
FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 1	
	

Deliverable D3.3: “Models-based Process Definition”

ICEBERG

ICEBERG models-based process

Industry-Academia Partnerships and Pathways (IAPP)
Call: FP7-PEOPLE-2012-IAPP

The research leading to these results has received funding from the

European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement n°324356

Deliverable No.: 3.3

Deliverable Title: ICEBERG models-based process

Organisation
name of lead
Contractor for this
Deliverable:

UAH

Author(s): Pasqualina Potena, Luis Fernández

Participant(s) Cigdem Gencel, Roberto Pietrantuono, Carmen Pagés

Work package
contributing to
the deliverable:

WP3

Task contributing
to the deliverable:

3.1 and 3.2

Total Number of
Pages

106

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 2	
	

Deliverable D3.3: “Models-based Process Definition”

Table of Versions

Version Date Version Description Contributors
1.0 June 2015 First draft for review Pasqualina Potena

and Luis Fernandez
3.0 July 2015 Working draft for changes by DEISER and CINI Pasqualina Potena

and Luis Fernandez

4.0 and
5.0

September
2015

Reviewed by DEISER and CINI Roberto Pietrantuono
and Cigdem Gencel

6.0	 October	
2015	

Final draft for formal approval Pasqualina Potena,
Luis
Fernandez,Roberto
Pietrantuono and
Cigdem Gencel

7.0 3rd
November
2015

Official final versión of deliverable 3.3 All partners

8.0 16th
November
2015

Official final versión of deliverable 3.3 with
small changes to guarantee consistency to
deliverable 3.2 v2.

Pasqualina Potena,
Luis Fernandez,
Carmen Pagés,
Roberto Pietrantuono
and Cigdem Gencel:
reviewed by all
partners

	

	 	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 3	
	

Deliverable D3.3: “Models-based Process Definition”

TABLE OF CONTENTS
1	 EXECUTIVE	SUMMARY	...	4	
2	 INTRODUCTION	...	5	
3	 A	GENERIC	MODELS-BASED	PROCESS	AND	DECISION	MAKING	FRAMEWORK
	 7	
4	 OPTIMAL	ALLOCATION	OF	TESTING	RESOURCES	...	40	
5	 OPTIMAL	REGRESSION	FUNCTIONAL	TESTING	...	73	
6	 ARCHITECTURAL	DECISION-MAKING	..	89	
7	 CONCLUSIONS	..	101	
8	 REFERENCES	..	102	
	 	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 4	
	

Deliverable D3.3: “Models-based Process Definition”

1 EXECUTIVE SUMMARY
	

The aim of D3.3 of the ICEBERG project “Model-based Process Definition” is to
extend the deliverable D3.1 [1] by providing a more detailed presentation of the
model-based decision making process and the generic framework, which have
been under development in the ICEBERG project. In particular, we describe raw
measurement/prediction models that would help in determining the cost of quality
(and not-quality) and allow making best decisions for the trade-off between cost
and quality, as well as a generic process definition for how to utilize such models
in industrial settings.
	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 5	
	

Deliverable D3.3: “Models-based Process Definition”

	

2 INTRODUCTION

The goal of our work is to assist project managers and quality managers in
making informed decisions during software development and maintenance.
Informed decision-making requires collecting and analyzing quantitative data and
providing the resultant information in an understandable way to decision makers.

Such assistance requires not only evaluating the dimensions of the well-
known project management iron triangle, which are cost (e.g. cost to correct a bug
during testing, or the cost of testing per unit testing-effort expenditures), time (e.g.
time to detect and fix a bug), and quality (e.g. level of reliability), but also
understanding the nature of interactions and tradeoffs among them to be able to
make better decisions under different constraints.

In this document, first, we present the generic models-based decision
making framework and process, which have been under development in the
ICEBERG project during the last three work packages. Then, in the following
chapters, we also provide three different instantiation of the models-based process
defined for making various quality management decisions.

The	following	aspects	characterize	the	novelty	of	each	of	these	instantiation:	
	

• Optimal Allocation of Testing Resources. We developed an automated
optimization process for dynamically allocating testing resources to
software modules (functionalities) based on trade-offs among software
quality, cost, and schedule/time requirements. We also explicitly consider
uncertainty in the testing process in order to evaluate the robustness
of the testing resource allocation.

In particular, our approach helps to: (i) select (and use) Software
Reliability Growth Models (SRGMs) in order to make the software testing
process more effective; and (ii) handle parameters uncertainty, which, as
shown through our real world software project, plays a critical role in
accurately describing a testing resource allocation process. It is well
known that SRGMs sometimes show good performance in terms of
predictability of the software reliability, but sometimes they do not. In this
work, we show that the handling of uncertainty is a key factor for a
trustworthy prediction of the reliability of a software system, and leads an
optimization model to a more precise (and less pessimistic) estimation of
the system reliability, as well as to a more effective and efficient testing
resource allocation activity.

• Optimal Regression Functional Testing. Based on the generic models-
based decision making process, we proposed an automated prioritization
approach for large software systems that embeds the “code churn”

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 6	
	

Deliverable D3.3: “Models-based Process Definition”

measure. Code churn represents a measure of the amount of code change
taking place within a software system over time. Thus, we propose to use
code-coverage measures (produced by static code analysis) by considering
software system evolution metrics (extracted from system’s change
history).

• Architectural Decision Making. We developed an automated approach
for	 making	 architectural	 decisions.	 Specifically, our focus is on (i)
modeling and analysis of QoS tradeoffs of a software architecture based
on optimization models,	and	(ii) definition of framework for supporting the
software architects/maintainers. Thereby, we support software
architects/maintainers to manage the interactions and conflicts between
requirements, between design decisions, and between requirements and
design decisions. The support includes automatic detection (by model
checking techniques) of interactions and conflicts mostly in the part of the
architecture design decisions and propagation of interaction between
different levels. Our approach also allows producing the space of possible
feasible architectural solutions obtained by instantiating parametric design
decisions. Each solution is computed taken into account the specification
constraints associated with the design decisions and the known
interactions and conflicts between concrete design options.

This document is organized as follows: In Chapter 3, we present the

generic decision making framework and models based process of the ICEBERG
project; in Chapter 4 we discuss in detail the optimal testing resources allocation
process.; in Chapter 5 we present the optimal regression functional testing process
using coverage and churn metrics; in Chapter 6, we introduce the architectural
decision making process. Finally in Chapter 7, we present the conclusions of this
work package.
	 	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 7	
	

Deliverable D3.3: “Models-based Process Definition”

3 A GENERIC MODELS-BASED PROCESS AND DECISION
MAKING FRAMEWORK

	

In the previous work packages of the ICEBERG project, a comprehensive
literature review and an industrial survey were carried out to identify the state of
the art on:

• Quality management and decision-making needs of software
companies,

• Commonly used software tools and commonly collected measures for
time, cost and quality

• Potential analysis techniques, methods and tools that could be used for
analyzing tradeoffs between cost, time and quality

These were altogether provided a basis when defining a generic models-

based process (see Figure	1) and quality decision making framework (see Figure
2) for software companies.

We based the generic process on ISO/IEC 15939 Standard on Software
Measurement Process so as to enable companies to be able to use the decision-
making framework integrated with their measurement processes. The Models
Based Decision Making Process provides a concrete support to software
companies when planning their measurement process.

	

	

FIGURE	1:	A	GENERIC	MODELS	BASED	DECISION	MAKING	PROCESS	DEFINITION	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 8	
	

Deliverable D3.3: “Models-based Process Definition”

By following the steps of this process, the generic decision making
framework could be instantiated for a supporting the companies for their specific
decision making needs.
	

	

FIGURE	2:	A	GENERIC	DECISION	MAKING	FRAMEWORK	AND	ITS	ENVIRONMENT	

The generic decision making framework comprises a Model Builder, a
Model solver and a Database. Primary inputs to this framework include for
example, (i) system models (e.g., an UML-based architectural model composed of
a Component Diagram, Sequence Diagrams, and a Deployment Diagram), (ii)
causes of quality decision-making, and (iii) dependencies among quality
decisions, defects issues, cost factor and schedule factor. In particular, we
identify: (i) quality decisions (and causes), and (ii) schedule/time/cost-related
properties.

The Model Builder generates the analysis model (e.g optimization model)
in the format accepted from the solver. The Model solver processes the model
received from the builder and produces the results, which consist of a set of
quality decisions. It suggests, for example, how to design (or re- design) the
software architecture in order to minimize the costs while keeping the software
quality within a given threshold. In addition, the model, for example, could also
suggest the best shift allocations to people in order to achieve the required level of
software quality. The inferences and relationships detected for this model should
be created by defining and applying the most appropriate methods for data
analysis. Any combination of quality decisions may have a considerable impact
on the cost, time and software quality. Therefore, the optimization model aims to
quantify such impact in order to suggest the best quality decision, which
minimizes the costs while satisfying the schedule/time, and quality constraints.

In order to achieve the right tradeoff among schedule/time constraints,
software qualities and costs requirements, the quality decisions should involve the

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 9	
	

Deliverable D3.3: “Models-based Process Definition”

evaluation of new alternatives to the current (i) software application level (e.g., by
the configuration of software components, the introduction of new components
into the system, etc.) and (ii) project management level (e.g., the shift allocations
to people). A decision, for example, taken for modifying a system functionality
may be good for the satisfaction of a certain level of software quality, but at the
same time it may require a high cost for implementing static code analysis (e.g.
tools, new processes, training, etc.). A major challenge is then finding the best
balance among many different competing and conflicting constraints.

 For these multi-attribute problems, there is usually no single global
solution, and the generation and evaluation of quality decisions alternatives can be
error-prone and lead to suboptimal decisions, especially if carried out manually by
system architects or maintainers.

 In order to address such problems, we investigate the application of: (1)
SBSE search methodologies (e.g., genetic algorithms, evolutionary algorithms and
other metaheuristics) and, (2) the multi-objective optimization, where objectives
represent different properties (e.g., cost, time and other software quality-related).
Specifically, a set of solutions is devised, called Pareto optimal solutions or Pareto
front, each of which assures a tradeoff between the conflicting constraints. In
other words, while moving from one Pareto solution to another, there is a certain
amount of sacrifice in one objective(s) to achieve a certain amount of gain in the
other(s). Each point of a Pareto curve would be a chain of quality decisions
(leading changes either to the application level or the project management level)..

As shown in Figure Figure	 3, a decision-making framework is
characterized by input parameters, output parameters, and techniques (e.g.,
optimization models, algorithms) to make the decisions.

FIGURE	3:	A	GENERIC	DECISION	MAKING	FRAMEWORK	

	

Below, we provide some examples, which show how to use the models-
based process when creating an instant of the decision-making framework for
specific decision-making needs. The details of these models are presented in the
next chapters: Chapter 4, Chapter 5 and Chapter 6.
	

	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 10	
	

Deliverable D3.3: “Models-based Process Definition”

3.1 AN EXAMPLE DECISION MAKING FRAMEWORK FOR OPTIMAL
ALLOCATION OF TESTING RESOURCES

	

In this section, we present the framework we developed for making
decisions on how to allocate testing resources (see Figure	 4). The details of the
model are given in Chapter 4.

A primary input to this framework is represented, for example, by from (i)
the SRGMs chosen to represent the testing process of the system functionalities,
(ii) defect data collection used, for example, to estimate parameters specific to
debuggers (e.g., the average amount of bugs that a debugger can fix per man-day),
and (iii) requirements on the time and cost of testing (such as on the total amount
of testing-effort eventually consumed).
	

	

	 FIGURE	4:	AN	EXAMPLE	FRAMEWORK	FOR	TESTING	RESOURCES	ALLOCATION	

 The Model builder, through a Parameter Specification module, gets input
model parameters. After receiving the parameters’ specification, the Model
builder generates the optimization model in the format accepted by a solver (such
as the combination of the NSGA-II algorithm and the MC simulation).

 The Model solver processes the optimization model received from the
builder and produces the results, which consist, for example, of the testing-effort
allocation (i.e., the amount of testing-effort to be performed for the system
functionalities) and bug assignment allocation (i.e., the amount of bugs assigned
to each of the debuggers).

Inputs

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 11	
	

Deliverable D3.3: “Models-based Process Definition”

The inputs required to implement the defect analysis approach for quality
decision support are the ones typically collected in a bug-tracking tool. Depending
on the details tracked about the defects, several analyses can be carried out.

The minimum requirement is the Date and time of the defect (or, more
generically, issue) detection and effort measures (e.g., man-months for
implementation and man-months for testing).

Optionally, the method can take as input: Defect Priority, Defect Severity
(impact), Defect Detection Phase (i.e., Design Review, Code Review, Unit
Testing, Integration testing ,…), the Defect Type (according to some
classification, such as IBM ODC, HP), Age of the code module (e.g., new, base,
rewritten, re-fixed), Defect Trigger, Defect Source (in-house, outsourced, library,
…), Reproducibility (e.g., always or not always reproducible).

These input parameters can be used for deriving quality vs. effort
indicators, and for identifying problems and criticalities in the lifecycle (e.g.,
phase/activity/team causing low index value).

Table	1 summarizes the potential inputs to the model. This is a superset,
meaning that different analyses can be done depending on the input information.

TABLE	1:			MODEL’S	POTENTIAL	INPUTS	

Source Measure Category Measures

Bug Repository Defect Severity/Reproducibility/Priority, Defect
Triggering (and/or activity that made the
defect surface, e.g., code review, inspection,
unit testing, workload/stress testing,
concurrency testing, operational usage),
Defect Detection Phase, Supposed Defect
Injection Phase, Fixing time, Defect fixing
Phase, Defect Type, Defect Impact, Defect
mode (wrong, missing), defect source,
source age, work/Rework

Source Code
Repository

Product Size Measures (LoC, #Req, Function
Points), Complexity metrics (McCabe,
Halstead’s), Source File metrics, code
churn/change metrics, version

Personnel through
time sheets or other

records

Process

Testing effort (e.g., man-months dedicated
to testing)

T Maximum threshold given to the delivery
time of the system.

Note that some of the specified analyses are also detailed in the subsequent

sections, being this defect analysis model at higher level. Table	2 summarizes the
potential outputs of the model.

With a greater detail, Table	3 summarizes the analyses that can be done by
joining more input information pieces, and their output depending on the
information recorded by the tester and/or the person in charge of fixing a defect
(with minimum requirement being only the detection time and date with effort
measures). The analysis that we will carry out will depend on the availability of

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 12	
	

Deliverable D3.3: “Models-based Process Definition”

such information in the case studies. The analysis are intended as “statistical”
analysis, with output always accompanied by a “confidence level” indication (e.g.,
a given metric value is greater than another, with 95% of confidence).

TABLE	2:			MODEL’S	POTENTIAL	OUTPUTS	

Decision Type 	 Description	
Release policy	 Quality (reliability) analysis/assessment and time

to get a given quality	
How much effort to invest?	 From the analysis of the testing process (test

efficacy, efficiency) and of the product quality
(detected/expected defects) with respect to the
effort devoted so far, decide on investing more or
less resources	

Whether to change the current process
based on defect data and if so, how?	

Analysis of defects per
severity/reproducibility/priority, of
detection/injection phase, of defect triggering
phase and activity, defect type, in order to identify
mismatch (expected vs actual patterns)	

Testing effort allocation	 Prediction of defective modules from code/process
metrics	

Whether to improve the debugging
process and/or development process	

Analysis of the bug fixing time, defect type, defect
impact, defect source, defect source age,
prediction of defective modules from code/process
metrics to focus design efforts, analysis of defect
features to get feedback on implementation	

	
	
TABLE	3:	INPUT-OUTPUT	MATRIX	DESCRIBING	THE	POSSIBLE	ANALYSES	AND	OUTPUTS	IN	
RELATION	TO	PROVIDED	INPUTS

Input Info Joined with: Type of Analysis Output Info

On detection,
tester will
record:

Opening Time Reliability Analysis Estimate of Expected Defects, Estimate
of (expected) Reliability (i.e., non-failure
probability), Estimate of Residual Defects
(Both during testing and during
operational phase)

 Release Policy
Analysis

Decisions on "When to stop testing, when
to release", "What is the quality, under
the current testing process, expected at
the end of testing"

 Size measures:
LoC, #Req,
Function Points

"Normalized"
reliability analysis

Estimated Expected Defects Density,
Estimated Expected Residual Defects
Density

 Effort measures:
testing effort
(e.g., man-
months)

Test Efficacy and
Efficiency Analysis

Test maturity (%): detected defects so far
over the total expected defects, Test
Efficiency: defect detection rate, Test
Efficiency: percentage detection
efficiency (progress in terms of "test

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 13	
	

Deliverable D3.3: “Models-based Process Definition”

maturity increase" per effort unit), Test
Efficiency: relative efficiency in terms of
"effort units (e.g., man-weeks) required to
achieve a maturity of x%"

 Defect severity/

reproducibility

severity/

reproducibility
analysis;

Cross-analysis with
the previous ones

Defects per category: "which
implementation has higher severe defects
in the average? what is the trend of high-
severe defects per implementation item?
Do testers of different implementation
use the same criteria to assign severity?
Which testing activity exposes the most
severe defects? Which percentage of
"not-always reproducible" defects is
found during testing and which
percentage during operation (high-cost
defects)? What testing activity exposes
the "not-always" reproducible defects?

Defect
Triggering
(and/or
activity)

 V&V Analysis Identification of critical phases of testing
(e.g., function review, code review,
testing) and operational conditions in
which defects are found (during testing or
at runtime); Identification of critical
environmental conditions (e.g., high
workload-stress greatly contributing to
expose defects); "Signature" of testing
techniques with respect to defects they
are able to find (how many, of what type,
of what impact in terms of severity)

Defect
Detection
Phase

 V&V (Phase)
Analysis

Identification of critical phases of testing
- analysis of expected detection phase vs.
actual detection phase; "Delay" and cost
analysis of testing - thus cost analysis
referred to defects that should have been
detected earlier

Supposed
Defect
Injection
Phase

 Development and
V&V Analysis;
Defect Flow
Analysis

Development Phase Analysis - which
phase introduces more defects (and of
what type, impact); Defect flow analysis:
analysis of the latency (and cost) required
to detect defects (for how many phases
the defect flows and survives); analysis of
V&V activities vs. latency

On fixing,
debugger will
record:

Fixing time Fixing process
(debug) analysis

Efficacy: percentage of closed (or
pending) defects; Efficiency; mean time
to fix

 Fixing process
evolution over time

Efficacy and Efficiency over time;
Continuity of the process over time;
homogeneity of the process (e.g.,
peakedness and skew of the fixing time
distribution)

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 14	
	

Deliverable D3.3: “Models-based Process Definition”

 Defect severity/

priority/

reproducibility

Fine-grained Fixing
process analysis
(analyse potential
causes for
experienced time to
fix)

Previous metrics normalized per average
severity (have more severe defects
required more time to be fixed)?; priority
analysis (have defects at higher priority
been fixed earlier?) ; reproducibility:
have "not-always reproducible" been
actually more difficult to fix (thus
justifying higher Time to fix)?

Actual
working Time

 Detailed Fixing
process (debug)
analysis; Latency
Analysis

Analysis of the bug tracking tool usage (it
is expected a small difference between
actual and recorded time to fix); Latency
analysis: when the actual fixing work
starts with respect to the claimed time;
percentage of actual time over recorded
time

Defect fixing
Phase

 Detailed Fixing
process (debug)
analysis

When the defect has been fixed w.r.t.
when it was to expected to be fixed (cost
analysis like "detection vs. injection"
analysis: in this case it is "correction vs.
detection")

Defect Type Development
Analysis

"Signature" of defect types over the
development phases: expected vs.
experienced defect. Analysis of patterns
of defect types vs. development phases in
which they have been injected. Cross-
analysis with many previous and
following attributes: defect type vs.
trigger, vs. V&V activities, vs. impact,
vs. source , vs. age, vs. target; type-based
defect prediction (see below)

Defect Impact Development and
V&V Impact
Analysis

Crossed analysis with: development
phases, V&V phases and activities, defect
type and triggers, and others…

Defect Mode
(missing,
wrong)

 Detailed
Development and
V&V Analysis

As above, differentiated per "missing"
defects and "wrong" defects; feedback to
developers

Source (in-
house,
outsourced,
library)

 "Source Defect"
Analysis

How many defects per source item type
(in-house, outsources); crossed analysis
with previous attributes

Source Age
(new, base,
rewritten,
refixed)

 "Source Age"
Analysis

Age is intended the age of the code
affected by the defect as development
history: base code from the previous
release, new code from the current
release, rewritten code or refixed code.
This allows analysing the impact of
reusing code, of regression bugs, of
writing completely new code, of using a
baseline. Crossed analysis with previous
attributes makes sense also.

Target of the Code-defect How many defect (density) per target;

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 15	
	

Deliverable D3.3: “Models-based Process Definition”

fix (e.g.,
source file)

Relationship
Analysis

how target (metrics) are related to
defectiveness

Version Defect Pattern
Evolution across
versions; release
policy analysis

How defects (type, trigger, impact,
age,…) evolves across versions; how
releases relate to defects found in
operation; how releases are related to
fixing (e.g., release train effect)

Work-rework Regression
Likelihood
Analysis

How many defects are opened during a
re-work; likelihood of introducing
regression bugs; crossed analysis with
triggers (environmental conditions in
which defects surface)

More
advanced
analysis. For
internal
quality and
prediction

Size and
complexity
metrics; CVS
metrics (code
churns, etc.)

 Code-defects
Relationship;
Defect Prediction

Empirical models to build predictors of
defectiveness in modules; can be
customized per defect type

Requirements,
design-,
organizational
metrics

 Process metrics-
defects
Relationship;
Defect Prediction;
Detailed phase
analysis (relation
between phases
metrics and defects)

How metrics at each level are related to
defects; this can be specialized per phase
(e.g.,: how requirements metrics are
related to, and can predict, defects of a
given type, or defects injected in
requirements phase, …)

Description of
the defect;
notes;
discussions;
number of
state changes
in the report,
…

 Communication;
Topic analysis,
semantic analysis

Relating communication patterns (length
of discussion, topics inside, number of
participants to the discussion) with time
to fix

Test Effort per
component

 Optimal test effort
allocation

Allocate effort to projects with higher
expected defectiveness

In Chapter 4, we discuss how to estimate these parameters by using

information collected with a bug-tracking tool (e.g., Jira). We have also
instantiated the optimization model for the fault correction with the bug
assignment activity prediction, but its elements (e.g., cost function and reliability
constraints) combined with the method for uncertainty analysis could be re-used
in another phase of the testing process. This adoption may require specializing
(appropriately modifying) the model in order to capture typical aspects of the new
phase. Testing-effort allocation prediction under testing-effort time/cost and

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 16	
	

Deliverable D3.3: “Models-based Process Definition”

reliability constraints with uncertain model parameters, for example, could be
used for enhancing existing approaches (discussed in Section 4) for scheduling
developers/testers to activities to be performed to fix a bug repository.

In Table	 4 and Table	 5, we discuss in detailed examples for the testing
model which we discussed in deliverable D3.1 [1]. In particular, we summarize
inputs and outputs of these models.

TABLE	4:	MODELS’	INPUTS		

Model Input Reference

Release planning For each component, Opening time of defects
ddiscovered during testing (and/or during
operation).

D3.1 – 7.1

Debugging analysis for
improved release planning

Input data are the same as the release planning
model, as this model is based again on SRGM,
augmented by data on closing time of the issues,
being the model conceived to include the impact
of debugging.

D3.1 – 7.2

Resources allocation For this model, the required inputs come from
the bug-tracking repository from which the
opening times of defects that are detected during
testing are used to build the SRGMs online.
From these, given a testing budget (as further
input) that managers want to spend for testing,
the allocation is performed dynamically, at any
time the tester wants, by using the prediction of
residual number of defects expected in each
component.

D3.1 – 8.1

	

TABLE	5:	MODELS’	OUTPUTS		

Model Output Reference

Release planning Prediction of the optimal time to release, given a
quality to achieve

D3.1 – 7.1

Debugging analysis for
improved release planning

Prediction of the optimal time to release, given a
quality to achieve and analysis of debugging
causes

D3.1 – 7.2

Resources allocation The amount of effort to allocate to each system’s
components/modules in order to minimize the
expected number of residual defects

D3.1 – 8.1

	

Table	 6 below presents how input information could be represented in a
database.

TABLE	6:	MODEL’S	INPUTS	AND	THE	DATABASE	

Model Input Database

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 17	
	

Deliverable D3.3: “Models-based Process Definition”

Release planning For each component, opening time
of defects discovered during testing
(and/or during operation).

The tab The table Issue and the relationship
Issue-Version allow to obtain
information related to opening time
of defects discovered during
testing. Moreover, relationships in
the database allow to get
information related to the
components, products, projects and
companies associated with a
certain issue.

Debugging analysis
for improved release
planning

Input data are the same as the release
planning model, as this model is
based again on SRGM, augmented
by data on closing time of the issues,
being the model conceived to
include the impact of debugging.

Similarly to the previous decision
model, Information related to
issues can be found in the database.

Resources
allocation

For this model, the required inputs
come from the bug tracking
repository from which the opening
times of defects that are detected
during testing are used to build the
SRGMs online. From these, given a
testing budget (as further input) that
mangers want to spend for testing,
the allocation is performed
dynamically, at any time the tester
wants, by using the prediction of
residual number of defects expected
in each component.

Other than the information of the
previous two decision modes,
information related to the
components (modules) can be also
found. Such information can be
obtained by using the tables
Version, Component and Product
involved in the relationship
Version-Component.

	

Figure	 5	 shows	 the	 information	 in	 and	 out	 of	 the	 testing	 decision	
frameworks	listed	in	Table	4	and	Table	5.	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 18	
	

Deliverable D3.3: “Models-based Process Definition”

FIGURE	5:	INPUTS	AND	OUTPUTS	TO	THE	DECISION	MAKING	FRAMEWORK

3.2 AN EXAMPLE ARCHITECTURAL DECISION MAKING
FRAMEWORK

	

Below	 is	 an	 example	 framework	 we	 developed	 for	 making	 decisions	 on	
architecture	(see	Figure	6).	The	details	of	the	model	are	given	in	Chapter 6.	
	

	

FIGURE	6:	AN	EXAMPLE	DECISION	MAKING	FRAMEWORK	FOR	ARCHITECTURAL	DECISIONS	

	
In	 Table	 7	 and	 Table	 8	 we	 discuss	 examples	 of	 architectural	 decisions	

models,	 which	 we	 have	 discussed	 in	 the	 deliverable	 D3.1	 [1].	 	 In	 particular,	 we	
summarize	inputs	and	outputs	of	the	models.	
	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 19	
	

Deliverable D3.3: “Models-based Process Definition”

TABLE	7:	MODELS	INPUTS	

Model Input Reference

Build-or-buy decisions
models

Average number of invocations of a software
component, number of existing software
components, maximum number of COTS
instances available for each component, number
of existing software components, minimum
threshold given to the reliability on demand of
the system, maximum threshold given to the
delivery time of the system, cost of a component
instance, delivery time of a component instance,
unitary development cost (time) of a component
instance, average time required to perform a test
case of the instance, testability of a component
instance.

D3.1 – 6.2

Quantifying the influence of
failure repair/mitigation costs

Average number of invocations of an elementary
service across all considered interaction
scenarios, minimum threshold given to the
reliability on demand of the system, number of
nominal services, maximum number of service
implementations available for purchase by
providers for each nominal service, cost of the
service instance, probability of failure on
demand of a service instance, unitary
development cost of an in-house service,
testability of an in-house instance.

D3.1 – 6.2.1

Optimization of adaptation
plans with cost and quality
tradeoff

Set of new requirements that induce changes in
the structural and behavioral architecture of the
software system, set of actions that address a
certain requirement, average number of
invocations of an elementary service, average
number of invocations of a new service, number
of elementary software services, set of
alternative instances for an existing service, cost
of a service instance, reliability (availability) on
demand of a service instance, response time of a
service instance, set of new available services,
cost of a new service, reliability (availability) on
demand of a new service, response time of a
new service, minimum threshold given to the
reliability (availability) on demand of the
system, maximum threshold given to the system
response time.

D3.1 – 6.3

	

TABLE	8:	MODEL’S	OUTPUTS	

Model Output Reference

Build-or-buy decisions
models

Build-or-buy decisions for each component and
the amount of unit testing to be performed on
each in-house developed component

D3.1 – 6.2

Quantifying the influence of
failure repair/mitigation costs

Build-or-buy decisions for each service
(component as a service) and the amount of unit

D3.1 – 6.2.1

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 20	
	

Deliverable D3.3: “Models-based Process Definition”

testing to be performed on each in-house
developed service. The solution of the set of
optimization models can give insights on
the service composition that best fit the
requirements considering an explicit cost
model and the possibility to define repair
actions to improve the system reliability.

Optimization of adaptation
plans with cost and quality
tradeoff

The model suggests a new system
architecture. A new architecture is, thus,
obtained by modifying both its structure and
its behavior. Specifically, in order to modify
the software structure, the model replaces
existing software services with different
available services and/or embeds new
software services into the system With
respect to the changes in the system
behavior, it modifies the system scenarios
(represented, for example, as BPEL
processes) by removing or introducing
interactions between existing services
and/or between existing and new services.

D3.1 – 6.3

	

Table	 9	 describes	 how	 input	 information	 of	 the	 architectural	 decision	
frameworks	can	be	represented	in	a	database.		

	
TABLE	9:	MODEL’S	INPUTS	AND	THE		DATABASE	

Model Input Database

Build-or-buy decisions
models

Average number of invocations of
a software component, number of
existing software components,
maximum number of COTS
instances available for each
component, number of existing
software components, minimum
threshold given to the reliability on
demand of the system, maximum
threshold given to the delivery time
of the system, cost of a component
instance, delivery time of a
component instance, unitary
development cost (time) of a
component instance, average time
required to perform a test case of
the instance, testability of a
component instance.

Information related to existing and
new components can be found in
the database. In particular, for
each component instance
(represented with tables Version-
Component) data are stored. Its
information (e.g., related to the
delivery time or average time
required to perform a test case)
are stored in the relationship
Metric-Version. Input data
inserts by users are related to the
number of components, minimum
threshold given to the reliability
on demand of the system,
maximum threshold given to the
delivery time of the system.

Quantifying the
influence of failure
repair/mitigation costs

Average number of invocations of
an elementary service across all
considered interaction scenarios,
minimum threshold given to the
reliability on demand of the

Similarly to the previous model,
information related to services can
be found in the database. In
particular, for each service
instance (represented with tables

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 21	
	

Deliverable D3.3: “Models-based Process Definition”

system, number of nominal
services, maximum number of
service implementations available
for purchase by providers for each
nominal service, cost of the service
instance, probability of failure on
demand of a service instance,
unitary development cost of an in-
house service, testability of an in-
house instance.

Version-Component) data are
stored. Its information (e.g.,
related to the cost of the service
instance, probability of failure on
demand) are stored in the
relationship Metric-Version.
Input data inserts by users are
related to the number of services,
minimum threshold given to the
reliability on demand of the
system.

Optimization of
adaptation plans with
cost and quality
tradeoff

Set of new requirements that
induce changes in the structural
and behavioral architecture of the
software system, set of actions that
address a certain requirement,
average number of invocations of
an elementary service, average
number of invocations of a new
service, number of elementary
software services, set of alternative
instances for an existing service,
cost of a service instance,
reliability (availability) on demand
of a service instance, response time
of a service instance, set of new
available services, cost of a new
service, reliability (availability) on
demand of a new service, response
time of a new service, minimum
threshold given to the reliability
(availability) on demand of the
system, maximum threshold given
to the system response time.

Information related to existing and
new services can be found in the
database. In particular, for each
service instance (represented with
tables Version-Service) data are
stored. Its information (e.g.,
related to the reliability,
availability) are stored in the
relationship Metric-Version.
Input data inserts by users are
related to the number of services,
minimum threshold given to the
reliability (availability) on
demand of the system, maximum
threshold given to the system
response time.

	
Figure	 7,	 Figure	 8	 and	 Figure	 9	 show	 the	 inputs	 and	 outputs	 of	 the	

architectural	decision	frameworks	listed	in	the	above	tables.		
	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 22	
	

Deliverable D3.3: “Models-based Process Definition”

	

	

FIGURE	7:	INFORMATION	IN	AND	OUT	OF	THE	BUILD-OR-BUY	DECISION	MODEL	

	

	

	

FIGURE	8:	INFORMATION	IN	AND	OUT	OF	THE	QUANTIFYING	THE	INFLUENCE	OF	FAILURE	
REPAIR/MITIGATION	COSTS	MODEL	

	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 23	
	

Deliverable D3.3: “Models-based Process Definition”

	

FIGURE	9:	INFORMATION	IN	AND	OUT	OF	THE	OPTIMIZATION	OF	ADAPTATION	PLANS	WITH	
COST	AND	QUALITY	TRADEOFF	MODEL	

	

3.3 AN EXAMPLE REGRESSION TESTING DECISION FRAMEWORK
	

In this section, we present the example framework we developed for
making decisions on regression testing (see Figure	10). The details of the model
are provided in Chapter 5.

	

	

FIGURE	10:		AN	EXAMPLE	DECISION	MAKING	FRAMEWORK	FOR	REGRESSION	TESTING	

	

In Table	 10, Table	 11 and Table	 12 we discuss examples of regression
decision models. In particular, we summarize inputs and outputs of the models.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 24	
	

Deliverable D3.3: “Models-based Process Definition”

TABLE	10:	MODEL’S	INPUTS	

Model Input Reference

Regression test suite
prioritization

Test cases, analysis of code coverage is
collected for each of the version of a
software product, Churn metrics are
collected for each of the version of a
software product (e.g., Cyclomatic
Complexity, number of added or modified
LOC).

More details can be
found in Section 5.2

	

	

TABLE	11:	MODEL’S	OUTPUTS	

Model Output Reference

Regression test suite
prioritization

Test cases prioritization. More details can be found in Section
5.2

	

	

TABLE	12:	MODEL’S	INPUTS	AND	THE	DATABASE	

Model Input DB

Regression test suite
prioritization

Test cases, analysis of code
coverage is collected for each of the
version of a software product, Churn
metrics are collected for each of the
version of a software product (e.g.,
Cyclomatic Complexity, number of
added or modified LOC).

Similarly to the architectural
decision models, information
related to components can be found
in the database. In particular, for
each component instance
(represented with tables Version-
Component) data are stored.

	

Figure	 11 shows the information in and out of the regression testing
decision framework listed in the above tables.

	

	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 25	
	

Deliverable D3.3: “Models-based Process Definition”

	

	

FIGURE	11:	INFORMATION	IN	AND	OUT	OF	THE	REGRESSION	TESTING	MODEL	

	

3.4 DATA GATHERING
	

In this section, we provide more information for the database, which is to
be designed and implemented for collecting the data required by the decision-
making models. The ER scheme can be found in deliverable D3.2.

The following diagram illustrates the process of creating the database.

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 26	
	

Deliverable D3.3: “Models-based Process Definition”

FIGURE	12:	THE	PROCESS	OF	DATABASE	CREATION

The data collected from the industrial scenarios (provided by our industrial
partners) will be used for populating the database, as sketched in Figure	13.

FIGURE	13:	THE	PROCESS	OF	DATABASE	POPULATION

Information can be categorized in three main categories:

• Metrics
• Products
• Defects

a) Metrics

Figure	14 shows the ER schema related to Metrics information.

	

	

FIGURE	14:	ER	SCHEMA	RELATED	TO	METRICS	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 27	
	

Deliverable D3.3: “Models-based Process Definition”

	

Table Metric. This table encompasses the software metrics. In the deliverable
D2.2, a quite extensive list of software metrics can be found. Example of metrics
is LOC (number of lines of code). Different metrics can be used for different
software versions and for different projects. Moreover, two versions of the same
components may have different values for the same metric.

The following table summarizes the data related to code churn, which are used for
populating the database.

TABLE	13:	CODE	CHURN	METRICS	

Classification Type	 Characteristic	 Name	 Description	 Feasibility UM	

Change	 Process Schedule HOURS Time in hours to
develop/maintain the
software system.

 number

Change Process Frequency REVISI
ONS

Number of revisions
of a file

good number

Change Process Frequency REFACT
ORINGS

Number of times a
file has been
refactored

good number

Change Process Frequency BUGFIX
ES

Number of times a
file was involved in
bug-fixing

good number

Change Process Size AUTHO
RS

Number of distinct
authors that checked
a file into the
repository

 number

Change Process Size LOC_A
DDED

Sum over all
revisions of the lines
of code added to a
file

 number

Change Process Size MAX_L
OC_AD
DED

Maximum number of
lines of code added
for all revisions

 number

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 28	
	

Deliverable D3.3: “Models-based Process Definition”

Change Process Size AVE_
LOC_A
DDED

Average lines of
code added per
revision

 number

Change Process Size LOC_DE
LETED

Sum over all
revisions of the lines
of code deleted from
a file

 number

Change Process Size MAX_L
OC_DEL
ETED

Maximum number of
lines of code deleted
for all revisions

 number

Change Process Size AVE_LO
C_DELE
TED

Average lines of
code deleted per
revision

 number

Change Process Size CODEC
HURN

Sum of (added lines
of code – deleted
lines of code) over
all revisions

 number

Change Process Size MAX_C
ODECH
URN

Maximum
CODECHURN for
all revisions

 number

Change Process Size AVE_C
ODECH
URN

Average
CODECHURN per
revision

 number

Change Process Size MAX_C
HANGE
SET

Maximum number of
files committed
together to the
repository

 number

Change Process Size AVE_C
HANGE
SET

Average number of
files committed
together to the
repository

 number

Change Process Size AGE Age of a file in
weeks (counting
backwards from a
specific release)

 number

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 29	
	

Deliverable D3.3: “Models-based Process Definition”

Change Process Size WEIGH
TED_AG
E

𝐴𝑔𝑒 𝑖 ×𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)!

!!!

𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)!
!!!

(Pg.42 Doc. D2.2)

 number

Change Resour
ce

Effort PERSON
-HOUR

Cost per hour to
develop/maintain the
software system.

high euro

Change Resour
ce

Effort PERSON
-DAYS

Cost per day to
develop/maintain the
software system.

high euro

Change Resour
ce

Cost MONEY Money value (per
hour/day/week/mont
h) average or
differentiated by
employee.

high euro

Source	 Product Size MB Megabyte high number

Source	 Product Size FP Function Point high number

Source	 Product Structure WMC Weighted Method
Count

high number

Source Product Structure DIT Depth of Inheritance
Tree

high number

Source Product Structure RFC Response For Class high number

Source Product Structure NOC Number Of Children high number

Source Product Structure CBO Coupling Between
Objects

high number

Source Product Structure LCOM Lack of Cohesion in
Methods

high number

Source Product Structure FAN_IN Number of other
classes that reference
the class

high number

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 30	
	

Deliverable D3.3: “Models-based Process Definition”

Source Product Structure FAN_O
UT

Number of other
classes referenced by
the class

high number

Source Product Structure NOA Number of attributes high number

Source Product Structure NOPA Number of public
attributes

high number

Source Product Structure NOPRA Number of private
attributes

high number

Source Product Structure NOAI Number of attributes
inherited

high number

Source Product Size LOC Number of lines of
code

high number

Source Product Structure NOM Number of methods high number

Source Product Structure NOPM Number of public
methods

high number

Source Product Structure NOPRM Number of private
methods

high number

Source Product Structure NOMI Number of methods
inherited

high number

Source Product Structure AHF Attribute Hiding
Factor

high percentag
e

Source Product Structure MIF Method Inheritance
Factor

high percentag
e

Source Product Structure AIF Attribute Inheritance
Factor

high percentag
e

Source Product Structure MHF Method Hiding
Factor

high percentag
e

Source Product Structure POF Polymorphism Factor high percentag
e

Source Product Structure COF Coupling Factor high percentag
e

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 31	
	

Deliverable D3.3: “Models-based Process Definition”

Source Product Structure SIX Specialisation Index
per Class

high percentag
e

Source Product Structure CCN Cyclomatic
complexity

high number

Source Product Structure LOCM4 Lack Of Cohesion of
Methods version 4

high number

Source Product Structure Package
tangle
index

cyclical
dependencies
between packages
and files

 percentag
e

Source Product Size PLOC Number of physical
lines of code

high number

Source Product Size LLOC Number of logical
lines of code

high number

Source Product Structure NOC Number of class high number

Source Product Structure NOP Number of packages high number

Source Product Structure NOF Number of files high number

Source Product Structure BRANC
HES

Number of branches
(for all if and switch
statements)

high number

	

	

Table Tool. This table encompasses the tools for metrics evaluation (e.g., the
Sonar tool). A raw list of these tools can be found in the deliverable D2.2. A tool
can be used to collect several metrics. Therefore, there is a relationship N:N
between the tables Metric and Tool.

Examples of tools are shown below in Table	14.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 32	
	

Deliverable D3.3: “Models-based Process Definition”

TABLE	14:	EXAMPLE	TOOLS	

Name Description YearFirst
Version

YearLast
Version

Jdepend JDepend traverses Java class file
directories and generates design
quality metrics for each Java
package. JDepend allows you to
automatically measure the quality
of a design in terms of its
extensibility, reusability, and
maintainability to manage package
dependencies effectively.

2006 2014

JCSC JCSC is a powerful tool to check
source code against a highly
definable coding standard and
potential bad code. It is a highly
configurable checking tool for
your Java source code. It checks
the compliance to a defineable
coding standard like naming
conventions and code structure.
Also signs of bad coding, potential
bugs are found.

2002 2005

QALab QALab consolidates data from
Checkstyle, PMD, FindBugs and
Simian and displays it in one
consolidated view. QALab keeps a
track of the changes over time,
thereby allowing you to see trends
over time. You can tell weather the
number of violations has increased
or decreased - on a per file basis,
or for the entire project. It also
plots charts of this data.

2006 2006

CKJM CKJM calculates Chidamber and
Kemerer object-oriented metrics
by processing the bytecode of
compiled Java files. The program
calculates for each class the
following metrics: weighted
methods per class, depth of
inheritance tree, number of
children, coupling between object
classes, response for a class, lack
of cohesion in methods, afferent
couplings and number of public
methods

2005 2012

Panopticode The Panopticode project provides
a standardized format for
describing the structure of
software projects and integrates
metrics from several tools into that

2007 2007

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 33	
	

Deliverable D3.3: “Models-based Process Definition”

format. Reporting options provide
correlation, historic analysis, and
visualization. Panopticode uses
Tree Maps to display the code
complexity and coverage.

Same Same is a tool to find duplicate
lines in multiple text files. Very
useful to find and fix copy-and-
paste programming. It has been
designed to be simple, portable,
and fast.

 2001

FindBugs It uses static analysis to look for
bugs in Java code. Potential errors
are classified in four ranks:
scariest, scary, troubling and of
concern. This is a hint to the
developer about their possible
impact or severity.

2007 2015

JavaNCSS JavaNCSS is a simple command
line utility which measures two
standard source code metrics for
the Java programming language.
The metrics are collected globally,
for each class and/or for each
function. It can optionally present
its output with a little graphical
user interface.

1997 2009

PMD/CPD PMD is a source code analyzer. It
finds common programming flaws
like unused variables, empty catch
blocks, unnecessary object
creation, and so forth. It supports
Java, JavaScript, PLSQL, Apache
Velocity, XML, XSL.
CPD is a copy-paste-detector.
CPD finds duplicated code in Java,
C, C++, C#, PHP, Ruby, Fortran,
JavaScript, PLSQL, Apache
Velocity, Ruby, Scala, Objective
C, Matlab, Python, Go.

2002 2015

Xradar XRadar is an open extensible code
report tool currently supporting all
Java based systems. The batch-
processing framework produces
HTML/SVG reports of the systems
current state and the development
over time - all presented in tables
and graphs. It gets results from
several open source projects and a
couple of in house grown projects
and presents the results as massive
unified html/svg reports.

2008 2009

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 34	
	

Deliverable D3.3: “Models-based Process Definition”

Checkstyle Checkstyle is a development tool
to help programmers write Java
code that adheres to a coding
standard. It automates the process
of checking Java code. It is highly
configurable and can be made to
support almost any coding
standard. It can find class design
problems, method design
problems. It also has the ability to
check code layout and formatting
issues.

2007 2015

Sonar It is an open source platform for
continuous inspection of code
quality. Offers reports on
duplicated code, coding standards,
unit tests, code coverage, complex
code, potential bugs, comments
and design and architecture.
Records metrics history and
provides evolution graphs and
differential views.

2007 2015

Classycle Classycle's Analyser analyses the
static class and package
dependencies in Java applications
or libraries. It is especially helpful
for finding cyclic dependencies
between classes or packages.
Classycle's Dependency Checker
searchs for unwanted class
dependencies described in a
dependency definition file.
Dependency checking helps to
monitor whether certain
architectural constrains are
fulfilled or not.

2003 2014

Jlint Jlint will check your Java code and
find bugs, inconsistencies and
synchronization problems by
doing data flow analysis and
building the lock graph. Jlint is
extremely fast - even on large
projects, it requires only one
second to check all classes. It is
easy to learn and requires no
changes to the class files.

2004 2011

Sonar
Plugins

Sonar includes several plugins
such as language plugins, plugins
for developer tools, governance,
integration, autentication and
authorization, additional metrics,
SCM engines, external analizers,
visualization, reporting, etc.

2014 2015

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 35	
	

Deliverable D3.3: “Models-based Process Definition”

Squale Assists developers in improving
the code of their projects. Helps
project managers to meet quality
requirements for their applications.
Gives top-managers dashboards to
monitor the overall health of their
information system. Works on
enhanced quality models. Helps
assessing software quality and
improving it over time.

2009 2011

JaCoCo JaCoCo is an open source toolkit
for measuring and reporting Java
code coverage. It offers line and
branch coverage. JaCoCo
instruments the bytecode while
running the code. To do this it runs
as a Java agent, and can be
configured to store the collected
data in a file, or send it via TCP.

2009 2015

	

Relationship Tool-Metric. This relationship is used for obtain metrics values. In
particular, this relationship can be obtained from Table 19 of the deliverable D2.2.
For example, the JaCoCo tool (see Section 6) provides code coverage metrics.

Table Qualitymodel. This table encompasses quality models, for example ISO
9126 (see Deliverable 2.2). A tool may be related to one (or more) quality models.
Therefore, there is a relationship N:N between the tables Qualitymodel and Tool.

Examples	of	quality	models	are:	

Name Description

ISO 9126 International standard for the evaluation of software
quality. Its fundamental objective is to address some of the
well known human biases that can adversely affect the
delivery and perception of a software development
project.The standard is divided into four parts: quality
model, external metrics, internal metrics and quality in use
metrics. It has been replaced by ISO/IEC 25010:2011

ISO 25010 This quality model determines which quality
characteristics will be taken into account when evaluating
the properties of a software product. The considered
characteristics are: functional suitability, performance
efficiency, compatibility, usability, reliability, security,
maintainability and portability.

SQUALE It is inspired by the ISO 9126 standard and introduces a
new level for the assessment of practices in the hierarchy
of factors, criteria, and measures. It allows one to
determine the quality of a project and control its
evolution during the maintenance of a project,
preventing deterioration. The Squale model stresses bad
quality instead of averaging the quality in order to quickly
focus on the wrong parts. It uses a set of measures

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 36	
	

Deliverable D3.3: “Models-based Process Definition”

combined into practices using formulae which take into
account company standards and project technical
specificity. Practice weights are customized with
respect to these overall constraints.

SIG It is based on best practices and defined standards, such as
ISO/IEC 25010. The SIG model offers an efficient, simple
and structured way to gain objective insight in the quality
of performance by evaluating both the process and the
product. The result is a score from one to five stars, where
more stars correspond to a higher quality. One of the key
aspects of the model is ‘observability’, a property that
discusses to what extent performance characteristics in a
system can be measured and assessed.

Relación Tool-QualityModel. This relationship is derived by applying the quality
models.

Entity Functionalfeature. This table encompasses the tasks that metric tools
perform (e.g., the Data acquisition task). In the deliverable D2.2, a description of
the main tools’ tasks is provided. A tool can perform one or more tasks. A specific
task can be performed by more than one tool. Therefore, there is a relationship
N:N between the tables Tool and Functionalfeature.

First, it is populated the following table:

Name Description

Data acquisition Set of methods and techniques for obtaining necessary data for
measurement

Analysis of measures Ability to store, retrieve, manipulate and perform data analysis

Data presentation Formats to generate the obtained documentation

Relationship Tool-FunctionalFeature. This relationship can be obtained from
Table 20 of deliverable D2.2.

	

b) Products

Figure	15 shows the ER schema related to Products information.

	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 37	
	

Deliverable D3.3: “Models-based Process Definition”

	

FIGURE	15:	ER	SCHEMA	RELATED	TO	PRODUCTS	

Table Domain. This table collects information related to the application domain
of the company (e.g, medical, telecommunications, financial, which are the
ICEBERG project’s scenarios application domain).

Table Enterprise. An occurrence of this table represents an organization
responsible for the software development or maintenance. Data privacy is
considered by using appropriates measures (e.g., by inserting names of scenarios
as ScenarioM, ScenarioT, ScenarioF). 	

Table	Product.	A software product is a component that results of a composition of
one or more components. There is a hierarchy/aggregation relationship between a
product and a component. For each product, information related to its providers
are stored.

Table Component and Table Version. A component is a self-contained
deployable software module containing data and operations, which
provides/requires services to/from other components. Different versions may be
available for one component. A component version is a specific implementation
of a component. A component version can be involved in different software
product versions and in others component versions. Defects are related to
products, components or component’s versions. For each scenario, information of
its components (and the related versions) are stored (e.g., number of bugs, issues,
etc).

Relationship Version-Version. This relationship is used to determine the
structure of a product. In particular, the decomposition of components/versions in
sub-components (versions) is modelled.

Relationship Metric-Version. This relationship is used to determine metric
values of the component versions.

Relationship Metric-Component. This relationship is used to determine metric
values of the components.

	

c) Defects

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 38	
	

Deliverable D3.3: “Models-based Process Definition”

Figure	16 shows the ER schema related to Defects information.

	

	

FIGURE	16:	ER	SCHEMA	RELATED	TO	DEFECTS	

	

Table Project. Data related to specific activities, which a software company
conduced for developing a project, are stored. Such information is collected with
respect to the scenarios. For example, for the ScenarioT, it is stored information
related to two products developed in two different projects. Generic projects (for
developing or maintain a software systems) are created, which can be used to
insert data of new further scenarios.

Relationship Product-Project. This relationship allows obtaining information
related to the products and the projects (i.e., project specific activities).

Relationship Metric-Project. This relationship allows to obtain metrics related to
a single project. More specifically, if a project is related to one product, then
metrics values of the product will be stored. The current version of the project is
also stored.

Table Resource. This table encompasses the people involved in the different
activities. Several people may be involved in the same trigger. For each activity,
the working hours of the people can be stored (assuring later analysis of
cost/effort data). In particular, for each scenario, information related to the people
involved are stored. Data will be stored by appropriating adopting privacy
mechanisms (e.g., for people name will be used a nickname).

Table Lifecycle. This table is related to the software life cycle. Different phases
are typically involved in a software life cycle, such as the requirements, design,
and testing phases.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 39	
	

Deliverable D3.3: “Models-based Process Definition”

Table Issue. This table encompasses defects, which have been detected or fixed
(see deliverable D3.1 for more details). One defect can be associated to one
version of a software component. For each scenario, information related to the
issues found during testing activities (or at operational time) will be stored. For
example, opening time (and closing time) of the issue will be collected. Other data
are related to the severity, priority, type of bug, or the current state of the issue
(e.g., opened, closed, and assigned).

Relationship Issue-Version. A defect impact (affected and/or fixed) to one or
more versions of a software component. This information is stored with respect to
each of the scenarios.

Relationship Issue-Issue. A defect may occur again even after the defect is fixed.
The reopen defect issue has to be related to the original defect.

Table Trigger. This table encompasses the work tasks to be performed to address
an issue’s occurrence, such as the execution of a test case. A defect (related to the
Issue entity) may be detected during the execution of a trigger (e.g., during the
testing activity) or may be fixed by a trigger. If a scenario does not provide details
about triggers, then a generic trigger is created in order to store data. For each
project, attributes for its triggers will be stored (e.g., NumTotal, NumPassed, and
NumFailed).

Relationship Trigger-Resource. Information related to people involved in the
single projects (and their specific triggers) will be stored.

	 	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 40	
	

Deliverable D3.3: “Models-based Process Definition”

	

4 OPTIMAL ALLOCATION OF TESTING RESOURCES

 The allocation of testing resources of large software systems is a complex
task, mostly because it requires models that encompass the composition of test
process properties into system properties. As software is used more and more in
business-critical and safety-critical applications, it is important to prevent the
realization of software with poor software quality. The reliability of a large-scale
software system is given by the composition of system functionalities (modules,
sub-systems, etc) reliabilities; therefore, the system reliability is a function of the
detection ability of the testing process of each of the system functionalities
(modules, sub-systems, etc).

Typically project managers’ decisions span from the identification of the
most important system functionalities (e.g., the ones with the biggest safety
impact, or the largest financial impact on users) through resource scheduling to
staff assignment [2]. In fact, the majority of software projects today are embedded
in dynamic contexts, where requirements, environment assumptions, and usage
profiles continuously change. Therefore, in the last few years, development
processes have primarily focused on the maintenance phase, due to the frequent
changes required by software after the deployment phase. In this work, we focus
on resource allocation, which is highly relevant in testing process, and is typically
a time-consuming and tedious task. It is well worth optimizing the allocation
scheme [3]: although testing resources can be allocated in rather simple ways (e.g.
average allocation, random allocation, and proportional allocation), an optimal
allocation scheme may lead to significant improvement in terms of the reliability
of a software system [4].

Any combination of testing allocation decisions may have a considerable
impact on the cost, time and software quality. For these multi-attribute problems,
there is usually no single global solution, and the generation and evaluation of
alternatives can be error prone and lead to suboptimal decisions, especially if
carried out manually by test/project managers. Therefore, tools that support
decisions strictly related to meet quality/time requirements, while keeping the
costs within a predicted budget, would be very helpful to the project managers’
tasks.

The presence in the market of standard off-the-shelf components/services
has drastically changed in the last decade the development process of large-scale
systems. Mission-critical large-scale systems, for example, are developed in a
highly modular way, adopting a strong component-based approach to foster reuse
and a build-by integration approach [5]. Although several approaches have been
introduced in the last few years to address these issues, the tradeoff analysis
among quality, cost, and time has not yet been studied enough. In fact, very
generic criteria are typically applied in the practice, such as allocating resources
driven by requirements (e.g., testing a component until all requirements have been
tested at least once), or driven by the size (more testing to bigger modules).
Sometimes, intuition drives testing choices: based on experience, a tester may
deem one functionality (software module) more “critical” than another, therefore
deserving more testing. As there may be relevant differences among
functionalities (modules) in terms of quality e.g., because they come from

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 41	
	

Deliverable D3.3: “Models-based Process Definition”

different teams (internal or external in case of outsourcing), or they are based on
different programming paradigms - their defectiveness can vary significantly [6].

The tradeoff analysis results may be strongly affected by parameter
uncertainties; in fact, the software testing activity is fraught with a not negligible
uncertainty relates to values of parameters such as operational profile, the
expected number of initial faults, the fault detection rate per unit testing-effort
(SRGMs input), fault fixing time, etc. The propagation of this uncertainty on the
objective function and the constraints should be analyzed. Typically, existing
works perform the sensitivity analysis of optimal resource allocation problems
[7], [8] with respect to those parameters deemed critical, such as the expected
initial faults, the fault detection rate and cost of correcting an error in testing and
operational phase on the optimum allocation. Because parameters are estimated
based on the available data (e.g., parameters of a SRGM are estimated based on
the available failure data, which is often sparse [7]), their estimation only
represent approximations of parameters. As a consequence, parameter estimation
plays a critical role in accurately describing testing resource allocation process
through optimization models.

The goal of our work is to assist test/project managers in the decisions on
how to effectively distribute the resources available for testing. Such assistance
aims to take into account several quality attributes of the testing process, i.e., cost
(such as that one to correct a bug during testing, or the cost of testing per unit
testing-effort expenditures), time (e.g., the time to detect and fix a
bug/defect/fault1), and reliability. In particular, we explicitly consider uncertainty
in the testing process in order to evaluate the robustness of the testing resource
allocation. Robustness refers to the ability to tolerate uncertainty in the intrinsic
input parameters of the testing process. We deal with input parameter
uncertainties, and model each uncertain parameter as a random variable whose
variability is characterized by its continuous or discrete distribution. We present a
Monte Carlo (MC) simulation-based approach to systematically assess the
robustness of a resource allocation alternative despite its uncertainty. MC is a
well-assessed method for uncertainty analysis. Examples of its adoption can be
found in different areas of the scientific literature. Its effectiveness and efficiency
have, for example, already been demonstrated in the works [9] [10] for handling
parameter uncertainties in the performance (and reliability) modeling and analysis
process of software architectures.

More specifically, we provide an automatic optimization process for
dynamically allocate testing resources to software modules (functionalities) based
on trade-offs among software quality, cost, and schedule/time requirements.
Dynamic refers to the ability of using testing data (i.e., bug reports2) as they
become available, exploiting them to adjust performance online, and robust with
respect to variations during testing and volatility of planning time’s assumptions.
Our approach consists in formalizing the decision problem in terms of system
quality and testing cost/time requirements, to elicit and represent uncertainties as
probability distributions, to simulate the impact of resource allocation alternatives

																																								 																					
1	The	term	fault	(defect/bug)	is	preferred	in	the	fault	tolerance	(software	engineering)	community;	
here,	we	use	them	as	synonymous.	
2	A	bug	report	is	also	called	a	ticket,	an	issue,	an	incident,	a	fault	(defect)	report,	a	maintenance	request,	
etc.	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 42	
	

Deliverable D3.3: “Models-based Process Definition”

on system quality and testing cost/time through MC simulations, and to shortlist a
set of alternatives using Pareto-based multi-objective optimization techniques.

Our optimization method combines the application of both metaheuristic
search techniques and MC simulations. In particular, we have chosen to adopt
evolutionary algorithms because they have been reported to perform better than
some other techniques used for solving the testing resource allocation problem (as
remarked in [3]). These types of metaheuristic algorithms possess the strong
capability of global search, and are usually not very sensitive to initial solutions.
On the contrary, these characteristics represent drawbacks that are common
among the alternative approaches adopted for solving testing allocation problem.
Evolutionary techniques’ effectiveness has also been demonstrated on a large
spectrum of problems in the reliability optimization field, such as resource
management and task partition in grid systems, redundancy allocation, and
reliability optimization of weighted voting systems [3].

In a limited testing budget (and time), an important challenge to address is
a tradeoff between (i) allocating resources to functionalities (software modules)
where testing will have the highest detection power, and (ii) maximizing the
number of bugs that can be fixed in available time. This challenge stems from our
experience in testing industrial health care systems, in collaboration with our
partner. This problem is currently relevant for our industrial partner in particular,
and the health care domain in general due to its high variability in requirements
and design. In fact, medical procedures and uncertainty in patient behaviors
require stochastic analysis, and complex decisions under uncertainty are notably
made about the cost-effectiveness of new medical treatments based on the results
of clinical trials [11].

In summary, our main contributions are:

• An approach implemented as an optimization framework for dynamically
modeling: (i) fault detection and correction processes of systems
functionalities (modules) through the SRGMs that best fit the actual
testing data, (ii) testing cost/time constraints, and (iii) parameter-specific
uncertainties phenomenons. So that the systems functionalities (modules)
with shorter time (budget) are tested and that reveled bugs are fixed
earlier.

• The maximization of the testing process’s effectiveness by predicting the
fault correction process as a function of the bug assignment process. More
specifically, we predict the ability of the debuggers/testers to correct
faults. We use bug reports (collection of fixed and not-fixed bugs) in order
to predict debugging performance. In fact, the scheduling of debuggers to
bug-fixing activities should not be performed only during system testing,
when a new bug is reported and has to be assigned to a
developer/debugger for fixing it (see the typical steps of a bug-tracking
system such as Bugzilla [12]). If the bug assignment would be limited to
the testing activity’s execution, then it would be difficult to find bug-fix
solutions that are relevant to a given testing situation (e.g., that exactly
match the budget and time requirements). We claim that the bug
assignment (typically a time-consuming and tiresome process in large
software projects [13]) may be a key factor for a trustworthy prediction of
the fault correction process of the single functionalities (software
modules), as well as of the reliability of the whole system.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 43	
	

Deliverable D3.3: “Models-based Process Definition”

In Sections 4.1 and 4.2, we present an overview of the dynamic testing resource
allocation framework; in Section 4.3 we provide the formulation of the
optimization model that represents the core of our approach; in Section 4.4 the
achieved results on the Medical Company scenario (see Deliverable D2.2 [95])
are presented; Section 4.5 introduces related work and discusses the novelty of our
contribution.

4.1 OPTIMAL TESTING RESOURCE ALLOCATION PROCESS

We defined a process, which helps in dynamically allocating testing
resources to software functionalities. Dynamic refers to the ability of using testing
data as they become available, exploiting them to adjust performance online, and
robust with respect to variations during testing and volatility of planning time’s
assumptions.

The defined process is based on a multi-objective optimization model
combined with a Montecarlo simulation strategy, aiming to maximize the quality
of a given software (i.e., in terms of number of detected and corrected faults),
based on the trade-offs among system reliability, testing time, and
testing/debugging cost.

We hereafter denote the three objectives to be pursued as: FCO (Fault
correction process’ Effectiveness Objective), to maximize; TTO (Testing Time
Objective), to minimize; TCO (Testing-effort Cost Objective), to minimize. The
output of our process is a solution (i.e., individual in the NSGA-II terminology)
providing (i) the testing effort to be spent for each system functionality, (ii) the
number of debuggers being assigned to each functionality, (iii) the hours of each
debuggers to the functionalities. A solution is also characterized by the fitness,
i.e., the triple composed by the values of FCO, TTO, and TCO that are obtained
by the solution.

In the following, we provide a high-level overview of the proposed
process.

v SRGM Construction. The first phase of the process is obtaining the module-

level SRGMs3 that characterize the testing progress of each functionality.
Differently from previous work on SRGMs-based allocation (e.g., [4], [30],
[107], [108], [30]), we do not assume any prior specific SRGM, but we infer
the most suitable for each functionality.

More important, the process includes the possibility to dynamically select the
best SRGMs during testing as fault detection data become available, whenever
historical data are unavailable or unreliable. The steps of the SRGM
construction are shown in Figure	17.

																																								 																					
3 For this work, a module is a functionality: in the following , the two terms are used as
synonymous if not differently specified.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 44	
	

Deliverable D3.3: “Models-based Process Definition”

FIGURE	17: HIGH-LEVEL	TESTING	RESOURCE	ALLOCATION	PROCESS	OVERVIEW	

• Data Gathering. Let F denote the set of functionalities to test. At the

beginning of the process application, i.e., t0, there are two possible cases
for a given functionality: i) historical data about testing conducted on that
functionality are available (or testing data of another system including the
same functionality, or also testing of a previous version of that
functionality) ii) no previous data are available.

In the former case the data (in particular, the fault detection times) can be
used to fit an SRGM for the functionality among a list of SRGMs. In the
latter case, i.e., without any additional information to prioritize the testing
efforts at t0, the initial resource allocation is done uniformly to all
functionalities: once the testing starts, the new data can be progressively
used to fit the SRGMs.

It should be observed that the former case allows running the optimal
allocation before the beginning of the testing activities; however, it
requires historical data. The latter case uses the data generated during the
ongoing testing process (hence, more accurate), but the optimal allocation
algorithm can be run only when enough data are available to build the
SRGMs. Running the optimal allocation dynamically during testing
(possibly, several times) yields to more accurate results, but might be less
useful if run too late (since the suggested allocation would apply just to the
remaining testing time) [5].

• Validity check. To assign a SRGM to a functionality, a validity check is

performed to evaluate if data (either historical data or collected during
testing) can be fitted in a satisfactory way. Each functionality is fitted by
means of every available SRGM among a set of SRGMs the tester wish to
try. Fitting is performed by means of the EM algorithm [14], which

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 45	
	

Deliverable D3.3: “Models-based Process Definition”

provides the best fitting parameters for a given dataset and SRGM. On
each SRGM, it is run a goodness of fit (GoF) test, by means of the one-
sample Kolmogorov-Smirnov (KS) test (with 95% confidence level) for
comparison of samples with a reference probability distribution. If the test
is satisfied for at least one SRGM, it means that the testing dataset can be
said, with 95% of confidence, to come from that SRGMs distribution.

Once the validity check is passed, we have, in general, a set of SRGMs
that satisfy the KS test for one given functionality; these are said to be
statistically valid SRGMs. Among them, the best one will be selected
according to the next step3.

• SRGM selection. The input to this step is the set of statistically valid

SRGMs for each functionality. They are compared in terms of fitting
ability and the best one is selected. We adopt a common goodness-of-fit
measure based, the Akaike Information Criterion (AIC). The SRGM
model with the lowest AIC value is preferred, denoting the minimal
information loss that we incur by selecting that model. This way, each
functionality is assigned with the best fitting SRGM based on real testing
data.

v Parameters Specification. The second phase of our process deals with the
specification of parameters, and the management of the uncertainty.
Parameters are split into deterministic and uncertain. Deterministic parameters
(e.g., desired threshold of reliability, available testing budget, cost of a tester
and a debugger per hour) do not need any preliminary treatment. Uncertain
parameters (e.g., SRGM parameters, average fixing time, usage profile) are
treated by means of a Montecarlo-based strategy aimed at providing the
robustness of the solution against the variability of the parameters.

Examples of uncertain parameters (other parameters are listed in the following
Section) are the SRGM ones. Their values are, in fact, derived by fitting a
dataset, and represent just one of the potential set of values tied to the specific
“instance” of data observed from testing – namely, repeating testing on that
functionality would give different results, as testing is a random process.

Uncertainty is addressed by considering the value of a parameter as a sample
of a probability distribution, similarly to works on architectural solution
optimization [9], [10]. The parameters are considered as random variables,
whose variability is characterized by their continuous or discrete distribution:
the value of a specific instance is considered a deterministic sample drawn
from the distribution of the parameter. The so-specified parameters with
uncertainty are the inputs for the next phase, namely the robust optimization.

v Robust Optimization. The third phase is the robust optimization process,

further detailed in Figure	18. The framework includes two modules: a Model
Builder and a Model solver.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 46	
	

Deliverable D3.3: “Models-based Process Definition”

The Model builder generates the optimization model based on the
deterministic and uncertain parameters; the Model solver processes the model
and produces the Pareto-front solutions, which consist in the testing-effort
allocation and the assignment of debuggers (and hours) to each system
functionality.

The workflow of the Model Solver (here implemented through the NSGA-II
algorithm and the MC simulation) is shown in Figure	19.

The algorithm starts with a set of solutions, which represent the initial
candidates (i.e., the initial population of the search) - Generating Initial
Population step.

At each iteration, recombination and mutation operators are applied to produce
ne individuals. The fitness of the solution is evaluated by handling parameters
uncertain via MC simulation, with respect to the three objectives, i.e.: i) the
expected number of faults that will be detected and corrected by adopting that
solution, ii) the testing and debugging cost that will be sustained, and iii) the
time to complete the testing activity. The most promising individuals are
selected (i.e., Evaluating Individuals in Figure	19) by the metaheuristic. Then,
new candidates are generated from the current population (i.e., Generating
New Population in Figure	19), until the stop criteria are satisfied4.

Embedding MC simulation within the metaheuristic allows generating robust
solutions: the output is not a point solution (where the impact of the input
parameters uncertainty on the solution is unknown), but interval, i.e., range of
solutions that reflect the possible variability of the optimal solution depending
on the variability of the uncertain input parameters. As a result, the tester can
select a solution based on more or less conservative criteria (e.g., taking the
solution on the lower bound of the 95% confidence interval of the mean of one
objective, such as the number of corrected faults).

In the following section, we first describe the MC-based strategy to

manage the uncertainty and produce robust solutions. Then, we detail the
objective functions of the model and the constraints.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 47	
	

Deliverable D3.3: “Models-based Process Definition”

	

FIGURE	18: THE	ROBUST	OPTIMIZATION	FRAMEWORK	AND	ITS	ENVIRONMENT	

	

FIGURE	19: HIGH-LEVEL	(NSGA-II	AND	MC-BASED)	MODEL	SOLVER	OVERVIEW	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 48	
	

Deliverable D3.3: “Models-based Process Definition”

4.2 TESTING-EFFORT ALLOCATION EVALUATION UNDER
UNCERTAINTY

In general, system engineering disciplines (and in particular, software testing) are
fraught with different types of uncertainties. Software testing, like other
development activities (e.g., the design process [15]), is in fact human intensive
and thus introduces uncertainties. Software testing uncertainties may affect the
development effort and should therefore be accounted for in the test plan [16].

Testing activities are related to the planning and enactment, where enactment
includes test selection, test execution, and test result checking. The majority of
these activities concern with human behavior (such as test result checking is
highly routine and repetitious and thus are likely to be error-prone if done
manually [16]). Test enactment is in fact inherently uncertain, since only
exhaustive testing in an ideal environment guarantees total confidence in the
testing process and its results. However, an ideal testing scenario is infeasible in
practice for all but the most trivial software systems. Instead, multiple factors
exist that introduce software testing uncertainties [17]. Uncertainty can in fact
arise from different sources including external factors not directly related to the
behavior of humans in testing activities, such as the usage of the system from end-
users.

Different types of uncertainty can thus be faced during the testing process.
Example of uncertainty sources is related to the system specification. 4 For
example, information on the software system to be tested may be incomplete, such
as (some) scenarios, describing the system’s dynamics, might not be available (or
sufficiently detailed) [18].

The importance and the need of handling uncertainty in software testing is also
pointed out by [19]. In particular, the work identifies a set of requirements for
adequate uncertainty handling in testing, and outlines the lack of: (i) richer testing
frameworks to handle input parameters uncertainty (i.e., specify input distribution
instead of discrete inputs), (ii) probabilistic oracles to handle uncertainty
associated to the system behavior (i.e., due to misbehaviors and incorrect outputs),
and (iii) richer models to deal with system and environment uncertainty.

In this work package, we dealt with the uncertainty affecting the parameters
involved in the resource allocation process. The uncertainty is mainly dependent
on estimation of the parameters inferred from observed data (e.g., parameters of
the SRGMs, average fixing time), or that cannot be accurately evaluated when no
enough information is available (e.g., the usage profile of the system
functionalities).

We face this problem by combining MC simulation and metaheuristic search in
order to assess the robustness of a solution against uncertainty. Our strategy
leverages its basics from recent research done in different areas, i.e., software

																																								 																					
4	Notice	that	this	uncertainty	source	corresponds	to	the	type	of	uncertainty	related	to	system	models,	
i.e.,	all	sorts	of	approximation	and	modeling	uncertainties	of	a	design	process	[15].	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 49	
	

Deliverable D3.3: “Models-based Process Definition”

architecture quality (e.g., performance and reliability), optimization under
uncertainty [109], [110]. Robustness is the ability to tolerate uncertainty in the
input parameters. Such as indicated in Figure	19, the search space exploration is
achieved by enhancing metaheuristic techniques (the NSGA-II algorithm in
particular) with MC simulation for uncertainty analysis. Again, we represent the
uncertainty of the parameters by probability distributions to simulate the impact of
solution alternatives on objective functions through MC simulations, and to
shortlist a set of alternatives using Pareto-based multi-objective optimization
techniques.

The approach to evaluate the objective functions in a robust way is depicted by
Figure	20. The three objective functions (FCO, TTO, TCO) for a given solution
are evaluated by simultaneously considering the uncertainty of all the parameters.
The samples are generated based on the probability distribution associated with
each uncertain input parameter, and the fitness (as well as the constraints) for the
candidate solutions are re-computed for each sample.

Statistical analysis on the fitness values (collected at each MC run) is performed,
so as to provide solutions with a desired statistical confidence. In the following
pargarpahs, we detail the steps as shown in Figure	20.

	

FIGURE	20: EVALUATION	OF	TESTING	RESOURCE	ALLOCATION’S	RELIABILITY	(TESTING	TIME	
AND	COST)	UNDER	UNCERTAINTY	

	

4.2.1 Specification of Uncertain Parameters

The uncertain parameters in the testing resource allocation process are categorized
as follows::

• System-specific parameters. This category includes the parameters related
to the detection and correction process, which are dependent on the
features of the system (functionalities) under test. These are the parameters
of the debug-aware SRGMs of each of functionality, i.e.: (i) the expected
number of initial faults; (ii) the parameters of the detection rate per
remaining fault function; (iii) the parameters of the correction rate per
pending fault function .

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 50	
	

Deliverable D3.3: “Models-based Process Definition”

• Parameters specific to the testing-process. This category includes the
parameters related to the testing process and its activities, such as
debuggers aspects (e.g., the average amount of bugs a debugger can fix in
a day).

• Usage profile. The usage profile concerns how users interact with the
system. It roughly expresses how much each functionality is expected to
be used during operations. When available, this information is exploited at
testing time to exercise the system functionalities proportionally to their
expected usage. A simple, but widely adopted, way to express the
operational profile is the relative (percentage) frequency of invocation of
each functionalities (e.g., the call rates of system functionalities).

Call rate estimates can be usually obtained by examining (i) data gathered
during simulation, static profiling, or dynamic profiling; (ii) field data
gathered obtained during runtime monitoring of similar systems (or the
same system in previous versions); (iii) by exploiting domain knowledge
and information provided by the software architecture [20]. It is worth
noting that such estimates are affected by uncertainty that we take into
account.	

Uncertain parameters are treated as random variables. Hence, the values of the
parameters are considered as samples of a – continuous or discrete – probability
distribution. Distributions of parameters can be derived in several ways [52], such
as: (i) using the source of the variations, in the cases when the source of
uncertainty is known and can be estimated, (ii) by constructing a histogram, when
a considerable amount of data regarding the parameter behavior are available, (iii)
approximated as a uniform distribution if no information is available and (iv) as a
discrete distribution, when parameters are discrete-valued. Depending on the
available information, any of these methods can be selected to derive a sampling
distribution for each parameter.

We adopt the uniform distribution (UD) in all the cases but one, as we assume the
more general case of no prior knowledge about any parameter. Specifically, the
continuous UD over a range is used for the SRGM parameters about fault
detection process and for the debugger capacity parameters, while a discrete UD
over the set of functionalities is used for the usage profile parameters. For the
SRGM parameters of the fault correction process, we exploit the knowledge
available from the literature, and adopt the exponential distribution, since it has
been shown to well represent the debugging process [111]. In the case of SRGM
parameters, the ranges of the uniform distribution can leverage from the
confidence intervals (e.g., at 95%) of the parameter estimation (e.g., as in [9][10).
For the debugger load capacity, it should be derived from requirements within the
organization, which establishes how many (minimum and maximum) bugs each
debugger can be assigned in a day. As for the usage profile, if no information is
available about which functionality is going to be more used in operation, each
functionality can be assigned the same probability. Finally, as for the correction
process, the mean of the exponential distribution can be estimated by means of
historical data available within a company about the average bug fixing time, as

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 51	
	

Deliverable D3.3: “Models-based Process Definition”

recorded in a bug tracking system; if the information is not available, a domain
expert should assess it.

4.2.2 Sampling of Uncertain Parameters and Solution Evaluation

Samples are drawn from the defined distributions for each of the input parameters.
These are used in the objective functions and constraints of the model in order to
evaluate a candidate solution under the sampled parameter values. The process is
repeated until a desired accuracy is achieved (an iteration is called a MC run). The
output of a MC run is a sample representing one possible fitness value of the
candidate solution (i.e., a triple of values for FCO, TTO and TCO). Criteria for
stopping the simulation and robustly evaluate the candidate solution are explained
hereafter.

Objective functions evaluation under uncertainty. The robust value for the
objective functions from the MC runs could be derived by using two methods [10].
The first method consists in deriving a Probability Density Function (PDF) for each
objective function (i.e., a histogram is constructed for each objective by using
various discretization techniques), and obtaining the robust objective values for a
given confidence. However, this approach is computationally expensive
(considering that it should be repeated for all the individuals). Moreover,
prospective probability distributions for the objective function values need to be
specified a priori.

The alternative method leverages non-parametric or distribution-free statistical
procedures. Specifically, for each candidate solution, it derives descriptive statistics
(e.g. percentiles, mean, variance or confidence bound) for the three objectives from
the observed samples of the MC simulation. To capture the robustness of a
candidate with different degree of tolerance, appropriate percentiles can be used as
robust objectives. In contrast to the PDF-based method, this method does make any
assumption on the probability distribution, being it a non-parametric method, and
are successfully applied in a variety of statistical problems.

We hereafter adopt a non-parametric method. Several options are available
regarding the descriptive statistic to adopt: for instance, selecting the 50th
percentile for all the three objectives means that we consider, for each objective, the
median of the observed samples of the MC simulation, for a given candidate
solution. A more conservative choice is to select the lower/upper bound, namely the
5th or 95th percentiles, depending on whether the objective is to minimize or
maximize. This approximates the bounds of 95% confidence interval. For instance,
if the objective is to maximize (such as in the case of FCO), we consider the lower
bound as robust solution (namely the 5th percentile of observed values); whereas,
for the other two objectives (TTO and TCO), the 95th percentile can be taken as
robust solution.

Dynamic Stopping Criteria. Regardless the percentile chosen, the issue of how
many MC runs (i.e., how many samples) should be performed for an accurate
estimate need to be addressed. We use the notion of dynamic stopping criterion,

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 52	
	

Deliverable D3.3: “Models-based Process Definition”

introduced in [10], in order to monitor the accuracy of the value to estimate (e.g.,
number of faults corrected) and automatically stops the MC simulations when the
number of samples is sufficient to satisfy a predefined error threshold. For
instance, let us consider the objective 1, FCO. Let us denote with f a value of this
objective after one MC run. Several runs of the MC simulation will provide a set
(likely different) values of f, due to the different (uncertain) input parameters’
values sampled at each run (F=f1, f2, …, fN). The goal is to figure out how many
samples are needed (i.e., the size of N) to get an estimate of the desired percentile
of the set F – let us denote it as fperc. The procedure is as follows:

• A minimum of k MC runs are performed. After k repetitions, the desired

percentile is estimated on the collected set (f1,…, ,fk), obtaining the first estimate
of the percentile, fperc_1.

• As the number of runs increases beyond k, further estimates are obtained,
considering samples from the beginning, i.e.: 𝑓!"#$! from 𝑓!… 𝑓!!! ; 𝑓!"#$!
from 𝑓!… 𝑓!!!;, and so on. The variation of the estimate is monitored for a
sliding windows of size k, as the accuracy of the estimation is a changing
property. Thus, the last k estimates are considered: 𝑓!"#$! , 𝑓!"#$!!! ,
…𝑓!"#$!!! The statistical significance is calculated for the last k estimates as
in [112]:

𝑒 =
!!(!!!!)

!

!!"#$! !(!!"#$)!

!!"#$
 (1)

where e is the relative error, 𝑓 denotes the average of last k estimates, 𝑓!is the
mean-square of the last k estimates, is the desired significance of the test and
z refers to the inverse cumulative density value of the standard normal
distribution. The relative error e is checked against a predefined tolerance level
(0.01 in our case): when it is below the threshold the MC runs are stopped, as the
desired accuracy has been achieved.

Robust Optimization. With the MC runs for each candidate solution embedded in
the loop, the search space exploration is achieved by enhancing the metaheuristic
techniques (the NSGA-II, in our case) with the MC method for the analysis of
uncertainty.

For each candidate solution, the fitness value (for each objective) to consider is
the chosen percentile (e.g., the 5th, the 50th, or the 95th percentile). The Pareto-
front concept is enhanced to express the robustness of the solution with respect to
parameters uncertainty. Thus, the dominance notion is slightly modified to
account for this change. For instance, suppose we are considering an objective to
minimize (e.g., the objective 2, namely TTO). In this case, we may want to
consider the upper bound (i.e., 95th percentile of the MC sample set) as
conservative criterion to compare solutions. Then, the Pareto-front concept is
modified as follows.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 53	
	

Deliverable D3.3: “Models-based Process Definition”

Given the minimization of a vector function f of n components 𝑓!, 𝑘 = 1,… ,𝑛 of
of a vector variable x in 𝐷!" , subject to inequality and equality constraints
(𝑔! 𝑥 ≥ 0, 𝑗 = 1,… , 𝐽 and ℎ! 𝑥 = 0, 𝑘 = 1,… ,𝐾).
Let us denote with f(x) =(𝑓! 𝑥 ,… , 𝑓!(𝑥)) the upper bound function vector,
(where 𝑓! is the confidence upper bound of 𝑓! obtained from MC runs). A solution
vector 𝑢 = 𝑢!,… ,𝑢! dominates a vector 𝑣 = 𝑣!,… , 𝑣! , denoted by u ≼ v if
f(u) is partially less than f(v) , i.e., ∀𝑖 ∈ 1, . . 𝑘 , 𝑓(𝑢)! ≤ 𝑓!(𝑣) ∧ ∃𝑖 ∈
1,… , 𝑘 : 𝑓(𝑢)! < 𝑓!(𝑣).

Project Constraints evaluation under uncertainty. Figure 7 sketches a high level
view of the proposed approach for evaluating alternative candidates (i.e., testing
resource allocation individuals, see Figure	 19) according to the constraints on
reliability (and testing time/cost).

The input of the approach for constraints evaluation is a testing-effort and bug
assignment allocation (an individual of the population of the search). It proceeds
iteratively. At each iteration step, the individual is evaluated according to the
constraints on reliability/time/cost of testing (see Figure	20). Such properties (i.e.,
reliability, cost and time of testing) of one individual are evaluated by
simultaneously considering all the parameters’ uncertainties. In particular,
samples are generated from the probability distributions of uncertain parameters
using the MC method, and the properties are re-calculated for each of these
samples. The output of the constraints evaluation approach, Resij (with j
representing the property identifier), is a descriptive statistic (e.g. percentile,
mean, variance or confidence bound) for the properties (reliability, testing time
and cost) from the observed samples of the MC simulation. Dynamic stopping
criteria are used for determining when a sufficient number of samples for the
associated individual is determined.

FIGURE	21: CONSTRAINTS	ON	RELIABILITY	AND	TESTING	TIME/COST	EVALUATION	PROCESS	

IN	PRESENCE	OF	UNCERTAIN	PARAMETERS	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 54	
	

Deliverable D3.3: “Models-based Process Definition”

	

Stopping Criteria (Figure	21). We have defined the stopping criteria by exploiting
the work in [9] that deals with the model-based performance analysis (i.e., the
satisfaction of certain performance requirements, e.g. response time, throughput)
of software architectures under uncertain parameters. The work introduced a MC-
based approach. In particular, the sampling process is seen as a Bernoulli
experiment where each trial provides a value of 1 or 0 leading to a Bernoulli
distribution with parameter p (which can be estimated using MC simulations).
Stopping criterion has been defined for estimating the value of p with a tolerance
against the inherited uncertainty.

Similarly, we can consider the MC-based evaluation process of constraints
(illustrated in Figure	 21), as a Bernoulli experiment where each trial
(corresponding to execution of the evaluation process, see Figure	20) provides a
value of 1 or 0 leading to a Bernoulli distribution with parameter p, i.e., each
execution of the evaluation process has one Boolean indicator representing
whether the trial satisfies reliability (cost and time) requirements. In other words,
a run of our constraint evaluation process corresponds to a sample of the MC-
based process defined in [9].

Thus, the stopping criteria can be defined (by exploiting the ones used in [9]) as
follows:

– A minimum of h executions of the MC-based process (of Figure	 20) are
conducted and results are recorded (x1,…,xh). The value of p is estimated as
follows:

𝑝 = !!
!
!!!
!

 (2)

– The variation of the estimate 𝑃 = 𝑝!,𝑝!,…𝑝! is monitored for a sliding
window of size h. Only the last h executions of the MC-based process are
monitored, as the accuracy of the estimation is a changing property. The
objective is to detect if sufficient accuracy is obtained.

– The statistical significance is calculated for the last h estimates:

𝑒 =
!!(!!!!)

!

!!!(!)!

!
 (3)

where e is the relative error, 𝑝 is the average of last h estimates, 𝑝! is the mean
square of the last h estimates, 𝛼 is the desired significance of the test and z refers
to the inverse cumulative density value of the standard normal distribution. The
relative error e of the reliability (cost/time) estimate𝑃 is checked against a
tolerance level, e.g. 0.005.

Results Interpretation (Figure	 21). Similar to the performance robustness of
software architectural models [9], the robustness of testing resource allocations
with respect to the requirements on reliability (and testing cost and time) can be
evaluated by systematically analyzing the results, Resij(t) (with j and t

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 55	
	

Deliverable D3.3: “Models-based Process Definition”

representing the property identifier and the run identifier, respectively) of the MC-
based evaluation process runs, and checking if each evaluation process’s run
fulfills the constraints.

We associate to the t-th result, Resij(t), corresponding to the t-th run of the
constraint evaluation process, a fulfillment flag 𝑓!"#!" 𝑡 which is a binary value
that indicate the satisfaction of the requirements. The robustness of the testing
resource allocation (corresponding to the i-th individual) with respect to the
requirements on reliability (testing time and cost) is defined as follows:

𝑟𝑜𝑏𝑢𝑠𝑡!!"#!,!(!) =
!!"#!,!(!)

!
!
!!! (4)
						

	
where (i) 𝑟𝑜𝑏𝑢𝑠𝑡!!"#!"(!) is a real value in the [0,1] interval, and (ii) N is the
number of execution of the constraint evaluation process. It is the percentage of
samples that fulfill the requirement(s).
	
	
4.3 OPTIMIZATION MODEL FORMULATION

The goal of our optimization model is to find the optimal allocation of testing
resources among K functionalities of a system S to test, and optimal assignment of
bugs to debuggers to maximize the effectiveness of the testing process. “Optimal”
here denotes actions that incur minimum time and cost of testing, and maximum
effectiveness of the fault correction process under minimum reliability and testing
budget constraints.

Table	15 summarizes the symbols used throughout this section. e Section. In the
following, the parameters, variables, constraints, and objective functions are
described.

TABLE	15:	MAIN	NOTATION	ADOPTED	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 56	
	

Deliverable D3.3: “Models-based Process Definition”

4.3.1 Model Parameters

In this section, we describe the main parameters of our optimization model.5

In this section, we describe the main parameters given as input to the model:

– The time, t0 is the time at which tester decides to run the resource allocation
algorithm. This time can be the beginning of the testing process of the system
under test (when historical data are used for the SRGMs construction) or it can be
any time during the testing process (when online testing data are used to build the
SRGMs). In the latter case, the allocation model can be run several times during
testing (what we called dynamic allocation); thus we refer to t0 as “(re-)iteration”
time.

– Fd&c(t0)k is the number of faults detected and corrected in functionality k after t0
time units.

– When the algorithm has to be run, the SRGMs for each functionality should be
available, according to the phase 1 of the approach. They are characterized by
detection and correction rate functions, denoted as 𝜆!(𝑡), and 𝜇!(t), representing,
respectively, the fault detection rate per undetected fault, and the fault correction
rate per detected but uncorrected fault. Their parameters’ estimation can be coped
with in several ways (e.g., Maximum Likelihood Estimate, Least Square Estimate,
or Expectation Minimization).

																																								 																					
5 For	the	sake	of	readability,	other	parameters	are	given	later	in	the	document.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 57	
	

Deliverable D3.3: “Models-based Process Definition”

– The δk parameter is the average number of hours required to fix a bug, for the
functionality k. It is estimated by querying historical data about bug correction
tracked in the bug repository6, such as in [58],, [113], taking the median instead of
the mean when the distribution is highly skewed.

ωk is the probability that the k-th functionality will be invoked:
𝑤! ≥ 0,∀𝑘 = 1,…𝐾 , and 𝑤!!

!!! = 1. This information can be synthesized
from the operational profile estimation [38], according to either design-time (e.g.,
documentation, simulation, profiling) or execution-time (field data of previous
versions) methods, possibly complimented by expert judgment [114].
– 𝛾!! is processing capacity of the debugger d with respect to the functionality k. It
represents the working rate of the debugger on functionality k, expressed as
average number of hours per day that the debugger d is allowed to work t fix bugs
of functionality k.

- 𝐶!∗,𝐶!∗,𝐶!∗	are the cost parameters used in the cost-related objective function
(TCO). They represent, respectively: (i) 𝐶!∗ is the cost per man-day to correct a
bug during testing; (ii) 𝐶!∗ is the cost per man-day to correct a bug during
operational use (typically 𝐶!∗> 𝐶!∗ [7]); and (iii) 𝐶!∗ is the cost per testing-effort
expenditure unit (e.g., man-hour or man-day) to test a functionality (i.e., hourly or
daily cost of a tester). These parameters are provided as input by the user;
although they could generally have different values for each functionality, we
assume they are the same for each functionality to keep the model simple.

1) α, h, β, A are the parameters of the logistic testing effort function (TEF)
[30][26], which is used to explain how testing effort varies in function of
calendar time. Specifically: α, is the consumption rate of testing-effort
expenditures, (ii) h is a structuring index whose value is larger for better
structured software development efforts, (iii) β is the maximum budget
that has been given on the total amount nof testing-effort that can be
consumed (expressed in man-hours), and (iv) A is a constant parameter.
Although the estimate of these parameters is not the main focus of our
work, as shown in [26], [25], and [24], [22], they may be estimated by the
method of least squares (LSE) or maximum likelihood estimation (MLE).	

	
4.3.2 Variables

This section introduces the decision variables of the optimization model.

The Yk 1 ≤ 𝑘 ≤ 𝐾 variables represent the amount of testing effort (in man-
hours) to perform on each system functionality. It is a decision variable, namely:
solving the model will provide a vector of Yk values, that are the suggested testing
efforts to spent per functionality. A related variable is tk: it is the calendar testing
time (measured, in hours or in days) devoted to test functionality k, and is bound
																																								 																					
6 For	simplicity,	we	assume	the	average	number	of	hours	required	to	fix	a	bug	of	a	given	functionality	k	
(i.e.,	δk)	is	the	same	for	each	debugger	d	working	on	that	functionality.	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 58	
	

Deliverable D3.3: “Models-based Process Definition”

to the spent testing effort Yk via the TEF: In fact, as the effort is related to testing
time by the TEF, assigning Yk man-hours to k corresponds to assign 𝑡! = 𝐹!!(𝑌!)
hours, where 𝐹!! is the inverse of the TEF.

The 𝑥!! 1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾 and 𝑁!! (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾) variables
are used to predict the correction process of the debugger/tester d with respect to
the functionality k. These are further decision variables. One of the goals of the
model is, in fact, to maximize the number of faults corrected, which is related not
only to the maximization of faults detected, but to how much effectively such
revealed faults are corrected by debuggers. Specifically, the 𝑥!! variables are
used to select debuggers for the functionality k; in particular 𝑥!! is equal to 1 if
the debugger d is chosen and 0 otherwise. The 𝑁!! variables represent the time (in
hours) assigned to the debugger d to work on functionality k in the interval (t0,tk].

Thus, a solution consists of: the Yk variables 1 ≤ 𝑘 ≤ 𝐾 suggesting the optimal
testing effort per functionality, by the 𝑥!! 1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾 variables
and, assigning debuggers to functionality, and by the 𝑁!! (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾)
variables assigning the number of hours of debuggers to functionalities.

4.3.3 Constraints

A first set of most relevant constraints of the model are expressed in Figure	22:

FIGURE	22: MODEL CONSTRAINTS		

	

- For each functionality k, faults detected in the interval (t0,tk] must be fixed.
Equation 1 in Figure 22 expresses that the total time assigned to debuggers
on functionality k must be greater or equal than the expected time to
correct the detected bugs (estimated as mean fixing time per bug
multiplied by the expected number of bugs that will be detected if k is
tested for a time tk). Note that this equation holds if we assume that all

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 59	
	

Deliverable D3.3: “Models-based Process Definition”

detected bugs with the allocated testing resources must be corrected, and
thus assigned to debuggers, whereas the equation should be appropriately
modified if this assumption is relaxed.

- The bug correction process is modeled as a function of the amount of time
(e.g., in hours) required to fix the bugs detected, and as function of the
working time of debuggers. The waiting queues are modeled by
introducing a constraint on the capacity of debuggers. This constraint is
expressed by Equation 2 in Figure 22: for each functionality k, the load of
debugger d due to the assignment of bugs is limited by a function of the
processing capacity of debugger d, (i.e., 𝛾!!). 𝑁!! is greater than 0 only if:
i) the debugger d is allocated to functionality k (𝑥!! = 1), ii) a non-zero
testing time tk is allocated functionality k (tk > 0), and, from constraint 1,
iii) at least one bug is expected to be detected during the assigned time tk
(i.e., 𝑚!! 𝑡! + 𝑡! > 𝑚!!(𝑡!)), assuming 𝛾!! > 0 and δk > 0. This
throughput model is a light-weighted one that favors model solvability. An
explicit management of queues could be introduced, using, for example,
queuing network models explicitly considering a one-to-one mapping
between debuggers and bugs, but at the expense of computational
complexity and understandability.

- Equation 3 of Figure 22 indicates the (possible) constraints defined for
debuggers that must be assigned or cannot be assigned to functionalities
for some reasons, e.g., due to the debugger’s skill level or expertise area.
In these cases, the corresponding variable 𝑥!! is forced to be 1 or 0. Note
that, in order to solve incompatibilities or dependencies among debuggers
and/or functionalities, due, for instance, to human factors (skill set, skill
level and availability) or functionality characteristics, additional
constraints can be added as contingent decisions. For example, 𝑥!! ≤
𝑥!! means that, if the second debugger is selected for the first functionality,
then the third debugger must be selected for the second functionality; 𝑥!! ≤
𝑥!! means that, if debugger 1 is selected for functionality 2, then he must
also be selected for functionality 3.

- Equation 4 in Figure 22 states that the expected number of cumulative
faults detected in (t0,tk] (namely, if tk = F−1(Yk) testing time is assigned to
test k), cannot be greater than the expected number of residual fault in k.

- Equation 5 in Figure 22 expresses a constraint on the maximum effort that
can be allocated. A maximum threshold B is given on the total amount of
testing effort possibly consumed (expressed in man-hours). The test
manager has to distribute a budget B of man-hours among the K
functionalities; the solution suggests that k-th functionality should receive
a testing effort equal to Yk man-hours.

- Finally, Equation 6 of Figure 22 tells that: if there are no available
debuggers for functionality k, then the amount of testing effort allocated to
k (i.e., Yk) will be 0 (since bugs could be detected, but then not corrected).
In other words, if the functionality k receives a certain amount of testing
effort, then one or more debuggers must be assigned to functionality k.
There could be an additional constraint on Yk: if we require that all the
functionalities must be tested, then Yk > 0, 1 ≤ k ≤ K. Similarly, further
requirements by the tester could be seamlessly included as constraints in

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 60	
	

Deliverable D3.3: “Models-based Process Definition”

the model, enabling several extensions; in this work, we keep the model in
its basic form.

- Equation 7 reports the constraint on the minimum desired failure intensity
at the end of testing. The estimate of failure intensity of a functionality k is
usually obtained though the SRGM, as it is the derivative of the
cumulative expected number of detected faults, md(t). The estimate is
obtained as:

𝜙! 𝑡! = !!!

!"
(𝑡!) (5)

It denotes the expected failure intensity if the model solution assigns a
testing effort Yk to functionality k such that Yk = F(tk) (where F denotes the
TEF), or, similarly, such that: tk = F−1(Yk). A maximum threshold, 𝜙∗, is
given to the failure intensity of the overall system as input requirement. In
an average-case scenario, like the one we assume, the failure intensity
constraint is formulated as follows:

𝜔!𝜙!(𝑡!) ≤ 𝜙∗!
!!! (6)

In other words, the system failure intensity is weighted by the call rates of
each functionality. In a worst-case scenario, tester may want to require that
all functionalities should satisfy a failure intensity constraint. In this case,
the constraint would be formulated as follows:

𝑚𝑎𝑥!!!…!(𝜙! 𝑡!) ≤ 𝜙∗ (7)

Finer-grained constraint can be introduced to guarantee threshold limits for
each functionality, i.e.: 𝜔!𝜙!(𝑡!) ≤ 𝜙∗ .

	

4.3.4 Multi-Objective Function
	

In this section, we define the three objectives of the multi-objective optimization
problem.

2) Fault correction process’ Effectiveness Objective (FCO) The objective
function to be maximized, as the predicted number of faults corrected
(providing an assessment of the system reliability after the application of
the amount of testing effort, Yk, on each of system functionalities), is given
by:

𝐹𝐶𝑂 = 𝑚!!(𝑡! + 𝑡!)
!
!!! (8)

The solution for the exponential case with logistic TEF is:
	

𝑚!! 𝑡! + 𝑡! = 𝑒!!! !!!!! 𝑎!
!!!!!

!!
𝜇!𝑒!!! 1− exp −𝛽! 𝑌! 𝑡 − 𝑌! 0 𝑑𝑠	

(9)	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 61	
	

Deliverable D3.3: “Models-based Process Definition”

	

After the application of the amount of testing effort, Yk, the expected
number of faults corrected for the functionality k depends on: the fault
detection rate, related to the testing effort suggested for k, Yk, through the TEF,
and (ii) on the availability of sufficient debugger (hours), regulated by 𝑁!! and
𝑥!! variables, for the correction of all detected faults at the rate expressed by
𝜇!(𝑡).

3) Testing Time Objective (TTO)

Assuming that the time-depending behavior of the testing-effort (for each of
the system functionalities) is modeled by the generalized logistic testing-effort
function proposed in [26][30], we can compute the testing time for functionality
k can as function of the effort:

𝑡! = − !
!∗!

𝑙𝑛
(!!!

)!!!

!
	 (10)	

	

where (i) 𝛼 is the consumption rate of testing-effort expenditures in the logistic
testing-effort function, (ii) h is a structuring index whose value is larger for better
structured software development efforts, (iii) B is a maximum threshold that has
been given on the total amount of testing-effort that can be consumed (expressed
in man-hours), and (iv) A is a constant parameter in the logistic testing-effort
function. Although the estimate of these parameters is not the main focus of our
work, as shown in [26], [27], and [28], they may be estimated by the method of
least squares. Moreover, more details on estimation of the budget B can be also
found in [5].

 Assuming that manpower is available to independently test system
functionalities (namely, they can proceed in parallel), the second objective
function is the time minimization for testing the K functionalities:

𝑇𝑇𝑂 = 𝑚𝑖𝑛!!!…!(𝑡!)	 	 (11)	

	
Although this assumption could not be too realistic due to the overhead that likely
incurs when a lot of functionalities must be tested, it reflects a common practice in
testing planning. However, as previously discussed to relax such an assumption,
guidelines of existing approaches for the work packages scheduling and staff
assignment problem plan could be exploited.
	

3)	 Testing-effort Cost Objective (TCO). The third objective cares about
minimization of cost, which is a measure related to the effort spent but that goes
beyond the mere effort for testing. In agreement with [30], for the functionality k,
the cost of testing effort expenditures during software development and testing
phase, and the cost of correcting errors before and after release, can be expressed
as follows:
	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 62	
	

Deliverable D3.3: “Models-based Process Definition”

𝐶𝑜𝑠𝑡! 𝑡 = 𝐶!∗
!!
!"

𝑚!! 𝑡 + 𝐶!∗
!!
!"

𝑚!! ∞ −𝑚!! 𝑡 + 𝐶!∗
!!
!"

𝑑𝑡 						(12)	

where: (i) 𝐶!∗ !!
!"

 is the cost per day to correct a bug during testing; (ii) 𝐶!∗ !!
!"

is the cost of correcting a bug in operational use (typically 𝐶!∗ > 𝐶!∗ [31]); and
(iii) 𝐶!∗ is the cost of testing per unit testing-effort expenditure, expressed in cost
of a man-day (for a tester).7

This cost model, similar to the one in [30], is a light-weighted one that favors
model solvability. However, it can be enhanced by using well-assessed cost model
from the literature (e.g., COCOMO II model [32]) to increase the result accuracy.
This can be done without essentially changing the overall model structure, but
with the side effect of increasing the solution complexity. To address this, the
guidelines of the COCOMO II-based model defined in [33] for estimating the
development cost of an in-house developed service may be exploited. More
specifically, in [33], the development cost of an elementary software service has
been defined as a function of the testing activity (e.g., the number of tests
performed on a service before delivery). The original COCOMO II model [32]
introduces a software cost function that depends on the size (i.e., the lines of code)
and the type (i.e., simple, intermediate and complex) of software. These two
attributes allows estimating the amount of effort, in terms of person-months,
needed to deliver the software.
	

𝐶!∗ , 𝐶!∗ and 𝐶!∗ may be estimated in different ways depending on the functionality
type and debugger/tester profile. Details on their estimation can be found in [30].
The work in [30] is focused on cost of software modules, whereas we consider the
cost to test system functionalities. In other words, we consider each of the system
functionalities as software modules.

Therefore, the objective function to be minimized, as the sum of the cumulative
testing-effort costs for all of system functionalities, is given by:
	

𝑇𝐶𝑂 = 𝐶𝑜𝑠𝑡!(𝑌!)!
!!! 								 (13)	

	

	

4.3.5 Model Summary

Figure 10 summarizes the formulation of our optimization model.

	

																																								 																					
7	Notice that the cost 𝐶!∗ does not include the costs for the bug-fixing activity. Instead,
these costs are considered in the estimation of the 𝐶!!

∗ parameter.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 63	
	

Deliverable D3.3: “Models-based Process Definition”

	

	

FIGURE	23: OPTIMIZATION	MODEL	FORMULATION	

Main assumptions and threats to validity

The usage of SRGMs (with TEF) to model the fault detection and correction
process implies the following assumptions:

– The fault removal process is modeled as a Non-Homogeneous Poisson
process (NHPP), where the mean number of faults detected in the time
interval (t, t + ∆t) by the current testing-effort is proportional to the mean
number of remaining faults in the system at time t.

– Each of the system functionalities are subject to failures at random times
(with independent inter-failure times) caused by the manifestation of
remaining faults in the functionalities.

– System functionalities are autonomous, independently testable. New
functionalities or feature enhancement are not introduced into the code
during testing.

– The relation between testing effort and testing time can be modeled by a
testing effort function (TEF).

– – Each time a failure occurs, the fault that caused it is correctly removed
and no new faults are introduced (i.e., perfect repair). This assumption can
be partially relaxed if we admit, among the set of selectable SRGMs, the
ones modeling the imperfect debugging phenomena.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 64	
	

Deliverable D3.3: “Models-based Process Definition”

We mitigate the SRGM assumptions by enabling, in the formulation, a
module-tailored selection of the best model among a set SRGMs, and by the
possibility, in the process, to fit SRGM with online data (that account for the
effect of such assumptions’ violations). In addition to the SRGM assumptions,
further assumptions are:

- We assume historical information about issue reports is correct: namely,

reporters can correctly distinguish a bug from a feature request, can
correctly identify duplicate bug reports, and we can faithfully approximate
the average bug fixing time (e.g., the δ parameter) as the bug closing
minus the bug opening time.

- Bug fixing time dependence on other basic bug-related features, such as
severity and priority or bug owners and bug types is not considered to
keep the model simple at this stage. Extensions can be implemented for
more accurate but expensive model formulations.

- We assume that (i) debugger manpower is available to independently fix
bugs in system functionalities, and (ii) for each of the Yk man-hours, there
is the same pool of D debuggers. We are working toward relaxing such
assumptions. To this extent, we are investigating how to use the guidelines
of existing approaches (such as the ones of [35]) for the work packages
scheduling and staff assignment problem plan (i.e., the allocation of staff
to teams and the allocation of teams to work packages).

- Although we admit several testing-effort time model, we taken, as specific
example, the generalized logistic testing-effort function, a widely-used
one. It can be replaced by other well-assessed distribution function from
the literature. Although this can be done without changing the model
structure, the effect of other TEFs on solution complexity are not assessed.

- Cost constants are assumed to be known within the company. Such
information is not always easily accessible, and more or less complex
models can be adopted to accurately estimate it, as COCOMO ones. Such
models are out of scope for this paper.

4.4 HEALTH CARE CASE STUDY

In this section we describe the case study that we devised in order to validate the
effectiveness of the approach in dynamic testing resource allocation of industrial
health care software. In particular, we present the achieved results on the Medical
Company scenario (see Deliverable D2.2 [95]) .	

 The goal of our experimentation is to evaluate the effectiveness of our
approach in addressing the important challenges related to the tradeoff between (i)
allocating resources to system functionalities where testing will have the highest
detection power, and (ii) maximizing the number of bugs that can be fixed in
available time. To do this, we compared the amount of testing efforts selected by
our approach with the amount of testing efforts selected without explicitly
incorporating bug assignment activities into the fault correction process of each of
the functionalities.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 65	
	

Deliverable D3.3: “Models-based Process Definition”

Random generation of model instances. Starting from the nominal values of the
parameters, we have generated 4 different instances (here also called perturbed
configurations) by randomly changing the following parameters: (i) the total
amount of testing-effort eventually consumed, B; (ii) the average number of hours
required for fixing a bug of the functionality k, 𝛿! , and the expected number of
initial faults in the functionality k, ak. Specifically, the perturbed configuration
parameters have been varied within 10% of the nominal values, with the exception
of the total amount of testing-effort, B, that has randomly increased of the 10% of
the nominal value.

We have applied on the same case study, our approach and the typical state-of-the
art testing resource allocation approach (e.g., [7], [3]). Our approach is mainly
focused on system functionalities (which we consider as software modules).
Therefore, our model can be compared with existing works by introducing a
mapping of software modules on system functionalities.

The state-of-art problem of testing resource allocation (here also called base
model) typically consists of finding the amount of testing-effort to be performed
for each of the system functionalities8 that minimizes the total cost under the
threshold R on the system reliability. Additional decision variables are introduced
in our optimization model to represent in bug-fixing activities to perform for each
system functionalities.

	
For the experiments, we have used JMetal [37], an object-oriented Java-based
framework aimed at the development, experimentation, and study of
metaheuristics for solving multi-objective optimization problems.9 Due to the
stochastic nature of evolutionary algorithms, we have performed 30 independent
runs per algorithm (see [36] for details).

Our comparison between the two approaches can be summarized in three steps.

Step 0: Let us assume that all the debuggers may work four hours a day for each
of the system functionalities.

 For each perturbed configuration (and for the nominal instance), we have solved
two models for R that spans from 0.9 to 0.97. In Figure	24, Figure	25, and Figure	
26, we report the obtained results, where each bar indicates, respectively, the
number of corrected faults, the testing time and cost of a model averaged over its
four perturbed configurations and nominal instance. Each group of tree bars -
corresponding to one model - refers to the model’s results with five instances. In
particular, each bar - corresponding to the model solution over the four perturbed
configurations and the nominal one with a fixed value of the threshold R - reports

																																								 																					
8 As remarked above, for sake of comparison, we introduce a one-to-one mapping of system
functionalities on software modules.
9 jMetal can be obtained freely from http://jmetal.sourceforge.net/.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 66	
	

Deliverable D3.3: “Models-based Process Definition”

the highest, lowest and average number of corrected faults, the testing time and
cost obtained.
	

	

	

FIGURE	24: AVERAGE	NUMBER	OF	CORRECTED	FAULTS	VS	RELIABILITY	THRESHOLDS	

	

FIGURE	25:	CALENDAR	TESTING	TIME	VS	RELIABILITY	THRESHOLDS	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 67	
	

Deliverable D3.3: “Models-based Process Definition”

	

FIGURE	26:	COST	VS	RELIABILITY	THRESHOLDS	

	

The results highlight, in general, that the solutions of the base model and our
model do not show discrepancies in case of non-complex search space (i.e., for
simple scheduling of debuggers to fix-activities), in that the average number of
bugs, times and costs of their solutions are only slightly different. Moreover, for a
given model, the times and costs slightly increases while increasing the reliability
threshold R. This can be observed by fixing a value on the x-axis and observing
the values on the curves while growing the threshold R.
	

Step 1: Let us assume that all the debuggers may work one hour a day for each of
the system functionalities. Then, let us decrease the number of average hours that
a debugger may work in order to complicate the search space.
	
 We have generated an additional perturbed configuration by randomly varying
the parameters of the nominal values (as done for the Step 0), with the exception
of the total amount of testing-effort, B, that has randomly decreased of the 10% of
the nominal value. We have solved the two optimization models in this new
perturbed configuration for a set of values of reliability bound and the average
number of hours required for fixing a bug of the functionality k, 𝛿!.

 In Figure 14, we report the results obtained by the two models with two
different values of the average number of hours required for fixing a bug of the
functionality k, 𝛿!. The first configuration corresponds to the one of the nominal
instance, whereas the in the second configuration (as shown in Figure 10) we have
increased the average number of hours required for fixing a bug of each of the
functionalities. More specifically, the figures report the obtained results, where
each bar indicates, respectively, the number of corrected faults, the testing time
and cost of a model averaged over its new perturbed configuration.

 Given a graph represented in Figure	27, each group of two bars - corresponding,
respectively, to the base model and our model - refers to the models’ results with
the perturbed configuration. In particular, each bar - corresponding to the model
solution over the configuration with a fixed value of the threshold R - reports the

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 68	
	

Deliverable D3.3: “Models-based Process Definition”

highest, lowest and average number of corrected faults, the testing time and cost
obtained.
	

	

FIGURE	27: STEP	1	RESULTS	

 For each model, the testing cost usually increases in accordance with the
reliability required by the system (even thought this increase is more evident for
second configuration). Thus, to satisfy the reliability constraint, it is necessary to
allocate a greater amount of testing-effort (in man-hours).
 The results highlight, in general, that the discrepancies between the two models
results starts becoming more evident. In particular, our model starts capture the
variation of corrected bugs, the amount of testing time and cost, while modifying
the bug assignment activities into the fault correction process of each of the
functionalities.

 Step 2: Let us assume that all the debuggers may not work one hour a day for
each of the system functionalities. We study the sensitivity of the solution to the
debugger fixing time values by randomly assigned some of the functionalities to
each debugger. By fixing the reliability threshold R to 0.95, for the second
configuration of the average number of hours required to fix a bug (see Figure
14), the average number of bugs corrected of corrected faults of our model
averaged over its new perturbed configuration (defined in Step 1) decrease from
about 578 to about 544.
 If we increase the average number of hours required to fix a bug of some of the
functionalities (i.e., we set 𝛿! = 6, 𝛿! = 5, 𝛿! =6, 𝛿! = 6, 𝛿! = 6, 𝛿! = 5, 𝛿! = 6, 𝛿!
= 5), then the average number of bugs corrected of corrected faults of our model
averaged over its new perturbed configuration still decreases from about 544 to
about 481.

4.5 RELATED WORK
	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 69	
	

Deliverable D3.3: “Models-based Process Definition”

The work related to our research can be divided into four categories: (i) testing
resource allocation; (ii) selection of SRGMs; (iv) bug assignment; and (iii)
parameters uncertainty.

 Testing Resource allocation. In the last years, several research efforts have
been devoted to allocate testing resources (e.g., [7], [3]). All these approaches
basically provide guidelines to assign appropriate testing resources to a number of
relatively small and independent modules (components), which are tested
independently during module testing phase. Typically, they express the
relationship between reliability and testing resources by using SRGMs. More
specifically, these types of reliability models are used for describing the failure
occurrence and/or fault removal and consequently aid to enhance the software
reliability. Moreover, since failure curves can be either exponential or S-shaped
for different modules, flexible SRGMs have also been considered, for example, as
done in [7]. In particular, the latter uses a flexible SRGM considering testing
effort which, depending upon the values of parameters, can describe either
exponential or S-shaped failure pattern of software modules. Testing-effort
functions (TEFs) have been introduced (e.g., see [29]) to describe the relationship
between the effort expended to test software (e.g., in person-months), and the
physical characteristics of the software, such as LOC, etc. In [38], it is shown how
to incorporate the logistic TEF [39] into both exponential type, and S-shaped
software reliability models. Most SRGMs assume that faults detected during tests
will eventually be removed [38].
This assumption, although common in state-of-the-art approaches, might not be
realistic. However, a class of related papers deals with this imperfect debugging
phenomenon (e.g., see [40], [41], [42]). For example, in [40], general frameworks
are proposed for deriving several software reliability growth models based on a
non-homogeneous Poisson process (NHPP) in the presence of imperfect
debugging and error generation.

 Existing approaches for testing resource allocation basically are based on simple
optimization models (e.g., in [8] two models are presented that minimize the
remaining faults and the amount of testing-effort given the number of remaining
faults, respectively) or multi-objective optimization models, for example,
maximizing reliability, and minimizing testing cost and testing resource consumed
[3]. Different approaches have been adopted such as genetic algorithms in [43], or
the gradient projection method and the dynamic programming (a list of these
types of works can be found in [3]).

 Selection of SRGMs. In the last years the topic of definition, evaluation, and
selection of SRGMs has been largely studied (see, e.g., [44] and [45]).
Comparative analysis of SRGM models have also been performed in term of
goodness of fit, prediction accuracy and correctness, for example, based on failure
data sets containing system test failures data, field and open source software
defects data [46]. However, although SRGM is probably one of the most
successful techniques in the literature, with more than 100 models existing in one
form or another, through hundreds of publications [47], in practice, SRGMs
encounter major challenges. As remarked in [48], the evaluation of the SRGMs’
predictive power in the literature has generally been limited to only the last few

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 70	
	

Deliverable D3.3: “Models-based Process Definition”

data points (typically last 10% of data) [49] [50]. Moreover, as also claimed in
[48], the difficulty of applying SRGMs in industry is compounded with (i) the
lack of studies applied to specific industrial domains [49], and (ii) scarce
guidelines to select the best SRGMs for a given software process/application. In
[48], it has been investigated the application of SRGMs in embedded software
domain. In particular, eight established SRGMs have been evaluated on a number
of large software projects within the embedded software domain from three
different companies.

 Bug assignment. The bug assignment problem, related to triage new arriving
bug reports to the most qualified developer, has in recent years received
increasing attention. An effective bug assignment in large software projects not
only requires significant contextual information about both the reported bugs (and
the pool of available developers), but also is a time-consuming and tiresome
process [13]. Considerable research efforts in the mining software repositories
field have concerned bug prediction.

The bug assignment process has been supported by, for example: (i) exploiting the
application of information retrieval techniques in order to identify the most
appropriate developers [51]; (ii) using expertise models of developers based on
previous bug reports [51] [52] or source code contributions [53] ; (iii) applying a
machine learning algorithm the open bug repository to learn the kinds of reports
each developer resolves [52] ; or (iv) adopting preference elicitation methods to
determine the developer’s preferences for fixing certain types of bugs [54]. In [13],
an auction-based multi-agent mechanism also allows developers to require bugs
from the bug triggers; therefore, they can make decisions based on their
preferences, expertise, and such.

The problem of resource scheduling for bug fixing can be classified as a special
case of the more general resource constrained scheduling problem, which is in
general NP-hard [55]. The effectiveness and efficiency of search-based techniques
have already been demonstrated for different scheduling related software project
management problems (e.g., for project planning in the context of a massive
maintenance intervention [56]). However, the application of search techniques for
implementing an efficient bug repair policy is very much unexplored [55]. In [55],
a genetic algorithm is designed for scheduling developers and testers to bug-fixing
tasks considering both human properties (skill set, skill level and availability) and
bug characteristics (severity and priority). Also, industrial software defect
prioritization techniques, in general, suffer of lack of multi-optimization
techniques [57].

 Another class of related papers deals with automated debugging techniques that
aim to help developers locate and understand the cause of a failure (e.g., [58]). In
particular, statistical-fault-localization techniques have been extensively
investigated (see [58] for an overview on these types of techniques and other
ones like anomaly detection, and experimental debugging). Other papers are
focused on assisting developers in changing programs to fix bugs. For example, in
[59], based on a machine learning technique, a tool has been designed for
computing and reporting a prioritized list of bug-fix suggestions for a given
debugging situation at a program statement that is suspected of being faulty.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 71	
	

Deliverable D3.3: “Models-based Process Definition”

Parameters uncertainty. Other challenges related to the testing allocation are
represented by parameters uncertainty. In fact, software testing activity is fraught
with a not negligible uncertainty relates to values of parameters such as
operational profile, the expected number of initial faults, the fault detection rate
per unit testing-effort (SRGMs input), fault fixing time, etc. Several research
efforts have also been spent in order to deal with parameters’ uncertainty in
software quality domain (e.g., in component reliability estimates [60], or in the
performance modeling and analysis process [9]) adopting, for example, a robust
optimization approach [10], or a bayesian approach [61]. Moreover, for example,
fuzzy mathematical methods have been used to represent the uncertainty
parameters (e.g., as done in [62]) of an alternative architecture. The fuzzy
paradigm has also been used in [63], wherein it is addressed uncertainty involved
in estimated parameters of SRGM in imperfect debugging environment.
Therefore, although there is a growing interest in handling uncertainty, in practice,
uncertainty of all the parameters of a software testing activity is not typically
addressed.

With respect to the state-of-art, the following major aspects characterize the
novelty of the approach:

• This is the first work (to the best of our knowledge) that enables
practitioners to maximize the effectiveness of the testing activity using an
optimization framework, which allows dynamically to model: (i) fault
detection and correction processes of systems functionalities (modules)
through the SRGMs that best fit the actual testing data, (ii) testing
cost/time constraints, and (iii) parameter-specific uncertainties
phenomenons. So that the systems functionalities (modules) with shorter
time (budget) are tested and that reveled bugs are fixed earlier.

• We have explicitly considered the bug assignment activity in the fault
correction process (typically not done in the existing works). In particular,
this work has showed that (for a large software system) the bug
assignment may be a key factor for a trustworthy prediction of the fault
correction process of the single functionalities (software modules), as well
as of the reliability of the whole system.

• The proposed approach does not rely on a specific development process or
testing practice (e.g., in testing unit).

• We have provided guidelines for practitioners. We have provided support
for their testing allocation decisions based on cost, time, and software
quality. In particular, our approach helps to: (i) select (and use) SRGMs in
order to make the software testing process more effective; and (ii) handle
parameters uncertainty, which, as shown through our real world software
project, plays a critical role in accurately describing testing resource
allocation process. More specifically, we have shown that the handling of
uncertainty is a key factor for a trustworthy prediction of the reliability of
a software system, and leads an optimization model to a more precise (and
less pessimistic) estimation of the system reliability, as well as to a more
effective and efficient testing resource allocation activity. It is well known
that SRGMs sometimes show good performance in terms of predictability

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 72	
	

Deliverable D3.3: “Models-based Process Definition”

of the software reliability, but sometimes they do not. This fact may be, in
particular, caused by insufficient information on how the software has
been developed, maintained, and operated [64].

• We have instantiated the optimization model for the fault correction with
the bug assignment activity prediction, but its elements (e.g., cost function
and reliability constraints) combined with the method for uncertainty
analysis could be re-used in another phase of the testing process. This
adoption may require specializing (appropriately modifying) the model in
order to capture typical aspects of the new phase. Testing-effort allocation
prediction under testing-effort time/cost and reliability constraints with
uncertain model parameters, for example, could be used for enhancing
existing approaches (such as that one in [55]) for scheduling
developers/testers to activities to be performed to fix a bug repository.

	

	

	

	 	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 73	
	

Deliverable D3.3: “Models-based Process Definition”

	

5 OPTIMAL REGRESSION FUNCTIONAL TESTING

 Regression testing is the process of validating modified software to provide
confidence that (i) the changed parts of the software behave as intended, and (ii)
the unchanged parts have not been adversely affected by the modifications [65].

 Research in regression testing has seen a flourish in the past years, in particular
in the fields of new approaches, tools, and techniques to reduce the cost of reusing
the test suite that was used to test the original version of the software. A quite
extensive list of these approaches can be found in [66] and [67]. However, the key
tasks of testing cost reduction methods are commonly: (i) regression test selection
- selecting subset of existing test cases to run on the modified software (e.g., [68],
[69], [70], and [71]); (ii) regression test suite minimization - reducing the test suite
size to a minimal subset to maintain the same level of coverage as the original test
suite; and (iii) regression test suite prioritization - finding an ideal order of test
cases according to some criteria, such that test cases with higher priority are
executed earlier than ones with lower priority [72].

Although used extensively in industry, regression testing is challenging from both
a process management as well as a resource management perspective. In fact,
putting the proposed techniques into practice has been a challenge [72].

In Section 5.1, we introduces related work. In Section 5.2, we present an overview
of our approach.

5.1 RELATED WORK

In the last years the topic of software testing has been studied in several
communities and from different perspectives (see, e.g., [73] for a look into
architecture-based testing techniques, or the survey in [74] of methodologies for
automated software test case generation).

In particular, a lot of research efforts has been spent for regression testing (e.g. see
survey [66]). In this work, we focus on regression test suite prioritization, which is
highly relevant in general to industry (and in particular, for our industrial partner).
Therefore, hereafter, we review works appearing in the literature dealing with
regression testing prioritization.

 Several techniques have been introduced for using test execution information to
prioritize test cases. In [75], a comparison of such techniques, aimed to evaluate
their ability to improve rate of fault detection, has been performed by conducting
several empirical studies. More specifically, three categories of techniques have
been considered, i.e., techniques ordering test cases based on their (i) total
coverage of code components, (ii) coverage of code components not previously
covered, and (iii) estimated ability to reveal faults in the code components that
they cover. Several new controlled experiments and case studies have been

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 74	
	

Deliverable D3.3: “Models-based Process Definition”

performed in [76]. In particular, building on results presented in [75] and focusing
on the goal of improving rate of fault detection, the authors in [76] have addressed
additional questions (e.g., related to the techniques’ effectiveness when targeted at
specific modified versions, or the trade-off between the fine granularity and
coarse granularity prioritization techniques).

Research effort has been also devoted for defining metrics to quantify and
compare the rates of fault detection of test suites [77], [78]. In [79], a more
general metric has been defined for measuring rate of fault detection that accounts
for varying test case and fault costs.

Another class of related papers deals with prioritization techniques that are driven
by requirements with higher priority, or operate in the presence of time constraints
(e.g., [80], [81], [82] discussed below).

 In [80], a regression testing approach is proposed, where test cases are
prioritized such that the test cases for requirements with higher priority are
executed earlier during system test. In particular, four factors (i.e., requirements
volatility, customer priority, implementation complexity, and fault proneness) are
used to analyze and assign value to each requirement.

 The work in [81] presents initial results of an empirical study on using historical
test execution data to prioritize test case selection in a constrained regression
testing process. In particular, the work evaluates how several RTS techniques
perform under severe time and resource constraints.

 In [82], it is presented a regression test prioritization technique that uses a
genetic algorithm to reorder test suites in light of testing time constraints.

The genetic algorithms (to determine the most effective order) have also been
leveraged in [83]. Specifically, this work proposes a method of cost-cognizant test
case prioritization based on the use of historical records, which are gathered from
the latest regression testing.

 A comparison of search algorithms for regression test case prioritization, based
on code coverage (including block coverage, decision (branch) coverage, and
statement coverage) has also been performed in [84]. More specifically, the work
presents results from an empirical study of the application of several greedy,
metaheuristic, and evolutionary search algorithms to six programs, ranging from
374 to 11,148 lines of code for three choices of fitness metric.

 Several coverage-based test case prioritization techniques have been developed,
which typically use either a total strategy or an additional strategy. In [85], it is
proposed a unified test case prioritization approach that encompasses both the
total and additional strategies. The work has also proposed extensions to enable
the use of differentiated probabilities that test cases can detect faults for methods
and the use of static coverage information as well as dynamic.

There was previous work, which has exploited the combination of code coverage
analysis and the change impact analysis. For example, in [86], a procedure level

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 75	
	

Deliverable D3.3: “Models-based Process Definition”

coverage regression test based on change-based test selections method has been
experimentally applied to an open source web browser engine project WebKitit.
Moreover, the work also experimented test case prioritization strategies (based on
changes) to reduce the testing time when the selection is too large.

 Approaches for particular types of applications (such as for software product
lines [87]) or testing strategies (e.g., model-based testing [88]) have also been
introduced, as well as the use of methods (e.g., information retrieval ones [89])
have been exploited, for example, in order to address coverage profiling overhead
(in terms of time and space) and potential problems associated with the
imprecisions of static program analysis. Research effort has also been done for
improving regression testing in continuous integration development environments
[90]. In particular, the work in [90] has introduced two regression testing
techniques (for testing selection and prioritization, respectively) that use readily
available test suite execution history data to determine what tests are worth
executing and executing with higher priority.

5.2 OVERVIEW OF OUR APPROACH

A representation of the high-level workflow of the proposed approach is presented
in Figure	28.

	

FIGURE	28:	HIGH-LEVEL	APPROACH	OVERVIEW	

Our approach is mainly based on the analysis of code coverage and code churn,
which is collected for each of the version of a software product. Such information
is stored in a database, our implementation makes use of eXist-db database, which

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 76	
	

Deliverable D3.3: “Models-based Process Definition”

is an open source NoSQL database and application platform built on XML
technology. 10
 Coverage information is collected by a JaCoCo agent, an open source toolkit for
measuring and reporting Java code coverage. 11 A JaCoCo report is a xml
document having the structure depicted in Figure	29.

FIGURE	29:	OUTPUT	OF	THE	JACOCO	TOOL:	CODE	COVERAGE	ANALYSIS	

																																								 																					
10 The	eXist-db	database	can	be	obtained	freely	from	[91].
11 The	JaCoCo	tool	can	be	obtained	freely	from	[92].

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 77	
	

Deliverable D3.3: “Models-based Process Definition”

 Churn metrics are collected by CodeChurn Tool. It is a proprietary tool of
ASSIOMA.net [93], which exploits the Sonar tool [94] for metrics evaluation.
More details on the churn code metrics and the Sonar tool can be found in
Deliverable D2.2 [95]. A CodeChurn report is a xml document having the
structure depicted in Figure	30.

	

FIGURE	30:	OUTPUT	OF	THE	CODE	CHURN	TOOL:	CODE	CHURN	ANALYSIS	

In Section 5.2.1, we provide more details on the JaCoCo tool’s output, whereas in
Section 5.2.2, we describe in more detail the Code Churn tool’s output. Finally, in
Section 5.2.3, we give an overview of the Metric/Prioritization module, which
represents the core of our approach.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 78	
	

Deliverable D3.3: “Models-based Process Definition”

5.2.1 The JaCoCo Tool

 The JaCoCo tool provides code coverage analysis in Java VM based
environments. It is based on Bytecode instrumentation; therefore it is very helpful
in situations where the source code is not available.
 As illustrated in Figure	29, the JaCoCo tool allows to collect coverage analysis at
different level of granularity, resulting in the following coverage measures.

• Instructions, namely single Java byte code instructions. In particular,
instruction coverage is related to the amount of code that has been
executed or missed.

• Branches for all if and switch statements. In particular, the total number of
such branches in a method are counted so as to determine the number of
executed or missed branches.

• The Cyclomatic Complexity is estimated for each non-abstract method,
classes, packages, and groups.

• Lines. Coverage information for individual lines are calculated for the
class files that have been compiled with debug information. In particular,
if at least one instruction that is assigned to a certain source line has been
executed, then the source line is considered executed.

• Methods. A non-abstract method contains at least one instruction, and is
considered as executed when at least one instruction has been executed.
Notice that constructors and static initializers are also counted as methods,
because JaCoCo is based on Bytecode instrumentation.

• Classes. If at least one the methods of a certain class has been executed,
then the class is considered as executed.

More details on the tool can be found in [92]. The supported reports formats are
HTML, XML, and CSV. In our implementation, we have chosen the XML
format.

An extensive list of code coverage tools for java can be found in [96].

5.2.2 The Code Churn Tool
	

 As illustrated in Figure	 30, the Code Churn tool allows collecting churn code
analysis at different level of granularity. In particular, the tool evaluates the (i)
Total added, modified and deleted LOC, and (ii) Cyclomatic complexity.
	

5.2.3 Metric/Prioritization Module

 A primary input to the Metric/Prioritization Module is represented by an XML-
based structure collecting churn metrics and coverage metrics. In fact, for each of
the test case, churn metrics and coverage metrics are joined in a common structure
depicted in Figure	31. More specifically, the XML output files of the JaCoCo tool,
related to the code coverage analysis, and Code Churn tool, are merged. To this
extend, we have exploited the proprietary RaptorXML tool, which is a hyper-fast

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 79	
	

Deliverable D3.3: “Models-based Process Definition”

XML and XBRL processor. A 30-day trial version of RaptorXML can be
downloaded from [97].

FIGURE	31: OUTPUT	OF	THE	RAPTORXML	TOOL:	MERGING	OF	THE	COVERAGE	AND	CHURN	
ANALYSIS

The data models of the JaCoCo tool (see Figure	29) and the Code Churn Tool (see
Figure	30) are precisely the ones used in eXist-db database.

Table	 16 and Table	 17 summarize, respectively, the input and the output of the
Metric/Prioritization module. Specifically, the Metric/Prioritization Module
processes the XML-based structures, and assigns priority to the test cases. Priority
assignment involves applying a function that seeks to capture the relationship
among the test cases, the code coverage, and the churn analysis. The goal of the
prioritization we are interesting in is that of considering in order of relevance (a)
tests case potentially covering changed parts of the product (b) test cases which
guarantee the best coverage. Specifically, we have introduced two parametric
algorithms inspired on standard Total statement coverage prioritization and the

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 80	
	

Deliverable D3.3: “Models-based Process Definition”

Additional variant. Details on the implementation of these algorithms can be
found in the next section.

TABLE	16:	INPUT	OF	THE	METRIC/PRIORITIZATION	MODULE	

Source	 Data Type	 Description	

User	 Source code of system
versions	

 (java code)	

Our approach is mainly based
on the analysis of code
coverage and code churn,
which is collected for each of
the version of a software
product. Such information is	

stored in a database, our
implementation makes use of
eXist-db database, which is an	

open source NoSQL database
and application platform built
on XML technology.	

User	 Test cases	 Test cases to prioritize	

JaCoCo tool	 Coverage information	 Analysis of code coverage is
collected for each of the
version of a software product.
Specifically, coverage
information is collected by a
JaCoCo agent, an open source
toolkit for measuring and
reporting Java code coverage.	

CodeChurn Tool	 Code churn analysis	 Churn metrics are collected by
CodeChurn Tool. It is a
proprietary tool of
ASSIOMA.net, which exploits
the Sonar tool for metrics
evaluation	

																																													TABLE	17:	OUTPUT	OF	THE	METRIC	PRIORITIZATION	MODULE	

Decision Description

Test cases prioritization A primary input to the Metric/Prioritization
Module is represented by an XML-based
structure collecting churn metrics and coverage
metrics (obtained, respectively, with JaCoCo
and CodeChurn tool). In fact, for each of the test
case, churn metrics and coverage metrics are
joined in a common structure. More specifically,
the XML output files of the JaCoCo tool, related
to the code coverage analysis, and Code Churn
tool, are merged. To this extend, we have
exploited the proprietary RaptorXML tool,
which is a hyper-fast XML and XBRL

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 81	
	

Deliverable D3.3: “Models-based Process Definition”

processor.

The Metric/Prioritization Module processes the
XML-based structures, and assigns priority to
the test cases. Priority assignment involves
applying a function that seeks to capture the
relationship among the test cases, the code
coverage, and the churn analysis. The goal of the
prioritization we are interesting in is that of
considering in order of relevance (a) tests case
potentially covering changed parts of the
product (b) test cases which guarantee the best
coverage.

																																																																									

5.2.4 Test prioritization

5.2.4.1 Churn	Coverage	Prediction	Prioritization	

 In this section we consider predictive prioritization techniques which exploit
both coverage and churn information. In this case we do not consider bursts but
focus our attention only on the two last versions Vm-1 and Vm of a sequence of
versions 𝑉!,… ,𝑉! . In this case we assume that tests have been already executed
on Vm-1 (i.e. coverage metrics are available on that version) but have not yet
executed on version Vm for which only churn data are available.
 The challenge of predictive prioritization is that of estimating a good
prioritization of test cases for version Vm by exploiting churn data and coverage
data collected for version Vm-1.
 The goal of the prioritization we are interesting in is that of considering in order
of relevance (a) tests case potentially covering changed parts of the product (b)
test cases which guarantee the best coverage. To this purpose we propose suitable
adaptations of two well-known prioritization techniques, namely the Total
Statement coverage prioritization and the Additional Statement Coverage
Prioritization.
 Actually, we introduce two parametric algorithms inspired on standard Total
statement coverage prioritization and the Additional variant. This algorithms
exploit structured coverage information for test cases referred in the following as
coverage increment. Intuitively, the coverage increment of a test case depends on
the current state of coverage and gives the contribution of coverage split into three
components: the contribution for changed parts, for deleted parts and for
unchanged parts. By introducing suitable ordering criteria for coverage increments
we are able to define variants of the prioritization algorithm.

Let M(V) be a coverage report for the version V of a product, namely a .xml
structure recording the coverage information after the execution of a (possibly
empty) set of test case. With M0(V) we denote the initial coverage report
corresponding to the execution of an empty set of test cases. For a test T, a version
V and a coverage report M(V) let be Inc(T,M) be the quadruple 𝐶,𝐷,𝑈,𝑇 where

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 82	
	

Deliverable D3.3: “Models-based Process Definition”

• C is the number of instructions of methods that will change w.r. to version
V coveredby the execution of T and uncovered in M(V);

• D is the number of instructions of methods that will be deleted w.r. to
version V covered by the execution of T and uncovered in M(V);

• U is the number of instructions of methods that will remain unchanged
w.r. to version V covered by the execution of T and uncovered in M(V).

 𝐼𝑛𝑐 𝑇,𝑀 gives the coverage increment with respect to the coverage report M
after the execution of the test case T. Such a tuple is called coverage increment
tuple. Notice that is 𝐼𝑛𝑐 𝑇,𝑀! precisely the tuple 𝐶 𝑉,𝑇 ,𝐷 𝑉,𝑇 ,𝑈 𝑉,𝑇 ,𝑇
. For a set of test cases Z, 𝑀𝑎𝑥𝐼𝑛𝑐≼(𝑍,𝑀) gives the test case in Z which
guarantees the greatest coverage increment among all the test cases in Z, namely
𝑀𝑎𝑥𝐼𝑛𝑐(𝑍,𝑀) is the test case 𝑇 ∈ 𝑍such that 𝐼𝑛𝑐 𝑇,𝑀 = 𝑚𝑎𝑥!∈! 𝐼𝑛𝑐(𝑇,𝑀)
where max is computed with respect to the parametric ordering of quadruples ≼

 Let us consider now the Churn Total Statement Coverage Prioritization. The
pseudocode is reported in Figure	32.

FIGURE	32: ALGORITHM	1:	CHURN	TOTAL	STATEMENT	COVERAGE	PRIORITIZATION

 The Churn Total Coverage Prioritization can be easily obtained by ordering
under the parametric ordering ≼ the coverage increment tuples of all the
considered test cases (the function Test applied to a sequence of coverage
increment tuples simply gives the sequence of projection of the test name
component of each tuple).
 The standard Total instruction coverage prioritization (which do not consider
churn information) can be defined by considering the ordering ≺ defined as
follows
	

𝐶,𝐷,𝑈 ≺!" 𝐶!,𝐷!,𝑈! iff 𝐶 + 𝐷 + 𝑈 ≤ 𝐶! + 𝐷! + 𝑈!	
	
	
 In [98] some prioritization criteria sensitive to churn are introduced. For instance,
the General strategy is intended to cover most procedures besides the changed
ones under the assumption that test cases with higher overall coverage are better.
The opposite of General is the Specific strategy which is intended to cover least
procedures besides the changed ones. The specific strategy selects those test cases
first which cover little outside of the changes. In our setting we can define
analogous strategies working at the granularity level of instructions instead of
granularity level of methods. For instance, the principles of the general strategy
can be enforced by the following ordering ≼!"# defined as follows

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 83	
	

Deliverable D3.3: “Models-based Process Definition”

On the opposite, the principles of the specific strategy can be enforced by the
following ordering ≺!"#$ defined as follows

	
 Finally, we consider a kind of ordering ≼!"# which prioritize first the coverage
of changed parts if relevant and than that of coverage of unchanged part if the
coverage increment of changed parts can be considered equivalent (a kind of
’lexicographic order between coverage of changed parts and coverage of
unchanged parts). The definition of the ordering ≼!"# depends on a parameter
𝛼 ≥ 0 which used to determine when the amount of coverage can be considered
equivalent.

 The ordering ≺!"# defined as follows

 Let us consider now the Churn Additional Coverage Prioritization. The
pseudocode is reported in Figure	33.

FIGURE	33: ALGORITHM	2:	CHURN	ADDITIONAL	STATEMENT	COVERAGE	PRIORITIZATION.

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 84	
	

Deliverable D3.3: “Models-based Process Definition”

The function 𝐴𝑑𝑑𝐶𝑜𝑣𝑒𝑟 𝑇,𝑀 gives as a result a coverage report obtained by
adding to M the coverage information of test case T.

5.2.4.2 Backward	Churn	Prioritization	

 In the previous section we have considered algorithms for predictive (forward)
prioritization which has to be considered in absence of coverage information for
changed parts. If the test cases have been executed at least once in the last version
Vm the prioritization can be recomputed taking into account also coverage
information. In this case we can consider the same strategies seen for predictive
prioritization with a slight modification of the concept of coverage increment
tuple called backward coverage increment tuple.
 For a test T, a version V and a coverage report M(V) let be 𝐼𝑛𝑐𝐵(𝑇,𝑀) be the
quadruple 𝐶,𝐴,𝑈,𝑇 where

• C is the number of instructions of methods changed in V w.r. to the
previous version covered by the execution of T and uncovered in M(V);

• A is the number of instructions of methods added in V w.r. to the previous
version covered by the execution of T and uncovered in M(V);

• U is the number of instructions of methods unchanged in V w.r. to the
previous version covered by the execution of T and uncovered in M(V).

 𝐼𝑛𝑐𝐵(𝑇,𝑀) gives the coverage increment with respect to the coverage report M
after the execution of the test case T.
Notice that the backward coverage increment tuple simply replaces the coverage
of methods which will be deleted with the coverage of methods which are added.
In this case 𝐼𝑛𝑐𝐵(𝑇,𝑀!) is precisely the tuple 𝐶 𝑉,𝑇 , 𝐴 𝑉,𝑇 ,𝑈 𝑉,𝑇 ,𝑇 . For
backword increment coverage tuple, the analogous of ≺!" ,≺!"#,≺!"#$ and ≺!"#,
written ≺!" ! ,≺!"#$,≺!"#$% and ≺!"#$, respectively, by simply replacing in the
definitions the metrics deleted methods with the metrics of added methods.
 Therefore, a predictive (forward) prioritization can be used to suggest the first
regression test for a new version. A backward prioritization can be used for the
next stages (after the first). The backward prioritization allows in addition to
check the predictive power of forward prioritization. The idea is that a good
prediction should be very similar to the ordering of test output by a backward
prioritization.
 To measure the distance of two prioritizations (two orderings of the same set of
test cases) we shall consider, for instance, the following definition. A
prioritization of a test suite TC is an bijective function 𝑝𝑟:𝑇𝐶 → 1,… , |𝑇𝐶|
(intuitively pr(T) gives the position of the test 𝑇 ∈ 𝑇𝐶 in the prioritization). Given
two prioritizations pr1 and pr2 for TC with = n, the distance of two prioritizations
is given by

Notice that the distance of two equal prioritization is 0. The constant !
|!"|!

 gives an
upper bound for the greatest possible distance.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 85	
	

Deliverable D3.3: “Models-based Process Definition”

5.2.5 Experimental Results

 For the experiments we have considered SIR [99], a repository of software-
related artifacts meant to support rigorous controlled experimentation with
program analysis and software testing techniques, and education in controlled
experimentation. For the experimentation we have considered Java products
having a meaningful number of lines of code, of versions and cardinality of test
suit. The chosen products are SIENA and ANT whose attributes are depicted in
Table	18. Siena (Scalable Internet Event Notification Architecture) is an Internet-
scale event notification middleware for distributed event-based applications
deployed over wide-area networks, responsible for selecting notifications that are
of interest to clients (as expressed in client subscriptions) and then delivering
those notifications to the clients via access points [100]. The associated test suite
guarantees a complete method coverage (not a complete statement coverage). Ant
is a Java-based build tool supplied by the open source.

TABLE	18:	CASE	STUDIES	

In Table	 19 and Table	 20, we report the churn metrics provided by the tool
ChurnTool (we consider eight versions for both Siena and Ant).

TABLE	19:	CHURN	METRICS	FOR	ANT	

	

	

	

	

	

TABLE	20:	CHURN	METRICS	FOR	SIENA	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 86	
	

Deliverable D3.3: “Models-based Process Definition”

Analysis	of	the	results	

 In order to show the effectiveness of the combination of coverage and churn
information we here illustrate the results that we have obtained from the
prioritization which optimizes either coverage or coverage of changed parts in the
next software version.
 For the Ant and Siena systems, we have prioritized the test cases by using
coverage and churn information. More specifically, for a version Vk, we have
prioritized the test cases by using the relationship among the test cases, the code
coverage, and the churn analysis.
 The experiments were run on a Ubuntu Linux 12.04 workstation equipped with
a Intel Core i7 (2 MB of cache memory and 8 GB RAM DDR3).
 InFigure	 34, we report the obtained results for the Siena system. For each
version, we have prioritized the test cases, and estimated the coverage of changed
parts of the first 50, 150, 250, and 350 test cases of its prioritized test suite. Each
bar indicates the number of instructions (i.e., single Java byte code instructions) of
changed parts covered by the test cases. Therefore, we have measured the
predictive power of test cases as a function of the changed parts. To sake of
comparison, we have also estimated the coverage of the whole test suite.

FIGURE	34: COVERAGE	OF	TEST	CASE	PRIORITIZATION	FOR	THE	SIENA	SYSTEM	

 In Table	21, we report the detailed results. Each cell reports the resulting number
of instructions of changed parts covered by the test cases for a certain version
(row) and a certain number of test cases (column).

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 87	
	

Deliverable D3.3: “Models-based Process Definition”

TABLE	21:	COVERAGE	FOR	SIENA	

 Similarly, in Figure	35, we report the obtained results for the Ant system. For
some versions, we have prioritized the test cases, and estimated the coverage of
changed parts of the first 8, 10, 14, 18, and 24 test cases of its prioritized test
suite. Each bar indicates the number of instructions (i.e., single Java byte code
instructions) of changed parts covered by the test cases. To sake of comparison,
we have also estimated the coverage of the whole test suite.

FIGURE	35: COVERAGE	OF	TEST	CASE	PRIORITIZATION	FOR	THE	ANT	SYSTEM	

In Table	22, we report the detailed results. Each cell reports the resulting number
of instructions of changed parts covered by the test cases for a certain version
(row) and a certain number of test cases (column).

TABLE	22:	COVERAGE	FOR	ANT	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 88	
	

Deliverable D3.3: “Models-based Process Definition”

The	results	highlight,	in	general,	that	the	predictive	power	of	test	cases	(as	a	
function	of	the	changed	parts)	almost	always	increases	while	increasing	the	
number	of	selected	test	cases.	For	example,	 for	the	Siena	system	(see	Figure	
34),	 the	 number	 of	 instructions	 of	 changed	 parts	 covered	 by	 the	 test	 cases	
(except	in	two	cases)	almost	always	increases	while	increasing	the	number	of	
test	cases.	Moreover,	the	discrepancies	among	test	cases	(i.e.,	their	predictive	
power)	 become	more	 evident	 as	 the	 number	 of	 changes	 increases	 (e.g.,	 for	
versions	with	higher	values	of	code	churn	metrics),	such	as	for	the	version	V2	
of	the	Siena	system	(see	Table	21).	On	the	other	hand,	the	predictive	power	of	
test	cases	do	not	show	discrepancies	in	case	of	small	increase	in	the	number	
of	test	cases	or	changes.	For	example,	for	a	given	version	of	the	Ant	system,	
the	predictive	power	of	test	cases	does	not	essentially	change.	
	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 89	
	

Deliverable D3.3: “Models-based Process Definition”

6 ARCHITECTURAL DECISION-MAKING

The prediction of the software architecture quality supports a large set of
decisions across multiple lifecycle phases that span from design through
implementation-integration to adaptation phase. However, due to the different
amount and type of information available, different prediction approaches can be
introduced in each phase. A major issue in this direction is that Quality of Service
(QoS) attribute cannot be analyzed separately, because they (sometime adversely)
affect each other. Therefore, approaches aimed at the tradeoff analysis of different
attributes have been recently introduced (e.g., reliability vs cost, security vs
performance).

Our work has been focused on modeling and analysis of QoS tradeoffs of a
software architecture based on optimization models. A particular emphasis has
been given to two aspects of this problem: (i) the mathematical foundations of
QoS tradeoffs and their dependencies on the static and dynamic aspects of a
software architecture, and (ii) the automation of architectural decisions driven by
optimization models for QoS tradeoffs. Our major contribution is to show how
effectively optimization modeling techniques can capture relevant aspects of the
architectural decision-making process in different lifecycle phases, thus
representing a very relevant support for the software engineers tasks. We have
also given a tutorial on this topic [101].

In the book chapter [102], in the context of a waterfall development process, we
implement three models: one for the architectural design (i.e. the software
architecture driven model applicable before the release of a system), one for the
implementation/deployment phase (we show how the QoS of a software
architecture depends on the hardware architecture), and one for the maintenance
phase (i.e. the software architecture driven model applicable after the release of a
system). In order to show the usefulness of our approach, we run these models on
an example coming from the domain of medical information systems.

In this chapter, we have also presented a general optimization model that
minimizes the total costs subject to constraints on the level quality of the software
architecture. The model can be adopted in (specialized for) one of the lifecycle
phases by leveraging available information and parameters, the level of detail of
which obviously increases as the development progresses. Then, each specialized
form of the general model can be either separately used and solved, if required in
a certain lifecycle phase, or used in pipeline feeding with each other, as we will
show in our example. In Section 6.1, we report the formulation of this general
optimization model by discussing typical architectural decisions, which can be
supported by using optimization models.

Our work has also been focused on the automation of the support	 for	 the	
decisions	that	software	architects	make	after	deployment.	This	approach	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 90	
	

Deliverable D3.3: “Models-based Process Definition”

is	based	on	an	optimization	model	whose	solution	suggests	the	“best”	actions	
to	 be	 taken	 according	 to	 a	 given	 change	 scenario	 (i.e.,	 a	 set	 of	 new	
requirements	that	induce	changes	in	the	structural	and	behavioral	aspects	of	
the	software	architecture).		
	
In particular, in [103], we introduce a framework named SHEPhERd (Software
arcHitecture Evolution based on cost, PErformance and Reliability), which is
composed of a UML case tool, a model builder and a model solver.

SHEPhERd is based on an optimization model that suggests the “best” actions to
be taken upon a certain change scenario arising. A change scenario is a set of new
requirements that induce changes in the structural and behavioral aspects of the
software architecture. In particular, in our model, for each new requirement in a
change scenario we consider different sets of evolution actions (called evolution
plans) that are able to guarantee these new requirements. We aim to obtain a set of
decisions that lead to the definition of a new architecture that minimizes cost,
while keeping the reliability and the response time within certain thresholds. In
Section 6.2, we describe the main features of the SHEPhERd framework.

In Section 6.3, we introduce the SAQO (System Adaptation with Quality
Optimization) framework, which extend the SHEPhERd framework.

6.1 A GENERAL FORMULATION FOR ARCHITECTURAL DECISIONS VS

QUALITY CONSTRAINTS

In this section, we report the general optimization model presented in [102].

The model minimizes the total costs subject to constraints on the level quality of
the software architecture.

 Let 𝑆 = 𝑢!,⋯ ,𝑢! be a software architecture made of 𝑛 software units 𝑢!
(1 ≤ 𝑖 ≤ 𝑛) the composition of which results in services that the system offers to
users.

 Since the proposed model may support different lifecycle phases, we adopt a
general definition of software unit: it is a self-contained deployable software
module containing data and operations, which provides/requires services to/from
other elementary elements. A unit instance is a specific implementation of a unit.
For each unit 𝑢!, let 𝐽! be the set of instances available by vendors and 𝐽! the set of
possible options for developing the instance in-house. Let 𝑢!" be the 𝑗-th instance
of 𝐽! ∪ 𝐽! .

 Architectural Decisions. The analysis of the QoS tradeoffs is a broad decision-
making process that consists of a set of actions aiming to modify the static and
dynamic structure of the software architecture. The decisions within the different
life-cycle phases are basically related to the following software actions:

1. Introducing new software units: One or more new software units may be
embedded

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 91	
	

Deliverable D3.3: “Models-based Process Definition”

into the system.12 We call 𝑁𝑒𝑤𝑆 the set of new available software units
that can provide different functionalities.

2. Replacing existing unit instances with functionally equivalent ones
available on the market: The employed instance 𝑢!" of a software unit
𝑢! may be replaced with an element of the set 𝐽!, i.e., with of the instances
available for it on the market (e.g. a Commercial-Off-The-Shelf (COTS)
component/web service).We assume that all the instances in 𝐽! are
functionally compliant with 𝑢!", i.e., each of them provides at least all
services provided by 𝑢!" and requires at most all services required by 𝑢!".
The instances in 𝐽! may differ from 𝑢!" for cost and quality attribute (e.g.
reliability and response time).

3. Replacing existing unit instances with functionally equivalent ones
developed in-house: An existing instance of a software unit 𝑢! may be
replaced with one developed in-house. Developers could opt for different
building strategies resulting in different in-house instances, i.e., the
elements of the set 𝐽!. The values of quality attributes of such optional
instances (e.g., reliability, response time) could vary due to the values of
the development process parameters (e.g. experience and skills of the
developing team).

4. Modifying the interactions among software units in a certain
functionality: The system dynamics may be modified by
introducing/removing interactions among software units within a certain
functionality.

Optimization model formulation.

Model Variables. Let 𝑥!" (1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ 𝐽! ∪ 𝐽!) be the binary variable that is
equal to 1 if the instance 𝑗 is chosen for the software unit 𝑖, and 0 otherwise.
Moreover, let 𝑧! (1 ≤ ℎ ≤ |𝑁𝑒𝑤𝑆|) be the binary variable that is equal to 1 if the
new software units ℎis chosen and 0 otherwise.

 Let us analyze the system on the base of 𝑝 quality attributes (such as cost,
response time, availability, etc.). Suppose moreover that each attribute of any
software unit depends on the value of parameters 𝛼!!’s, 𝛽!!’s, and 𝛾!"! ’s, where (i)
the vector 𝛼!! describes the (at most) 𝑢 software architecture observable
parameters, e.g., the average number of invocations of a software unit within the
execution scenarios considered for the software architecture, (ii) the vector 𝛽!!
contains the (at most) 𝑣 hardware observable parameters, e.g., the processing
capacity of the node hosting the software unit, that is measured, for example, as
the average number of instructions per second that the resource can execute, and
(iii) the vector 𝛾!"! represents the (at most) 𝑤 features of the implementation of 𝑢!,
e.g., the reliability of the instance used for replacing the existing unit. For the 𝑘
quality attributes of a provided instance, the value of the features 𝛾!"! ’s is assumed
to be either given from the software unit provider or estimated from the customer.
																																								 																					
12		Notice	that	such	type	of	action	has	to	be	associated	to	another	action	that	indicates	how	this	unit	
interacts		with	existing	units,	therefore	it	modifies	the	interactions	within	certain	functionalities	(see	
last	type	of			software	action).	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 92	
	

Deliverable D3.3: “Models-based Process Definition”

On the contrary, for an in-house developed instance the 𝛾!"! ’s can be predicted by
considering variables of the decision planning.

 Let 𝛤! ∶ ℝ! × ℝ! × ℝ! → ℝ (𝛤! ∶ ℝ! × ℝ! × ℝ! → ℝ) be the function
that, on the base of the above parameters, returns the value of the 𝑘-th quality
attribute (1 ≤ 𝑘 ≤ 𝑝) of an existing (new) software unit. In particular, let
𝛬!"! = 𝛤! 𝛼!! ,𝛽!! , 𝛾!"! the value of the 𝑘 -th attribute of the provided/in-house
instance 𝑢!".

 We can represent the value of the 𝑘-th quality attribute of the 𝑖-th existing
software unit as a function of the decisional strategy 𝐱:

 𝜃!! = Λ!"!! ∈!! ∪!! 𝑥!" (1) 	

	

			Similarly,	we	can	represent	the	value	of	the	𝑘-th	quality	attribute	of	the	ℎ-th	
new	software	unit	as	a	function	of	the	decisional	strategy	𝐳:	

	

 𝜃!! = 𝑧!Γ! 𝛼!! ,𝛽!! , 𝛾!"
! (2) 	

 Let 𝐺!: ℝ!× ℝ !"#$ → ℝ, with (1 ≤ 𝑘 ≤ 𝑝), be the function that returns the 𝑘-
th quality attribute of the whole system on the base of the same attributes of each
existing/new software unit. And let us assume (without loss of generality) that the
values of each quality attribute 𝑘 are constrained strained	 to	 be	 above	 a	 lower	
threshold	value	𝛩! .	Assume,	moreover,	that	the	cost	is	the	first	quality	attribute,	i.e.,	
𝜃!! (𝜃!!)	express	the	cost	of	the	existing	(new)	software	units.	Finally,	 let	𝐶𝑜𝑠𝑡: ℝ!×
ℝ|!"#$| → ℝ be	the	cost	 function	of	 the	whole	system	that	clearly	depends	on	 the	
costs	of	all	the	existing	(new)	software	units.	Different	cost	models	could	be	used	to	
define	𝐶𝑜𝑠𝑡,	e.g.,	it	may	also	include	the	potential	costs	of	software	unit	adaption	(i.e.	
the	 glueware).	 The	 general	 formulation	 of	 the	 optimization	 model	 for	 the	 QoS	
tradeoffs	analysis	is	given	by:	

					

 min 𝐱,𝐳 𝐶𝑜𝑠𝑡(𝜃!, 𝜃!) 																																											(3)	

𝐺! 𝜃!, 𝜃! ≥ 𝛩! ∀𝑘 = 1… 𝑝	

	

Λ!"!

! ∈!! ∪!!

𝑥!" = 𝜃!! ∀𝑘 = 1… 𝑝,∀𝑖 = 1… 𝑛	

	

𝑧!𝛤! 𝛼!! ,𝛽!! , 𝛾!
! = 𝜃!! ∀𝑘 = 1… 𝑝,∀ℎ = 1… |𝑁𝑒𝑤𝑆|	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 93	
	

Deliverable D3.3: “Models-based Process Definition”

 𝑥!" ∈ 0,1 ∀𝑖 = 1… 𝑛,∀𝑗

= 1… 𝑝 𝑥!" = 1 ∀𝑖 = 1… 𝑛
!∈!!∪!!

	

	

𝑧! ∈ 0,1 ∀ℎ = 1… |𝑁𝑒𝑤𝑆|	

	

																																	Other	constraints	(e.g.,	equations	to	predict	𝛼!! ’s	and	𝛽!! 	’s)	

	

	

6.2 THE SHEPHERD FRAMEWORK

In this section, we provide an overview of the SHEPhERd framework [103],
which we have introduced in the context of component-based architectures.

Figure	36 shows the SHEPhERd framework within its working environment. The
framework basically comprises two modules: a Model builder and a Model solver.

	

FIGURE	36:	THE	SHEPHERD	FRAMEWORK	AND	ITS	ENVIRONMENT	

SHEPhERd framework Input. A primary input to the framework is represented
by an UML-based architectural model composed of: (i) a Component Diagram
describing software components and their interconnections, (ii) a set of Sequence
Diagrams describing the possible execution scenarios, and (iii) a Deployment
Diagram describing the platform architecture.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 94	
	

Deliverable D3.3: “Models-based Process Definition”

The system maintainer, through a Monitor module, is able to perceive non-
functional requirement violations in the runtime system. She/he defines evolution
plans for new and/or violated requirements that represent change scenarios. After
receiving an evolution request from the system maintainer, the Model builder
generates the optimization model in the format accepted by a solver (e.g.,
LINGO13 that we have used in [103]).

	
 The Model builder first allows users to annotate the UML diagrams with
additional data that represent the optimization model parameters, such as failure
probabilities of software components, or the processing capacity of the platform
nodes. Then, it transforms the annotated model into an optimization model in the
format accepted from the solver.

SHEPhERd framework Output. The optimization model is processed by the
Model solver, which produces the results, which consist of a set of evolution
actions. It suggests how to adapt both the static and dynamic aspects of the
software architecture. Moreover, the platform architecture is modified by re-
deploying existing components and/or deploying new components on the existing
nodes.

		A	 new	 software	 architecture	 is	 obtained	 by	 modifying	 its	 structure	 and	
behavior.	To	modify	 the	structure,	our	approach	suggests	replacing	existing	
components	 with	 different	 available	 instances	 and/or	 to	 introduce	 new	
components	into	the	system.	With	regard	to	the	system	behavior,	the	model	
is	focused	on	the	system	scenarios	(expressed,	for	example,	as	UML	Sequence	
Diagrams)	 by	 removing	 or	 introducing	 interaction(s)	 between	 existing	 or	
new	components.	The	platform	architecture	(modeled,	 for	example,	with	an	
UML	 deployment	 diagram)	 can	 also	 be	 modified	 by	 re-deploying	 existing	
components	and/or	deploying	new	components.	

	In	 [103], the mathematical	 formulation	 of	 the	 optimization	 model	 that	
SHEPhERd	generates	and	solves	can	be	found.	Details	on	model	formulation	
can	be	found	in	[103].
	
		The	 goal	 of	 our	 optimization	 model	 is	 to	 find	 the	 optimal	 set	 of	 actions	
needed	 to	 tackle	 required	 changes	 to	 the	 software	 architecture.	 “Optimal”	
here	denotes	actions	 that	 incur	minimum	cost	while	guaranteeing	a	certain	
level	of	reliability	and	performance.		
		The	 objective	 function	 under	 the	 main	 reliability	 and	 performance	
constraints,	 plus	 the	 constraints	 on	 the	 model	 variables,	 represents	 our	
optimization	 model.	 The	 model	 solution	 determines	 the	 evolution	 plan	 to	
choose	 for	 each	 change	 requirement,	 in	 order	 to	 minimize	 the	 software	
evolution	costs	under	the	reliability	and	performance	constraints.	
	

																																								 																					
13 [Online]. Available: www.lindo.com.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 95	
	

Deliverable D3.3: “Models-based Process Definition”

6.3 THE SAQO (SYSTEM ADAPTATION WITH QUALITY
OPTIMIZATION) FRAMEWORK

In this section, we introduce the SAQO (System Adaptation with Quality
Optimization) framework, which extends the SHEPhERd framework. Figure 24
shows the SAQO framework within its working environment.

 The framework SAQO allows storing the specification of requirements,
architectural decisions, and their interactions in a repository. The internal structure
of the repository is compliant with the metamodel in Figure 25.

SAQO is a complex specification environment adopting the metamodel for the
adaptation space. SAQO allows to:

• Support the software architects/maintainers to maintain the interactions
and conflicts between requirements, between design decisions, and
between requirements and design decisions. The support includes
automatic detection (by model checking techniques) of interactions and
conflicts mostly in the part of the architecture design decisions and
propagation of interaction between different levels.

• Automatically produce the space of possible feasible architectural
solutions obtained by instantiating parametric design decisions. Each
solution is computed taken into account the specification constraints
associated with the design decisions and the known interactions and
conflicts between concrete design options.

• Dynamically adapt a service-based system in an automated manner.
SOQA is based on an optimization model that allows to choose among the
possible solutions (produced in the previous point) the concrete solutions
that minimizes cost, while keeping system qualities (e.g., the reliability
and the response time) within certain thresholds.

 For example, SOQA can be used to suggest the “best” actions to be taken upon
a certain change scenario arising. A change scenario is a set of new requirements
that induce changes in the structural and behavioral aspects of the software
architecture. A new software architecture is obtained by modifying its structure
and behavior. To modify the structure, SOQA suggests replacing existing
elementary services with different available instances and/or to introduce new
services into the system. With respect to the changes in the system behavior, it
modifies the architectural design decisions (represented as parametric BPEL
processes) by removing or introducing interactions between existing services
and/or between existing and new services. The parametric design decision is
instantiated in order to have a space of feasible concrete design decisions and the
best concrete design decision resulting from the optimization phase is suggested.

SAQO framework Input. As shown in Figure	37, the input of our framework is a
parametric BPEL which represents an architectural decision, which has to be
concretized by instantiating the parameters with concrete adaptation decisions.
The concrete decisions which are candidates for instantiation are retrieved in the
repository by exploiting the search expression associated with parameters. The set

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 96	
	

Deliverable D3.3: “Models-based Process Definition”

of candidates are filtered by using constraints (to be defined), interaction and
conflict information. The task is performed by the Concretization module.

The Conflict Analysis module takes in input a design option and produces an
executable specification whose behaviors are checked against invariant and
reachability constraints in a model checking environment (e.g., SPIN14).

The PROMELA language 15 , for example, can be used for the executable
specification. Therefore, a BPEL is translated into a PROMELA program and its
behaviours are checked against state and reachability properties. Conflicts and
interactions detected are stored in the repository, and possibly used for complete
the knowledge about interaction and conflicts of stored entities. The output of the
Conflict Analysis module is the adaptation space, namely a set of feasible design
options over which the next step of optimization is taken.

It is a module obtained by integration of the SHEPhERd framework proposed in
[103]. Similar to the SHEPhERd framework, the Optimizer module of the SOQA
framework comprises two main modules: a Model builder and a Model solver (see
previous section for more details)

	

FIGURE	37:	THE	SOQA	FRAMEWORK	AND	ITS	ENVIRONMENT	

	

																																								 																					
14 http://spinroot.com/spin/whatispin.html
15 http://spinroot.com/spin/Man/grammar.html

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 97	
	

Deliverable D3.3: “Models-based Process Definition”

6.3.1 The Metamodel

In this section, we describe the metamodel for the adaptation space of service
based applications (see Figure	38).		
	
The metamodel allows to represent: (a) structured requirements with particular
concern on their interactions, conflicts, and conflict resolutions; (b) parametric
and concrete structured design decisions associated with the requirements together
with interactions and conflicts between design solutions; and (c) transformation of
design decisions in order to support the adaptation.

In the following we discuss the main entity of the metamodel related to the (i)
requirement modeling, and (ii) design modeling.

Requirement modeling.

Requirement: A requirement can also be seen as a goal. A goal can be a
functional requirement (hard-goal) or non-functional requirement (softgoal).
According to [104], goals represent stakeholder intentions, which are
manifestations of intent which may or may not be realized. A requirement can be
(recursively) structured into AND/OR composition (sub-) requirements defining
an AND/OR tree like structure. A requirement has a textual description (e.g., a
natural language specification), and a constraint consisting of a formal expression
over attribute-value pairs associated with the entity Requirement. A requirement
may have a number of associated issues.

	

	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 98	
	

Deliverable D3.3: “Models-based Process Definition”

	

FIGURE	38:	ADAPTATION	SPACE	EXPLORATION	METAMODEL	

	

Position:	For	a	requirement,	the	stakeholders	may	express	different	positions	
with	respect	to	an	Issue	associated	with	a	requirement.	A	position	provides	
an	(alternative)	solution	of	an	issue.	A	position	may	be	in	conflict	with	other	
positions	 related	 to	 the	 same	 issue.	 A	 requirement	 resolution	 is	 a	
requirement	which	intends	to	overcome	the	conflicts	to	different	positions	of	
the	same	requirement.	 Issues	are	questions,	such	as,	“how	will	requirement	
Ri	be	 satisfied?”,	 “what	 does	 term	 ti	 of	Ri	 mean?”.	 Remark:	 this	 part	 of	 the	
model	addresses	only	different	 interpretation	of	 the	 same	requirement	and	
do	 not	 address	 as	 in	 [105]	 statements	 of	 the	 form	 “requirements	Ri	 and	Rj	
appear	 to	 conflict,	 how	 can	 they	 be	 resolved?”	 [105].	 The	 solution	 of	 this	
problem	 is	 given	 by	 possibly	 associating	 Requirement	 Issue	 also	 to	 an	
Interaction	between	requirements.	 In	summary,	a	 requirement	 issue	can	be	
opened	either	 for	different	positions	with	respect	 to	a	requirement	or	 for	a	
conflicting	interaction	among	requirements.	
	
	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	 99	
	

Deliverable D3.3: “Models-based Process Definition”

Design	Modeling	

A design issue represents an architectural schema, which is described by a
composite abstract structure, namely a BPEL where parametric services can be
invoked. We use the standard control operation: sequence, while, switch, flow,
invoke. An invocation can take a composite concrete structure or parameter
(abstract).

A design issue has the following attributes:	

• Interface Input: It is the set of required services. It is given by an ordered
set of logical names.

• Interface Output: It is the set of provided services. It is given by an
ordered set of logical names.

• Internal Interface Connection: It is the set of interfaces composition of
internal modules. It is given by a set of pairs of the form (M1.Out1,
M2.In2) where M1 and M2 are logical names of the modules of the design
issue, and Out1 is an interface postcondition of M1 and In2 is an interface
precondition of M2. Moreover, we can have pairs of the form (self.In,
M1.In1) and (self.Out, M1.Out1) connecting interface post and
preconditions of the design issue, respectively, with post and preconditions
of an internal node.

• Precondition: A constraint which has to be satisfied to activated the
solution.

• Postcondition: A constraint which is satisfied at the termination of the
execution.

• Invariant: A constraint which is satisfied in each intermediate stable state,
i.e., before
and after the execution of each atomic action.

• Technical Constraints: Technical limitations, for instance, required
technology.

• All the constraints are boolean expression freely constructed with boolean
connectives
over atomic proposition of the form: EntityName.AttributeName op Value,
with op in >,≤,≥,<,=,≠ . Notice that Design Issue inherits from
Entity the possibility to associate a set of attributes together with their
current values.

• A search attribute in a parameter is a query like string giving the set of
design options to be considered for the instantiation of the parameter (the
parameter domain). Notice that it is not guaranteed that the design options
in the result set are admissible.

A design option is described by a composite concrete structure, namely a BPEL
which allows only concrete invocations (there is no occurrence of parameters).
With reference to the metamodel note that a design option is a special case of a
design issue with no-occurrence of parameters. In the metamodel, we have an
association which binds the Design option with Parameter. An admissible binding
should preserve pre, post, and invariant conditions of Parameters and Design
Options.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	100	
	

Deliverable D3.3: “Models-based Process Definition”

A concretization is a simultaneous binding of all of the Parameters of a Design
Issue with a corresponding number of admissible design options. The
concretization is admissible if the pre, post, and invariant conditions of the Design
Option are fulfilled and if the individual pre, post, and invariant conditions of
each Design Option continue to hold when they are placed in the context of the
Design Issue.

The pre confl, post confl, inv confl attributes of Concretization report possible
conflicts related to a concretization. The contribution to the possible conflict of
each parameter binding is reported in the pre confl, post confl, inv confl attributes
of the association classes between Concretization and Design Option.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	101	
	

Deliverable D3.3: “Models-based Process Definition”

7 CONCLUSIONS

In this section, we present the overall conclusions of this document in the context
of findings expected and novelty of our contribution.

To the best of our knowledge, this is the first approach	 implemented	 as	 an	
optimization	 framework	 for	 dynamically	 modeling:	 (i)	 fault	 detection	 and	
correction	processes	of	systems	functionalities	(modules)	through	the	SRGMs	
that	best	fit	the	actual	testing	data,	(ii)	testing	cost/time	constraints,	and	(iii)	
parameter-specific	 uncertainties	 phenomena.	 So	 that	 the	 systems	
functionalities	 (modules)	 with	 shorter	 time	 (budget)	 are	 tested	 and	 that	
reveled	 bugs	 are	 fixed	 earlier.	 We provide guidelines for practitioners. We
provide support for their testing allocation decisions based on cost, time, and
software quality.	
	
We have also proposed an automatic prioritization approach for large software
systems that embeds the “code churn” measure. Specifically, we have provided
support for optimizing regression functional testing with coverage and churn
metrics. Moreover, our work has been also focused on the automation of the
support	for	the	architectural	decisions.	Specifically, we have focused on the (i)
modeling and analysis of QoS tradeoffs of a software architecture based on
optimization models,	and	(ii) definition of framework for supporting the software
architects/maintainers. More specifically, we support the software
architects/maintainers to maintain the interactions and conflicts between
requirements, between design decisions, and between requirements and design
decisions. The support includes automatic detection (by model checking
techniques) of interactions and conflicts mostly in the part of the architecture
design decisions and propagation of interaction between different levels. Our
approach also allows producing the space of possible feasible architectural
solutions obtained by instantiating parametric design decisions. Each solution is
computed taken into account the specification constraints associated with the
design decisions and the known interactions and conflicts between concrete
design options.	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	102	
	

Deliverable D3.3: “Models-based Process Definition”

8 REFERENCES

[1] Deliverable D3.1, “First measurement/prediction models-based process”,
7th Framework Programme IAPP Marie Curie program for project ICEBERG no.
324356, May 2014.

[2] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this anymore:
Multi-objective overtime planning for Software Engineering projects”, In Software
Engineering (ICSE), 2013 35th International Conference on, May 2013.

[3] Zai, K. Tang, and X. Yao, “Multi-Objective Approaches to Optimal Testing
Resource Allocation in Modular Software Systems”, Reliability, IEEE Transactions on,
59(3):563–575, 2010.

[4] R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang, “Efficient allocation of testing resources for
software module testing based on the hyper-geometric distribution software reliability
growth model”, In Software Reliability Engineering, 1996. Proceedings., Seventh
International Symposium on, pages 289–298, 1996.

[5] G. Carrozza, R. Pietrantuono, and S. Russo, “Dynamic test planning: a study in an
industrial context”, International Journal on Software Tools for Technology Transfer,
pages 1–15, 2014.

[6] D. Cotroneo, R. Pietrantuono, and S. Russo, “Testing techniques selection based on
ODC fault types and software metrics”, Journal of Systems and Software, 86(6):1613–
1637, 2013.

[7] P. C. Jha, D. Gupta, B. Yang, and P. K. Kapur. Optimal testing resource allocation
during module testing considering cost, testing effort and reliability. Computers &
Industrial Engineering, 57(3):1122–1130, 2009.

[8] C.-Y. Huang and M. Lyu. Optimal testing resource allocation, and sensitivity analysis
in software development. Reliability, IEEE Transactions on, 54(4):592–603, 2005.

[9] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, and L. Grunske. Model-based
performance analysis of software architectures under uncertainty. In QoSA, pages 69–78.
ACM, 2013.

[10] I. Meedeniya, A. Aleti, and L. Grunske. Architecture-driven reliability optimization
with uncertain model parameters. Journal of Systems and Software, 85(10):2340–2355,
2012.

[11] G. Baio, “Bayesian Methods in Health Economics”, Chapman and Hall/CRC, 2012.

[12] The Bugzilla bug tracking tool. [Online]. Available: http://www.bugzilla.org/.

[13] H. Hosseini, R. Nguyen, and M. W. Godfrey, “A Market-Based Bug Allocation
Mechanism Using Predictive Bug Lifetimes”, In 16th European Conference on Software
Maintenance and Reengineering, CSMR 2012, Szeged, Hungary, March 27-30, 2012,
pages 149–158. IEEE Computer Society, 2012.

[14] H. Okamura, Y. Watanabe, and T. Dohi, “An iterative scheme for maximum
likelihood estimation in software reliability modeling”, In Software Reliability
Engineering, 2003. ISSRE 2003. 14th International Symposium on, pages 246–256, 2003.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	103	
	

Deliverable D3.3: “Models-based Process Definition”

[15] H.-G. Beyer and B. Sendhof,. “Robust optimization - a comprehensive survey”,
Computer Methods in Applied Mechanics and Engineering, 196(33-34):3190 – 3218,
2007.

[16] H. Ziv and D. J. Richardson, “Bayesian-network confirmation of software testing
uncertainties”, In Proceedings of the Sixth European Software Engineering Conference
(ESEC), Zurich, pages 22–25, 1997.

[17] H. Ziv and D. J. Richardson, “Constructing Bayesian-network models of software
testing and maintenance uncertainties”, In ICSM, pages 100–. IEEE Computer Society,
1997.

[18] K. Yue., “Generating interesting scenarios from system descriptions”, In Proceeding
of the 1st international conference on Industrial and engineering applications of artificial
intelligence and expert systems, pages 212 – 218, 1988.

[19] S. G. Elbaum and D. S. Rosenblum, “Known unknowns: testing in the presence of
uncertainty”, In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), 2014, pages 833–836. ACM, 2014.

[20] R. Roshandel, N. Medvidovic, and L. Golubchik, “A Bayesian Model for Predicting
Reliability of Software Systems at the Architectural Level”, In QoSA, pages 108–126,
2007.

[21] S. Raychaudhuri, “Introduction to monte carlo simulation”, In Winter Simulation
Conference, pages 91–100. WSC, 2008.

[22] J. Musa, “Operational profiles in software-reliability engineering”, Software, IEEE,
10(2):14–32, Mar 1993.

[23] O. Baysal, M. Godfrey, and R. Cohen, “A bug you like: A framework for
automated assignment of bugs”, In Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, pages 297–298, May 2009.

[24] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing time: an empirical
study of commercial software projects. In 35th International Conference on Software
Engineering, ICSE ’13, pages 1042–1051. IEEE / ACM, 2013.

[25] H.-W. Jung and B. Choi. Optimization models for quality and cost of modular
software systems. European Journal of Operational Research, 112(3):613 – 619, 1999.

[26] C.-Y. Huang and M. Lyu, “Optimal release time for software systems considering
cost, testing-effort, and test efficiency”, Reliability, IEEE Transactions on, 54(4):583–
591, 2005.

[27] C.-Y. Huang, S.-Y. Luo, and M. Lyu, “Optimal software release policy based on
cost and reliability with testing efficiency”, In Computer Software and Applications
Conference, 1999. COMPSAC ’99. Proceedings. The Twenty-Third Annual International,
pages 468–473, 1999.

[28] C.-Y. Huang, J.-H. Lo, S.-Y. Kuo, and M. Lyu, “Software reliability modeling and
cost estimation incorporating testing-effort and efficiency”, In Software Reliability
Engineering, 1999. Proceedings. 10th International Symposium on, pages 62–72, 1999.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	104	
	

Deliverable D3.3: “Models-based Process Definition”

[29] S. Yamada, J. Hishitani, and S. Osaki, “Software-reliability growth with a Weibull
test-effort: a model and application”, Reliability, IEEE Transactions on, 42(1):100–106,
Mar 1993.

[30] C. Huang and J. Lo, “Optimal resource allocation for cost and reliability of modular
software systems in the testing phase”, Journal of Systems and Software, 79(5):653–664,
2006.

[31] B. W. Boehm, “Software Engineering Economics”, Prentice Hall PTR, 1st edition,
1981.

[32] I. Sommerville. Software engineering (9th ed.). Addison Wesley, 2010.

[33] V. Cortellessa, F. Marinelli, R. Mirandola, and P. Potena, “Quantifying the
influence of failure repair/mitigation costs on service-based systems”, In IEEE 24th
International Symposium on Software Reliability Engineering, ISSRE, pages 90–99.
IEEE, 2013.	
	
[34] H. Hemmati, M. Nagappan, and A. E. Hassan, “Investigating the effect of “defect
co-fix” on quality assurance resource allocation: A search-based approach”, Journal of
Systems and Software, (0):–, 2014.

[35] J. Ren, M. Harman, and M. D. Penta, “Cooperative Co-evolutionary Optimization
of Software Project Staff Assignments and Job Scheduling”, Search Based Software
Engineering - Third International Symposium, SSBSE 2011. Proceedings, volume 6956
of LNCS, pages 127–141. Springer, 2011.

[36] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this anymore:
Multi-objective overtime planning for Software Engineering projects”, In Software
Engineering (ICSE), 2013.

[37] J. J. Durillo, A. J. Nebro, and E. Alba, “The jMetal framework for multi-objective
optimization: Design and architecture”, In IEEE Congress on Evolutionary Computation,
pages 1–8. IEEE, 2010.

[38] C.-Y. Huang, S.-Y. Kuo, and M. R. Lyu, “An Assessment of Testing-Effort
Dependent Software Reliability Growth Models”, IEEE Transactions on Reliability,
56(2):198–211, 2007.

[39] F. Parr, “An Alternative to the Rayleigh Curve Model for Software Development
Effort”, Software Engineering, IEEE Transactions on, SE-6(3):291–296, May 1980.

[40] P. Kapur, H. Pham, S. Anand, and K. Yadav, “A Unified Approach for Developing
Software Reliability Growth Models in the Presence of Imperfect Debugging and Error
Generation”, Reliability, IEEE Transactions on, 60(1):331–340, March 2011.

[41] X. Zhang, X. Teng, and H. Pham, “Considering fault removal efficiency in
software reliability Assessment”, Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 33(1):114–120, Jan 2003.

[42] R. Peng, Y. Li, W. Zhang, and Q. Hu, “Testing effort dependent software
reliability model for imperfect debugging process considering both detection and
correction”, Reliability Engineering & System Safety, 126(0):37 – 43, 2014.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	105	
	

Deliverable D3.3: “Models-based Process Definition”

[43] Y. S. Dai, M. Xie, K. L. Poh, and B. Yang, “Optimal Testing-resource Allocation
with Genetic Algorithm for Modular Software Systems”, J. Syst. Softw., 66(1):47–55,
Apr. 2003.

[44] C. Stringfellow and A. A. Andrews, “An Empirical Method for Selecting Software
Reliability Growth Models”, Empirical Softw. Engg., 7(4):319–343, Dec. 2002.

[45] K. Sharma, R. Garg, C. Nagpal, and R. K. Garg, “Selection of Optimal Software
Reliability Growth Models Using a Distance Based Approach”, Reliability, IEEE
Transactions on, 59(2):266–276, June 2010.

[46] N. Ullah, M. Morisio, and A. Vetro, “A Comparative Analysis of Software
Reliability Growth Models using Defects Data of Closed and Open Source Software”, In
Software Engineering Workshop (SEW), 2012 35th Annual IEEE, pages 187–192, Oct
2012.

[47] M. Lyu, “Software Reliability Engineering: A Roadmap. In Future of Software
Engineering”, FOSE ’07, pages 153–170, May 2007.

[48] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding, and
C. Höglund, “Selecting software reliability growth models and improving their predictive
accuracy using historical projects data”, Journal of Systems and Software, 98(0):59 – 78,
2014.

[49] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner, “Evaluating
long-term predictive power of standard reliability growth models on automotive
systems”, In Software Reliability Engineering (ISSRE), IEEE 24th International
Symposium on, pages 228–237, Nov 2013.

[50] H. Pham, “Software reliability and cost models: Perspectives, comparison, and
practice”, European Journal of Operational Research, 149(3):475 – 489, 2003.

[51] G. Canfora and L. Cerulo. How software repositories can help in resolving a new
change request. In In Workshop on Empirical Studies in Reverse Engineering, 2005.

[52] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?”, In
Proceedings of the 28th International Conference on Software Engineering, ICSE ’06,
pages 361–370. ACM, 2006.

[53] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a vocabulary-
based expertise model of developers”, In Proceedings of the 6th International Working
Conference on Mining Software Repositories, MSR 2009 (Co-located with ICSE), pages
131–140. IEEE, 2009.

[54] O. Baysal, M. Godfrey, and R. Cohen, “A bug you like: A framework for
automated assignment of bugs”, In Program Comprehension, ICPC ’09. IEEE 17th
International Conference on, pages 297–298, 2009.

[55] J. Xiao and W. Afzal, “Search-based resource scheduling for bug fixing tasks”, In
Search Based Software Engineering (SSBSE), 2010 Second International Symposium on,
pages 133–142, Sept 2010.

[56] G. Antoniol, M. Di Penta, and M. Harman, “Search-based techniques applied to
optimization of project planning for a massive maintenance project”, In Software

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	106	
	

Deliverable D3.3: “Models-based Process Definition”

Maintenance, ICSM’05. Proceedings of the 21st IEEE International Conference on, pages
240–249, 2005.

[57] N. Kaushik, M. Amoui, L. Tahvildari,W. Liu, and S. Li, “Defect Prioritization in
the Software Industry: Challenges and Opportunities”, In Software Testing, Verification
and Validation (ICST), IEEE Sixth International Conference on, pages 70–73, 2013.

[58] D. Zuddas, W. Jin, F. Pastore, L. Mariani, and A. Orso, “MIMIC: locating and
understanding bugs by analyzing mimicked executions”, In ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 815–826. ACM, 2014.

[59] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, “Bugfix: A learning-based tool to
assist developers in fixing bugs”, In the 17th IEEE International Conference on Program
Comprehension, ICPC, pages 70–79. IEEE Computer Society, 2009.

[60] N.Wattanapongskorn and D.W. Coit, “Fault-tolerant embedded system design and
optimization considering reliability estimation uncertainty”, Reliability Engineering &
System Safety, 92(4):395 – 407, 2007.

[61] D. Doran, M. Tran, L. Fiondella, and S. S. Gokhale, “Architecture-based Reliability
Analysis With Uncertain Parameters”, In SEKE’11, pages 629–634, 2011.

[62] N. Esfahani, K. Razavi, and S. Male, “Dealing with Uncertainty in Early Software
Architecture”, In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE ’12, pages 21:1–21:4. ACM, 2012.

[63] B. Pachauri, A. Kumar, and J. Dhar, “Modeling optimal release policy under fuzzy
paradigm in imperfect debugging environment”, Information and Software Technology,
55(11):1974 –1980, 2013.

[64] C. Huang and J. Lo, “Optimal resource allocation for cost and reliability of
modular software systems in the testing phase”, Journal of Systems and Software,
79(5):653–664, 2006.

[65] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.
Spoon, and A. Gujarathi, “Regression Test Selection for Java Software”, In Proceedings
of the 16th ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’01, pages 312–326. ACM, 2001

[66] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey”, Softw. Test., Verif. Reliab., 22(2):67–120, 2012.

[67] Z. Anwar and A. Ahsan, “Exploration and Analysis of Regression Test Suite
Optimization”, SIGSOFT Softw. Eng. Notes, 39(1):1–5, Feb. 2014.

[68] C.-T. Lin, K.-W. Tang, C.-D. Chen, and G. Kapfhammer, “tReducing the Cost of
Regression Testing by Identifying Irreplaceable Test Cases”, In Genetic and Evolutionary
Computing (ICGEC), 2012 Sixth International Conference on, pages 257–260, Aug 2012.

[69] M. J. Harrold, D. S. Rosenblum, G. Rothermel, and E. J. Weyuker, “Empirical
Studies of a Prediction Model for Regression Test Selection”, IEEE Trans. Software
Eng., 27(3):248–263, 2001.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	107	
	

Deliverable D3.3: “Models-based Process Definition”

[70] A. Nanda, S. Mani, S. Sinha, M. Harrold, and A. Orso, “Regression testing in the
presence of non-code changes”, In Software Testing, Verification and Validation (ICST),
2011 IEEE Fourth International Conference on, pages 21–30, March 2011.

[71] J. Zheng, L.Williams, and B. Robinson, “Pallino: automation to support regression
test selection for cots-based applications”, In 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia,
USA, pages 224– 233. ACM, 2007.

[72] N. Kaushik, M. Salehie, L. Tahvildari, S. Li, and M. Moore, “Dynamic
Prioritization in Regression Testing”, In Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pages 135–138,
2011.

[73] A. Bertolino, P. Inverardi, and H. Muccini, “Software architecture-based analysis
and testing: a look into achievements and future challenges”, Computing, 95(8):633–648,
2013.

[74] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M.
Harman, M. J. Harrold, and P. Mcminn, “An Orchestrated Survey of Methodologies for
Automated Software Test Case Generation”, J. Syst. Softw., 86(8):1978–2001, Aug.
2013.

[75] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing Test Cases For
Regression Testing”, IEEE Trans. Software Eng., 27(10):929–948, 2001.

[76] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test Case Prioritization: A
Family of Empirical Studies”, IEEE Trans. Software Eng., 28(2):159–182, 2002.

[77] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases for
regression testing”, In ISSTA, pages 102–112, 2000.

[78] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritization: an
empirical study”, In Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE
International Conference on, pages 179–188, 1999.

[79] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Incorporating Varying Test
Costs and Fault Severities into Test Case Prioritization. Proceedings of ICSE 2001, 12-19
May 2001, Toronto, Ontario, Canada, pages 329–338. IEEE Computer Society, 2001.

[80] H. Srikanth, S. Banerjee, L. Williams, and J. A. Osborne, “Towards the
prioritization of system test cases”, Softw. Test., Verif. Reliab., 24(4):320–337, 2014.

[81] J.-M. Kim and A. Porter, “A History-based Test Prioritization Technique for
Regression Testing in Resource Constrained Environments”, In Proceedings of ICSE ’02,
pages 119–129. ACM, 2002.

[82] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, “TimeAware Test
Suite Prioritization”. In Proceedings of the 2006 International Symposium on Software
Testing and Analysis, ISSTA ’06, pages 1–12. ACM, 2006.

[83] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-cognizant test
case prioritization technique in regression testing”, Journal of Systems and Software,
85(3):626 – 637, 2012.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	108	
	

Deliverable D3.3: “Models-based Process Definition”

[84] Z. Li, M. Harman, and R. Hierons. “Search Algorithms for Regression Test Case
Prioritization. Software Engineering”, IEEE Transactions on, 33(4):225–237, April 2007.

[85] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A Unified Test Case
Prioritization Approach”, ACM Trans. Softw. Eng. Methodol., 24(2):10:1–10:31, Dec.
2014.

[86] J. Jasz, L. Lango, T. Gyimothy, T. Gergely, A. Beszedes, and L. Schrettner., “Code
Coveragebased Regression Test Selection and Prioritization in WebKit”, In Proceedings
of the 2012 IEEE International Conference on Software Maintenance (ICSM), ICSM ’12,
pages 46–55. IEEE Computer Society, 2012.

[87] A. B. Sánchez, S. Segura, and A. R. Cortés, “A Comparison of Test Case
Prioritization Criteria for Software Product Lines”, In Seventh IEEE International
Conference on Software Testing, Verification and Validation, ICST 2014, March 31
2014-April 4, 2014, Cleveland, Ohio, USA, pages 41–50. IEEE Computer Society, 2014.

[88] J. Ouriques, E. Cartaxo, and P. Machado, “On the Influence of Model Structure and
Test Case Profile on the Prioritization of Test Cases in the Context of Model-Based
Testing”, In Software Engineering (SBES), 2013 27th Brazilian Symposium on, pages
119–128, Oct 2013.

[89] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An Information Retrieval
Approach for Regression Test Prioritization Based on Program Changes. In ICSE, 2015.

[90] S. G. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression
testing in continuous integration development environments”, In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
(FSE-22), pages 235–245. ACM, 2014.

[91] The eXist-db database. [Online]. Available:
http://existdb.org/exist/apps/homepage/index.html.

[92] The JaCoCo tool. [Online]. Available: http://www.eclemma.org/jacoco/.

[93] The Code Churn tool. [Online]. Available: http://www.assioma.net/.

[94] The Sonar tool. [Online]. Available: http://www.sonarqube.org/.

[95] Deliverable D2.2, “Validation scenarios and quality parameters”,
7th Framework Programme IAPP Marie Curie program for project ICEBERG no.
324356, April 2014.

[96] R. Lingampally, A. Gupta, and P. Jalote. A Multipurpose Code Coverage Tool for
Java. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International
Conference on, pages 261b–261b, Jan 2007.

[97] The RaptorXML tool. [Online]. Available: http://www.altova.com/raptorxml.html.

[98] A. Beszedes, T. Gergely, L. Schrettner, J. Jasz,, L. Lango, T. Gyimothy, "Code
coverage-based regression test selection and prioritization in WebKit," Software
Maintenance (ICSM), 2012 28th IEEE International Conference on , vol., no., pp.46,55,
23-28, 2012.

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	109	
	

Deliverable D3.3: “Models-based Process Definition”

[99] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact”, Empirical Software
Engineering: An International Journal, 10(4):405–435, 2005.

[100] A. Carzaniga, D. S. Rosenblum, and A. L.Wolf, “Achieving scalability and
expressiveness in an internet-scale event notification service”, In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
’00, pages 219–227, New York, NY, USA, 2000. ACM.

[101] V. Cortellessa and P. Potena, “Supporting architectural decisions through software
quality optimization models”, Tutorial at 25th IEEE International Symposium on
Software Reliability Engineering (ISSRE) November 3-6, 2014 (http://issre.net/tutorials).

 [102] P. Potena, I. Crnkovic, F. Marinelli, and V. Cortellessa, “Software Architecture
Quality of Service Analysis based on Optimization Models”, Chapter in Intelligent
Decision Making in Quality Management, Springer (Accepted for pubblication).

[103] V. Cortellessa, R. Mirandola, and P. Potena, “Managing the evolution of a software
architecture at minimal cost under performance and reliability constraints”, Science of
Computer Programming (Elsevier), 98: 439-463 (2015). DOI:
10.1016/j.scico.2014.06.001.

[104] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. do Prado Leite,
“From goals to high-variability software design”, In ISMIS, volume 4994 of LNCS,
pages 1–16. Springer, 2008.

[105] W. N. Robinson and S. Volkov, “Conflict-Oriented Requirements Restructuring”,
In GSU CIS Working Paper 96-15, Georgia State University, Atlanta, GA, 1996.

[106]	S.	Yamada,	T.	Ichimori,	M.	Nishiwaki:	Optimal	Alloca-	tion	Policies	for	Testing-
Resource	Based	on	a	Software	Reliability	Growth	Model.	Int.	Journal	of	Mathematical	
and	Computer	Modeling.	22(10-12),	295-301	(1995)	

[107]	M.R.	Lyu,	S.	Rangarajan,	A.P.A.	van	Moorsel:	Opti-	mal	Allocation	of	Test	
Resources	for	Software	Reliability	Growth	Modeling	in	Software	Development.	IEEE	
Trans-	actions	on	Reliability,	51	(2),	336-347	(2002)	

[108]	C.Y.	Huang,	J.H.	Lo,	S.Y.	Kuo,	M.R.	Lyu:	Optimal	Al-	location	of	Testing	
Resources	for	Modular	Software	Sys-	tems.	In:	Proc.	13th	Int.	Symposium	on	
Software	Relia-	bility	Engineering	(ISSRE),	pp.	129-138	(2002)	

[109]	I.	Meedeniya,	A.	Aleti,	and	L.	Grunske.	Architecture-driven	reliability	
optimization	with	uncertain	model	parameters.	Journal	of	Systems	and	Software,	
85(10):2340–2355,	2012.	

[110]	C.	Trubiani,	I.	Meedeniya,	V.	Cortellessa,	A.	Aleti,	and	L.	Grunske.	Model-based	
perfor-	mance	analysis	of	software	architectures	under	uncertainty.	In	QoSA,	pages	
69–78.	ACM,	2013.	

[111]	N.	F.	Schneidewind,	“Modelling	the	fault	correction	process,”	in	Pro-	ceedings	
of	the	12th	International	Symposium	on	Software	Reliability	Engineering,	2001,	pp.	
185–190.	

[112]	R.	Rubinstein	and	D.	Kroese.	Simulation	and	the	Monte	Carlo	method.	Wiley-
interscience,	2008.	

FP7-PEOPLE-2012-IAPP	––	ICEBERG	-	324356	110	
	

Deliverable D3.3: “Models-based Process Definition”

[113]	G.	Carrozza,	R.	Pietrantuono,	and	S.	Russo,	“Defect	analysis	in	mission-	critical	
software	systems:	a	detailed	investigation,”	J.	Softw.	Evol.	and	Proc.,	vol.	27,	no.	1,	pp.	
22–49,	2014.	

[114]	R. Pietrantuono, S. Russo, and K. Trivedi, “Software reliability and testing time
allocation: An architecture-based approach,” Software Engi- neering, IEEE Transactions
on, vol. 36, no. 3, pp. 323–337, May 2010.

	

	

