 International standard for the evaluation of software 
quality. Its fundamental objective is to address some of the 
well known human biases that can adversely affect the 
delivery and perception of a software development 
project.The standard is divided into four parts: quality 
model, external metrics, internal metrics and quality in use 
metrics. It has been replaced by ISO/IEC 25010:2011 

ISO 25010 This quality model determines which quality 
characteristics will be taken into account when evaluating 
the properties of a software product. The considered 
characteristics are: functional suitability, performance 
efficiency, compatibility, usability, reliability, security, 
maintainability and portability. 

SQUALE It is inspired by the ISO 9126 standard and introduces a 
new level for the assessment of practices in the hierarchy 
of factors, criteria, and measures. It allows one to 
determine the quality of a project and control  its  
evolution  during  the  maintenance  of  a  project, 
preventing  deterioration. The  Squale  model  stresses  bad 
quality instead of averaging the quality in order to quickly 
focus on the wrong parts.  It uses a set of measures 
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combined into practices using formulae which take into 
account company standards and project technical 
specificity.  Practice  weights  are  customized  with  
respect  to  these  overall constraints. 

SIG It is based on best practices and defined standards, such as 
ISO/IEC 25010. The SIG model offers an efficient, simple 
and structured way to gain objective insight in the quality 
of performance by evaluating both the process and the 
product. The result is a score from one to five stars, where 
more stars correspond to a higher quality. One of the key 
aspects of the model is ‘observability’, a property that 
discusses to what extent performance characteristics in a 
system can be measured and assessed.  

 

Relación Tool-QualityModel. This relationship is derived by applying the quality 
models. 

Entity Functionalfeature. This table encompasses the tasks that metric tools 
perform (e.g., the Data acquisition task). In the deliverable D2.2, a description of 
the main tools’ tasks is provided. A tool can perform one or more tasks. A specific 
task can be performed by more than one tool. Therefore, there is a relationship 
N:N between the tables Tool and Functionalfeature. 

 

First, it is populated the following table: 

Name Description 

Data acquisition Set of methods and techniques for obtaining necessary data for 
measurement 

Analysis of measures Ability to store, retrieve, manipulate and perform data analysis 

Data presentation Formats to generate the obtained documentation 

 

Relationship Tool-FunctionalFeature. This relationship can be obtained from 
Table 20 of deliverable D2.2. 

	

b) Products 

 

Figure	15 shows the ER schema related to Products information.  
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FIGURE	15:	ER	SCHEMA	RELATED	TO	PRODUCTS	

 

Table Domain. This table collects information related to the application domain 
of the company (e.g, medical, telecommunications, financial, which are the 
ICEBERG project’s scenarios application domain).  

Table Enterprise. An occurrence of this table represents an organization 
responsible for the software development or maintenance.  Data privacy is 
considered by using appropriates measures (e.g., by inserting names of scenarios 
as ScenarioM, ScenarioT, ScenarioF). 	

Table	Product.	A software product is a component that results of a composition of 
one or more components. There is a hierarchy/aggregation relationship between a 
product and a component. For each product, information related to its providers 
are stored.  

Table Component and Table Version. A component is a self-contained 
deployable software module containing data and operations, which 
provides/requires services to/from other components. Different versions may be 
available for one component. A component version is a specific implementation 
of a component. A component version can be involved in different software 
product versions and in others component versions. Defects are related to 
products, components or component’s versions. For each scenario, information of 
its components (and the related versions) are stored (e.g., number of bugs, issues, 
etc). 

Relationship Version-Version. This relationship is used to determine the 
structure of a product. In particular, the decomposition of components/versions in 
sub-components (versions) is modelled.  

Relationship Metric-Version.  This relationship is used to determine metric 
values of the component versions.  

Relationship Metric-Component.  This relationship is used to determine metric 
values of the components.  

	

c) Defects 
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Figure	16 shows the ER schema related to Defects information.  

	

	

FIGURE	16:	ER	SCHEMA	RELATED	TO	DEFECTS	

	

Table Project. Data related to specific activities, which a software company 
conduced for developing a project, are stored.  Such information is collected with 
respect to the scenarios. For example, for the ScenarioT, it is stored information 
related to two products developed in two different projects.  Generic projects (for 
developing or maintain a software systems) are created, which can be used to 
insert data of new further scenarios.  

Relationship Product-Project. This relationship allows obtaining information 
related to the products and the projects (i.e., project specific activities).  

Relationship Metric-Project.  This relationship allows to obtain metrics related to 
a single project. More specifically, if a project is related to one product, then 
metrics values of the product will be stored. The current version of the project is 
also stored.  

Table Resource. This table encompasses the people involved in the different 
activities. Several people may be involved in the same trigger. For each activity, 
the working hours of the people can be stored (assuring later analysis of 
cost/effort data).  In particular, for each scenario, information related to the people 
involved are stored. Data will be stored by appropriating adopting privacy 
mechanisms (e.g., for people name will be used a nickname).   

Table Lifecycle. This table is related to the software life cycle. Different phases 
are typically involved in a software life cycle, such as the requirements, design, 
and testing phases.  
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Table Issue. This table encompasses defects, which have been detected or fixed 
(see deliverable D3.1 for more details). One defect can be associated to one 
version of a software component. For each scenario, information related to the 
issues found during testing activities (or at operational time) will be stored. For 
example, opening time (and closing time) of the issue will be collected. Other data 
are related to the severity, priority, type of bug, or the current state of the issue 
(e.g., opened, closed, and assigned).   

Relationship Issue-Version. A defect impact (affected and/or fixed) to one or 
more versions of a software component. This information is stored with respect to 
each of the scenarios. 

Relationship Issue-Issue. A defect may occur again even after the defect is fixed. 
The reopen defect issue has to be related to the original defect. 

Table Trigger. This table encompasses the work tasks to be performed to address 
an issue’s occurrence, such as the execution of a test case. A defect (related to the 
Issue entity) may be detected during the execution of a trigger (e.g., during the 
testing activity) or may be fixed by a trigger. If a scenario does not provide details 
about triggers, then a generic trigger is created in order to store data. For each 
project, attributes for its triggers will be stored (e.g., NumTotal, NumPassed, and  
NumFailed).  

Relationship Trigger-Resource. Information related to people involved in the 
single projects (and their specific triggers) will be stored. 
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4 OPTIMAL ALLOCATION OF TESTING RESOURCES  
 
 

  The allocation of testing resources of large software systems is a complex 
task, mostly because it requires models that encompass the composition of test 
process properties into system properties. As software is used more and more in 
business-critical and safety-critical applications, it is important to prevent the 
realization of software with poor software quality. The reliability of a large-scale 
software system is given by the composition of system functionalities (modules, 
sub-systems, etc) reliabilities; therefore, the system reliability is a function of the 
detection ability of the testing process of each of the system functionalities 
(modules, sub-systems, etc). 

Typically project managers’ decisions span from the identification of the 
most important system functionalities (e.g., the ones with the biggest safety 
impact, or the largest financial impact on users) through resource scheduling to 
staff assignment [2]. In fact, the majority of software projects today are embedded 
in dynamic contexts, where requirements, environment assumptions, and usage 
profiles continuously change. Therefore, in the last few years, development 
processes have primarily focused on the maintenance phase, due to the frequent 
changes required by software after the deployment phase. In this work, we focus 
on resource allocation, which is highly relevant in testing process, and is typically 
a time-consuming and tedious task. It is well worth optimizing the allocation 
scheme [3]: although testing resources can be allocated in rather simple ways (e.g. 
average allocation, random allocation, and proportional allocation), an optimal 
allocation scheme may lead to significant improvement in terms of the reliability 
of a software system [4]. 

Any combination of testing allocation decisions may have a considerable 
impact on the cost, time and software quality. For these multi-attribute problems, 
there is usually no single global solution, and the generation and evaluation of 
alternatives can be error prone and lead to suboptimal decisions, especially if 
carried out manually by test/project managers. Therefore, tools that support 
decisions strictly related to meet quality/time requirements, while keeping the 
costs within a predicted budget, would be very helpful to the project managers’ 
tasks. 

The presence in the market of standard off-the-shelf components/services 
has drastically changed in the last decade the development process of large-scale 
systems. Mission-critical large-scale systems, for example, are developed in a 
highly modular way, adopting a strong component-based approach to foster reuse 
and a build-by integration approach [5]. Although several approaches have been 
introduced in the last few years to address these issues, the tradeoff analysis 
among quality, cost, and time has not yet been studied enough. In fact, very 
generic criteria are typically applied in the practice, such as allocating resources 
driven by requirements (e.g., testing a component until all requirements have been 
tested at least once), or driven by the size (more testing to bigger modules). 
Sometimes, intuition drives testing choices: based on experience, a tester may 
deem one functionality (software module) more “critical” than another, therefore 
deserving more testing. As there may be relevant differences among 
functionalities (modules) in terms of quality e.g., because they come from 
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different teams (internal or external in case of outsourcing), or they are based on 
different programming paradigms - their defectiveness can vary significantly [6]. 

The tradeoff analysis results may be strongly affected by parameter 
uncertainties; in fact, the software testing activity is fraught with a not negligible 
uncertainty relates to values of parameters such as operational profile, the 
expected number of initial faults, the fault detection rate per unit testing-effort 
(SRGMs input), fault fixing time, etc. The propagation of this uncertainty on the 
objective function and the constraints should be analyzed. Typically, existing 
works perform the sensitivity analysis of optimal resource allocation problems 
[7], [8] with respect to those parameters deemed critical, such as the expected 
initial faults, the fault detection rate and cost of correcting an error in testing and 
operational phase on the optimum allocation. Because parameters are estimated 
based on the available data (e.g., parameters of a SRGM are estimated based on 
the available failure data, which is often sparse [7]), their estimation only 
represent approximations of parameters. As a consequence, parameter estimation 
plays a critical role in accurately describing testing resource allocation process 
through optimization models. 

The goal of our work is to assist test/project managers in the decisions on 
how to effectively distribute the resources available for testing. Such assistance 
aims to take into account several quality attributes of the testing process, i.e., cost 
(such as that one to correct a bug during testing, or the cost of testing per unit 
testing-effort expenditures), time (e.g., the time to detect and fix a 
bug/defect/fault1), and reliability. In particular, we explicitly consider uncertainty 
in the testing process in order to evaluate the robustness of the testing resource 
allocation. Robustness refers to the ability to tolerate uncertainty in the intrinsic 
input parameters of the testing process. We deal with input parameter 
uncertainties, and model each uncertain parameter as a random variable whose 
variability is characterized by its continuous or discrete distribution. We present a 
Monte Carlo (MC) simulation-based approach to systematically assess the 
robustness of a resource allocation alternative despite its uncertainty. MC is a 
well-assessed method for uncertainty analysis. Examples of its adoption can be 
found in different areas of the scientific literature. Its effectiveness and efficiency 
have, for example, already been demonstrated in the works [9] [10] for handling 
parameter uncertainties in the performance (and reliability) modeling and analysis 
process of software architectures. 

More specifically, we provide an automatic optimization process for 
dynamically allocate testing resources to software modules (functionalities) based 
on trade-offs among software quality, cost, and schedule/time requirements. 
Dynamic refers to the ability of using testing data (i.e., bug reports2) as they 
become available, exploiting them to adjust performance online, and robust with 
respect to variations during testing and volatility of planning time’s assumptions. 
Our approach consists in formalizing the decision problem in terms of system 
quality and testing cost/time requirements, to elicit and represent uncertainties as 
probability distributions, to simulate the impact of resource allocation alternatives 

																																								 																					
1	The	term	fault	(defect/bug)	is	preferred	in	the	fault	tolerance	(software	engineering)	community;	
here,	we	use	them	as	synonymous.	
2	A	bug	report	is	also	called	a	ticket,	an	issue,	an	incident,	a	fault	(defect)	report,	a	maintenance	request,	
etc.	
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on system quality and testing cost/time through MC simulations, and to shortlist a 
set of alternatives using Pareto-based multi-objective optimization techniques. 

Our optimization method combines the application of both metaheuristic 
search techniques and MC simulations. In particular, we have chosen to adopt 
evolutionary algorithms because they have been reported to perform better than 
some other techniques used for solving the testing resource allocation problem (as 
remarked in [3]). These types of metaheuristic algorithms possess the strong 
capability of global search, and are usually not very sensitive to initial solutions. 
On the contrary, these characteristics represent drawbacks that are common 
among the alternative approaches adopted for solving testing allocation problem.  
Evolutionary techniques’ effectiveness has also been demonstrated on a large 
spectrum of problems in the reliability optimization field, such as resource 
management and task partition in grid systems, redundancy allocation, and 
reliability optimization of weighted voting systems [3]. 

In a limited testing budget (and time), an important challenge to address is 
a tradeoff between (i) allocating resources to functionalities (software modules) 
where testing will have the highest detection power, and (ii) maximizing the 
number of bugs that can be fixed in available time. This challenge stems from our 
experience in testing industrial health care systems, in collaboration with our 
partner. This problem is currently relevant for our industrial partner in particular, 
and the health care domain in general due to its high variability in requirements 
and design. In fact, medical procedures and uncertainty in patient behaviors 
require stochastic analysis, and complex decisions under uncertainty are notably 
made about the cost-effectiveness of new medical treatments based on the results 
of clinical trials [11]. 

 
In summary, our main contributions are: 

• An approach implemented as an optimization framework for dynamically 
modeling: (i) fault detection and correction processes of systems 
functionalities (modules) through the SRGMs that best fit the actual 
testing data, (ii) testing cost/time constraints, and (iii) parameter-specific 
uncertainties phenomenons. So that the systems functionalities (modules) 
with shorter time (budget) are tested and that reveled bugs are fixed 
earlier. 

• The maximization of the testing process’s effectiveness by predicting the 
fault correction process as a function of the bug assignment process. More 
specifically, we predict the ability of the debuggers/testers to correct 
faults. We use bug reports (collection of fixed and not-fixed bugs) in order 
to predict debugging performance. In fact, the scheduling of debuggers to 
bug-fixing activities should not be performed only during system testing, 
when a new bug is reported and has to be assigned to a 
developer/debugger for fixing it (see the typical steps of a bug-tracking 
system such as Bugzilla [12]). If the bug assignment would be limited to 
the testing activity’s execution, then it would be difficult to find bug-fix 
solutions that are relevant to a given testing situation (e.g., that exactly 
match the budget and time requirements). We claim that the bug 
assignment (typically a time-consuming and tiresome process in large 
software projects [13]) may be a key factor for a trustworthy prediction of 
the fault correction process of the single functionalities (software 
modules), as well as of the reliability of the whole system. 
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In Sections 4.1 and 4.2, we present an overview of the dynamic testing resource 
allocation framework; in Section 4.3 we provide the formulation of the 
optimization model that represents the core of our approach; in Section 4.4 the 
achieved results on the Medical Company scenario (see Deliverable D2.2 [95]) 
are presented; Section 4.5 introduces related work and discusses the novelty of our 
contribution.  

 
4.1 OPTIMAL TESTING RESOURCE ALLOCATION PROCESS 
 

We defined a process, which helps in dynamically allocating testing 
resources to software functionalities. Dynamic refers to the ability of using testing 
data as they become available, exploiting them to adjust performance online, and 
robust with respect to variations during testing and volatility of planning time’s 
assumptions.  

The defined process is based on a multi-objective optimization model 
combined with a Montecarlo simulation strategy, aiming to maximize the quality 
of a given software (i.e., in terms of number of detected and corrected faults), 
based on the trade-offs among system reliability, testing time, and 
testing/debugging cost. 

We hereafter denote the three objectives to be pursued as: FCO  (Fault 
correction process’ Effectiveness Objective), to maximize; TTO  (Testing Time 
Objective), to minimize; TCO  (Testing-effort Cost Objective), to minimize. The 
output of our process is a solution (i.e., individual in the NSGA-II terminology) 
providing (i) the testing effort to be spent for each system functionality, (ii)  the 
number of debuggers being assigned to each functionality, (iii)  the hours of each 
debuggers to the functionalities. A solution is also characterized by the fitness, 
i.e., the triple composed by the values of FCO, TTO, and TCO that are obtained 
by the solution. 

In the following, we provide a high-level overview of the proposed 
process.  

 
v SRGM Construction. The first phase of the process is obtaining the module-

level SRGMs3 that characterize the testing progress of each functionality. 
Differently from previous work on SRGMs-based allocation (e.g., [4], [30], 
[107], [108], [30]), we do not assume any prior specific SRGM, but we infer 
the most suitable for each functionality. 
 
More important, the process includes the possibility to dynamically select the 
best SRGMs during testing as fault detection data become available, whenever 
historical data are unavailable or unreliable. The steps of the SRGM 
construction are shown in Figure	17.  

 
 

																																								 																					
3 For this work, a module is a functionality: in the following , the two terms are used as 
synonymous if not differently specified. 
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FIGURE	17: HIGH-LEVEL	TESTING	RESOURCE	ALLOCATION	PROCESS	OVERVIEW	

 
• Data Gathering. Let F denote the set of functionalities to test. At the 

beginning of the process application, i.e., t0, there are two possible cases 
for a given functionality: i) historical data about testing conducted on that 
functionality are available (or testing data of another system including the 
same functionality, or also testing of a previous version of that 
functionality) ii) no previous data are available. 

 
In the former case the data (in particular, the fault detection times) can be 
used to fit an SRGM for the functionality among a list of SRGMs. In the 
latter case, i.e., without any additional information to prioritize the testing 
efforts at t0, the initial resource allocation is done uniformly to all 
functionalities: once the testing starts, the new data can be progressively 
used to fit the SRGMs. 
 
It should be observed that the former case allows running the optimal 
allocation before the beginning of the testing activities; however, it 
requires historical data. The latter case uses the data generated during the 
ongoing testing process (hence, more accurate), but the optimal allocation 
algorithm can be run only when enough data are available to build the 
SRGMs. Running the optimal allocation dynamically during testing 
(possibly, several times) yields to more accurate results, but might be less 
useful if run too late (since the suggested allocation would apply just to the 
remaining testing time) [5].  

 
• Validity check. To assign a SRGM to a functionality, a validity check is 

performed to evaluate if data (either historical data or collected during 
testing) can be fitted in a satisfactory way. Each functionality is fitted by 
means of every available SRGM among a set of SRGMs the tester wish to 
try. Fitting is performed by means of the EM algorithm [14], which 
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provides the best fitting parameters for a given dataset and SRGM. On 
each SRGM, it is run a goodness of fit (GoF) test, by means of the one-
sample Kolmogorov-Smirnov (KS) test (with 95% confidence level) for 
comparison of samples with a reference probability distribution. If the test 
is satisfied for at least one SRGM, it means that the testing dataset can be 
said, with 95% of confidence, to come from that SRGMs distribution. 

 
Once the validity check is passed, we have, in general, a set of SRGMs 
that satisfy the KS test for one given functionality; these are said to be 
statistically valid SRGMs. Among them, the best one will be selected 
according to the next step3. 

 
• SRGM selection. The input to this step is the set of statistically valid 

SRGMs for each functionality. They are compared in terms of fitting 
ability and the best one is selected. We adopt a common goodness-of-fit 
measure based, the Akaike Information Criterion (AIC). The SRGM 
model with the lowest AIC value is preferred, denoting the minimal 
information loss that we incur by selecting that model. This way, each 
functionality is assigned with the best fitting SRGM based on real testing 
data. 

 
 

v Parameters Specification. The second phase of our process deals with the 
specification of parameters, and the management of the uncertainty. 
Parameters are split into deterministic and uncertain. Deterministic parameters 
(e.g., desired threshold of reliability, available testing budget, cost of a tester 
and a debugger per hour) do not need any preliminary treatment. Uncertain 
parameters (e.g., SRGM parameters, average fixing time, usage profile) are 
treated by means of a Montecarlo-based strategy aimed at providing the 
robustness of the solution against the variability of the parameters. 
 
Examples of uncertain parameters (other parameters are listed in the following 
Section) are the SRGM ones. Their values are, in fact, derived by fitting a 
dataset, and represent just one of the potential set of values tied to the specific 
“instance” of data observed from testing – namely, repeating testing on that 
functionality would give different results, as testing is a random process. 
 
Uncertainty is addressed by considering the value of a parameter as a sample 
of a probability distribution, similarly to works on architectural solution 
optimization [9], [10]. The parameters are considered as random variables, 
whose variability is characterized by their continuous or discrete distribution: 
the value of a specific instance is considered a deterministic sample drawn 
from the distribution of the parameter. The so-specified parameters with 
uncertainty are the inputs for the next phase, namely the robust optimization. 

 
v Robust Optimization. The third phase is the robust optimization process, 

further detailed in Figure	18. The framework includes two modules: a Model 
Builder and a Model solver. 
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The Model builder generates the optimization model based on the 
deterministic and uncertain parameters; the Model solver processes the model 
and produces the Pareto-front solutions, which consist in the testing-effort 
allocation and the assignment of debuggers (and hours) to each system 
functionality.  
 
The workflow of the Model Solver (here implemented through the NSGA-II 
algorithm and the MC simulation) is shown in Figure	19. 
 
The algorithm starts with a set of solutions, which represent the initial 
candidates (i.e., the initial population of the search) - Generating Initial 
Population step. 
 
At each iteration, recombination and mutation operators are applied to produce 
ne individuals. The fitness of the solution is evaluated by handling parameters 
uncertain via MC simulation, with respect to the three objectives, i.e.: i) the 
expected number of faults that will be detected and corrected by adopting that 
solution, ii) the testing and debugging cost that will be sustained, and iii) the 
time to complete the testing activity. The most promising individuals are 
selected (i.e., Evaluating Individuals in Figure	19) by the metaheuristic. Then, 
new candidates are generated from the current population (i.e., Generating 
New Population in Figure	19), until the stop criteria are satisfied4. 
 
Embedding MC simulation within the metaheuristic allows generating robust 
solutions: the output is not a point solution (where the impact of the input 
parameters uncertainty on the solution is unknown), but interval, i.e., range of 
solutions that reflect the possible variability of the optimal solution depending 
on the variability of the uncertain input parameters. As a result, the tester can 
select a solution based on more or less conservative criteria (e.g., taking the 
solution on the lower bound of the 95% confidence interval of the mean of one 
objective, such as the number of corrected faults). 

 
In the following section, we first describe the MC-based strategy to 

manage the uncertainty and produce robust solutions. Then, we detail the 
objective functions of the model and the constraints. 
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FIGURE	18: THE	ROBUST	OPTIMIZATION	FRAMEWORK	AND	ITS	ENVIRONMENT	

 
 

	

FIGURE	19: HIGH-LEVEL	(NSGA-II	AND	MC-BASED)	MODEL	SOLVER	OVERVIEW	
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4.2 TESTING-EFFORT ALLOCATION EVALUATION UNDER 
UNCERTAINTY 

 
In general, system engineering disciplines (and in particular, software testing) are 
fraught with different types of uncertainties. Software testing, like other 
development activities (e.g., the design process [15]), is in fact human intensive 
and thus introduces uncertainties. Software testing uncertainties may affect the 
development effort and should therefore be accounted for in the test plan [16].  
 
Testing activities are related to the planning and enactment, where enactment 
includes test selection, test execution, and test result checking. The majority of 
these activities concern with human behavior (such as test result checking is 
highly routine and repetitious and thus are likely to be error-prone if done 
manually [16]). Test enactment is in fact inherently uncertain, since only 
exhaustive testing in an ideal environment guarantees total confidence in the 
testing process and its results. However, an ideal testing scenario is infeasible in 
practice for all but the most trivial software systems. Instead, multiple factors 
exist that introduce software testing uncertainties [17]. Uncertainty can in fact 
arise from different sources including external factors not directly related to the 
behavior of humans in testing activities, such as the usage of the system from end-
users. 
 
Different types of uncertainty can thus be faced during the testing process. 
Example of uncertainty sources is related to the system specification. 4  For 
example, information on the software system to be tested may be incomplete, such 
as (some) scenarios, describing the system’s dynamics, might not be available (or 
sufficiently detailed) [18]. 
 
The importance and the need of handling uncertainty in software testing is also 
pointed out by [19]. In particular, the work identifies a set of requirements for 
adequate uncertainty handling in testing, and outlines the lack of: (i) richer testing 
frameworks to handle input parameters uncertainty (i.e., specify input distribution 
instead of discrete inputs), (ii) probabilistic oracles to handle uncertainty 
associated to the system behavior (i.e., due to misbehaviors and incorrect outputs), 
and (iii) richer models to deal with system and environment uncertainty. 
    
In this work package, we dealt with the uncertainty affecting the parameters 
involved in the resource allocation process. The uncertainty is mainly dependent 
on estimation of the parameters inferred from observed data (e.g., parameters of 
the SRGMs, average fixing time), or that cannot be accurately evaluated when no 
enough information is available (e.g., the usage profile of the system 
functionalities). 
 
We face this problem by combining MC simulation and metaheuristic search in 
order to assess the robustness of a solution against uncertainty. Our strategy 
leverages its basics from recent research done in different areas, i.e., software 

																																								 																					
4	Notice	that	this	uncertainty	source	corresponds	to	the	type	of	uncertainty	related	to	system	models,	
i.e.,	all	sorts	of	approximation	and	modeling	uncertainties	of	a	design	process	[15].	
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architecture quality (e.g., performance and reliability), optimization under 
uncertainty [109], [110]. Robustness is the ability to tolerate uncertainty in the 
input parameters. Such as indicated in Figure	19, the search space exploration is 
achieved by enhancing metaheuristic techniques (the NSGA-II algorithm in 
particular) with MC simulation for uncertainty analysis. Again, we represent the 
uncertainty of the parameters by probability distributions to simulate the impact of 
solution alternatives on objective functions through MC simulations, and to 
shortlist a set of alternatives using Pareto-based multi-objective optimization 
techniques. 
 
The approach to evaluate the objective functions in a robust way is depicted by 
Figure	20. The three objective functions (FCO, TTO, TCO) for a given solution 
are evaluated by simultaneously considering the uncertainty of all the parameters. 
The samples are generated based on the probability distribution associated with 
each uncertain input parameter, and the fitness (as well as the constraints) for the 
candidate solutions are re-computed for each sample. 
 
Statistical analysis on the fitness values (collected at each MC run) is performed, 
so as to provide solutions with a desired statistical confidence. In the following 
pargarpahs, we detail the steps  as shown in Figure	20. 
 
 

 
	

FIGURE	20: EVALUATION	OF	TESTING	RESOURCE	ALLOCATION’S	RELIABILITY	(TESTING	TIME	
AND	COST)	UNDER	UNCERTAINTY	

	

4.2.1 Specification of Uncertain Parameters 
 
The uncertain parameters in the testing resource allocation process are categorized 
as follows:: 
 

• System-specific parameters. This category includes the parameters related 
to the detection and correction process, which are dependent on the 
features of the system (functionalities) under test. These are the parameters 
of the debug-aware SRGMs of each of functionality, i.e.: (i) the expected 
number of initial faults; (ii) the parameters of the detection rate per 
remaining fault function; (iii) the parameters of the correction rate per 
pending fault function .  
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• Parameters specific to the testing-process. This category includes the 
parameters related to the testing process and its activities, such as 
debuggers aspects (e.g., the average amount of bugs a debugger can fix in 
a day). 

• Usage profile. The usage profile concerns how users interact with the 
system. It roughly expresses how much each functionality is expected to 
be used during operations. When available, this information is exploited at 
testing time to exercise the system functionalities proportionally to their 
expected usage. A simple, but widely adopted, way to express the 
operational profile is the relative (percentage) frequency of invocation of 
each functionalities (e.g., the call rates of system functionalities). 
 
Call rate estimates can be usually obtained by examining (i) data gathered 
during simulation, static profiling, or dynamic profiling; (ii) field data 
gathered obtained during runtime monitoring of similar systems (or the 
same system in previous versions); (iii) by exploiting domain knowledge 
and information provided by the software architecture [20]. It is worth 
noting that such estimates are affected by uncertainty that we take into 
account.	

 
Uncertain parameters are treated as random variables. Hence, the values of the 
parameters are considered as samples of a – continuous or discrete – probability 
distribution. Distributions of parameters can be derived in several ways [52], such 
as: (i) using the source of the variations, in the cases when the source of 
uncertainty is known and can be estimated, (ii) by constructing a histogram, when 
a considerable amount of data regarding the parameter behavior are available, (iii) 
approximated as a uniform distribution if no information is available and (iv) as a 
discrete distribution, when parameters are discrete-valued. Depending on the 
available information, any of these methods can be selected to derive a sampling 
distribution for each parameter.  
 
We adopt the uniform distribution (UD) in all the cases but one, as we assume the 
more general case of no prior knowledge about any parameter. Specifically, the 
continuous UD over a range is used for the SRGM parameters about fault 
detection process and for the debugger capacity parameters, while a discrete UD 
over the set of functionalities is used for the usage profile parameters. For the 
SRGM parameters of the fault correction process, we exploit the knowledge 
available from the literature, and adopt the exponential distribution, since it has 
been shown to well represent the debugging process [111]. In the case of SRGM 
parameters, the ranges of the uniform distribution can leverage from the 
confidence intervals (e.g., at 95%) of the parameter estimation (e.g., as in [9][10).  
For the debugger load capacity, it should be derived from requirements within the 
organization, which establishes how many (minimum and maximum) bugs each 
debugger can be assigned in a day. As for the usage profile, if no information is 
available about which functionality is going to be more used in operation, each 
functionality can be assigned the same probability. Finally, as for the correction 
process, the mean of the exponential distribution can be estimated by means of 
historical data available within a company about the average bug fixing time, as 
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recorded in a bug tracking system; if the information is not available, a domain 
expert should assess it. 
 
 
4.2.2 Sampling of Uncertain Parameters and Solution Evaluation 
 
Samples are drawn from the defined distributions for each of the input parameters. 
These are used in the objective functions and constraints of the model in order to 
evaluate a candidate solution under the sampled parameter values. The process is 
repeated until a desired accuracy is achieved (an iteration is called a MC run). The 
output of a MC run is a sample representing one possible fitness value of the 
candidate solution (i.e., a triple of values for FCO, TTO and TCO). Criteria for 
stopping the simulation and robustly evaluate the candidate solution are explained 
hereafter. 

 
 
Objective functions evaluation under uncertainty. The robust value for the 
objective functions from the MC runs could be derived by using two methods [10]. 
The first method consists in deriving a Probability Density Function (PDF) for each 
objective function (i.e., a histogram is constructed for each objective by using 
various discretization techniques), and obtaining the robust objective values for a 
given confidence. However, this approach is computationally expensive 
(considering that it should be repeated for all the individuals). Moreover, 
prospective probability distributions for the objective function values need to be 
specified a priori. 
 
The alternative method leverages non-parametric or distribution-free statistical 
procedures. Specifically, for each candidate solution, it derives descriptive statistics 
(e.g. percentiles, mean, variance or confidence bound) for the three objectives from 
the observed samples of the MC simulation. To capture the robustness of a 
candidate with different degree of tolerance, appropriate percentiles can be used as 
robust objectives. In contrast to the PDF-based method, this method does make any 
assumption on the probability distribution, being it a non-parametric method, and 
are successfully applied in a variety of statistical problems. 
 
We hereafter adopt a non-parametric method. Several options are available 
regarding the descriptive statistic to adopt: for instance, selecting the 50th 
percentile for all the three objectives means that we consider, for each objective, the 
median of the observed samples of the MC simulation, for a given candidate 
solution. A more conservative choice is to select the lower/upper bound, namely the 
5th or 95th percentiles, depending on whether the objective is to minimize or 
maximize. This approximates the bounds of 95% confidence interval. For instance, 
if the objective is to maximize (such as in the case of FCO), we consider the lower 
bound as robust solution (namely the 5th percentile of observed values); whereas, 
for the other two objectives (TTO and TCO), the 95th percentile can be taken as 
robust solution. 
 
Dynamic Stopping Criteria. Regardless the percentile chosen, the issue of how 
many MC runs (i.e., how many samples) should be performed for an accurate 
estimate need to be addressed. We use the notion of dynamic stopping criterion, 
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introduced in [10], in order to monitor the accuracy of the value to estimate (e.g., 
number of faults corrected) and automatically stops the MC simulations when the 
number of samples is sufficient to satisfy a predefined error threshold. For 
instance, let us consider the objective 1, FCO. Let us denote with f a value of this 
objective after one MC run. Several runs of the MC simulation will provide a set 
(likely different) values of f, due to the different (uncertain) input parameters’ 
values sampled at each run (F=f1, f2, …, fN). The goal is to figure out how many 
samples are needed (i.e., the size of N) to get an estimate of the desired percentile 
of the set F – let us denote it as fperc. The procedure is as follows:  
 
• A minimum of k MC runs are performed. After k repetitions, the desired 

percentile is estimated on the collected set (f1,…, ,fk), obtaining the first estimate 
of the percentile, fperc_1. 

• As the number of runs increases beyond k, further estimates are obtained, 
considering samples from the beginning, i.e.: 𝑓!"#$!  from 𝑓!… 𝑓!!! ; 𝑓!"#$! 
from 𝑓!… 𝑓!!!;, and so on. The variation of the estimate is monitored for a 
sliding windows of size k, as the accuracy of the estimation is a changing 
property. Thus, the last k estimates are considered:  𝑓!"#$!  ,   𝑓!"#$!!! , 
…𝑓!"#$!!!   The statistical significance is calculated for the last k estimates as 
in [112]: 

 
 

𝑒 =  
!!(!!!!)

!

!!"#$! !(!!"#$)! 

!!"#$
   (1) 

 
where e is the relative error, 𝑓 denotes the average of last k estimates, 𝑓!is the 
mean-square of the last k estimates,  is the desired significance of the test and 
z refers to the inverse cumulative density value of the standard normal 
distribution. The relative error e is checked against a predefined tolerance level 
(0.01 in our case): when it is below the threshold the MC runs are stopped, as the 
desired accuracy has been achieved. 
 
 

 
Robust Optimization. With the MC runs for each candidate solution embedded in 
the loop, the search space exploration is achieved by enhancing the metaheuristic 
techniques (the NSGA-II, in our case) with the MC method for the analysis of 
uncertainty. 
 
For each candidate solution, the fitness value (for each objective) to consider is 
the chosen percentile (e.g., the 5th, the 50th, or the 95th percentile). The Pareto-
front concept is enhanced to express the robustness of the solution with respect to 
parameters uncertainty. Thus, the dominance notion is slightly modified to 
account for this change. For instance, suppose we are considering an objective to 
minimize (e.g., the objective 2, namely TTO). In this case, we may want to 
consider the upper bound (i.e., 95th percentile of the MC sample set) as 
conservative criterion to compare solutions. Then, the Pareto-front concept is 
modified as follows. 
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Given the minimization of a vector function f of n components  𝑓!, 𝑘 = 1,… ,𝑛 of 
of a vector variable x in 𝐷!" , subject to inequality and equality constraints 
(𝑔! 𝑥 ≥ 0, 𝑗 = 1,… , 𝐽 and ℎ! 𝑥 = 0, 𝑘 = 1,… ,𝐾).  
Let us denote with f(x) =(𝑓! 𝑥 ,… , 𝑓!(𝑥))  the upper bound function vector, 
(where 𝑓! is the confidence upper bound of 𝑓!  obtained from MC runs). A solution 
vector 𝑢 = 𝑢!,… ,𝑢!  dominates a vector 𝑣 = 𝑣!,… , 𝑣!  , denoted by u  ≼ v  if 
f(u)  is partially less than f(v) , i.e., ∀𝑖 ∈ 1, . . 𝑘 ,  𝑓(𝑢)!  ≤  𝑓!(𝑣)   ∧  ∃𝑖 ∈
1,… , 𝑘  :  𝑓(𝑢)! <  𝑓!(𝑣). 

 
Project Constraints evaluation under uncertainty. Figure 7 sketches a high level 
view of the proposed approach for evaluating alternative candidates (i.e., testing 
resource allocation individuals, see Figure	 19) according to the constraints on 
reliability (and testing time/cost). 
 
The input of the approach for constraints evaluation is a testing-effort and bug 
assignment allocation (an individual of the population of the search). It proceeds 
iteratively. At each iteration step, the individual is evaluated according to the 
constraints on reliability/time/cost of testing (see Figure	20). Such properties (i.e., 
reliability, cost and time of testing) of one individual are evaluated by 
simultaneously considering all the parameters’ uncertainties. In particular, 
samples are generated from the probability distributions of uncertain parameters 
using the MC method, and the properties are re-calculated for each of these 
samples. The output of the constraints evaluation approach, Resij (with j 
representing the property identifier), is a descriptive statistic (e.g. percentile, 
mean, variance or confidence bound) for the properties (reliability, testing time 
and cost) from the observed samples of the MC simulation. Dynamic stopping 
criteria are used for determining when a sufficient number of samples for the 
associated individual is determined. 
 

 
 
FIGURE	21: CONSTRAINTS	ON	RELIABILITY	AND	TESTING	TIME/COST	EVALUATION	PROCESS	

IN	PRESENCE	OF	UNCERTAIN	PARAMETERS	
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Stopping Criteria (Figure	21). We have defined the stopping criteria by exploiting 
the work in [9] that deals with the model-based performance analysis (i.e., the 
satisfaction of certain performance requirements, e.g. response time, throughput) 
of software architectures under uncertain parameters. The work introduced a MC-
based approach. In particular, the sampling process is seen as a Bernoulli 
experiment where each trial provides a value of 1 or 0 leading to a Bernoulli 
distribution with parameter p (which can be estimated using MC simulations). 
Stopping criterion has been defined for estimating the value of p with a tolerance 
against the inherited uncertainty. 
 
Similarly, we can consider the MC-based evaluation process of constraints 
(illustrated in Figure	 21), as a Bernoulli experiment where each trial 
(corresponding to execution of the evaluation process, see Figure	20) provides a 
value of 1 or 0 leading to a Bernoulli distribution with parameter p, i.e., each 
execution of the evaluation process has one Boolean indicator representing 
whether the trial satisfies reliability (cost and time) requirements. In other words, 
a run of our constraint evaluation process corresponds to a sample of the MC-
based process defined in [9]. 
 
Thus, the stopping criteria can be defined (by exploiting the ones used in [9]) as 
follows: 
 
– A minimum of h executions of the MC-based process (of Figure	 20) are 
conducted and results are recorded (x1,…,xh). The value of p is estimated as 
follows: 
 

𝑝 = !!
!
!!!
!

   (2)  
 

– The variation of the estimate 𝑃 = 𝑝!,𝑝!,…𝑝! is monitored for a sliding 
window of size h. Only the last h executions of the MC-based process are 
monitored, as the accuracy of the estimation is a changing property. The 
objective is to detect if sufficient accuracy is obtained. 

– The statistical significance is calculated for the last h estimates: 
 

𝑒 =  
!!(!!!!)

!

!!!(!)! 

!
  (3)  

 
where e is the relative error, 𝑝 is the average of last h estimates, 𝑝! is the mean 
square of the last h estimates,  𝛼 is the desired significance of the test and z refers 
to the inverse cumulative density value of the standard normal distribution. The 
relative error e of the reliability (cost/time) estimate𝑃  is checked against a 
tolerance level, e.g. 0.005. 
 
Results Interpretation (Figure	 21). Similar to the performance robustness of 
software architectural models [9], the robustness of testing resource allocations 
with respect to the requirements on reliability (and testing cost and time) can be 
evaluated by systematically analyzing the results, Resij(t) (with j and t 
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representing the property identifier and the run identifier, respectively) of the MC-
based evaluation process runs, and checking if each evaluation process’s run 
fulfills the constraints. 
 
We associate to the t-th result, Resij(t), corresponding to the t-th run of the 
constraint evaluation process, a fulfillment flag 𝑓!"#!" 𝑡   which is a binary value 
that indicate the satisfaction of the requirements. The robustness of the testing 
resource allocation (corresponding to the  i-th individual) with respect to the 
requirements on reliability (testing time and cost) is defined as follows: 
 

𝑟𝑜𝑏𝑢𝑠𝑡!!"#!,!(!) =
!!"#!,!(!)

!
!
!!!   (4) 
						

	
where  (i)  𝑟𝑜𝑏𝑢𝑠𝑡!!"#!"(!)  is a real value in the [0,1] interval, and (ii) N is the 
number of execution of the constraint evaluation process. It is the percentage of 
samples that fulfill the requirement(s). 
	
	
4.3 OPTIMIZATION MODEL FORMULATION 
 
The goal of our optimization model is to find the optimal allocation of testing 
resources among K functionalities of a system S to test, and optimal assignment of 
bugs to debuggers to maximize the effectiveness of the testing process. “Optimal” 
here denotes actions that incur minimum time and cost of testing, and maximum 
effectiveness of the fault correction process under minimum reliability and testing 
budget constraints. 
 
Table	15 summarizes the symbols used throughout this section. e Section. In the 
following, the parameters, variables, constraints, and objective functions are 
described. 
 

TABLE	15:	MAIN	NOTATION	ADOPTED	
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4.3.1 Model Parameters 
 

In this section, we describe the main parameters of our optimization model.5 

In this section, we describe the main parameters given as input to the model: 

– The time, t0 is the time at which tester decides to run the resource allocation 
algorithm. This time can be the beginning of the testing process of the system 
under test (when historical data are used for the SRGMs construction) or it can be 
any time during the testing process (when online testing data are used to build the 
SRGMs). In the latter case, the allocation model can be run several times during 
testing (what we called dynamic allocation); thus we refer to t0 as “(re-)iteration” 
time. 

– Fd&c(t0)k is the number of faults detected and corrected in functionality k after t0 
time units. 

– When the algorithm has to be run, the SRGMs for each functionality should be 
available, according to the phase 1 of the approach. They are characterized by 
detection and correction rate functions, denoted as 𝜆!(𝑡), and 𝜇!(t), representing, 
respectively, the fault detection rate per undetected fault, and the fault correction 
rate per detected but uncorrected fault. Their parameters’ estimation can be coped 
with in several ways (e.g., Maximum Likelihood Estimate, Least Square Estimate, 
or Expectation Minimization). 

																																								 																					
5 For	the	sake	of	readability,	other	parameters	are	given	later	in	the	document. 
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– The δk parameter is the average number of hours required to fix a bug, for the 
functionality k. It is estimated by querying historical data about bug correction 
tracked in the bug repository6, such as in [58],, [113], taking the median instead of 
the mean when the distribution is highly skewed. 

ωk is the probability that the k-th functionality will be invoked:  
𝑤! ≥ 0,∀𝑘 = 1,…𝐾 , and 𝑤!!

!!! = 1. This information can be synthesized 
from the operational profile estimation [38], according to either design-time (e.g., 
documentation, simulation, profiling) or execution-time (field data of previous 
versions) methods, possibly complimented by expert judgment [114]. 
– 𝛾!!  is processing capacity of the debugger d with respect to the functionality k. It 
represents the working rate of the debugger on functionality k, expressed as 
average number of hours per day that the debugger d is allowed to work t fix bugs 
of functionality k. 
 
- 𝐶!∗,𝐶!∗,𝐶!∗	are the cost parameters used in the cost-related objective function 
(TCO). They represent, respectively: (i) 𝐶!∗  is the cost per man-day to correct a 
bug during testing; (ii) 𝐶!∗  is the cost per man-day to correct a bug during 
operational use (typically   𝐶!∗>  𝐶!∗ [7]); and (iii) 𝐶!∗ is the cost per testing-effort 
expenditure unit (e.g., man-hour or man-day) to test a functionality (i.e., hourly or 
daily cost of a tester). These parameters are provided as input by the user; 
although they could generally have different values for each functionality, we 
assume they are the same for each functionality to keep the model simple. 

1) α, h, β, A are the parameters of the logistic testing effort function (TEF) 
[30][26], which is used to explain how testing effort varies in function of 
calendar time. Specifically: α,  is the consumption rate of testing-effort 
expenditures, (ii) h is a structuring index whose value is larger for better 
structured software development efforts, (iii) β is the maximum budget 
that has been given on the total amount nof testing-effort that can be 
consumed (expressed in man-hours), and (iv) A is a constant parameter. 
Although the estimate of these parameters is not the main focus of our 
work, as shown in [26], [25], and [24], [22], they may be estimated by the 
method of least squares (LSE) or maximum likelihood estimation (MLE).	

	
4.3.2 Variables 
 
This section introduces the decision variables of the optimization model.  
 
The Yk 1 ≤ 𝑘 ≤ 𝐾  variables represent the amount of testing effort (in man-
hours) to perform on each system functionality. It is a decision variable, namely: 
solving the model will provide a vector of Yk values, that are the suggested testing 
efforts to spent per functionality. A related variable is tk: it is the calendar testing 
time (measured, in hours or in days) devoted to test functionality k, and is bound 
																																								 																					
6 For	simplicity,	we	assume	the	average	number	of	hours	required	to	fix	a	bug	of	a	given	functionality	k	
(i.e.,	δk)	is	the	same	for	each	debugger	d	working	on	that	functionality.	
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to the spent testing effort Yk via the TEF: In fact, as the effort is related to testing 
time by the TEF, assigning Yk man-hours to k corresponds to assign 𝑡! = 𝐹!!(𝑌!) 
hours, where 𝐹!! is the inverse of the TEF. 
 
 
The  𝑥!!   1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾    and  𝑁!!  (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾)  variables 
are used to predict the correction process of the debugger/tester d with respect to 
the functionality k. These are further decision variables. One of the goals of the 
model is, in fact, to maximize the number of faults corrected, which is related not 
only to the maximization of faults detected, but to how much effectively such 
revealed faults are corrected by debuggers. Specifically, the  𝑥!!  variables are 
used to select debuggers for the functionality k; in particular 𝑥!!  is equal to 1 if 
the debugger d is chosen and 0 otherwise. The  𝑁!! variables represent the time (in 
hours) assigned to the debugger d to work on functionality k in the interval (t0,tk].  
 
Thus, a solution consists of: the Yk variables 1 ≤ 𝑘 ≤ 𝐾  suggesting the optimal 
testing effort per functionality, by the 𝑥!!   1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾   variables 
and, assigning debuggers to functionality, and by the 𝑁!!  (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾)   
variables assigning the number of hours of debuggers to functionalities. 
 
4.3.3 Constraints 
 
A first set of most relevant constraints of the model are expressed in Figure	22: 
 

 
FIGURE	22: MODEL CONSTRAINTS		

	

- For each functionality k, faults detected in the interval (t0,tk] must be fixed. 
Equation 1 in Figure 22 expresses that the total time assigned to debuggers 
on functionality k must be greater or equal than the expected time to 
correct the detected bugs (estimated as mean fixing time per bug 
multiplied by the expected number of bugs that will be detected if k is 
tested for a time tk). Note that this equation holds if we assume that all 
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detected bugs with the allocated testing resources must be corrected, and 
thus assigned to debuggers, whereas the equation should be appropriately 
modified if this assumption is relaxed. 

- The bug correction process is modeled as a function of the amount of time 
(e.g., in hours) required to fix the bugs detected, and as function of the 
working time of debuggers. The waiting queues are modeled by 
introducing a constraint on the capacity of debuggers. This constraint is 
expressed by Equation 2 in Figure 22: for each functionality k, the load of 
debugger d due to the assignment of bugs is limited by a function of the 
processing capacity of debugger d, (i.e., 𝛾!!  ). 𝑁!! is greater than 0 only if: 
i) the debugger d is allocated to functionality k (𝑥!!   = 1), ii) a non-zero 
testing time tk is allocated functionality k (tk > 0), and, from constraint 1, 
iii) at least one bug is expected to be detected during the assigned time tk 
(i.e., 𝑚!! 𝑡! + 𝑡! >  𝑚!!(𝑡!)), assuming 𝛾!!   > 0 and δk > 0. This 
throughput model is a light-weighted one that favors model solvability. An 
explicit management of queues could be introduced, using, for example, 
queuing network models explicitly considering a one-to-one mapping 
between debuggers and bugs, but at the expense of computational 
complexity and understandability. 

- Equation 3 of Figure 22 indicates the (possible) constraints defined for 
debuggers that must be assigned or cannot be assigned to functionalities 
for some reasons, e.g., due to the debugger’s skill level or expertise area. 
In these cases, the corresponding variable 𝑥!!   is forced to be 1 or 0. Note 
that, in order to solve incompatibilities or dependencies among debuggers 
and/or functionalities, due, for instance, to human factors (skill set, skill 
level and availability) or functionality characteristics, additional 
constraints can be added as contingent decisions. For example, 𝑥!!  ≤ 
𝑥!! means that, if the second debugger is selected for the first functionality, 
then the third debugger must be selected for the second functionality; 𝑥!!  ≤ 
𝑥!!  means that, if debugger 1 is selected for functionality 2, then he must 
also be selected for functionality 3. 

- Equation 4 in Figure 22 states that the expected number of cumulative 
faults detected in (t0,tk] (namely, if tk = F−1(Yk) testing time is assigned to 
test k), cannot be greater than the expected number of residual fault in k. 

- Equation 5 in Figure 22 expresses a constraint on the maximum effort that 
can be allocated. A maximum threshold B is given on the total amount of 
testing effort possibly consumed (expressed in man-hours). The test 
manager has to distribute a budget B of man-hours among the K 
functionalities; the solution suggests that k-th functionality should receive 
a testing effort equal to Yk man-hours. 

- Finally, Equation 6 of Figure 22 tells that: if there are no available 
debuggers for functionality k, then the amount of testing effort allocated to 
k (i.e., Yk) will be 0 (since bugs could be detected, but then not corrected). 
In other words, if the functionality k receives a certain amount of testing 
effort, then one or more debuggers must be assigned to functionality k. 
There could be an additional constraint on Yk: if we require that all the 
functionalities must be tested, then Yk > 0, 1 ≤ k ≤ K. Similarly, further 
requirements by the tester could be seamlessly included as constraints in 
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the model, enabling several extensions; in this work, we keep the model in 
its basic form. 

- Equation 7 reports the constraint on the minimum desired failure intensity 
at the end of testing. The estimate of failure intensity of a functionality k is 
usually obtained though the SRGM, as it is the derivative of the 
cumulative expected number of detected faults, md(t). The estimate is 
obtained as: 

 
𝜙! 𝑡! =  !!!

!"
(𝑡!) (5) 

It denotes the expected failure intensity if the model solution assigns a 
testing effort Yk to functionality k such that Yk = F(tk) (where F denotes the 
TEF), or, similarly, such that: tk = F−1(Yk). A maximum threshold, 𝜙∗,  is 
given to the failure intensity of the overall system as input requirement. In 
an average-case scenario, like the one we assume, the failure intensity 
constraint is formulated as follows: 
 

𝜔!𝜙!(𝑡!) ≤ 𝜙∗!
!!!  (6) 

 
In other words, the system failure intensity is weighted by the call rates of 
each functionality. In a worst-case scenario, tester may want to require that 
all functionalities should satisfy a failure intensity constraint. In this case, 
the constraint would be formulated as follows: 

 
𝑚𝑎𝑥!!!…!(𝜙! 𝑡! ) ≤ 𝜙∗ (7) 

 
Finer-grained constraint can be introduced to guarantee threshold limits for 
each functionality, i.e.: 𝜔!𝜙!(𝑡!) ≤ 𝜙∗ .  

	
 
4.3.4 Multi-Objective Function 
	

In this section, we define the three objectives of the multi-objective optimization 
problem. 

2) Fault correction process’ Effectiveness Objective (FCO) The objective 
function to be maximized, as the predicted number of faults corrected 
(providing an assessment of the system reliability after the application of 
the amount of testing effort, Yk, on each of system functionalities), is given 
by: 

𝐹𝐶𝑂 =  𝑚!!(𝑡! + 𝑡!)
!
!!!          (8) 

The solution for the exponential case with logistic TEF is: 
	

𝑚!! 𝑡! + 𝑡! =  𝑒!!! !!!!! 𝑎!
!!!!!

!!
𝜇!𝑒!!! 1− exp −𝛽! 𝑌! 𝑡 − 𝑌! 0 𝑑𝑠	

(9)	
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After the application of the amount of testing effort, Yk, the expected 
number of faults corrected for the functionality k depends on: the fault 
detection rate, related to the testing effort suggested for k, Yk, through the TEF, 
and (ii) on the availability of sufficient debugger (hours), regulated by 𝑁!! and  
𝑥!!  variables, for the correction of all detected faults at the rate expressed by 
𝜇!(𝑡).  

 
3) Testing Time Objective (TTO) 

Assuming that the time-depending behavior of the testing-effort (for each of 
the system functionalities) is modeled by the generalized logistic testing-effort 
function proposed in [26][30], we can compute the testing time for functionality 
k can as function of the effort: 

𝑡! = − !
!∗!

𝑙𝑛
( !!!

)!!!

!
	 (10)	

	

where (i) 𝛼 is the consumption rate of testing-effort expenditures in the logistic 
testing-effort function, (ii) h is a structuring index whose value is larger for better 
structured software development efforts, (iii) B is a maximum threshold that has 
been given on the total amount of testing-effort that can be consumed (expressed 
in man-hours), and (iv) A is a constant parameter in the logistic testing-effort 
function. Although the estimate of these parameters is not the main focus of our 
work, as shown in [26], [27], and [28], they may be estimated by the method of 
least squares. Moreover, more details on estimation of the budget B can be also 
found in [5]. 
    

   Assuming that manpower is available to independently test system 
functionalities (namely, they can proceed in parallel), the second objective 
function is the time minimization for testing the K functionalities: 
 

𝑇𝑇𝑂 = 𝑚𝑖𝑛!!!…!(𝑡!)	 	 (11)	

	
Although this assumption could not be too realistic due to the overhead that likely 
incurs when a lot of functionalities must be tested, it reflects a common practice in 
testing planning. However, as previously discussed to relax such an assumption, 
guidelines of existing approaches for the work packages scheduling and staff 
assignment problem plan could be exploited. 
	

3)	 Testing-effort Cost Objective (TCO).  The third objective cares about 
minimization of cost, which is a measure related to the effort spent but that goes 
beyond the mere effort for testing. In agreement with [30], for the functionality k, 
the cost of testing effort expenditures during software development and testing 
phase, and the cost of correcting errors before and after release, can be expressed 
as follows: 
	



FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 62	
	

Deliverable D3.3: “Models-based Process Definition” 

𝐶𝑜𝑠𝑡! 𝑡 = 𝐶!∗
!!
!"

𝑚!! 𝑡 + 𝐶!∗
!!
!"

𝑚!! ∞ −𝑚!! 𝑡 +  𝐶!∗
!!
!"

𝑑𝑡 						(12)	

where: (i) 𝐶!∗  !!
!"

 is the cost per day to correct a bug during testing; (ii)  𝐶!∗  !!
!"

 
is the cost of correcting a bug in operational use (typically 𝐶!∗ >  𝐶!∗   [31]); and 
(iii) 𝐶!∗  is the cost of testing per unit testing-effort expenditure, expressed in cost 
of a man-day (for a tester).7 
 

This cost model, similar to the one in [30], is a light-weighted one that favors 
model solvability. However, it can be enhanced by using well-assessed cost model 
from the literature (e.g., COCOMO II model [32]) to increase the result accuracy. 
This can be done without essentially changing the overall model structure, but 
with the side effect of increasing the solution complexity. To address this, the 
guidelines of the COCOMO II-based model defined in [33] for estimating the 
development cost of an in-house developed service may be exploited. More 
specifically, in [33], the development cost of an elementary software service has 
been defined as a function of the testing activity (e.g., the number of tests 
performed on a service before delivery). The original COCOMO II model [32]  
introduces a software cost function that depends on the size (i.e., the lines of code) 
and the type (i.e., simple, intermediate and complex) of software. These two 
attributes allows estimating the amount of effort, in terms of person-months, 
needed to deliver the software. 
	
 
𝐶!∗  , 𝐶!∗   and 𝐶!∗  may be estimated in different ways depending on the functionality 
type and debugger/tester profile. Details on their estimation can be found in [30]. 
The work in [30] is focused on cost of software modules, whereas we consider the 
cost to test system functionalities. In other words, we consider each of the system 
functionalities as software modules. 
 
Therefore, the objective function to be minimized, as the sum of the cumulative 
testing-effort costs for all of system functionalities, is given by: 
	

𝑇𝐶𝑂 =  𝐶𝑜𝑠𝑡!(𝑌!)!
!!! 								   (13)	

	

	

 
 
4.3.5 Model Summary 
 

Figure 10 summarizes the formulation of our optimization model. 

	

																																								 																					
7	Notice that the cost 𝐶!∗  does not include the costs for the bug-fixing activity. Instead, 
these costs are considered in the estimation of the 𝐶!!  

∗  parameter. 
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FIGURE	23: OPTIMIZATION	MODEL	FORMULATION	

 
 
Main assumptions and threats to validity 
 
The usage of SRGMs (with TEF) to model the fault detection and correction 
process implies the following assumptions: 

– The fault removal process is modeled as a Non-Homogeneous Poisson 
process (NHPP), where the mean number of faults detected in the time 
interval (t, t + ∆t) by the current testing-effort is proportional to the mean 
number of remaining faults in the system at time t. 

– Each of the system functionalities are subject to failures at random times 
(with independent inter-failure times) caused by the manifestation of 
remaining faults in the functionalities. 

– System functionalities are autonomous, independently testable. New 
functionalities or feature enhancement are not introduced into the code 
during testing.  

– The relation between testing effort and testing time can be modeled by a 
testing effort function (TEF). 

– – Each time a failure occurs, the fault that caused it is correctly removed 
and no new faults are introduced (i.e., perfect repair). This assumption can 
be partially relaxed if we admit, among the set of selectable SRGMs, the 
ones modeling the imperfect debugging phenomena. 
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We mitigate the SRGM assumptions by enabling, in the formulation, a 
module-tailored selection of the best model among a set SRGMs, and by the 
possibility, in the process, to fit SRGM with online data (that account for the 
effect of such assumptions’ violations). In addition to the SRGM assumptions, 
further assumptions are: 
 
- We assume historical information about issue reports is correct: namely, 

reporters can correctly distinguish a bug from a feature request, can 
correctly identify duplicate bug reports, and we can faithfully approximate 
the average bug fixing time (e.g., the δ parameter) as the bug closing 
minus the bug opening time.  

- Bug fixing time dependence on other basic bug-related features, such as 
severity and priority or bug owners and bug types is not considered to 
keep the model simple at this stage. Extensions can be implemented for 
more accurate but expensive model formulations. 

- We assume that (i) debugger manpower is available to independently fix 
bugs in system functionalities, and (ii) for each of the Yk man-hours, there 
is the same pool of D debuggers. We are working toward relaxing such 
assumptions. To this extent, we are investigating how to use the guidelines 
of existing approaches (such as the ones of [35]) for the work packages 
scheduling and staff assignment problem plan (i.e., the allocation of staff 
to teams and the allocation of teams to work packages).  

- Although we admit several testing-effort time model, we taken, as specific 
example, the generalized logistic testing-effort function, a widely-used 
one. It can be replaced by other well-assessed distribution function from 
the literature. Although this can be done without changing the model 
structure, the effect of other TEFs on solution complexity are not assessed. 

- Cost constants are assumed to be known within the company. Such 
information is not always easily accessible, and more or less complex 
models can be adopted to accurately estimate it, as COCOMO ones. Such 
models are out of scope for this paper. 
 

 
 
4.4 HEALTH CARE CASE STUDY    
 

In this section we describe the case study that we devised in order to validate the 
effectiveness of the approach in dynamic testing resource allocation of industrial 
health care software. In particular, we present the achieved results on the Medical 
Company scenario (see Deliverable D2.2 [95]) .	
 
     The goal of our experimentation is to evaluate the effectiveness of our 
approach in addressing the important challenges related to the tradeoff between (i) 
allocating resources to system functionalities where testing will have the highest 
detection power, and (ii) maximizing the number of bugs that can be fixed in 
available time. To do this, we compared the amount of testing efforts selected by 
our approach with the amount of testing efforts selected without explicitly 
incorporating bug assignment activities into the fault correction process of each of 
the functionalities. 
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Random generation of model instances. Starting from the nominal values of the 
parameters, we have generated 4 different instances (here also called perturbed 
configurations) by randomly changing the following parameters: (i) the total 
amount of testing-effort eventually consumed, B; (ii) the average number of hours 
required for fixing a bug of the functionality k, 𝛿! , and the expected number of 
initial faults in the functionality k, ak. Specifically, the perturbed configuration 
parameters have been varied within 10% of the nominal values, with the exception 
of the total amount of testing-effort, B, that has randomly increased of the 10% of 
the nominal value. 
 
We have applied on the same case study, our approach and the typical state-of-the 
art testing resource allocation approach (e.g., [7], [3]). Our approach is mainly 
focused on system functionalities (which we consider as software modules). 
Therefore, our model can be compared with existing works by introducing a 
mapping of software modules on system functionalities. 
 
The state-of-art problem of testing resource allocation (here also called base 
model) typically consists of finding the amount of testing-effort to be performed 
for each of the system functionalities8 that minimizes the total cost under the 
threshold R on the system reliability. Additional decision variables are introduced 
in our optimization model to represent in bug-fixing activities to perform for each 
system functionalities. 
 
	
For the experiments, we have used JMetal [37], an object-oriented Java-based 
framework aimed at the development, experimentation, and study of 
metaheuristics for solving multi-objective optimization problems.9 Due to the 
stochastic nature of evolutionary algorithms, we have performed 30 independent 
runs per algorithm (see [36] for details).     
 
 
Our comparison between the two approaches can be summarized in three steps. 
 
Step 0: Let us assume that all the debuggers may work four hours a day for each 
of the system functionalities. 
 
   For each perturbed configuration (and for the nominal instance), we have solved 
two models for R that spans from 0.9 to 0.97. In Figure	24, Figure	25, and Figure	
26, we report the obtained results, where each bar indicates, respectively, the 
number of corrected faults, the testing time and cost of a model averaged over its 
four perturbed configurations and nominal instance. Each group of tree bars - 
corresponding to one model - refers to the model’s results with five instances. In 
particular, each bar - corresponding to the model solution over the four perturbed 
configurations and the nominal one with a fixed value of the threshold R - reports 

																																								 																					
8 As remarked above, for sake of comparison, we introduce a one-to-one mapping of system 
functionalities on software modules. 
9 jMetal can be obtained freely from http://jmetal.sourceforge.net/. 
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the highest, lowest and average number of corrected faults, the testing time and 
cost obtained. 
	

	

	

FIGURE	24: AVERAGE	NUMBER	OF	CORRECTED	FAULTS	VS	RELIABILITY	THRESHOLDS	

 

	

FIGURE	25:	CALENDAR	TESTING	TIME	VS	RELIABILITY	THRESHOLDS	
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FIGURE	26:	COST	VS	RELIABILITY	THRESHOLDS	

	

The results highlight, in general, that the solutions of the base model and our 
model do not show discrepancies in case of non-complex search space (i.e., for 
simple scheduling of debuggers to fix-activities), in that the average number of 
bugs, times and costs of their solutions are only slightly different. Moreover, for a 
given model, the times and costs slightly increases while increasing the reliability 
threshold R. This can be observed by fixing a value on the x-axis and observing 
the values on the curves while growing the threshold R. 
	

Step 1: Let us assume that all the debuggers may work one hour a day for each of 
the system functionalities. Then, let us decrease the number of average hours that 
a debugger may work in order to complicate the search space.  
	
   We have generated an additional perturbed configuration by randomly varying 
the parameters of the nominal values (as done for the Step 0), with the exception 
of the total amount of testing-effort, B, that has randomly decreased of the 10% of 
the nominal value. We have solved the two optimization models in this new 
perturbed configuration for a set of values of reliability bound and the average 
number of hours required for fixing a bug of the functionality k, 𝛿!. 
 
   In Figure 14, we report the results obtained by the two models with two 
different values of the average number of hours required for fixing a bug of the 
functionality k, 𝛿!. The first configuration corresponds to the one of the nominal 
instance, whereas the in the second configuration (as shown in Figure 10) we have 
increased the average number of hours required for fixing a bug of each of the 
functionalities. More specifically, the figures report the obtained results, where 
each bar indicates, respectively, the number of corrected faults, the testing time 
and cost of a model averaged over its new perturbed configuration. 
 
  Given a graph represented in Figure	27, each group of two bars - corresponding, 
respectively, to the base model and our model - refers to the models’ results with 
the perturbed configuration. In particular, each bar - corresponding to the model 
solution over the configuration with a fixed value of the threshold R - reports the 
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highest, lowest and average number of corrected faults, the testing time and cost 
obtained. 
	

	

FIGURE	27: STEP	1	RESULTS	

  For each model, the testing cost usually increases in accordance with the 
reliability required by the system (even thought this increase is more evident for 
second configuration). Thus, to satisfy the reliability constraint, it is necessary to 
allocate a greater amount of testing-effort (in man-hours). 
  The results highlight, in general, that the discrepancies between the two models 
results starts becoming more evident. In particular, our model starts capture the 
variation of corrected bugs, the amount of testing time and cost, while modifying 
the bug assignment activities into the fault correction process of each of the 
functionalities. 
 
  Step 2: Let us assume that all the debuggers may not work one hour a day for 
each  of the system functionalities. We study the sensitivity of the solution to the 
debugger fixing time values by randomly assigned some of the functionalities to 
each debugger. By fixing the reliability threshold R to 0.95, for the second 
configuration of the average number of hours required to fix a bug (see Figure 
14), the average number of bugs corrected of corrected faults of our model 
averaged over its new perturbed configuration (defined in Step 1) decrease from 
about 578 to about 544. 
   If we increase the average number of hours required to fix a bug of some of the 
functionalities  (i.e., we set 𝛿! = 6, 𝛿! = 5, 𝛿! =6, 𝛿! = 6, 𝛿! = 6, 𝛿! = 5, 𝛿! = 6, 𝛿! 
= 5),  then the average number of bugs corrected of corrected faults of our model 
averaged over its new perturbed configuration still decreases from about 544 to 
about 481. 
 
 
4.5 RELATED WORK 
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The work related to our research can be divided into four categories: (i) testing 
resource allocation; (ii) selection of SRGMs; (iv) bug assignment; and (iii) 
parameters uncertainty. 
 
    Testing Resource allocation. In the last years, several research efforts have 
been devoted to allocate testing resources (e.g., [7], [3]). All these approaches 
basically provide guidelines to assign appropriate testing resources to a number of 
relatively small and independent modules (components), which are tested 
independently during module testing phase. Typically, they express the 
relationship between reliability and testing resources by using SRGMs. More 
specifically, these types of reliability models are used for describing the failure 
occurrence and/or fault removal and consequently aid to enhance the software 
reliability. Moreover, since failure curves can be either exponential or S-shaped 
for different modules, flexible SRGMs have also been considered, for example, as 
done in [7]. In particular, the latter uses a flexible SRGM considering testing 
effort which, depending upon the values of parameters, can describe either 
exponential or S-shaped failure pattern of software modules. Testing-effort 
functions (TEFs) have been introduced (e.g., see [29]) to describe the relationship 
between the effort expended to test software (e.g., in person-months), and the 
physical characteristics of the software, such as LOC, etc. In [38], it is shown how 
to incorporate the logistic TEF [39]   into both exponential type, and S-shaped 
software reliability models. Most SRGMs assume that faults detected during tests 
will eventually be removed [38]. 
This assumption, although common in state-of-the-art approaches, might not be 
realistic. However, a class of related papers deals with this imperfect debugging 
phenomenon (e.g., see [40], [41], [42]). For example, in [40], general frameworks 
are proposed for deriving several software reliability growth models based on a 
non-homogeneous Poisson process (NHPP) in the presence of imperfect 
debugging and error generation. 
 
   Existing approaches for testing resource allocation basically are based on simple 
optimization models (e.g., in [8]  two models are presented that minimize the 
remaining faults and the amount of testing-effort given the number of remaining 
faults, respectively) or multi-objective optimization models, for example, 
maximizing reliability, and minimizing testing cost and testing resource consumed 
[3]. Different approaches have been adopted such as genetic algorithms in [43], or 
the gradient projection method and the dynamic programming (a list of these 
types of works can be found in [3]). 
 

   Selection of SRGMs. In the last years the topic of definition, evaluation, and 
selection of SRGMs has been largely studied (see, e.g., [44] and [45]). 
Comparative analysis of SRGM models have also been performed in term of 
goodness of fit, prediction accuracy and correctness, for example, based on failure 
data sets containing system test failures data, field and open source software 
defects data [46]. However, although SRGM is probably one of the most 
successful techniques in the literature, with more than 100 models existing in one 
form or another, through hundreds of publications [47], in practice, SRGMs 
encounter major challenges. As remarked in [48], the evaluation of the SRGMs’ 
predictive power in the literature has generally been limited to only the last few 
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data points (typically last 10% of data) [49] [50]. Moreover, as also claimed in 
[48], the difficulty of applying SRGMs in industry is compounded with (i) the 
lack of studies applied to specific industrial domains [49],  and (ii) scarce 
guidelines to select the best SRGMs for a given software process/application. In 
[48], it has been investigated the application of SRGMs in embedded software 
domain. In particular, eight established SRGMs have been evaluated on a number 
of large software projects within the embedded software domain from three 
different companies. 
 
 
   Bug assignment. The bug assignment problem, related to triage new arriving 
bug reports to the most qualified developer, has in recent years received 
increasing attention. An effective bug assignment in large software projects not 
only requires significant contextual information about both the reported bugs (and 
the pool of available developers), but also is a time-consuming and tiresome 
process [13]. Considerable research efforts in the mining software repositories 
field have concerned bug prediction.  
 
The bug assignment process has been supported by, for example: (i) exploiting the 
application of information retrieval techniques in order to identify the most 
appropriate developers [51]; (ii) using expertise models of developers based on 
previous bug reports [51] [52]  or source code contributions  [53] ; (iii) applying a 
machine learning algorithm the open bug repository to learn the kinds of reports 
each developer resolves [52] ; or (iv) adopting preference elicitation methods to 
determine the developer’s preferences for fixing certain types of bugs [54]. In [13], 
an auction-based multi-agent mechanism also allows developers to require bugs 
from the bug triggers; therefore, they can make decisions based on their 
preferences, expertise, and such. 
 
The problem of resource scheduling for bug fixing can be classified as a special 
case of the more general resource constrained scheduling problem, which is in 
general NP-hard [55]. The effectiveness and efficiency of search-based techniques 
have already been demonstrated for different scheduling related software project 
management problems (e.g., for project planning in the context of a massive 
maintenance intervention [56]). However, the application of search techniques for 
implementing an efficient bug repair policy is very much unexplored [55]. In [55], 
a genetic algorithm is designed for scheduling developers and testers to bug-fixing 
tasks considering both human properties (skill set, skill level and availability) and 
bug characteristics (severity and priority). Also, industrial software defect 
prioritization techniques, in general, suffer of lack of multi-optimization 
techniques [57]. 
 
  Another class of related papers deals with automated debugging techniques that 
aim to help developers locate and understand the cause of a failure (e.g., [58]). In 
particular, statistical-fault-localization techniques have been extensively 
investigated (see [58]    for an overview on these types of techniques and other 
ones like anomaly detection, and experimental debugging). Other papers are 
focused on assisting developers in changing programs to fix bugs. For example, in 
[59], based on a machine learning technique, a tool has been designed for 
computing and reporting a prioritized list of bug-fix suggestions for a given 
debugging situation at a program statement that is suspected of being faulty. 
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Parameters uncertainty. Other challenges related to the testing allocation are 
represented by parameters uncertainty. In fact, software testing activity is fraught 
with a not negligible uncertainty relates to values of parameters such as 
operational profile, the expected number of initial faults, the fault detection rate 
per unit testing-effort (SRGMs input), fault fixing time, etc. Several research 
efforts have also been spent in order to deal with parameters’ uncertainty in 
software quality domain (e.g., in component reliability estimates [60], or in the 
performance modeling and analysis process [9]) adopting, for example, a robust 
optimization approach [10], or a bayesian approach [61]. Moreover, for example, 
fuzzy mathematical methods have been used to represent the uncertainty 
parameters (e.g., as done in [62]) of an alternative architecture. The fuzzy 
paradigm has also been used in [63], wherein it is addressed uncertainty involved 
in estimated parameters of SRGM in imperfect debugging environment. 
Therefore, although there is a growing interest in handling uncertainty, in practice, 
uncertainty of all the parameters of a software testing activity is not typically 
addressed. 
 
With respect to the state-of-art, the following major aspects characterize the 
novelty of the approach: 
 
 

• This is the first work (to the best of our knowledge) that enables 
practitioners to maximize the effectiveness of the testing activity using an 
optimization framework, which allows dynamically to model: (i) fault 
detection and correction processes of systems functionalities (modules) 
through the SRGMs that best fit the actual testing data, (ii) testing 
cost/time constraints, and (iii) parameter-specific uncertainties 
phenomenons. So that the systems functionalities (modules) with shorter 
time (budget) are tested and that reveled bugs are fixed earlier. 

• We have explicitly considered the bug assignment activity in the fault 
correction process (typically not done in the existing works). In particular, 
this work has showed that (for a large software system) the bug 
assignment may be a key factor for a trustworthy prediction of the fault 
correction process of the single functionalities (software modules), as well 
as of the reliability of the whole system. 

• The proposed approach does not rely on a specific development process or 
testing practice (e.g., in testing unit). 

• We have provided guidelines for practitioners. We have provided support 
for their testing allocation decisions based on cost, time, and software 
quality. In particular, our approach helps to: (i) select (and use) SRGMs in 
order to make the software testing process more effective; and (ii) handle 
parameters uncertainty, which, as shown through our real world software 
project, plays a critical role in accurately describing testing resource 
allocation process. More specifically, we have shown that the handling of 
uncertainty is a key factor for a trustworthy prediction of the reliability of 
a software system, and leads an optimization model to a more precise (and 
less pessimistic) estimation of the system reliability, as well as to a more 
effective and efficient testing resource allocation activity. It is well known 
that SRGMs sometimes show good performance in terms of predictability 
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of the software reliability, but sometimes they do not. This fact may be, in 
particular, caused by insufficient information on how the software has 
been developed, maintained, and operated [64]. 

• We have instantiated the optimization model for the fault correction with 
the bug assignment activity prediction, but its elements (e.g., cost function 
and reliability constraints) combined with the method for uncertainty 
analysis could be re-used in another phase of the testing process. This 
adoption may require specializing (appropriately modifying) the model in 
order to capture typical aspects of the new phase. Testing-effort allocation 
prediction under testing-effort time/cost and reliability constraints with 
uncertain model parameters, for example, could be used for enhancing 
existing approaches (such as that one in [55]) for scheduling 
developers/testers to activities to be performed to fix a bug repository. 
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5 OPTIMAL REGRESSION FUNCTIONAL TESTING 
 
   Regression testing is the process of validating modified software to provide 
confidence that (i) the changed parts of the software behave as intended, and (ii) 
the unchanged parts have not been adversely affected by the modifications [65]. 
 
  Research in regression testing has seen a flourish in the past years, in particular 
in the fields of new approaches, tools, and techniques to reduce the cost of reusing 
the test suite that was used to test the original version of the software. A quite 
extensive list of these approaches can be found in [66] and [67]. However, the key 
tasks of testing cost reduction methods are commonly: (i) regression test selection 
- selecting subset of existing test cases to run on the modified software (e.g., [68], 
[69], [70], and [71]); (ii) regression test suite minimization - reducing the test suite 
size to a minimal subset to maintain the same level of coverage as the original test 
suite; and (iii) regression test suite prioritization - finding an ideal order of test 
cases according to some criteria, such that test cases with higher priority are 
executed earlier than ones with lower priority [72]. 
 
Although used extensively in industry, regression testing is challenging from both 
a process management as well as a resource management perspective. In fact, 
putting the proposed techniques into practice has been a challenge [72]. 
 
In Section 5.1, we introduces related work. In Section 5.2, we present an overview 
of our approach.  
 
 
5.1 RELATED WORK  
 

In the last years the topic of software testing has been studied in several 
communities and from different perspectives (see, e.g., [73] for a look into 
architecture-based testing techniques, or the survey in [74] of methodologies for 
automated software test case generation). 
    
In particular, a lot of research efforts has been spent for regression testing (e.g. see 
survey [66]). In this work, we focus on regression test suite prioritization, which is 
highly relevant in general to industry (and in particular, for our industrial partner). 
Therefore, hereafter, we review works appearing in the literature dealing with 
regression testing prioritization. 
      
   Several techniques have been introduced for using test execution information to 
prioritize test cases. In [75], a comparison of such techniques, aimed to evaluate 
their ability to improve rate of fault detection, has been performed by conducting 
several empirical studies. More specifically, three categories of techniques have 
been considered, i.e., techniques ordering test cases based on their (i) total 
coverage of code components, (ii) coverage of code components not previously 
covered, and (iii) estimated ability to reveal faults in the code components that 
they cover. Several new controlled experiments and case studies have been 
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performed in [76]. In particular, building on results presented in [75] and focusing 
on the goal of improving rate of fault detection, the authors in [76] have addressed 
additional questions (e.g., related to the techniques’ effectiveness when targeted at 
specific modified versions, or the trade-off between the fine granularity and 
coarse granularity prioritization techniques). 
 
Research effort has been also devoted for defining metrics to quantify and 
compare the rates of fault detection of test suites [77], [78]. In [79], a more 
general metric has been defined for measuring rate of fault detection that accounts 
for varying test case and fault costs. 
 
Another class of related papers deals with prioritization techniques that are driven 
by requirements with higher priority, or operate in the presence of time constraints 
(e.g., [80], [81], [82] discussed below). 
 
   In [80], a regression testing approach is proposed, where test cases are 
prioritized such that the test cases for requirements with higher priority are 
executed earlier during system test. In particular, four factors (i.e., requirements 
volatility, customer priority, implementation complexity, and fault proneness) are 
used to analyze and assign value to each requirement. 
 
  The work in [81] presents initial results of an empirical study on using historical 
test execution data to prioritize test case selection in a constrained regression 
testing process. In particular, the work evaluates how several RTS techniques 
perform under severe time and resource constraints. 
 
    In [82], it is presented a regression test prioritization technique that uses a 
genetic algorithm to reorder test suites in light of testing time constraints. 
    
The genetic algorithms (to determine the most effective order) have also been 
leveraged in [83]. Specifically, this work proposes a method of cost-cognizant test 
case prioritization based on the use of historical records, which are gathered from 
the latest regression testing. 
 
    A comparison of search algorithms for regression test case prioritization, based 
on code coverage (including block coverage, decision (branch) coverage, and 
statement coverage) has also been performed in [84]. More specifically, the work 
presents results from an empirical study of the application of several greedy, 
metaheuristic, and evolutionary search algorithms to six programs, ranging from 
374 to 11,148 lines of code for three choices of fitness metric.  
 
  Several coverage-based test case prioritization techniques have been developed, 
which typically use either a total strategy or an additional strategy. In [85], it is 
proposed a unified test case prioritization approach that encompasses both the 
total and additional strategies. The work has also proposed extensions to enable 
the use of differentiated probabilities that test cases can detect faults for methods 
and the use of static coverage information as well as dynamic. 
 
There was previous work, which has exploited the combination of code coverage 
analysis and the change impact analysis. For example, in [86], a procedure level 
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coverage regression test based on change-based test selections method has been 
experimentally applied to an open source web browser engine project WebKitit. 
Moreover, the work also experimented test case prioritization strategies (based on 
changes) to reduce the testing time when the selection is too large. 
 
  Approaches for particular types of applications (such as for software product 
lines [87]) or testing strategies (e.g., model-based testing [88]) have also been 
introduced, as well as the use of methods (e.g., information retrieval ones [89]) 
have been exploited, for example, in order to address coverage profiling overhead 
(in terms of time and space) and potential problems associated with the 
imprecisions of static program analysis. Research effort has also been done for 
improving regression testing in continuous integration development environments 
[90]. In particular, the work in [90] has introduced two regression testing 
techniques (for testing selection and prioritization, respectively) that use readily 
available test suite execution history data to determine what tests are worth 
executing and executing with higher priority. 
 
5.2 OVERVIEW OF OUR APPROACH 
 
A representation of the high-level workflow of the proposed approach is presented 
in Figure	28. 
 
 

 
	

FIGURE	28:	HIGH-LEVEL	APPROACH	OVERVIEW	

Our approach is mainly based on the analysis of code coverage and code churn, 
which is collected for each of the version of a software product. Such information 
is stored in a database, our implementation makes use of eXist-db database, which 
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is an open source NoSQL database and application platform built on XML 
technology. 10 
  Coverage information is collected by a JaCoCo agent, an open source toolkit for 
measuring and reporting Java code coverage. 11  A JaCoCo report is a xml 
document having the structure depicted in Figure	29. 
 

 
FIGURE	29:	OUTPUT	OF	THE	JACOCO	TOOL:	CODE	COVERAGE	ANALYSIS	

																																								 																					
10 The	eXist-db	database	can	be	obtained	freely	from	[91]. 
11 The	JaCoCo	tool	can	be	obtained	freely	from	[92]. 
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   Churn metrics are collected by CodeChurn Tool. It is a proprietary tool of 
ASSIOMA.net [93], which exploits the Sonar tool [94] for metrics evaluation. 
More details on the churn code metrics and the Sonar tool can be found in 
Deliverable D2.2 [95]. A CodeChurn report is a xml document having the 
structure depicted in Figure	30. 
 

 
	

FIGURE	30:	OUTPUT	OF	THE	CODE	CHURN	TOOL:	CODE	CHURN	ANALYSIS	

 

In Section 5.2.1, we provide more details on the JaCoCo tool’s output, whereas in 
Section 5.2.2, we describe in more detail the Code Churn tool’s output. Finally, in 
Section 5.2.3, we give an overview of the Metric/Prioritization module, which 
represents the core of our approach. 
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5.2.1 The JaCoCo Tool 
 

  The JaCoCo tool provides code coverage analysis in Java VM based 
environments. It is based on Bytecode instrumentation; therefore it is very helpful 
in situations where the source code is not available. 
  As illustrated in Figure	29, the JaCoCo tool allows to collect coverage analysis at 
different level of granularity, resulting in the following coverage measures. 

• Instructions, namely single Java byte code instructions. In particular, 
instruction coverage is related to the amount of code that has been 
executed or missed. 

• Branches for all if and switch statements. In particular, the total number of 
such branches in a method are counted so as to determine the number of 
executed or missed branches. 

• The Cyclomatic Complexity is estimated for each non-abstract method, 
classes, packages, and groups. 

• Lines. Coverage information for individual lines are calculated for the 
class files that have been compiled with debug information. In particular, 
if at least one instruction that is assigned to a certain source line has been 
executed, then the source line is considered executed. 

• Methods. A non-abstract method contains at least one instruction, and is 
considered as executed when at least one instruction has been executed. 
Notice that constructors and static initializers are also counted as methods, 
because JaCoCo is based on Bytecode instrumentation. 

• Classes. If at least one the methods of a certain class has been executed, 
then the class is considered as executed. 

 
More details on the tool can be found in [92]. The supported reports formats are 
HTML, XML, and CSV. In our implementation, we have chosen the XML 
format.  
 
An extensive list of code coverage tools for java can be found in [96]. 
 

5.2.2 The Code Churn  Tool 
	

   As illustrated in Figure	 30, the Code Churn tool allows collecting churn code 
analysis at different level of granularity. In particular, the tool evaluates the (i) 
Total added, modified and deleted LOC, and (ii) Cyclomatic complexity. 
	

5.2.3 Metric/Prioritization Module 
 
   A primary input to the Metric/Prioritization Module is represented by an XML-
based structure collecting churn metrics and coverage metrics. In fact, for each of 
the test case, churn metrics and coverage metrics are joined in a common structure 
depicted in Figure	31. More specifically, the XML output files of the JaCoCo tool, 
related to the code coverage analysis, and Code Churn tool, are merged. To this 
extend, we have exploited the proprietary RaptorXML tool, which is a hyper-fast 
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XML and XBRL processor. A 30-day trial version of RaptorXML can be 
downloaded from [97]. 
 
 

 
 
FIGURE	31: OUTPUT	OF	THE	RAPTORXML	TOOL:	MERGING	OF	THE	COVERAGE	AND	CHURN	
ANALYSIS 

The data models of the JaCoCo tool (see Figure	29) and the Code Churn Tool (see 
Figure	30) are precisely the ones used in eXist-db database.  
 
Table	 16 and Table	 17 summarize, respectively, the input and the output of the 
Metric/Prioritization module. Specifically, the Metric/Prioritization Module 
processes the XML-based structures, and assigns priority to the test cases. Priority 
assignment involves applying a function that seeks to capture the relationship 
among the test cases, the code coverage, and the churn analysis. The goal of the 
prioritization we are interesting in is that of considering in order of relevance (a) 
tests case potentially covering changed parts of the product (b) test cases which 
guarantee the best coverage. Specifically, we have introduced two parametric 
algorithms inspired on standard Total statement coverage prioritization and the 
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Additional variant. Details on the implementation of these algorithms can be 
found in the next section. 
 
 

TABLE	16:	INPUT	OF	THE	METRIC/PRIORITIZATION	MODULE	

Source	 Data Type	 Description	

User	 Source code of system 
versions	

 (java code)	

Our approach is mainly based 
on the analysis of code 
coverage and code churn, 
which is collected for each of 
the version of a software 
product. Such information is	

stored in a database, our 
implementation makes use of 
eXist-db database, which is an	

open source NoSQL database 
and application platform built 
on XML technology.	

User	 Test cases	 Test cases to prioritize	

JaCoCo tool	 Coverage information	 Analysis of code coverage is 
collected for each of the 
version of a software product. 
Specifically, coverage 
information is collected by a 
JaCoCo agent, an open source 
toolkit for measuring and 
reporting Java code coverage.	

CodeChurn Tool	 Code churn analysis	 Churn metrics are collected by 
CodeChurn Tool. It is a 
proprietary tool of 
ASSIOMA.net, which exploits 
the Sonar tool for metrics 
evaluation	

 

																																													TABLE	17:	OUTPUT	OF	THE	METRIC	PRIORITIZATION	MODULE	

Decision Description 

Test cases prioritization A primary input to the Metric/Prioritization 
Module is represented by an XML-based 
structure collecting churn metrics and coverage 
metrics (obtained, respectively, with JaCoCo 
and CodeChurn tool). In fact, for each of the test 
case, churn metrics and coverage metrics are 
joined in a common structure. More specifically, 
the XML output files of the JaCoCo tool, related 
to the code coverage analysis, and Code Churn 
tool, are merged. To this extend, we have 
exploited the proprietary RaptorXML tool, 
which is a hyper-fast XML and XBRL 
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processor. 

The Metric/Prioritization Module processes the 
XML-based structures, and assigns priority to 
the test cases. Priority assignment involves 
applying a function that seeks to capture the 
relationship among the test cases, the code 
coverage, and the churn analysis. The goal of the 
prioritization we are interesting in is that of 
considering in order of relevance (a) tests case 
potentially covering changed parts of the 
product (b) test cases which guarantee the best 
coverage. 

																																																																									

 
5.2.4 Test prioritization 
 
5.2.4.1 Churn	Coverage	Prediction	Prioritization	
 
    In this section we consider predictive prioritization techniques which exploit 
both coverage and churn information. In this case we do not consider bursts but 
focus our attention only on the two last versions Vm-1 and Vm of a sequence of  
versions  𝑉!,… ,𝑉! . In this case we assume that tests have been already executed 
on Vm-1 (i.e. coverage metrics are available on that version) but have not yet 
executed on version Vm  for which only churn data are available. 
     The challenge of predictive prioritization is that of estimating a good 
prioritization of test cases for version Vm by exploiting churn data and coverage 
data collected for version Vm-1. 
   The goal of the prioritization we are interesting in is that of considering in order 
of relevance (a) tests case potentially covering changed parts of the product (b) 
test cases which guarantee the best coverage. To this purpose we propose suitable 
adaptations of two well-known prioritization techniques, namely the Total 
Statement coverage prioritization and the Additional Statement Coverage 
Prioritization. 
    Actually, we introduce two parametric algorithms inspired on standard Total 
statement coverage prioritization and the Additional variant. This algorithms 
exploit structured coverage information for test cases referred in the following as 
coverage increment. Intuitively, the coverage increment of a test case depends on 
the current state of coverage and gives the contribution of coverage split into three 
components: the contribution for changed parts, for deleted parts and for 
unchanged parts. By introducing suitable ordering criteria for coverage increments 
we are able to define variants of the prioritization algorithm. 
 
Let M(V) be a coverage report for the version V of a product, namely a .xml 
structure recording the coverage information after the execution of a (possibly 
empty) set of test case. With M0(V ) we denote the initial coverage report 
corresponding to the execution of an empty set of test cases. For a test T, a version 
V and a coverage report M(V ) let be Inc(T,M) be the quadruple 𝐶,𝐷,𝑈,𝑇  where 
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• C is the number of instructions of methods that will change w.r. to version 
V coveredby the execution of T and uncovered in M(V ); 

• D is the number of instructions of methods that will be deleted w.r. to 
version V covered by the execution of T and uncovered in M(V ); 

• U is the number of instructions of methods that will remain unchanged 
w.r. to version V covered by the execution of T and uncovered in   M(V ). 

 
 𝐼𝑛𝑐 𝑇,𝑀  gives the coverage increment with respect to the coverage report M 
after the execution of the test case T. Such a tuple is called coverage increment 
tuple. Notice that is 𝐼𝑛𝑐 𝑇,𝑀!   precisely the tuple  𝐶 𝑉,𝑇 ,𝐷 𝑉,𝑇  ,𝑈 𝑉,𝑇 ,𝑇  
. For a set of test cases Z, 𝑀𝑎𝑥𝐼𝑛𝑐≼(𝑍,𝑀) gives the test case in Z which 
guarantees the greatest coverage increment among all the test cases in Z, namely 
𝑀𝑎𝑥𝐼𝑛𝑐(𝑍,𝑀) is the test case 𝑇 ∈ 𝑍such that 𝐼𝑛𝑐 𝑇,𝑀 = 𝑚𝑎𝑥!∈! 𝐼𝑛𝑐(𝑇,𝑀)  
where max is computed with respect to the parametric ordering of quadruples ≼ 
 
  Let us consider now the Churn Total Statement Coverage Prioritization. The 
pseudocode is reported in Figure	32. 
 

 
FIGURE	32: ALGORITHM	1:	CHURN	TOTAL	STATEMENT	COVERAGE	PRIORITIZATION 

   The Churn Total Coverage Prioritization can be easily obtained by ordering 
under the parametric ordering ≼  the coverage increment tuples of all the 
considered test cases (the function Test applied to a sequence of coverage 
increment tuples simply gives the sequence of projection of the test name 
component of each tuple). 
     The standard Total instruction coverage prioritization (which do not consider 
churn information) can be defined by considering the ordering ≺ defined as 
follows  
	

𝐶,𝐷,𝑈  ≺!"   𝐶!,𝐷!,𝑈!  iff  𝐶 + 𝐷 + 𝑈 ≤ 𝐶! + 𝐷! + 𝑈!	
	
	
 In [98] some prioritization criteria sensitive to churn are introduced. For instance, 
the General strategy is intended to cover most procedures besides the changed 
ones under the assumption that test cases with higher overall coverage are better. 
The opposite of General is the Specific strategy which is intended to cover least 
procedures besides the changed ones. The specific strategy selects those test cases 
first which cover little outside of the changes. In our setting we can define 
analogous strategies working at the granularity level of instructions instead of 
granularity level of methods. For instance, the principles of the general strategy 
can be enforced by the following ordering ≼!"# defined as follows 
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On the opposite, the principles of the specific strategy can be enforced by the 
following ordering   ≺!"#$   defined as follows  
 

 
	
   Finally, we consider a kind of ordering   ≼!"#  which prioritize first the coverage 
of changed parts if relevant and than that of coverage of unchanged part if the 
coverage increment of changed parts can be considered equivalent (a kind of 
’lexicographic order  between coverage of changed parts and coverage of 
unchanged parts). The definition of the ordering ≼!"# depends on a parameter 
𝛼 ≥ 0 which used to determine when the amount of coverage can be considered 
equivalent. 
    
    The ordering   ≺!"#  defined as follows   
 

 

 
  Let us consider now the Churn Additional Coverage Prioritization. The 
pseudocode is reported in Figure	33. 
 

 
 
FIGURE	33: ALGORITHM	2:	CHURN	ADDITIONAL	STATEMENT	COVERAGE	PRIORITIZATION. 
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The function  𝐴𝑑𝑑𝐶𝑜𝑣𝑒𝑟 𝑇,𝑀  gives as a result a coverage report obtained by 
adding to M the coverage information of test case T. 
 
5.2.4.2 Backward	Churn	Prioritization	
 
   In the previous section we have considered algorithms for predictive (forward) 
prioritization which has to be considered in absence of coverage information for 
changed parts. If the test cases have been executed at least once in the last version 
Vm the prioritization can be recomputed taking into account also coverage 
information. In this case we can consider the same strategies seen for predictive 
prioritization with a slight modification of the concept of coverage increment 
tuple called backward coverage increment tuple. 
   For a test T, a version V and a coverage report M(V ) let be 𝐼𝑛𝑐𝐵(𝑇,𝑀) be the 
quadruple 𝐶,𝐴,𝑈,𝑇  where 
 

• C is the number of instructions of methods changed in V w.r. to the 
previous version covered by the execution of T and uncovered in M(V ); 

• A is the number of instructions of methods added in V w.r. to the previous 
version covered by the execution of T and uncovered in M(V ); 

• U is the number of instructions of methods unchanged in V w.r. to the 
previous version covered by the execution of T and uncovered in M(V ). 

 
  𝐼𝑛𝑐𝐵(𝑇,𝑀) gives the coverage increment with respect to the coverage report M 
after the execution of the test case T. 
Notice that the backward coverage increment tuple simply replaces the coverage 
of methods which will be deleted with the coverage of methods which are added. 
In this case  𝐼𝑛𝑐𝐵(𝑇,𝑀!) is precisely the tuple 𝐶 𝑉,𝑇 ,  𝐴 𝑉,𝑇  ,𝑈 𝑉,𝑇 ,𝑇 . For 
backword increment coverage tuple, the analogous of ≺!" ,≺!"#,≺!"#$ and ≺!"#, 
written  ≺!" ! ,≺!"#$ ,≺!"#$%  and ≺!"#$, respectively, by simply replacing in the 
definitions the metrics deleted methods with the metrics of added methods. 
   Therefore, a predictive (forward) prioritization can be used to suggest the first 
regression test for a new version. A backward prioritization can be used for the 
next stages (after the first). The backward prioritization allows in addition to 
check the predictive power of forward prioritization. The idea is that a good 
prediction should be very similar to the ordering of test output by a backward 
prioritization. 
  To measure the distance of two prioritizations (two orderings of the same set of 
test cases) we shall consider, for instance, the following definition. A 
prioritization of a test suite TC is an bijective function  𝑝𝑟:𝑇𝐶 →  1,… , |𝑇𝐶|  
(intuitively pr(T) gives the position of the test 𝑇 ∈ 𝑇𝐶 in the prioritization). Given 
two prioritizations pr1   and pr2 for TC with = n, the distance of two prioritizations 
is given by 
 

 

Notice that the distance of two equal prioritization is 0. The constant !
|!"|!

 gives an 
upper bound for the greatest possible distance. 
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5.2.5 Experimental Results 
 

  For the experiments we have considered SIR [99], a repository of software-
related artifacts meant to support rigorous controlled experimentation with 
program analysis and software testing techniques, and education in controlled 
experimentation. For the experimentation we have considered Java products 
having a meaningful number of lines of code, of versions and cardinality of test 
suit. The chosen products are SIENA and ANT whose attributes are depicted in 
Table	18. Siena (Scalable Internet Event Notification Architecture) is an Internet-
scale event notification middleware for distributed event-based applications 
deployed over wide-area networks, responsible for selecting notifications that are 
of interest to clients (as expressed in client subscriptions) and then delivering 
those notifications to the clients via access points [100]. The associated test suite 
guarantees a complete method coverage (not a complete statement coverage). Ant 
is a Java-based build tool supplied by the open source. 
 

TABLE	18:	CASE	STUDIES	

 

 
In Table	 19 and Table	 20, we report the churn metrics provided by the tool 
ChurnTool (we consider eight versions for both Siena and Ant). 
 

TABLE	19:	CHURN	METRICS	FOR	ANT	

 

	

	

	

	

	

TABLE	20:	CHURN	METRICS	FOR	SIENA	
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Analysis	of	the	results	

   In order to show the effectiveness of the combination of coverage and churn 
information we here illustrate the results that we have obtained from the 
prioritization which optimizes either coverage or coverage of changed parts in the 
next software version. 
  For the Ant and Siena systems, we have prioritized the test cases by using 
coverage and churn information. More specifically, for a version Vk, we have 
prioritized the test cases by using the relationship among the test cases, the code 
coverage, and the churn analysis. 
   The experiments were run on a Ubuntu Linux 12.04 workstation equipped with 
a Intel Core i7 (2 MB of cache memory and 8 GB RAM DDR3). 
   InFigure	 34, we report the obtained results for the Siena system. For each 
version, we have prioritized the test cases, and estimated the coverage of changed 
parts of the first 50, 150, 250, and 350 test cases of its prioritized test suite. Each 
bar indicates the number of instructions (i.e., single Java byte code instructions) of 
changed parts covered by the test cases. Therefore, we have measured the 
predictive power of test cases as a function of the changed parts. To sake of 
comparison, we have also estimated the coverage of the whole test suite. 
 
 

 
 

FIGURE	34: COVERAGE	OF	TEST	CASE	PRIORITIZATION	FOR	THE	SIENA	SYSTEM	

 

  In Table	21, we report the detailed results. Each cell reports the resulting number 
of instructions of changed parts covered by the test cases for a certain version 
(row) and a certain number of test cases (column). 
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TABLE	21:	COVERAGE	FOR	SIENA	

 
 

 

   Similarly, in Figure	35, we report the obtained results for the Ant system. For 
some versions, we have prioritized the test cases, and estimated the coverage of 
changed parts of the first 8, 10, 14, 18, and 24 test cases of its prioritized test 
suite. Each bar indicates the number of instructions (i.e., single Java byte code 
instructions) of changed parts covered by the test cases. To sake of comparison, 
we have also estimated the coverage of the whole test suite. 
 

 
 

FIGURE	35: COVERAGE	OF	TEST	CASE	PRIORITIZATION	FOR	THE	ANT	SYSTEM	

 

In Table	22, we report the detailed results. Each cell reports the resulting number 
of instructions of changed parts covered by the test cases for a certain version 
(row) and a certain number of test cases (column). 
 

TABLE	22:	COVERAGE	FOR	ANT	
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The	results	highlight,	in	general,	that	the	predictive	power	of	test	cases	(as	a	
function	of	the	changed	parts)	almost	always	increases	while	increasing	the	
number	of	selected	test	cases.	For	example,	 for	the	Siena	system	(see	Figure	
34),	 the	 number	 of	 instructions	 of	 changed	 parts	 covered	 by	 the	 test	 cases	
(except	in	two	cases)	almost	always	increases	while	increasing	the	number	of	
test	cases.	Moreover,	the	discrepancies	among	test	cases	(i.e.,	their	predictive	
power)	 become	more	 evident	 as	 the	 number	 of	 changes	 increases	 (e.g.,	 for	
versions	with	higher	values	of	code	churn	metrics),	such	as	for	the	version	V2	
of	the	Siena	system	(see	Table	21).	On	the	other	hand,	the	predictive	power	of	
test	cases	do	not	show	discrepancies	in	case	of	small	increase	in	the	number	
of	test	cases	or	changes.	For	example,	for	a	given	version	of	the	Ant	system,	
the	predictive	power	of	test	cases	does	not	essentially	change.	
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6 ARCHITECTURAL DECISION-MAKING 
 
 
The prediction of the software architecture quality supports a large set of 
decisions across multiple lifecycle phases that span from design through 
implementation-integration to adaptation phase. However, due to the different 
amount and type of information available, different prediction approaches can be 
introduced in each phase. A major issue in this direction is that Quality of Service 
(QoS) attribute cannot be analyzed separately, because they (sometime adversely) 
affect each other. Therefore, approaches aimed at the tradeoff analysis of different 
attributes have been recently introduced (e.g., reliability vs cost, security vs 
performance).  
 
Our work has been focused on modeling and analysis of QoS tradeoffs of a 
software architecture based on optimization models. A particular emphasis has 
been given to two aspects of this problem: (i) the mathematical foundations of 
QoS tradeoffs and their dependencies on the static and dynamic aspects of a 
software architecture, and (ii) the automation of architectural decisions driven by 
optimization models for QoS tradeoffs. Our major contribution is to show how 
effectively optimization modeling techniques can capture relevant aspects of the 
architectural decision-making process in different lifecycle phases, thus 
representing a very relevant support for the software engineers tasks. We have 
also given a tutorial on this topic [101]. 
 
In the book chapter [102], in the context of a waterfall development process, we 
implement three models: one for the architectural design (i.e. the software 
architecture driven model applicable before the release of a system), one for the 
implementation/deployment phase (we show how the QoS of a software 
architecture depends on the hardware architecture), and one for the maintenance 
phase (i.e. the software architecture driven model applicable after the release of a 
system). In order to show the usefulness of our approach, we run these models on 
an example coming from the domain of medical information systems.  
 
In this chapter, we have also presented a general optimization model that 
minimizes the total costs subject to constraints on the level quality of the software 
architecture. The model can be adopted in (specialized for) one of the lifecycle 
phases by leveraging available information and parameters, the level of detail of 
which obviously increases as the development progresses. Then, each specialized 
form of the general model can be either separately used and solved, if required in 
a certain lifecycle phase, or used in pipeline feeding with each other, as we will 
show in our example. In Section 6.1, we report the formulation of this general 
optimization model by discussing typical architectural decisions, which can be 
supported by using optimization models.    
 
Our work has also been focused on the automation of the support	 for	 the	
decisions	that	software	architects	make	after	deployment.	This	approach	
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is	based	on	an	optimization	model	whose	solution	suggests	the	“best”	actions	
to	 be	 taken	 according	 to	 a	 given	 change	 scenario	 (i.e.,	 a	 set	 of	 new	
requirements	that	induce	changes	in	the	structural	and	behavioral	aspects	of	
the	software	architecture).		
	
In particular, in [103], we introduce a framework named SHEPhERd (Software 
arcHitecture Evolution based on cost, PErformance and Reliability), which is 
composed of a UML case tool, a model builder and a model solver.  
 
SHEPhERd is based on an optimization model that suggests the “best” actions to 
be taken upon a certain change scenario arising. A change scenario is a set of new 
requirements that induce changes in the structural and behavioral aspects of the 
software architecture. In particular, in our model, for each new requirement in a 
change scenario we consider different sets of evolution actions (called evolution 
plans) that are able to guarantee these new requirements. We aim to obtain a set of 
decisions that lead to the definition of a new architecture that minimizes cost, 
while keeping the reliability and the response time within certain thresholds. In 
Section 6.2, we describe the main features of the SHEPhERd framework. 
 
In Section 6.3, we introduce the SAQO (System Adaptation with Quality 
Optimization) framework, which extend the SHEPhERd framework. 

 
6.1 A GENERAL FORMULATION FOR ARCHITECTURAL DECISIONS VS 

QUALITY CONSTRAINTS 
 
In this section, we report the general optimization model presented in [102].   

The model minimizes the total costs subject to constraints on the level quality of 
the software architecture.  

  Let 𝑆 = 𝑢!,⋯ ,𝑢!  be a software architecture made of 𝑛  software units 𝑢! 
(1 ≤ 𝑖 ≤ 𝑛) the composition of which results in services that the system offers to 
users. 

   Since the proposed model may support different lifecycle phases, we adopt a 
general definition of software unit: it is a self-contained deployable software 
module containing data and operations, which provides/requires services to/from 
other elementary elements. A unit instance is a specific implementation of a unit. 
For each unit 𝑢!, let 𝐽! be the set of instances available by vendors and 𝐽! the set of 
possible options for developing the instance in-house. Let 𝑢!" be the 𝑗-th instance 
of  𝐽! ∪ 𝐽! . 

  Architectural Decisions. The analysis of the QoS tradeoffs is a broad decision-
making process that consists of a set of actions aiming to modify the static and 
dynamic structure of the software architecture. The decisions within the different 
life-cycle phases are basically related to the following software actions: 

1. Introducing new software units: One or more new software units may be 
embedded   
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into the system.12 We call 𝑁𝑒𝑤𝑆 the set of new available software units 
that can provide different functionalities. 

2. Replacing existing unit instances with functionally equivalent ones 
available on the market: The employed instance 𝑢!"  of a software unit 
𝑢!  may be replaced with an element of the set 𝐽!, i.e., with of the instances 
available for it on the market (e.g. a Commercial-Off-The-Shelf (COTS) 
component/web service).We assume that all the instances in 𝐽!  are 
functionally compliant with 𝑢!", i.e., each of them provides at least all 
services provided by 𝑢!" and requires at most all services required by 𝑢!". 
The instances in 𝐽! may differ from 𝑢!" for cost and quality attribute (e.g. 
reliability and response time). 

3. Replacing existing unit instances with functionally equivalent ones 
developed in-house:  An existing instance of a software unit 𝑢! may be 
replaced with one developed in-house. Developers could opt for different 
building strategies resulting in different in-house instances, i.e., the 
elements of the set  𝐽!. The values of quality attributes of such optional 
instances (e.g., reliability, response time) could vary due to the values of 
the development process parameters (e.g. experience and skills of the 
developing team). 

4. Modifying the interactions among software units in a certain 
functionality: The system dynamics may be modified by 
introducing/removing interactions among software units within a certain 
functionality. 

 
Optimization model formulation.  

Model Variables. Let 𝑥!"  (1 ≤  𝑖 ≤ 𝑛, 𝑗 ∈  𝐽! ∪ 𝐽!) be the binary variable that is 
equal to 1 if the instance 𝑗 is chosen for the software unit 𝑖, and 0 otherwise. 
Moreover, let 𝑧! (1 ≤ ℎ ≤ |𝑁𝑒𝑤𝑆|) be the binary variable that is equal to 1 if the 
new software units ℎis chosen and 0 otherwise.  

    Let us analyze the system on the base of 𝑝 quality attributes (such as cost, 
response time, availability, etc.). Suppose moreover that each attribute of any 
software unit depends on the value of parameters 𝛼!!’s, 𝛽!!’s, and 𝛾!"!  ’s, where (i) 
the vector 𝛼!!  describes the (at most) 𝑢  software architecture observable 
parameters, e.g., the average number of invocations of a software unit within the 
execution scenarios considered for the software architecture, (ii) the vector 𝛽!! 
contains the (at most) 𝑣 hardware observable parameters, e.g., the processing 
capacity of the node hosting the software unit, that is measured, for example, as 
the average number of instructions per second that the resource can execute, and 
(iii) the vector 𝛾!"!  represents the (at most) 𝑤 features of the implementation of 𝑢!, 
e.g., the reliability of the instance used for replacing the existing unit. For the 𝑘 
quality attributes of a provided instance, the value of the features  𝛾!"! ’s is assumed 
to be either given from the software unit provider or estimated from the customer. 
																																								 																					
12		Notice	that	such	type	of	action	has	to	be	associated	to	another	action	that	indicates	how	this	unit	
interacts		with	existing	units,	therefore	it	modifies	the	interactions	within	certain	functionalities	(see	
last	type	of			software	action).	
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On the contrary, for an in-house developed instance the   𝛾!"!  ’s can be predicted by 
considering variables of the decision planning.  

  Let 𝛤! ∶  ℝ! × ℝ!  × ℝ!   →  ℝ  ( 𝛤! ∶  ℝ! × ℝ!  × ℝ!   →  ℝ ) be the function 
that, on the base of the above parameters, returns the value of the 𝑘-th quality 
attribute (1 ≤ 𝑘 ≤ 𝑝)  of an existing (new) software unit. In particular, let 
𝛬!"! = 𝛤! 𝛼!! ,𝛽!! , 𝛾!"!  the value of the 𝑘 -th attribute of the provided/in-house 
instance 𝑢!".  

  We can represent the value of the 𝑘-th quality attribute of the 𝑖-th existing 
software unit as a function of the decisional strategy 𝐱: 

 

                                                 𝜃!! = Λ!"!! ∈!! ∪!! 𝑥!"                              (1)     	

	

			Similarly,	we	can	represent	the	value	of	the	𝑘-th	quality	attribute	of	the	ℎ-th	
new	software	unit	as	a	function	of	the	decisional	strategy	𝐳:	

	

                                                                𝜃!! =  𝑧!Γ!  𝛼!! ,𝛽!! , 𝛾!" 
!                         (2)    	

 

  Let 𝐺!:  ℝ!× ℝ !"#$ → ℝ, with (1 ≤ 𝑘 ≤ 𝑝), be the function that returns the 𝑘-
th quality attribute of the whole system on the base of the same attributes of each 
existing/new software unit. And let us assume (without loss of generality) that the 
values of each quality attribute 𝑘 are constrained strained	 to	 be	 above	 a	 lower	
threshold	value	𝛩! .	Assume,	moreover,	that	the	cost	is	the	first	quality	attribute,	i.e.,	
𝜃!! (𝜃!!)	express	the	cost	of	the	existing	(new)	software	units.	Finally,	 let	𝐶𝑜𝑠𝑡: ℝ!×
ℝ|!"#$|  → ℝ  be	the	cost	 function	of	 the	whole	system	that	clearly	depends	on	 the	
costs	of	all	the	existing	(new)	software	units.	Different	cost	models	could	be	used	to	
define	𝐶𝑜𝑠𝑡,	e.g.,	it	may	also	include	the	potential	costs	of	software	unit	adaption	(i.e.	
the	 glueware).	 The	 general	 formulation	 of	 the	 optimization	 model	 for	 the	 QoS	
tradeoffs	analysis	is	given	by:	

					

                     min                             𝐱,𝐳 𝐶𝑜𝑠𝑡(𝜃!, 𝜃!)                               																																											(3)	

𝐺! 𝜃!, 𝜃! ≥ 𝛩!                              ∀𝑘 = 1… 𝑝	

	

Λ!"!

! ∈!! ∪!!

𝑥!"  =  𝜃!!                              ∀𝑘 = 1… 𝑝,∀𝑖 = 1… 𝑛	

	

𝑧!𝛤!  𝛼!! ,𝛽!! , 𝛾! 
!  =   𝜃!!                        ∀𝑘 = 1… 𝑝,∀ℎ = 1… |𝑁𝑒𝑤𝑆|	
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  𝑥!" ∈ 0,1                                    ∀𝑖 = 1… 𝑛,∀𝑗

= 1… 𝑝 𝑥!" = 1                                            ∀𝑖 = 1… 𝑛     
!∈!!∪!!

	

	

𝑧! ∈ 0,1                                    ∀ℎ = 1… |𝑁𝑒𝑤𝑆|	

	

																																	Other	constraints	(e.g.,	equations	to	predict	𝛼!! ’s	and	𝛽!! 	’s)	

	

	

6.2 THE SHEPHERD FRAMEWORK 
 
In this section, we provide an overview of the SHEPhERd framework [103], 
which we have introduced in the context of component-based architectures. 

Figure	36 shows the SHEPhERd framework within its working environment. The 
framework basically comprises two modules: a Model builder and a Model solver. 

	
 

FIGURE	36:	THE	SHEPHERD	FRAMEWORK	AND	ITS	ENVIRONMENT	

 

SHEPhERd framework Input. A primary input to the framework is represented 
by an UML-based architectural model composed of: (i) a Component Diagram 
describing software components and their interconnections, (ii) a set of Sequence 
Diagrams describing the possible execution scenarios, and (iii) a Deployment 
Diagram describing the platform architecture. 
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The system maintainer, through a Monitor module, is able to perceive non-
functional requirement violations in the runtime system. She/he defines evolution 
plans for new and/or violated requirements that represent change scenarios. After 
receiving an evolution request from the system maintainer, the Model builder 
generates the optimization model in the format accepted by a solver (e.g., 
LINGO13 that we have used in [103]). 
 
	
   The Model builder first allows users to annotate the UML diagrams with 
additional data that represent the optimization model parameters, such as failure 
probabilities of software components, or the processing capacity of the platform 
nodes. Then, it transforms the annotated model into an optimization model in the 
format accepted from the solver. 
 
SHEPhERd framework Output. The optimization model is processed by the 
Model solver, which produces the results, which consist of a set of evolution 
actions. It suggests how to adapt both the static and dynamic aspects of the 
software architecture. Moreover, the platform architecture is modified by re-
deploying existing components and/or deploying new components on the existing 
nodes.  
 
		A	 new	 software	 architecture	 is	 obtained	 by	 modifying	 its	 structure	 and	
behavior.	To	modify	 the	structure,	our	approach	suggests	replacing	existing	
components	 with	 different	 available	 instances	 and/or	 to	 introduce	 new	
components	into	the	system.	With	regard	to	the	system	behavior,	the	model	
is	focused	on	the	system	scenarios	(expressed,	for	example,	as	UML	Sequence	
Diagrams)	 by	 removing	 or	 introducing	 interaction(s)	 between	 existing	 or	
new	components.	The	platform	architecture	(modeled,	 for	example,	with	an	
UML	 deployment	 diagram)	 can	 also	 be	 modified	 by	 re-deploying	 existing	
components	and/or	deploying	new	components.	 
 
	In	 [103], the mathematical	 formulation	 of	 the	 optimization	 model	 that	
SHEPhERd	generates	and	solves	can	be	found.	Details	on	model	formulation	
can	be	found	in	[103]. 
	
		The	 goal	 of	 our	 optimization	 model	 is	 to	 find	 the	 optimal	 set	 of	 actions	
needed	 to	 tackle	 required	 changes	 to	 the	 software	 architecture.	 “Optimal”	
here	denotes	actions	 that	 incur	minimum	cost	while	guaranteeing	a	certain	
level	of	reliability	and	performance.		
		The	 objective	 function	 under	 the	 main	 reliability	 and	 performance	
constraints,	 plus	 the	 constraints	 on	 the	 model	 variables,	 represents	 our	
optimization	 model.	 The	 model	 solution	 determines	 the	 evolution	 plan	 to	
choose	 for	 each	 change	 requirement,	 in	 order	 to	 minimize	 the	 software	
evolution	costs	under	the	reliability	and	performance	constraints.	
	
 

																																								 																					
13 [Online]. Available: www.lindo.com. 
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6.3 THE SAQO (SYSTEM ADAPTATION WITH QUALITY 
OPTIMIZATION)  FRAMEWORK 

 
 
In this section, we introduce the SAQO (System Adaptation with Quality 
Optimization) framework, which extends the SHEPhERd framework. Figure 24 
shows the SAQO framework within its working environment. 

    The framework SAQO allows storing the specification of requirements, 
architectural decisions, and their interactions in a repository. The internal structure 
of the repository is compliant with the metamodel in Figure 25. 
 
SAQO is a complex specification environment adopting the metamodel for the 
adaptation space. SAQO allows to: 
 

• Support the software architects/maintainers to maintain the interactions 
and conflicts between requirements, between design decisions, and 
between requirements and design decisions. The support includes 
automatic detection (by model checking techniques) of interactions and 
conflicts mostly in the part of the architecture design decisions and 
propagation of interaction between different levels. 

• Automatically produce the space of possible feasible architectural 
solutions obtained by instantiating parametric design decisions. Each 
solution is computed taken into account the specification constraints 
associated with the design decisions and the known interactions and 
conflicts between concrete design options. 

• Dynamically adapt a service-based system in an automated manner. 
SOQA is based on an optimization model that allows to choose among the 
possible solutions (produced in the previous point) the concrete solutions 
that minimizes cost, while keeping system qualities (e.g., the reliability 
and the response time) within certain thresholds. 

 
   For example, SOQA can be used to suggest the “best” actions to be taken upon 
a certain change scenario arising. A change scenario is a set of new requirements 
that induce changes in the structural and behavioral aspects of the software 
architecture. A new software architecture is obtained by modifying its structure 
and behavior. To modify the structure, SOQA suggests replacing existing 
elementary services with different available instances and/or to introduce new 
services into the system. With respect to the changes in the system behavior, it 
modifies the architectural design decisions (represented as parametric BPEL 
processes) by removing or introducing interactions between existing services 
and/or between existing and new services. The parametric design decision is 
instantiated in order to have a space of feasible concrete design decisions and the 
best concrete design decision resulting from the optimization phase is suggested. 
   
SAQO framework Input. As shown in Figure	37, the input of our framework is a 
parametric BPEL which represents an architectural decision, which has to be 
concretized by instantiating the parameters with concrete adaptation decisions. 
The concrete decisions which are candidates for instantiation are retrieved in the 
repository by exploiting the search expression associated with parameters. The set 
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of candidates are filtered by using constraints (to be defined), interaction and 
conflict information. The task is performed by the Concretization module.  
 
The Conflict Analysis module takes in input a design option and produces an 
executable specification whose behaviors are checked against invariant and 
reachability constraints in a model checking environment (e.g., SPIN14).  
 
The PROMELA language 15 , for example, can be used for the executable 
specification.  Therefore, a BPEL is translated into a PROMELA program and its 
behaviours are checked against state and reachability properties. Conflicts and 
interactions detected are stored in the repository, and possibly used for complete 
the knowledge about interaction and conflicts of stored entities. The output of the 
Conflict Analysis module is the adaptation space, namely a set of feasible design 
options over which the next step of optimization is taken.  
 
It is a module obtained by integration of the SHEPhERd framework proposed in 
[103]. Similar to the SHEPhERd framework, the Optimizer module of the SOQA 
framework comprises two main modules: a Model builder and a Model solver (see 
previous section for more details) 
 
 
 
 
 

 
 
 

	

FIGURE	37:	THE	SOQA	FRAMEWORK	AND	ITS	ENVIRONMENT	

	

																																								 																					
14 http://spinroot.com/spin/whatispin.html 
15 http://spinroot.com/spin/Man/grammar.html 



FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 97	
	

Deliverable D3.3: “Models-based Process Definition” 

6.3.1 The Metamodel  
 

In this section, we describe the metamodel for the adaptation space of service 
based applications (see Figure	38).		
	
The metamodel allows to represent: (a) structured requirements with particular 
concern on their interactions, conflicts, and conflict resolutions; (b) parametric 
and concrete structured design decisions associated with the requirements together 
with interactions and conflicts between design solutions; and (c) transformation of 
design decisions in order to support the adaptation.  
 

In the following we discuss the main entity of the metamodel related to the (i) 
requirement modeling, and (ii) design modeling.  

Requirement modeling.  

Requirement: A requirement can also be seen as a goal. A goal can be a 
functional requirement (hard-goal) or non-functional requirement (softgoal). 
According to [104], goals represent stakeholder intentions, which are 
manifestations of intent which may or may not be realized. A requirement can be 
(recursively) structured into AND/OR composition (sub-) requirements defining 
an AND/OR tree like structure. A requirement has a textual description (e.g., a 
natural language specification), and a constraint consisting of a formal expression 
over attribute-value pairs associated with the entity Requirement. A requirement 
may have a number of associated issues. 
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FIGURE	38:	ADAPTATION	SPACE	EXPLORATION	METAMODEL	

	

Position:	For	a	requirement,	the	stakeholders	may	express	different	positions	
with	respect	to	an	Issue	associated	with	a	requirement.	A	position	provides	
an	(alternative)	solution	of	an	issue.	A	position	may	be	in	conflict	with	other	
positions	 related	 to	 the	 same	 issue.	 A	 requirement	 resolution	 is	 a	
requirement	which	intends	to	overcome	the	conflicts	to	different	positions	of	
the	same	requirement.	 Issues	are	questions,	such	as,	“how	will	requirement	
Ri	be	 satisfied?”,	 “what	 does	 term	 ti	 of	Ri	 mean?”.	 Remark:	 this	 part	 of	 the	
model	addresses	only	different	 interpretation	of	 the	 same	requirement	and	
do	 not	 address	 as	 in	 [105]	 statements	 of	 the	 form	 “requirements	Ri	 and	Rj	
appear	 to	 conflict,	 how	 can	 they	 be	 resolved?”	 [105].	 The	 solution	 of	 this	
problem	 is	 given	 by	 possibly	 associating	 Requirement	 Issue	 also	 to	 an	
Interaction	between	requirements.	 In	summary,	a	 requirement	 issue	can	be	
opened	either	 for	different	positions	with	respect	 to	a	requirement	or	 for	a	
conflicting	interaction	among	requirements.	
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Design	Modeling	

A design issue represents an architectural schema, which is described by a 
composite abstract structure, namely a BPEL where parametric services can be 
invoked. We use the standard control operation: sequence, while, switch, flow, 
invoke. An invocation can take a composite concrete structure or parameter 
(abstract). 
 
A design issue has the following attributes:	

• Interface Input: It is the set of required services. It is given by an ordered 
set of logical names. 

• Interface Output: It is the set of provided services. It is given by an 
ordered set of logical names. 

• Internal Interface Connection: It is the set of interfaces composition of 
internal modules. It is given by a set of pairs of the form (M1.Out1, 
M2.In2) where M1 and M2 are logical names of the modules of the design 
issue, and Out1 is an interface postcondition of M1 and In2 is an interface 
precondition of M2. Moreover, we can have pairs of the form (self.In, 
M1.In1) and (self.Out, M1.Out1) connecting interface post and 
preconditions of the design issue, respectively, with post and preconditions 
of an internal node. 

• Precondition: A constraint which has to be satisfied to activated the 
solution. 

• Postcondition: A constraint which is satisfied at the termination of the 
execution. 

• Invariant: A constraint which is satisfied in each intermediate stable state, 
i.e., before 
and after the execution of each atomic action. 

• Technical Constraints: Technical limitations, for instance, required 
technology. 

• All the constraints are boolean expression freely constructed with boolean 
connectives 
over atomic proposition of the form: EntityName.AttributeName op Value, 
with op in >,≤,≥,<,=,≠ .  Notice that Design Issue inherits from 
Entity the possibility to associate a set of attributes together with their 
current values. 

• A search attribute in a parameter is a query like string giving the set of 
design options to be considered for the instantiation of the parameter (the 
parameter domain). Notice that it is not guaranteed that the design options 
in the result set are admissible. 

 
A design option is described by a composite concrete structure, namely a BPEL 
which allows only concrete invocations (there is no occurrence of parameters). 
With reference to the metamodel note that a design option is a special case of a 
design issue with no-occurrence of parameters. In the metamodel, we have an 
association which binds the Design option with Parameter. An admissible binding 
should preserve pre, post, and invariant conditions of Parameters and Design 
Options. 
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A concretization is a simultaneous binding of all of the Parameters of a Design 
Issue with a corresponding number of admissible design options. The 
concretization is admissible if the pre, post, and invariant conditions of the Design 
Option are fulfilled and if the individual pre, post, and invariant conditions of 
each Design Option continue to hold when they are placed in the context of the 
Design Issue. 
 
The pre confl, post confl, inv confl attributes of Concretization report possible 
conflicts related to a concretization. The contribution to the possible conflict of 
each parameter binding is reported in the pre confl, post confl, inv confl attributes 
of the association classes between Concretization and Design Option. 
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7 CONCLUSIONS  
 

In this section, we present the overall conclusions of this document in the context 
of findings expected and novelty of our contribution. 

 
To the best of our knowledge, this is the first approach	 implemented	 as	 an	
optimization	 framework	 for	 dynamically	 modeling:	 (i)	 fault	 detection	 and	
correction	processes	of	systems	functionalities	(modules)	through	the	SRGMs	
that	best	fit	the	actual	testing	data,	(ii)	testing	cost/time	constraints,	and	(iii)	
parameter-specific	 uncertainties	 phenomena.	 So	 that	 the	 systems	
functionalities	 (modules)	 with	 shorter	 time	 (budget)	 are	 tested	 and	 that	
reveled	 bugs	 are	 fixed	 earlier.	 We provide guidelines for practitioners. We 
provide support for their testing allocation decisions based on cost, time, and 
software quality.	
	
We have also proposed an automatic prioritization approach for large software 
systems that embeds the “code churn” measure. Specifically, we have provided 
support for optimizing regression functional testing with coverage and churn 
metrics. Moreover, our work has been also focused on the automation of the 
support	for	the	architectural	decisions.	Specifically, we have focused on the (i) 
modeling and analysis of QoS tradeoffs of a software architecture based on 
optimization models,	and	(ii) definition of framework for supporting the software 
architects/maintainers. More specifically, we support the software 
architects/maintainers to maintain the interactions and conflicts between 
requirements, between design decisions, and between requirements and design 
decisions. The support includes automatic detection (by model checking 
techniques) of interactions and conflicts mostly in the part of the architecture 
design decisions and propagation of interaction between different levels. Our 
approach also allows producing the space of possible feasible architectural 
solutions obtained by instantiating parametric design decisions. Each solution is 
computed taken into account the specification constraints associated with the 
design decisions and the known interactions and conflicts between concrete 
design options.	
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