
FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 1	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

ICEBERG

Validation scenarios and quality parameters

Industry-Academia Partnerships and Pathways (IAPP)
Call: FP7-PEOPLE-2012-IAPP

The research leading to these results has received funding from the European

Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n°324356

Deliverable No.: 2.2

Deliverable Title: Validation scenarios and quality parameters

Organisation
name of lead
Contractor for this
Deliverable:

ANET, DEISER

Author(s): L. Fernandez, P. Potena, N. Condori, L. de Marcos, M. Yatskevich, D.
Rodriguez, I. Battipaglia, C. Gaiani

Participant(s) All

Work package
contributing to
the deliverable:

2

Task contributing
to the deliverable:

T 2.4, T2.5

Total Number of
Pages

77

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 2	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

Table of Versions

Version Date Version Description Contributors

0.1 06-02-2014 Draft. First document skeleton. Luis Fernandez
Pasqualina Potena
Nelly Condori
Luis de Marcos

0.2 07-04-2014 Added Criteria, Metrics and Evaluation Scenarios
sections.

Mikalai Yatskevich

0.3 10-04-2014 Updated document structure and Evaluation Scenarios
section.

Claudio Gaiani

0.4	 30-04-2014	 Updated	document.	Added	existing	categories	of	
applicable	decision	models	and	Summary	of	
indicators	for	decision	models	sections.	

Luis Fernandez
Pasqualina Potena
Luis de Marcos

1.0	 30-04-2014	 Updated	Evaluation	Scenarios	section.	 Mikalai Yatskevich
Luis de Marcos
Claudio Gaiani

	 	 	
	 	 	

	 	 	
	

	

	 	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 3	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

	
TABLE	OF	CONTENTS	

1	 EXECUTIVE SUMMARY ... 4	
2	 INTRODUCTION .. 5	
3	 HOW TO TACKLE WITH THE GOAL OF THE ICEBERG PROJECT 6	
4	 COST AND TIME MEASUREMENT .. 9	
5	 EVALUATING QUALITY BY MEASURING ABSENCE OF IT: DEFECTS,
INCIDENTS AND OTHER CONCEPTS .. 11	

5.1	 Defects Classifications Schemes ... 14	

5.1.1	 Defects Classification Schemes Defined by Standards 14	

5.1.2	 Defects Classification Schemes Defined in the Industry 15	

6	 AN ADDITIONAL INDICATOR FOR EVALUATING QUALITY: SIZE 18	
7	 HOW TO DETERMINE MEASURES FOR ASSESSING THE THREE
FACTORS OF THE IRON TRIANGLE .. 20	

7.1	 Objective .. 21	

7.2	 Questionnaire Design (step 1) ... 22	

7.3	 Validity ... 22	

7.4	 Results of the survey (Step 2) .. 23	

8	 EXISTING CATEGORIES OF APPLICABLE DECISION MODELS 28	
8.1	 Quality decision-making approaches ... 28	

8.2	 Schedule/Time decision-making approaches .. 29	

8.3	 Schedule/Time and Quality decision-making approaches 30	

8.4	 Software Quality Evaluation ... 31	

8.4.1	 Metrics as Quality Indicators .. 32	

8.4.2	 Metrics Evaluation .. 34	

9	 SUMMARY OF INDICATORS FOR DECISIONS MODELS 45	
10	 EVALUATION SCENARIOS ... 51	

10.1	 Methodology .. 51	

10.1.1	 ITIL Methodology ... 51	

10.2	 Criteria ... 52	

10.3	 Metrics ... 53	

10.4	 Process .. 54	

10.5	 Scenarios ... 55	

10.5.1	 Medical Company .. 55	

10.5.2	 Telecommunications Company .. 61	

10.5.3	 Financial Company .. 64	

11	 CONCLUSION ... 69	
12	 REFERENCES ERROR! BOOKMARK NOT DEFINED.	
	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 4	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

1 EXECUTIVE SUMMARY

The aim of D2.2 of the ICEBERG project "Validation scenarios and quality
parameters" is to identify and classify parameters of interest for the definition of the
models. The secondary aim is to select the metrics and describe the quality attributes
of interest (e.g., number of defects found, operational reliability, robustness). The
tertiary aim is to obtain a set of scenarios for suitably validating the implemented
process. The test cases are selected based on a) relevancy of the topic; b) adaptability;
c) scalability; d) extendibility. The document provides the ICEBERG partners with
the guidelines to pursue the mentioned project aims.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 5	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

2 INTRODUCTION

The definition of software quality is typically given by considering two levels: 1) the
intrinsic product quality and 2) the customer related. Existing approaches for intrinsic
product quality can be classified in i) defect management approaches, and ii) quality
attributes approaches. The first ones are focused on defects management, whereas the
second ones assess the software quality by considering quality factors (e.g., reliability,
usability, interoperability, etc.). However, reality of software development
professional practice does not enable choosing any of the above approaches, as they
involve costs, prerequisites for implementation, etc.

The ICEBERG project aims at defining how project management decisions on quality
assurance actions influence project's results in terms of intrinsic product quality while
evaluating their effects in costs and schedule, following the idea of the Iron Triangle
for project management. The reason is that software quality cannot be analyzed
separately, because the project managers must assure the respect to constraints on
schedule and costs. A quality decision, for example, can be the one of implementing
static code analysis (e.g. tools, new processes, training, etc.) but its impact on project
schedule, for example, can cause delays in completion of projects tasks while number
of defects might be reduced up to certain extent leading to cost savings: in the end, the
project manager need to know if this is helpful and convenient for the project goals.

Therefore, finding new ways of supporting the quality decision making process would
make possible to understand in advance the real impact of decisions on cost (and
schedule), and decide the corrective actions to be implemented at any level or
category of decision (tools, QA or development processes, organizational factors,
professional competences involved in the entire software development cycle, etc.).
This analysis might be used to answer questions such as: (i) Given a high quality
constraint, what is the cost to achieve, measurably, the goal? Is there a way to
minimize such cost, standing the required high quality? (ii) Given a budget constraint
(which prevents from performing all the required quality activities) what is the cost
for the missing quality activities? Missing activities may imply bad quality: how does
this “bad quality” manifests itself during operation, and how much does it cost?

This document is structured as follows. Section 3 describes the approach to address
the goal of the ICEBERG project. Section 4 addresses measurement of the basic
factors (cost and time). Section 5 describes the approach to defect management.
Section 6 discusses software size. Section 7 describes how we intend to assess the
measures for the three factors of the iron triangle. Section 8 provides an overview on
exiting categories of decision models. Section 9 summarizes indicators for decisions
models. Section 10 describes the validation scenarios that are used in the ICEBERG
project. Finally, Section 11 concludes the deliverable.

		

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 6	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

3 HOW TO TACKLE WITH THE GOAL OF THE ICEBERG
PROJECT

The Iceberg project aims at defining how project management decisions on quality
assurance actions influence project's results in terms of quality, cost and time. This
analysis is inspired in two underlying concepts:

• Cost of Quality (CoQ): this concept claims measuring the cost linked to
achieving quality results in projects or in general in any
development/production activity. In short, it states that getting quality requires
investing money before, although if this is done correctly the ROI (Return of
Investment) is positive leading to the popular motto "Quality is free" created
by Crosby [1]. More specifically for the Iceberg project, the well-known
refinement of CoQ named as the Cost of Poor Quality (CoPQ, first
popularized by an IBM expert, Harrington [2]) has been adopted. CoPQ is
defined as costs which are generated as a result of producing defective
outcomes, products or services. Harrington himself insisted in the fact that
preventing and pursuing quality makes it profitable because you can save
CoPQ (he mentions declarations of managers claiming that one dollar in
evaluation saves nine in losses and one in prevention leading to saving up to
15 in losses for failures and also typical cases of 20:1 [3]). Others have
reported case studies showing ratios of 1 to 10 in return for each money unit
(dollar) invested in prevention.

• The Iron Triangle: a concept which summarizes the three axis which project
managers are supervising and where they are intervening with their decisions.
First defined by [3], this concept has been refined in subsequent years by
transforming it into a square by adding the dimension Scope to the three
traditional ones, i.e. Time/Schedule, Cost/Money and Quality/Defects. The
concept goes beyond stating the dimensions of the project which are
supervised but also the importance of considering the influences between
them, e.g. if circumstances or requests from stakeholders leads to reduce
schedule, effects on the other dimensions are predicted. Although the classical
view is that certain relations are always configured in the same way, e.g. less
money would lead to poorer quality, this is not an automatic rule as other
factors could also intervene, e.g. increasing productivity while keeping quality
level: Harrington highlighted this in [4] remarking that the relation between
productivity and quality is not contradictory but complementary.

In the Iceberg project, both conceptual frames are the inspiration for the goal pursued
by the project:

	

• Defining relationships between project management decisions and effects on
quality while observing associated consequences in costs and schedule,

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 7	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

especially analyzing the trade-off between the diminishing of CoPQ with the
investment in quality (sometimes understood as CoQ).

There is not a unique way of defining and measuring CoQ and CoPQ. Several works
have analyzed systematically the proposals located in the literature (e.g. [5]). In
general, at least these aspects of costs are evaluated: appraisal, prevention, internal
failure and external failure costs. Experiments have confirmed several relationships in
specific companies (e.g. wholesale in [5]):

• Inverse between appraisal and prevention costs and failure costs for company,
materials and labour in different degrees (no clear relation for machines).

• Direct influence between appraisal and prevention costs and quality level for
all factors.

• Quality enhances as a result of reduction of failures.

Moreover, many costs of CoQ are hidden and rarely captured by conventional
accounting procedures and sometimes even considered as a regular cost of doing
business. Maybe the most important ones are customer incurred, loss of reputation
and customer dissatisfaction which impact on future purchasing decisions. Thus,
eliminating external failures leads to elimination of most part of these costs (coherent
with the third conclusion above) so they are having the highest priority.

However, the models for CoQ and CoPQ started as part of the general research
streamline of industrial quality which provoke the rise of all models and concepts
related to general quality management. This means that they were initially focused on
the traditional settings of all these research efforts: industrial manufacturing
organizations. Now the quality management discipline has been extended to all types
of products and services although the most mature results still belong to the
manufacturing sector.

In the case of software engineering, unlike other productive activities, the
development of products (software, applications, etc.) is quite different to the vast
majority of other production cases due to many reasons (e.g. see [7]): intellectual
nature of products, no raw materials, no physical laws governing their behavior, main
cost allocated to developing first copy not to creating copies, immaturity of market,
repairing defects does not mean reverting to original state as just deliver from
development, flexibility, etc. The consequence is that software quality management
cannot just copy and adapt the solid and well-known techniques developed by
manufacturing organizations or by other similarly mature productive activities.
Software engineering has had to develop its own particular methods.

In the case of software quality, researchers have followed different approaches and
have addressed varied scopes from industry and company to project level. A good
systematic review of literature can be found in [8]. The article deals with all types of
contributions in impact publications which mention specifically software quality
costs: it excludes those related to software developments costs which do not clearly
detail quality aspect and those related to SQA which do not analyze costs. A high
number of articles were not empirically validating their proposals or models.

A whole line of work was proposed by B. Boehm [8] and named as Value-Based
Software Engineering (VBSE) with the goal of enriching traditional techniques of

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 8	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

software project management (e.g. Earned Value) by adding an evaluation of benefits
realized by stakeholders. VBSE integrates value considerations into current and
emerging software engineering principles and practices. Consideration of value
provided by software is based on methods like the BRA (Benefits Realization
Approach) [9]. Methods like BRA have certain prerequisites: accountability related to
ownership, relevant measurement and proactive change.

Research has proven that humans make trade-off analyses continuously, and
especially when deciding, if not on the ground of objective measurements then relying
in intuition. As SQA is an investment with significant cost and sometimes with lack
of quantification of benefits, clear evaluation and consideration of costs and benefits
have to be provided.

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 9	
		

Deliverable D2.2: “Validation scenarios and quality parameters”

4 COST AND TIME MEASUREMENT

One of the main shortcomings in creating an environment for evaluating decisions in
QA is the traditional lack of consistent and organized measurement procedures in
many companies. Taking into consideration the basic measurement of the three main
effects which everybody wants to control in software projects (quality, cost and time),
we can be shocked by the challenges we have to face. Starting with schedule and
time, Capers Jones [11] highlights several limiting facts:

	

• Schedule data is also very troublesome and ambiguous. It is surprising its
scarce presence in solid studies for decades and even more surprising that so
few companies track software development schedules, although this topic is
the most important to software managers and executives.

• At least 85 percent of the software managers in the world jump into projects
with hardly a clue as to how long they will take. When collecting schedule
information on historical projects, establishing the true schedule duration of a
software project is a tricky task: when software is delivered is often fairly
clear, but when it originated is imprecise data point.

• More than 15 percent of software projects are also ambiguous in determining
when they were truly delivered. Sources of ambiguity are whether to count the
start of external beta testing as the delivery point or wait until the formal
delivery when beta testing is over. Another source of ambiguity is whether to
count the initial delivery of a software product, or whether to wait until
deferred functions are completed and delivered a few months later (“point
release” known as “Version 1.1.”).

• Agile, spiral, and iterative models are even more amorphous and phases can
be freely interleaved and happen in parallel.

If this happens for the whole project, aspiring to a control of schedule and time for
each activity and phase is utopic. This is an important limitation when, e.g., wanting
to know the effects of specific techniques in the schedule or time devoted to an
activity.

Capers Jones [11] also analyzes the measurement of time reaching these conclusions:

• Ambiguity in defining working periods (work days, work weeks, work
months, and work years) which are usually applied to software projects.
National and regional public holidays, vacation days, sick days, special days
away due to weather, and non-work days for events such as travel, company
meetings, etc. These exceptions are not always properly reflected and
accounted in time sheets and whatever other method is used (if any
systematic).

• Nobody really works every weekday but even a person may be physically at
work for eight or nine hours a day and he/she would not be able or want to
work solidly for eight hours every day. Coffee breaks, lunch, rest breaks, and

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 10	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

social matters vary from one organization to another but you assume a good
average up to two hours per day. And finally add days devoted to education,
company meetings, appraisals, interviewing new candidates, travel, and other
activities that are usually not directly part of software projects. You can think
in a total of 16 days per year.

• Finally ambiguity also comes from unpaid overtime applied to software
projects.

Again, this makes very difficult to work in serious analysis of effects of decisions in
schedule and time, which in the end means costs. Although many types of costs might
be charged to a project, the main driver for expenses is the dedication of workers as
software development is an activity very intensive in workforce. It is also clear that
people involved in software development belong to very qualified categories and
dedication is always expensive. This tight relationship between effort and cost leads
to an assumed rule of substituting the typical units of cost (money) by units of effort:
man-hours, man-month, etc.

When dealing with measuring costs, bad habits in software organizations do not help
to our analysis [11]:

	

• Most corporate tracking systems for effort and costs (euros, work hours,
person months, etc.) are incorrect and tend to omit from 30 percent to more
than 70 percent of the real effort applied to software projects. Thus most
companies cannot safely use their own historical data for predictive or analytic
purposes.

• Productivity measurements based on human effort in terms of work hours or
work months can be measured with acceptable precision if serious systems are
implemented. But a problem with cost measures is that salaries and
compensation vary widely from job to job, worker to worker, company to
company, region to region, industry to industry, and country to country.

• Another impacting factor is the lack of generally accepted accounting
practices for determining the overhead or indirect costs use for determining
business topics and as input to contracts, outsource agreements, and return on
investment (ROI) calculations. Even currency exchange in international
projects and inflation in multiyear projects would distort the calculations.

Before proceeding with the definition of indicators and even with the determination of
models for decision-making in the Iceberg project, we should perform a preliminary
analysis on how targeted organizations manage the measurement of these factors.

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 11	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

5 EVALUATING QUALITY BY MEASURING ABSENCE OF
IT: DEFECTS, INCIDENTS AND OTHER CONCEPTS

As stated in the introduction, there are many approaches to software quality but not all
the organizations are in the level of maturity required to use all the models. The basic
level and the most implemented one is the use of defects density measures, i.e. the
rate between number of defects and the size of software. Defect-based metrics may
represent a narrow view of quality, where quality is considered only as the lack of
defects.

Defect density = number of known defects / product size

Defect density presents several problems related to the precision and real
representation of the measured concept of software quality [1].

• No general consensus on what constitutes a defect. In fact, our work presented
above in this section is oriented to standardize the definitions to be used in the
project. If this agreement on how to measure is not clear, important problems
appear. The main one is that different ways of measuring defects lead to not
comparable results.

• No consensus about how to measure software size. Defect densities need to be
calculated using consistent definitions of size to be comparable.

• Finding defects may tell more about the lack of quality and about the quality
of defect finding and reporting processes, than it may tell about the quality of
the product itself.

• Low defect rates are not a synonymous with quality in general. Some software
fails do not necessary lead to failures perceived by users. And also programs
or parts less used will be less prone to present defects.

 Obviously many varieties as accounting indicators of software quality based on
defects have been devised. The discipline of reliability has defined many indicators
and measures. Many companies define their own varieties to reflect their view of
what it is important to reach their quality goals. One is the Hitachi's System spoilage
metrics defined as the ratio time to fix post-release defects/total system development
time [12]. In fact, taken an illustrative list of some possible varieties from it, we can
find the following ones with the acronyms (KNCLS: 1000 Non commentary source
lines) and NCLOC (Non-commentary lines of code) [13]:

• Cumulative fault density

• Total serious faults found

• Mean time to close serious faults

• Total field fixes

• High-level design review errors per KNCSL

• Low-level design errors per KNCSL

• Code inspection error per inspected KNCSL

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 12	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

• Development test and integration error found per KNCSL

• System test problems found per developed KNCSL

• First application test site errors found per developed KNCSL

• Customer found problems per developed KNCSL

 Defects have many aspects that should be considered relevant to be measured and
analyzed with regard to the objectives of a strategy for quality assurance. The defects
are inserted for some particular reason within the software artefacts; they have some
impact and severity on the quality properties of the final product. They are detected at
any specific time by noticing specific symptoms, using a detection technique which
may or not include a support tool. Finally, the defects can be corrected or prevented
by applying some kind of reasoning. Each one of these aspects may be relevant for
the purpose of required analysis and also allow a categorization of defects.

 For simplicity, Table 1 summarizes the key terms used within ICEBERG. The table
provides a common vocabulary applicable to all projects’ phases work (e.g., this
glossary will be used to get the interview survey participants familiar with the overall
goal of the project). It is intended to serve as a useful reference. To provide this list
of terms, we have exploited the following standards and international glossaries:

a) the Standard IEEE 1044-2009 defined for software anomalies classification
[14];

b) the glossary of the Information Technology Infrastructure Library [15];
c) the common vocabulary ISO/IEC/IEEE 24765:2010 applicable to all systems

and software engineering work (prepared by ISO and liaison organizations
IEEE Computer Society and Project Management Institute) [16];

d) the Standard Computer Dictionary ISO/IEC/IEEE 610:1990 [17].

DEFECT An imperfection or deficiency in a work product where that work
product does not meet its requirements or specifications and needs to be
either repaired or replaced

MISTAKE A human action that produces an incorrect result.

FAULT A fault is a subtype of the super type defect. Every fault is a defect, but
not every defect is a fault. A defect is a fault if it is encountered during
software execution (thus causing a failure) but not if it is detected by
inspection or static analysis and removed prior to executing the software.

ERROR The difference between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or
condition

FAILURE Termination of the ability of a product to perform a required function or
its inability to perform within previously specified limits.

INCIDENT REFERENCE Identification of the associated incident if the failure report was
precipitated by a service desk or help desk call/contact.

PROBLEM Difficulty or uncertainty experienced by one or more persons, resulting
from an unsatisfactory encounter with a system in use. A problem may
be caused by one or more failures, A failure may cause one or more

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 13	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

problems.

RISK The combination of the probability of an abnormal event or failure and
the consequence(s) of that event or failure to a system’s components,
operators, users, or environment.

THREAT Anything that might exploit a Vulnerability. Any potential cause of an
Incident can be considered to be a threat.

Table 1. Key terms used within ICEBERG

	

Figure 1: Dependencies among key terms of ICEBERG

Figure 1 describes the dependencies among the key terms listed in Table 1. The
figure describes the event of a system failure, and how this event is typically
managed. Shortly, a user (e.g., final user, a developer/tester or a system administrator)
can perceive a system failure. Such no correct system behaviour should be
documented as incident report. This latter could be further analyzed in order to
understand the cause of the incident. Therefore, if a problem is raised, then further
investigation will be performed. In particular, the nature of the failure is analyzed. In
fact, a system failure could be, for example, raised either by hardware components or
software components. If a software failure is recognized, then defect detection and
removal techniques are adopted in order to analyze and fix the defect (i.e., the fault
that has been the cause of the failure). Software defects could be introduced for

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 14	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

different reasons, such as mistakes of the software developer/testers or the lack of
skilled testing. Finally, it is also typically analyzed the risk that potential failure
might occur in the future that will result in some negative consequences.

 Defect classification schemes are designed to answer how, what and where to find
software defects. Although there are several often cited classifications and even an
IEEE standard [14], none of which have become a truly and broadly applied practice
[18].

5.1 DEFECTS CLASSIFICATIONS SCHEMES

Defect classification schemes define a set of attributes and attribute values, where
each attribute captures a specific aspect of the defect, e.g. symptom, type and
injection mechanism.

The defect classification schemes more referenced in the literature can be classified
into two categories according to their origins:

• Standard
• Industry
• Academy

5.1.1 Defects Classification Schemes Defined by Standards

There is one relevant standard that covers the classification of software defects: IEEE
std. 1044. This standard was developed by IEEE in 1993. The latest release was
launched in 2009. This work is based on the latest release. This standard provides a
uniform approach to the classification of software anomalies, regardless of when they
originate or where they are encountered within the project, product, or system life
cycle. Classification data can be used for a variety of purposes, including defect
causal analysis, project management, and software process improvement (e.g., to
reduce the likelihood of defect insertion and/or to increase the likelihood of early
defect detection) [14]. Table 2 shows the attributes of the defects proposed by this
classification scheme.

Attribute	 Definition	
Defect	ID	 Unique	identifier	for	the	defect.	
Description	 Description	of	what	is	missing,	wrong,	or	unnecessary.	
Status	 Current	state	within	defect	report	life	cycle.	
Asset	 The	software	asset	(product,	component,	module,	etc.)	containing	the	

defect.	
Artefact	 The	specific	software	work	product	containing	the	defect.	
Version	detected	 Identification	of	the	software	version	in	which	the	defect	was	

detected.	
Version	corrected	 Identification	of	the	software	version	in	which	the	defect	was	

corrected.	
Priority	 Ranking	for	processing	assigned	by	the	organization	responsible	for	the	

evaluation,	resolution,	and	closure	of	the	defect	relative	to	other	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 15	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

reported	defects.	
Severity	 The	highest	failure	impact	that	the	defect	could	(or	did)	cause,	as	

determined	by	(from	the	perspective	of)	the	organization	responsible	
for	software	engineering.	

Probability	 Probability	of	recurring	failure	caused	by	this	defect.	
Effect	 The	class	of	requirement	that	is	impacted	by	a	failure	caused	by	a	

defect.	
Type	 A	categorization	based	on	the	class	of	code	within	which	the	defect	is	

found	or	the	work	product	within	which	the	defect	is	found.	
Mode	 A	categorization	based	on	whether	the	defect	is	due	to	incorrect	

implementation	or	representation,	the	addition	of	something	that	is	
not	needed,	or	an	omission.	

Insertion	activity	 The	activity	during	which	the	defect	was	injected/inserted	(i.e.,	during	
which	the	artefact	containing	the	originated	defect).	

Detection	activity	 The	activity	during	which	the	defect	was	detected	(i.e.,	inspection	or	
testing).	

Failure	
reference(s)	

Identifier	of	the	failure(s)	caused	by	the	defect.	

Change	reference	 Identifier	of	the	corrective	change	request	initiated	to	correct	the	
defect.	

Disposition	 Final	disposition	of	defect	report	upon	closure.	
																														

																																		Table 2: IEEE 1044 scheme attributes

This classification scheme has clear descriptions, exclusive mutually attributes and
adaptable, covers a vast amount of defects information, it is designed at a more fine-
grained that required and it has an orthogonal and hierarchical structure.

5.1.2 Defects Classification Schemes Defined in the Industry

There are some defects classification schemes used in the industry. However, they are
for software defects and they do not consider the characteristics of conceptual
schemas. The most relevant are the following

5.1.2.1 IBM DEFECTS CLASSIFICATION SCHEME

The IBM scheme is called Orthogonal Defect Classification (ODC) [20]. The first
paper summarizing the full scheme was published in 1992.In this scheme a defect is
classified across the dimensions shown in Table 3.

	

Attribute	 Description	
Defect	type	 Provides	feedback	on	the	development	process	(i.e.	function,	assignment,	

interface,	checking,	timing/serialization,	build/package/merge,	
documentation,	and	algorithm).	

Source	 Type	of	code	that	is	corrected	(i.e.	new,	old,	reused	or	fixed).	
Impact	 The	resultant	effect	on	the	customer	(e.g.	capability,	usability).	
Trigger	 Provides	feedback	on	the	verification	process	(e.g.	testing,	review,	beta	

test).	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 16	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Phase	found	 Defined	on	the	development	process	activities	(e.g.	design,	test).	
Severity	 IBM	uses	values	between	1	and	4	where	1	is	the	highest	signifying	major	

outage,	while	4	could	be	an	annoyance.	
	

Table 3: IBM scheme attributes

This classification scheme has almost the same properties as the previous scheme; the
difference is that it only has an orthogonal structure and non-hierarchical [20]. It has
been adopted by more and more organizations [21]. However, there are criticizes that
the association between defect type and project phases is still an open question and
that the distribution of defects types depends also on the processes and maturity of the
company [18].

5.1.2.2 HP DEFECTS CLASSIFICATION SCHEME

This scheme was developed by HP's Software Metrics Council in 1986. The purpose
of the scheme was to provide standard defect terminology that different HP projects
and labs could use to report, analyse, and focus efforts to eliminate defects and their
root causes [22]. In this scheme a defect is classified across the following three
attributes (see Table 4).

	
Attribute	

	
Description	

Origin	 The	origin	is	the	source	of	the	defect	(i.e.	specifications/requirements,	
design,	code,	environmental	support,	documentation,	other).	

Type	 A	coarse-grained	categorization	of	what	is	wrong.	It	is	dependent	on	the	
value	chosen	for	the	Origin	attribute.	

Mode	 It	can	be	one	of	missing,	unclear,	wrong,	changed	and	better	way.	

Table 4. HP scheme attributes

In this scheme the attribute Type is dependent on the value chosen for the attribute
Origin (see Figure 2). This first requires analysis of when the defect was injected into
the system before its type can be established. Therefore, its structure is semi-
orthogonal. The HP scheme does not explicitly capture data about how a defect was
detected. Additionally, there is no attribute available to identify which detecting
mechanisms are effective in detecting particular defect types and investigate how
severe defects can be identified [19].

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 17	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

	

Figure 2: HP Defect Classification Scheme [22]

	

	

	

	

	

	

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 18	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

6 AN ADDITIONAL INDICATOR FOR EVALUATING QUALITY:
SIZE

As commented in Section Error!	 Reference	 source	 not	 found., evaluation and
measurement of quality based on defect existence should be conceived in terms of
defect density rather than as absolute numbers. This leads to the problem of having a
trustable and consistent metric of size. Many different metrics of size have been
devised during the existence of the software engineering discipline. We can mention
that software size can be described with three attributes: i) length; ii) functionality; iii)
complexity [24].

Below, a more detailed description of these attributes follows.

Length. The length is an attribute measured for the software specification, the
design, and the code.

 Depending on the used language, the size of the code is measured in several ways.
The most used code measure is the number of lines of code (LOC). In order to count
the lines, many schemas have been proposed. However, all existing approaches
should basically provide guidelines to count the lines of a program by explaining how
to handle typical code aspects (such as blank lines and comment lines), which must be
considered during the code measurement. Big differences even from 1 to 5 could be
found in the same piece of code depending on the criterion used to count LOC [24].
Other examples of atomic objects to count are executable statements, source
instructions, characters or objects or methods. Even just the storage space in KB or
MB could be used as indicator of size for executable code.

 As far as the specification and the design is concerned, the adopted measures differ
from the ones of code because of their different nature, which depends, for example,
on the particular style, method or notation used. In fact, documents of specification
and design usually combine different artefacts (like text, graph and mathematical
symbol) that are incommensurate with respect to the length. Therefore, different
measures must be used (e.g., the number of pages is used in industry to measure
length for arbitrary types of documents).

Functionality. This attribute indicates the amount of function contained in delivered
product or in a description of how the product is supposed to be.

 Several methods have been introduced to measure the functionality of software
products. We can mention, for example, three approaches: (i) Albrecht’s function
points; (ii) DeMarco’s specification weight; and (iii) the COCOMO 2.0 approach to
object points. These three approaches measure the functionality of specification
documents, but they can be also applied to later life-cycle products in order to better
refine size estimate, the cost or productivity estimate. Details on these approaches can
be found in [24]. By far, all the measures in the style of Function Points with all the
possible varieties from classical ones [25] to most recent ones like COSMIC1 are the
most used by organizations around the world. In Deliverable 2.1 additional
approaches that deal with function points can be found (e.g., the work in [23]).

																																																								
1 http://www.cosmicon.com/

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 19	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

 Complexity. This attribute is difficult to measure. We must distinguish in
complexity of the problem (regarding the amount of resources required for an optimal
solution) and complexity of the solution (regarding the amount of resources needed
for the solution).

 The complexity of the solution is related to the efficiency of the algorithm. The
resource consumption (or computational cost) of the algorithm is measured. The
complexity time of an algorithm is typically expressed by using the mathematical
formalism, called big-O notation. This latter allows quantifying the amount of time
needed for running the algorithm as a function of the size of the input. Normally this
idea of complexity is not implemented in regular practice in industry.

Of course additional conceptions of complexity are available in literature as metrics
for the different deliverables of projects but they are normally used for evaluating
other attributes which might be related to the evaluation of quality rather than relating
them to size. The work in [26], for example, investigates an approach for predicting
the location of Aging-Related Bugs using software complexity metrics.

	

	

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 20	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

7 HOW TO DETERMINE MEASURES FOR ASSESSING THE
THREE FACTORS OF THE IRON TRIANGLE

 In order to determine which measures are normally used for assessing the three
factors (i.e., cost, schedule and quality) in daily practice of organizations, we intend to
conduct an interview-survey in which several customers and contacts of project’s
partners will be involved helping us to know how the basic factors are managed.

 Although it could be assumed that regular practice of measuring these factors does
not represent any difficulty to organizations, many problems may arise. Not all the
organizations are measuring the basic factors in the same way, even they may name in
different way the same concept or having different things with the same name. Some
organizations are using ad-hoc tools, others commercial ones, others functionalities of
general tools, etc. Some ones are collecting details and distinguishing among data
from different tasks, others are collecting only data for the whole project and with few
details, etc. In the end, the state of practice of the organizations will determine the
feasibility of implementing the decision models existing in literature or adapting
some of them to their situation, i.e. if they are not having the regular practice or
maturity of collecting certain types of data with a specific level of detail, it would be
impossible to propose them using certain specific frameworks or models for quality
decisions as they won't have the necessary data to work with them or to make
consistent decisions. In particular, as the Iceberg project wants to analyze how
decisions on software quality during projects impact in the three factors of the Iron
Triangle, we have to know what information would be available to a typical
organization to implement a decision framework or model.

We also have to collect information on which types of decisions are normally made
by managers or project leaders during the projects. As we want to propose a
framework or a model for making decisions, it is necessary to know which SQA
techniques and methods are normally adopted in projects to know which technical
decisions related to them are logical to explore. It would be a non-sense to propose
models where the impact of a specific method or technical strategy in a project (e.g.
formal verification) if the organizations are not implementing it due to barriers like
complexity, lacks of qualified staff, low maturity and absence of tradition or culture,
etc. As a consequence, we have decided to include questions on SQA techniques and
methods normally used in projects and on the types of decisions (i.e. the targeted
factors in decisions) usually made. We are exploring the factors already analyzed in
Deliverable 2.1 of project Iceberg to focus our effort of providing the most feasible
and useful support for decisions.

Our study will be based on the method specified in [27] which is a formalized and
repeatable process to document relevant knowledge on a specific subject area. We
intend to conduct our survey in the main steps described in Table 5. We will refine
these high level goals into more concrete sub-goals (i.e., short term objective) until it
is possible to objectively measure their satisfaction. To this end, we will produce
documents to be reviewed by university and industrial experts.

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 21	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Step Description

Step 1 Questionnaire Preparation

Step 2 Interaction with few industry representatives
for questionnaire review

Step 3 Questionnaire Refinement

Step 4 Participants selection

Step 5 Interaction with participants in order to get
them familiar with the overall goal of our
study

Step 6 Questionnaire distribution

Step 7 Data collection and Analysis

Step 8 Addressing the Validity

Table 5: Interview-survey Steps

7.1 OBJECTIVE

We have identified these following research questions, which we intend to use (after
the review of few industry representatives) in order to identify the measures of the
iron triangle’s factors.

RQ1: How cost and effort are measured? In which level of detail are data collected?
Which mechanisms and tools are used for measuring, collecting and managing the
data?

RQ2: How project duration is measured? In which level of detail are data collected?
Which mechanisms and tools are used for measuring, collecting and managing the
data?

RQ3: How quality is understood by people involved in projects? How are quality
data collected? Which mechanisms and tools are used for measuring, collecting and
managing the data?

RQ4: How projects or software size is measured? How are data collected? Which
mechanisms and tools are used for measuring, collecting and managing the data?

RQ5: How the characteristics, culture, etc. of the organization are influencing the
above measures?

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 22	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

RQ6: Which SQA techniques are normally implemented and used in the projects?

RQ7: Which factors are addressed in usual decisions during projects?

7.2 QUESTIONNAIRE DESIGN (STEP 1)

By starting from our research questions, we have defined a questionnaire, which we
have discussed with some industry representatives (see Step2 of Table 5). The
questionnaire consists of two main parts. The first part is related to participants’
personal data (e.g., company features, years of experience in the field), whereas the
second part is related to all the aspects mentioned before, from the three factors of the
iron triangle together with size to the SQA techniques and factors in decisions. We
will use the data collected with the first part to summarize the distribution of the
participants with respect to their working experiences and company features. In the
additional document “Questionnaire-Survey”, we have reported the complete
questionnaire (http://bit.ly/IcebergBasicSurvey).

7.3 VALIDITY

In this section we discuss the validity of our interview-survey. We have been inspired
by validity threats proposed in [28] for an empirical study.

The following threats to validity and their solution have been identified.

Construct Validity. This threat is related to the high relation between the theory
behind a study and its observation. Therefore, in order to assure high construct
validity, we plan to adopt measures to conduct all steps of our work. The steps span
from questionnaire preparation through respondents recruitment to data collection and
analysis. Regarding the measures which will be used, we can remark the following
points.

- We will assure a rigorous planning of the work with a solid protocol for
questionnaire preparation (e.g., the questionnaire structure will facilitate the
participants, and the data collection and analysis) and data collection and
analysis.

- We will avoid mono-operation bias by planning several rounds of review and
iteration with university and industry experts with different backgrounds and
working experiences. We will discuss with them documents produced for the
single steps of our work. We also intend to get these participants familiar with
the overall goal of the work (and the single steps’ results) in order to
understand if there is a high relation between the theory behind our work and
its achievements.

- We also intend to use measures for the participants’ recruitment. We want, for
example, to: (1) avoid mono-operation bias by selecting participants with
different working experiences, (2) organize individual face-to-face meetings,
based on a presentation illustrating the key concepts leading our study, to get

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 23	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

the participant familiar, and (3) guarantee the anonymity and confidentiality in
the results processing to avoid the evaluation apprehension.

Internal Validity. In order to assure the internal validity – referring to how well our
work is done, we plan several rounds of review and iteration with university and
industry experts. In order to avoid potential source of bias, we will, for example: (i)
carefully balance our participations pool in according to their prevailing working
experience and company features, and (ii) use a random-sample of the population in
order to deal with the well know selection bias problem [29]. Furthermore, we also
intend to address the ambiguously and poorly-worded questions issue [30], for
example, by: (1) reviewing the questionnaire with industry experts, and (ii)
performing individual face-to-face meetings with the participants during their work.

External Validity. This validity threat is related to the generalization of the results
outside the scope of our work. We intend to take into account the project ICEBERG’s
sectors (e.g., banking, telecommunication and automotive), and provide results that
are applicable in these domains. However, we also aim at generalize our conclusions
by defining generic measures that could be adopted (without much effort) in different
application domains.

Conclusion Validity. This last validity threat is related to the relation between the
treatment and actual outcome we observe (i.e., why/how can we sure to draw correct
conclusions?). In order to address this type of validity, we plan, for example, to: (1)
adopt a solid protocol for data collection and analysis, (2) plan several rounds of
review and iteration with university and industry experts, (3) assure a reliable
treatment implementation by using the same treatment/procedure with all participants,
and (4) assure the right heterogeneity of the respondents.

7.4 RESULTS OF THE SURVEY (STEP 2)

We have discussed with few industry representatives our questionnaire. We have
carried out the interview-survey among 9 experts. The participants were selected
based on their affiliation and expertise.

Table 6 summarizes the results related to the level of details in which the respondents
typically collect the data. The tables show the number of the answers (YES or NO).
As shown in the tables, we have asked the respondents to outline (shortly discuss) the
software phases in which the data are collected. By looking at the results in Table 6
and the respondents' comments, we have realized that they usually collect data for all
the indicators (e.g., cost, time, quality, size) all along the software lifecycle. However,
they did not specify particular phases, or better distinguish between development time
and maintenance time.

Data Collection Level Dimension

Cost Schedule Quality Size

Project level (i.e. data referred only to
the whole project)

3 0 6 7

Task/phase level (segmented data). 4 3 1 1

Software maintenance activities 2 6 2 1

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 24	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

TOTAL 9 9 9 9

Table 6: Collection Data Level

Tables 7, 8, 9 & 10 summarize the results related to the metrics (or the data collection
unit) collected for each factor respectively, i.e. Cost (Table 7), Schedule (Table 8),
Quality (Table 9) and Size (Table 10). Table 11 summarizes how/if usually the
respondents evaluate the monetary value. By looking at the results in Tables and the
respondents' comments, we have realized that they usually deal with few software
metrics, or defect (cost) data. Therefore, we have figured out that we need to work in
this direction. We should better investigate, for example, (i) how code-level
measurements and defect data are collected in the industry, and (ii) which is the effort
required for collecting additional data (e.g., additional software metrics or particular
cost factors, like the one for test cases generations or execution	

Data Collection Unit Schedule

week 1

days 5

hours 2

N/A 1

TOTAL 9

Table 7: Data Collection Unit for Schedule dimension

	

Data Collection Unit Quality

incidents 1

defects 2

incidents AND defects 4

N/A 2

TOTAL 9

Table 8: Data Collection Unit for Quality dimension

	

Data Collection Unit Size

multiple measures 2

Megabytes 1

FP 3

LOC and FP 2

N/A 1

TOTAL 9

Table 9: Data Collection Unit for Size dimension

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 25	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Data Collection Unit Cost

Person-hour 6

Person-days 3

TOTAL 9

Table 10: Effort Data Collection Unit for Cost dimension

	

Value Money
Calculated

Cost

calculated costs for
each employee

1

fixed rate per each
effort unit

6

N/A 2

TOTAL 9

Table 11: Value Money Calculated per Cost dimension

	

Table 12 summarizes the results related to the systems used to collect data for each
factor (i.e., cost, schedule, quality, size). Table 13 lists tools that are usually used by
the respondents. By looking at the results in Tables and the respondents' comments,
we have realized that commercial tools (typically open-source) are often used for data
collections. In particular, we have realized that they use tools for source code metrics
evaluation (e.g., Sonar), and bug tracking (e.g., JIRA). We should better investigate,
for example, (i) which is the effort required for using in industry a tool for software
metrics evaluation, and (ii) which additional data could be collected with the used
tools.

System used to collect data Dimension

Cost Schedule Quality Size

Specific solution from general commercial
tool (project management tools, etc.) 5 4 3 1

Specific solution from general tools
(database, programmed solution, etc.) 2 3 2 3

Ad-hoc solutions (Excel, timesheet, etc.) 1 0 2 4

Specific commercial solution 1 1 2 1

Table 12: System used to collect data

	

 Dimension

Cost Schedule Quality Size

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 26	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Tools MS Project
Server, JIRA,

SAP PPM,
OnePoint
(planning,
allocation)

custom ERP
(corporate DB)

MS Excel
(Analysis),

SAP

MS Project
Server, JIRA

SAP PPM,

OnePoint
(planning,
allocation)

Cusom ERP
(corporate DB)

MS Excel
(Analysis),
Microsoft

Project Manager

JIRA,
iTestman

(custom/adhoc
tool) Trac

(open source)
Redmine (open

source)
Customer tool,
IBM Rational

Excel, JIRA,
SonarQube,

Word
documents

Table 13: Tools used to collect data

Table 14 summarizes QA techniques/approaches, which the respondents typically
consider in their projects. Table 15 lists factors, which affect the QA decisions. Tables
just show the number of answers (YES or NO) per QA technique/approach (or
factor). By looking at the results in Tables and the respondents' comments, we have
realized that the testing is a typical activity in the industry. Moreover, tools and
techniques for automating testing activities are also usually used. For example,
Selenium test suite2 for testing automation is adopted, or the TestLink3 web tool is
used. Therefore, we have realized that we should better investigate, for example, (i)
which are the main features of these tools adopted for the testing, (ii) how these tools
could be integrated with other tools (e.g., the ones for source code metrics
evaluations), and (iii) which is the effort required for adopting a new testing tools in
the industry.

QA activity/techniques Total (N=9)

Testing 9

Testing automation 6

Static code analysis 9

Software metrics tools 7

Software inspections 8

Software configuration management 7

Table 14: QA activities/techniques typically considered by the industrial experts

Factors Total (N=9)

																																																								
2 http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp
3 http://sourceforge.net/projects/testlink/

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 27	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Human factors 5

Organizational Factors 5

QA processes and techniques 8

Development processes and
techniques 7

Technology selection 7

Environment and support 4

 Table 15: Factors involved in QA decisions

	

	

	

	

	

	

	

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 28	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

8 EXISTING CATEGORIES OF APPLICABLE DECISION
MODELS

Once analyzed the result of the pilot survey on basic indicators for decisions in
software projects, we intend to review the state of the art in order to analyze which
existing approaches for quality decision-making are adequate to the state of practice
in organizations and then which indicators and metrics are required or can be used,
analyzing at the same time the availability of collection of such a list of data within
the regular practice of the organizations As a consequence, in this section, our goal is
twofold: (i) presenting a holistic overview of feasible quality decision-making
approaches that have been reported in literature, and (ii) categorization of
indicators/metrics related to such quality decision-making models.

8.1 QUALITY DECISION-MAKING APPROACHES

Several research efforts have been devoted to the definition of quality decision-
making approaches in each phase of the software lifecycle. Different techniques have
been introduced in order to, for example: (1) analyze the impact of architectural
decisions on system quality (e.g., the Architecture Tradeoff Analysis Method [31]),
(2) estimates costs, (short-term and long-term) benefits and uncertainty of
architectural design decision (e.g., the CBAM method [32]), (3) derive test plans from
requirements [33], or use architectural artefacts (like software architecture
specification models, architectural design decisions, architectural documentation) in
testing the implementation of a system (e.g., test cases, test plans, coverage measures)
and executing code-level test cases to check the implementation [34], and (4) select
testing techniques according to the features of the software to test [35].

Optimization techniques have largely been used to automate, for example: (i) the
testing process (e.g., the one of the mutation testing [36]); (ii) the search for an
optimal architecture design with respect to a (set of) quality attribute(s) (see, survey
[37]); or (iii) the adaptation of a software architecture (both its structure and
behaviour) with non-functional attributes tradeoff (e.g., [38]). Existing approaches are
basically based on simple optimization models (e.g., in [38] the adaptation cost is
minimized) or multi-objective optimization models (for example, for test case
generations [39] or cross-project defect prediction [40]) maximizing a set of
objectives (e.g., maximizing data flow coverage and minimizing the size of the test
set [41], or minimizing adaptation costs and system probability of failure [42]).

However, decisions are not only made at the application level, but also at the project
management level (i.e., schedule/time-related decisions are made). Research efforts
have been spent for software development estimation, by using, for example a
statistical model for managing selection bias effects [43], or the soft system
methodology to establish a benchmark for managing cost overruns in software
projects [44]. Other papers have focused on project staffing and scheduling using
different approaches such a Mixed-Integer Linear Program (MILP) [45], a hybrid
MILP/constraint programming benders decomposition algorithm [46], and a MIP-
based approach [47].

Emerging computing application paradigms require systems that are not only reliable,
compact and fast, but which also optimize many different competing and conflicting

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 29	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

objectives, like response time, throughput and consumption of resources [48]. Any
combination of quality decisions may have a considerable impact on cost,
time/schedule decisions. Therefore, a major issue in this direction is that decisions at a
single system level (i.e., the application or the project management level) cannot be
analyzed separately, because they (sometimes adversely) affect each other. These
evaluations can suffer of large elapsed time when the search space size increases. In
such cases, the complete enumeration of possible alternatives results inefficient. The
adoption of these SBSE search methodologies (e.g., genetic algorithms, evolutionary
algorithms and other metaheuristics) has already been proposed as a viable solution
both for the application level and for the project management level.

For example, for quality decisions, they have been used in order to support: (i) the
generation of software test cases [49], [50], and develop testing tools such as
AUSTIN for unit testing C programs [51], (ii) the large-scale QoS-aware service
compositions [52], [53], and automate the search for an optimal architecture design
based on functional and non-functional requirements tradeoffs [42], and (iii) the
distributed system’s allocation of software components to hardware nodes (i.e.,
deployment architecture) while guaranteeing a specific level of QoS properties [54].

8.2 SCHEDULE/TIME DECISION-MAKING APPROACHES

SBSE techniques have also been largely applied in problems in software project
management (see, e.g., [55]). A quite extensive list of these approaches can be found
in [56].

As mentioned in [56], research efforts have been devoted for project scheduling and
resource allocation. However, all these approaches basically provide guidelines to
plan projects. Their primary input is represented by information about (i) work
packages (e.g., cost, duration, dependencies), and (ii) staff skills. Shortly, as described
in [56], they process these input information and produce the results, which consist of
an optimal work package ordering and staff allocation. They are guided by a single or
multi-objectives fitness function which it is typically minimized, for example: the
completion time of the project, or the risks to associate to the development process
(e.g., delays in the project completion time, or reduced budgets available).

As outlined in [56], SBSE methodologies have been also applied to build effort
estimation models or to enhance the use of other estimation techniques (e.g., genetic
programming has been used in [57] to validate the component-based method for
software sizing, and a tabu search approach has been adopted in [58] to estimate
software development effort). An overview of existing approaches is provided in [56],
and their advantages/limitations and open challenges are also outlined. These
approaches could be exploited, for example, (i) to support the choice of a reliable
measure to compare different estimation models; or (ii) to investigate prediction
uncertainty and risk of inaccurate prediction by means of using sensitivity analysis or
multi-objective optimization (they only have been used to obtain exact prediction, i.e.,
one point estimate for a project).

Some search-based SE papers for project managements are focused on the problem of
process risk (e.g., [59]) and the product risks (e.g., [60]). “Risks to the product
concern the possibility that there may be flaws in the product that make it less
attractive to customers, while process risks concern the problems that may cause

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 30	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

delays in the project completion time, or reduced budgets available forcing
compromise.”[56].Finally, the overtime planning is also considered in [61]. Specially,
this work introduces a multi-objective decision support approach to help balance
project risks and duration against overtime.

Even though interest in the exploration of the SBSEs potential as a means for quality
decision making and software project management has also grown rapidly, there are
still big research challenges to be addressed.

8.3 SCHEDULE/TIME AND QUALITY DECISION-MAKING APPROACHES

Coordination aspects between the application level and the project management level
have already been exploited. We can remark the following points.

(i) “Build-or-buy” decisions in a software architecture, system delivery time
constraints, and testing have been considered together. In [62], a
framework for supporting “build-or-buy” decisions in a software
architecture has been introduced. Specifically, this work presents a non-
linear cost/quality optimization model based on decision variables
indicating the set of architectural components to buy and to build in order
to minimize the software cost under reliability and delivery time
constraints. The model can be ideally embedded into a Cost Benefit
Analysis Method to provide decision support to software architects. Such
formulation involves further variables representing the amount of unit
testing to be performed on each in-house developed component.

(ii) Reliability and costs together have been considered in different contexts,
for example to provide guidelines in (1) evaluating the effort spent to test
the software, deal with the resource allocation during the test process or
quantify the costs of service failure repair/mitigation actions (see, e.g.,
[63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75] some
of which are detailed below), or (2) comparing the costs of defect-
detection techniques [76].

In [67] it is formulated a reliability constrained cost minimization problem,
where the decision variables represent the component failure intensities.
Specifically, in order to represent the dependency of the component cost
on the component failure intensity (i.e., the cost to reach a specific failure
intensity) three different types of cost functions (i.e. linear, logarithmic
exponential, inverse power) are exploited. This model works after the
components have been chosen; as its solution provides insights about the
failure intensities that the (selected) components have to attain to minimize
the system cost.

Resource allocation during the test process in modular software systems
is dealt, for example, in [74]. Specifically, this work presents a
framework for performing resource allocation (budget and time) during
the test process of a software system. The framework exploits a model
developed with the goal of finding the maximum reliability of the

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 31	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

software system while satisfying a budget limit on the total test cost and
minimum reliability of components. The paper assumes that a software
system has already been specified, designed and coded.

The work in [75] presents an approach for service selection taking into
account costs and reliability requirements. In particular, it defines a set of
optimization models that allow quantifying the costs of service failure
repair/mitigation actions aimed at keeping the whole system reliability
over a given threshold.

(iii) Models for achieving product and process improvement have been
introduced. The goal of these models is to ensure a capable process, i.e., a
process that produces a significantly reduced number of exploitable
defects (see, the work in [77] that provides advice for those making a
business case for building software assurance into software products
during software development). Examples of process improvement models
include the Software Engineering Institute’s Capability Maturity Model
Integration (CMMI) framework, along with the retired Capability Maturity
Model for Software (Software CMM). These models address process
capability by assessing the presence, or absence, of proxies (i.e., essential
practices that are generally considered to ensure against defects).

Research efforts have also been spent in order to deal with the automated
selection and configuration of methods and tools. The work in [78]
analyzes challenges of managing engineering tool variability in context of
engineering project environment configurations. For example, best-
practice method support (e.g., the QATAM technique for the evaluation of
QA strategies and their tradeoffs in the context of a software process) is
discussed. The work also presents a conceptual approach using semantic
modeling of project requirements and tool capabilities.

(iv) How human and organizational factors influence software quality
practices and productivity has been investigated. The work in [79]
conducts a survey to understand which is the situation of real testing
practice and which factors mainly related to professionals (attitude,
training or similar items) are having a real influence in software quality in
terms of the perception of participants.	

8.4 SOFTWARE QUALITY EVALUATION

As remarked in Deliverable 2.1, several important product/process quality standards
(such as ISO/IEC 15504, ISO/IEC 29119, and ISO 9126) have been introduced. By
looking at the results of our questionnaire review, we have realized that these quality
methodologies would require much effort and skill to be applied in the industry. In the
contrast, we have figured out that practitioners usually deal with software metrics and
defect data. Attributes of software quality, such as defect density, should be easy
collected and evaluated. Therefore, we have realized that we should focus on utilizing

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 32	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

software metrics, such as code-level measurements and defect data. We will
investigate how defect prediction methods are able to predict the poor-quality of
industrial projects, and how their adoption can be facilitated and automated.

8.4.1 Metrics as Quality Indicators

Several research efforts have been devoted to the definition of defect prediction
methods able to predict the poor-quality of program modules (e.g., [80]). These
approaches utilize software metrics and defect data collected during the software
development process. Their efficacy is, therefore, influenced by the relevance
between software metrics and fault data. The modules predicted to be fault-prone will
receive more inspection and testing, thereby improving their quality.

The accuracy and the granularity are two important qualities of software fault
prediction algorithms [81]. The accuracy represents the degree to which the algorithm
correctly identifies future faults. On the contrary, the granularity specifies the locality
of the prediction. As remarked in [81], typical fault prediction granularities are: (i) the
executable binary [82]; (ii) a module (often a directory of source code) [83]; (iii) or a
source code file [84]. A directory level of granularity, for example, means that
predictions indicate a fault will occur somewhere within a directory of source code.
As stated in [81], the most difficult granularity for prediction is the entity level (or
below), where an “entity” is a function or method. In [81], for example, Kim at al.
developed an algorithm that, in their experimental assessment on seven open source
projects, is 73%-95% accurate at predicting future faults at the file level and 46%-
72% accurate at the entity level with optimal options. In Section 8.4.2, we better
discuss the Kim at al. approach.

The literature contains a wealth of software metrics proposed for software fault
prediction. In fact, software metrics may be used in prediction models to improve
software quality by predicting fault location [85]. The work in [85] presents the
results of a systematic literature review in software fault prediction. Specifically, it
gives an overview of the current state-of-the-art software metrics in software fault
prediction. They categorized existing studies according to the metrics used in the
following manner:

• Traditional: size (e.g. LOC) and complexity metrics (e.g.McCabe [86]).

• Object-oriented: coupling, cohesion and inheritance source code metrics used
at a class-level (e.g. Chidamber and Kemerer [87]).

• Process: process, code delta, code churn, history and developer metrics. These
metrics are usually extracted from the combination of source code and
repository, and they require more than one version of a software item.

The paper [85] provides a deep analysis of which metrics are, and which are not,
significant fault predictors. Moreover, the authors assessed the data sets used in the
studies, the software development life cycle phases in which the data sets are
gathered, and the context in which the metrics were evaluated. However, the results of
this systematic review can be summarized using the following authors’ statements.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 33	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

o Object-oriented metrics (49%) were used nearly twice as often compared to
traditional source code metrics (27%) or process metrics (24%).

o Chidamber and Kemerers (CK) object-oriented metrics were most
frequently used. According to the selected studies, there are significant
differences between the metrics used in fault prediction performance.

o Object-oriented and process metrics have been reported to be more
successful in finding faults compared to traditional size and complexity
metrics. Process metrics seem to be better at predicting post-release faults
compared to any static code metrics.

Different prediction approaches have been introduced by relying on diverse
information (e.g., on source code metrics, process metrics or previous defects). The
efficacy of defect prediction models is influenced by relevance between software
metrics and fault data [88]. A typical problem often encountered by software
practitioners is the presence of excessive metrics in a training data set. Research effort
has been devoted in this direction, namely approaches for supporting the choice of the
most important metrics (features) prior to the model training process have been
introduced (see, for example, [88], [89], or the goal-question-metric method [90][91]
described here below).

The Goal-Question-Metric Method. The Goal-Question-Metric (GQM) method [90]
[91] proposes a measurement method for assessing or improving the quality of
entities like products, processes or people (see Figure 3 for an example). It starts with
a set of business goals and the goals are progressively refined through questions until
we obtain some metrics for measurement. The measured values are then interpreted in
order to answer the goals. Existing approaches choose a quality model from those that
exist so as to generate the business (or the primary) goals of the GQM formulation for
any individual product or process.

G1: Improve source
code qualityObjetives

(Conceptual level)
Related to product, processes or

resources

Questions
(Operational level)

To characterise the entity and to
be achieve the objective

Metrics
(Quantitative level)

Metrics related to the queries

Q1: How to reduce the
number of defects in

production?

Q2: How accurate are our
estimations?

M1: No. of defects
per activity (Analysis,
design, coding, etc.)

Q3: How to improve
testing efficiency?

M2: No. of estimated
defects

M4: Effort in
testing,
inspections,
etc.

M5: Client
satisfaction

Q4:...

M6:...

M3: No. of actual
defects

D
ef

in
iti

on

A
na

ly
si

s
an

d
in

te
rp

re
ta

tio
n

G2: Evaluate testing
process ...

Figure 3. Levels of the Goal-Question-Metric Method and an example

A quite extensive list of defect prediction approaches can be found in [92] [93].
However, all these approaches basically provide guidelines to predict defects in
source code by exploiting the usefulness of elementary metrics or previous defects.
They have the following common steps that can be iterative and overlapping.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 34	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

• Step 1. The metrics evaluation is accomplished. Depending on the adopted
type of metrics (e.g., object-oriented metrics or “traditional” product metrics,
like number of lines of code, McCabe complexity), different computing
approaches are used.

• Step 2. The relationships between the values of the metrics and the numbers of
bugs found in the system (e.g., in the classes) are discovered. Well-known
statistical methods (e.g., logistic and linear regression) have been largely
adopted to validate the usefulness of the metrics to identify defective classes.
Basili et al. in [94], for example, validate object-oriented design metrics as
quality indicators by using logistic regression technique [95]. In the contrast,
Gyimóthy at al. in [96], besides using regression methods (logistic and linear
regression), also employed machine learning techniques to validate the
usefulness of object-oriented metrics for fault-proneness prediction on open
source software.

In order to validate the metrics’ usefulness for fault-proneness, the output of the
previous step is analyzed. Specifically, the values obtained are checked against the
number of bugs found in the system (e.g., in [96] the values of the object-oriented
metrics of the open source Web and e-mail suite called Mozilla are checked against
the number of bugs found in its bug database called Bugzilla4).

8.4.2 Metrics Evaluation

Several research effort has been devoted to the definition of methods and tools able to
evaluate software metrics. In the following we discuss: (i) the main kinds of software
metrics, and (ii) significant defect prediction approaches. We also discuss existing
tools both for the acquisition and presentation of the values of metrics. These tools
bring important advantages [98], such as the reduction of metric calculation errors,
thus achieving greater accuracy in their values.

A metrics should clarify what attributes of the software that are going to be measured
and how we go about measuring those attributes [99][100][101]. So, they should be
meaningful and related to the product. Metrics can be evaluated theoretically or
empirically. On the one hand, [100] describe a list theoretical features that metrics
(direct and indirect) must hold to be valid.

For direct metrics, which are the ones that involves no other attribute or entity
(length, duration of testing process, number of defects…), those properties are:

1. For an attribute to be measurable, it must allow different entities to be
distinguished from one another.

2. A valid metric must obey the representation condition.
3. Each unit contributing to a valid metric is equivalent.
4. Different entities can have the same attribute value.

																																																								
4 http://www.bugzilla.org/

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 35	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

For indirect metrics, when direct metrics are combined (ex., programmer productivity
= LOC/persons month of effort, etc):

1. The metric should be based on an explicitly defined model of the
relationship between certain attributes.

2. The model must be dimensionally consistent.
3. The metric must not exhibit any unexpected discontinuities.
4. The metric must use units and scale types correctly.

The representation condition, as described by [102], asserts that a measurement
mapping M must map entities into numbers and empirical relations into numerical
relations in such a way that the empirical relations preserve and are preserved by the
numerical relations.

On the other hand, empirical methods provide corroborating evidence of their
validity. Using statistical and experimental techniques assess the usefulness and
relevance of the metrics [99] [103].

Source code metrics. Many approaches in the literature use this kind of metrics (see,
for example, [94] and [96]). As remarked in [85], most of the works exploited the
suite for object oriented design (also named CK metrics) introduced in [87]. As
shown in Table 16, the CK metrics suite involves 6 metrics calculated for each class.
These metrics have been calculated and validated in several different ways, some of
which are detailed below.

Metric

WMC Weighted Method Count

DIT Depth of Inheritance Tree

RFC Response For Class

NOC Number Of Children

CBO Coupling Between Objects

LCOM Lack of Cohesion in Methods

Table 16: CK metric suite [87]

In [94], Basili et al. have used eight projects developed by using a sequential life
cycle model, a well-known OO analysis/design method. The projects were written by
students in C/C++. Basili et al. have slightly adjusted some of CK metrics in order to
reflect the specificities of C++. Based on empirical and quantitative analysis, they
have argued that several of CK metrics appear to be useful to predict class fault-
proneness during the early phases of the life-cycle. Moreover, they have also figured
out that, on their data set, CK metrics are better predictors than “traditional” code
metrics, which can only be collected at a later phase of the software development
processes. GEN++ [104] was used to extract CK metrics directly from the source
code of the projects delivered at the end of the implementation phase.

These CK metrics, slightly modified to reflect the specificities of C++, have also been
used by the work in [96]. In addition, this work considered the LCOMN metric (i.e.,
the Lack of Cohesion on Methods allowing Negative value), and used the well-known

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 36	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

lines of code metric (LOC). The goal of this paper was to calculate and validate these
metrics for fault-proneness detection of the source code of Mozilla. In particular, the
source code of Mozilla has been analyzed by using the Columbus framework [105].
Shortly, Columbus is a reverse engineering framework developed in cooperation
between the University of Szeged, the Nokia Research Center and FrontEndART
[106]. Columbus has been developed to define several fundamental building blocks
for the use in reverse engineering processes, and as such it can be an important player
in the studies conducted at the workshop for Empirical Studies in Reverse
Engineering. Columbus provides support for the extraction in general, and a common
interface for other reverse engineering tasks as well. The framework makes available
all the necessary components (i) to perform the analysis of arbitrary C/C++ source
code and, (ii) to present the extracted information in any desired form.

The authors in [107] also compared the CK metrics with additional object-oriented
metrics, and LOC metric. Five open source systems were used to validate the findings
(Eclipse JDT Core, Eclipse PDE UI, Equinox framework, Mylyn, and Apache
Lucene). Table 17 lists all source code metrics used.

Type Metric Name Definition

CK WMC Weighted Method Count

CK DIT Depth of Inheritance Tree

CK RFC Response For Class

CK NOC Number Of Children

CK CBO Coupling Between Objects

CK LCOM Lack of Cohesion in Methods

OO FanIn Number of other classes that reference the class

OO FanOut Number of other classes referenced by the class

OO NOA Number of attributes

OO NOPA Number of public attributes

OO NOPRA Number of private attributes

OO NOAI Number of attributes inherited

OO LOC Number of lines of code

OO NOM Number of methods

OO NOPM Number of public methods

OO NOPRM Number of private methods

OO NOMI Number of methods inherited

 Table 17: Class level source code metrics used in [107]

To evaluate the metrics, the authors used the Moose suite.5 Shortly, Moose provides a
platform for software and data analysis. In particular, it offers multiple services
																																																								
5 Moose is available at http://www.moosetechnology.org

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 37	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

ranging from importing and parsing data, to modelling, to measuring, querying,
mining, and to building interactive and visual analysis tools. The authors in [107]
used the Moose tools to read FAMIX models and to compute a number of source code
metrics. In fact, they derived an object-oriented model of the system source code
according to FAMIX, a language independent meta-model of object oriented code
[109].

The work in [108] defined what is called the MOOD suite of Object Oriented metrics.

Type Metric Name Definition

OO MHF Method Hiding Factor

OO AHF Attribute Hiding Factor

OO MIF Method Inheritance Factor

OO AIF Attribute Inheritance Factor

OO POF Polymorphism Factor

OO COF Coupling Factor

	

Table 18: MOOD suite of Object Oriented metrics defined [108]

The Specialisation Index per Class (SIX) metric [97] measures the extent to which
subclasses override (replace) behaviour of their superclasses.

methods ofnumber Total

level nestinghierarchy Class methodsoverriden ofNumber

⋅
=tion indexSpecializa

This formulation weights more heavily overrides that occur farther down the
inheritance tree since these classes should be more specialised and less likely to
replace base behaviour.

Other open source tools for measuring the Internal Quality of Java software products
The work in [98] presents the results of a study of the state-of-the-art open source
software tools that automate the collection of metrics, particularly for developments
in Java. Specifically, the study is focused on Internal Quality metrics of a software
product and software tools of static code analysis that automate measuring these
metrics. The static analysis of the code is defined as a set of analysis techniques
where the software studied is not executed (in contrast to the dynamic analysis), but
analyzed. Therefore, this type of analysis will allow obtaining Internal Quality
metrics, as it does not require a software in use to be measured. To perform this
comparative analysis of tools, the authors in [98] conducted a systematic literature
review.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 38	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Table 18 shows the information extraction template for cataloging and comparing
tools, which the authors used.

Attributes Dominion

Internal Quality models supported {ISO 9126, ISO 25010, SQUALE, SIG}

Metrics implemented {Complexity, CK, code size, comment size,
coding convention violations, code smells,

duplicated code, dependencies}

Functional features covered {Data acquisition, analysis of measures, data
presentation}

Year of first version Year

Year of last version Year

 Table 18: Characterization scheme for the description of tools used in [98]	

Table 19 summarizes the metrics implemented by tools. As shown in table, code
smells metrics are the most covered by the tools (7 tools), closely followed by
complexity and code size metrics (6 tools). Moreover, the authors figured out that
most tools only implement a small set of metrics (since they are highly specialized),
except for Sonar and Squale tools that cover all categories and become the most
complete tools in relation to this feature. The authors pointed out that most of tools
automate the calculation of Internal Quality metrics (data acquisition), being code
smells, complexity and code size the most common ones. They asserted that the
Sonar and Squale tools are capable of gathering data for all categories of metrics,
while the other tools are more specialized in a limited set of metrics.	

As shown in table, the authors mainly analyzed: (i) which are the Internal Quality
models implemented by the tools, i.e. the possible relationship between metrics and
quality models is investigated, (ii) the metrics implemented, and (iii) the functional
features covered. This latter attribute involves the three main tasks that metric tools
must perform (i.e. Data acquisition, Analysis of the measures, Data presentation).

- The Data acquisition is related to the set of methods and techniques for obtaining
necessary data for measurement.

- The Analysis of the measures is related to the ability to store, retrieve, manipulate
and perform data analysis.

- The Data presentation is aimed to provide formats to generate the obtained
documentation. Examples of possible representation are tables and graphs or
exporting files to other applications.

Table 19 summarizes the metrics implemented by tools. As shown in table, code
smells metrics are the most covered by the tools (7 tools), closely followed by
complexity and code size metrics (6 tools). Moreover, the authors figured out that
most tools only implement a small set of metrics (since they are highly specialized),
except for Sonar and Squale tools that cover all categories and become the most
complete tools in relation to this feature. The authors pointed out that most of tools

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 39	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

automate the calculation of Internal Quality metrics (data acquisition), being code
smells, complexity and code size the most common ones. They asserted that the Sonar
and Squale tools are capable of gathering data for all categories of metrics, while the
other tools are more specialized in a limited set of metrics.

 Complexity CK Code
size

Comment
size

Coding
convention
violations

Code
smells

Duplicated
code

Dependencies Total

Jdepend x 1

JCSC x x x x 4

QALab 0

CKJM x 1

Panopticode x x x x 4

Same x 1

FindBugs x 1

JavaNCSS x x x 3

PMD/CPD x x 2

Xradar x x x x 4

Checkstyle x x 2

Sonar x x x x x x x x 8

Classycle x 1

Jlint x 1

Sonar

Plugins

 0

Squale x x x x x x x x 8

TOTAL 6 4 6 5 4 7 4 5

	

Table 19: Metrics implemented by tools [98]

Shortly, Sonar6 is an open platform to manage code quality. Sonar is mainly
composed by a maven plugin that performs static analysis and a web application that
stores metrics in a database and presents them. In particular, Sonar is able to gather
metrics in all categories: (i) code size (e.g., Lines of Code, Classes); (ii) comment size
(e.g., Density of comment lines); (iii) duplicated code (Density of duplicated lines and
some others related), (iv) complexity (e.g., Average complexity by method, Average
complexity by class, Average complexity by file), (v) coding convention violations
and code smells (e.g., Violations), dependencies (e.g., Package tangle index, Package
cycles, Package dependencies to cut, File dependencies to cut); and (vi) CK metrics
(LCOM and RFC). Note that Sonar is one of the tools used by our questionnaire
respondents (see Section 6.4).

																																																								
6 http://www.sonarqube.org/

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 40	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Squale (Software QUALity Enhancement)7 is a qualimetry platform that allows to
analyze multi-language software applications. Squale is mainly composed by a web
application that presents metrics (SqualeWeb), and a batch process (developed in
Java) that performs the analysis of source code. Squale is able to gather metrics in all
categories: (i) complexity (CCN and summation of CCN per class); (ii) CK metrics
(DIT, LCOM, Ca, RFC, Ce); (iii) code size (NCSS, NOM and number of classes);
(iii) comment size (number of comment lines); (iv) coding convention violations and
code smells; (v) duplicated code (number of duplicated lines); (vi) and dependencies
(number of dependency cycles and Distance from the main sequence (D)).

Table 20 lists the functional features of the tools. In particular, the authors have
figured out that there are three complete tools (i.e., Xradar, Sonar and Squale), which
perform the data acquisition, analysis and presentation. They also realized that these
three tools are relatively new and are based on more mature tools for metric
acquisition.

 Data acquisition Analysis of measures Data presentation Total

Jdepend x 1

JCSC x 1

QALab X 1

CKJM x 1

Panopticode x x 2

Same x 1

FindBugs x 1

JavaNCSS x 1

PMD/CPD x 1

Xradar x x x 3

Checkstyle x 1

Sonar x x x 3

Classycle x 1

Jlint x 1

Sonar

Plugins

 x x 2

Squale x x x 3

TOTAL 14 4 6

	

Table 20: Functional features covered by tools [66]

Shortly, Xradar8 is an open extensible code report tool currently supporting all Java
based systems. Xradar is capable of measuring complexity metrics (CCN), CK
(WMC, DIT, CBO, RFC, LCOM, Ce, Ca), code size (NCSS, NOM, number of
classes), comment size (number of javadocs, number of single-line comments,
																																																								
7 http://www.squale.org/
8 http://xradar.sourceforge.net/

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 41	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

number of block comments), coding convention violations, code smells, duplicated
code (duplicated lines, duplicated blocks, duplicated tokens) and dependencies
(number of cycles, I, D).

More details on Sonar, Square, and Xradar tools (and other tools) can be found in
[98].

Change Metrics Research effort has been devoted for analyzing the predictive power
of process related software metrics. One of the most known work that presents a
comparative analysis of the efficiency of change metrics and static code metrics for
defect prediction is the approach of Moser et al. [110]

In particular, Moser et al. used a public data set created by Zimmermann et al. [111].
The data set includes a large number of static code metrics (198 attributes) and pre-
and post-release defects for the Eclipse releases 2.0, 2.1, and 3.0. It is available for
download in the PROMISE repository.9 In fact, Zimmermann et al. mapped defects
from the bug database of Eclipse (one of the largest open-source projects) to source
code locations (files) by using some heuristics based on pattern matching. Moser et
al. also extracted 18 change metrics from the Eclipse CVS repository10 and annotated
the original data set with them. They analyzed the relationship of change and code
metrics with post-release defects only at a file level. In particular, they investigated
whether or not a file is defect-free.

Table 21 summaries the augmented data set and the class distribution, i.e., the number
of defective and defect free files.

	

Release #Files Metrics Defect

Free

Defective

2.0 3851 (57%) 31code

metrics and

18 change

metrics

2665 1186

2.1 5341 (68%) 4087 1254

3 5347 (81%) 3622 1725

 Table 21. Summary of the Eclipse data used in the study [110].

As shown in Table 21, they considered only a subset of 31 metrics which were used
by Zimmermann et al. for defect prediction at a file level. Zimmermann et al.
obtained promising results for predicting the presence of defects in packages, but only
fair results for classifying single files as defect free respective defective [110]. Moser
et al compared the model used by Zimmermann et al. with the one based on change
data and a combination of the two. Table 22 shows the change metrics used in the
Moser et al. approach. They derived this set of metrics by exploiting related works
(e.g., [112], [82] and [84]).

																																																								
9 http://promisedata.org/repository

10			A	versioning		system	(CVS)	enables	the	handling	of	different	versions	of	files	in	cooperating	teams.	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 42	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Metric Name Definition
REVISIONS Number of revisions of a file

REFACTORINGS Number of times a file has been refactored

BUGFIXES Number of times a file was involved in bug-fixing

AUTHORS Number of distinct authors that checked a file into the
repository

LOC_ADDED Sum over all revisions of the lines of code added to a
file

MAX_LOC_ADDED Maximum number of lines of code added for all
revisions

AVE_ LOC_ADDED Average lines of code added per revision

LOC_DELETED Sum over all revisions of the lines of code deleted
from a file

MAX_LOC_DELETED Maximum number of lines of code deleted for all
revisions

AVE_LOC_DELETED Average lines of code deleted per revision

CODECHURN Sum of (added lines of code – deleted lines of code)
over all revisions

MAX_CODECHURN Maximum CODECHURN for all revisions

AVE_CODECHURN Average CODECHURN per revision

MAX_CHANGESET Maximum number of files committed together to the
repository

AVE_CHANGESET Average number of files committed together to the
repository

AGE Age of a file in weeks (counting backwards from a
specific release)

WEIGHTED_AGE See equation (1)

 Table 22. List of Change metrics used in the study [110].

In particular, Moser et al. introduced a new change metric, namely the number of
times a file has been refactored. Moreover, they defined the change set metrics, i.e.,
MAX/AVE_CHANGESET in Table 22, as follows: the change set of a file x is the
number of files that have been committed together with file x (within a time frame of
2 minutes) to the repository (it is similar to the notion of co-changes [113]). Finally,
they compute the AGE of a file in weeks, starting from the release date and going
back to its first appearance in the code repository. They define WEIGHTED_AGE as
follows:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑔𝑒 =
𝐴𝑔𝑒 𝑖 ×𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)!

!!!

𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)!
!!!

 (1)

where: (1) Age(i) is the number of weeks starting from the release date for revision i
and (ii) LOC_ADDED(i) is the number of lines of code added at revision i. In

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 43	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

particular, WEIGHTED_AGE takes into account that defect proneness not only
depends on the size of a file’s changes but also when such changes occurred [112].

As remarked in [110], these set of change metrics is obviously only one possible
proposal for change metrics we can extract from a CVS repository. Slightly different
metrics have been proposed such as month with most revisions, average days between
revisions, or relative measures for code added/deleted, and other [114].11

Previous Defects. Research effort has been devoted for analyzing the predictive
power of past defects. One of the most known work is the approach of Kim at al. [81].
Kim at al. analyzed the version history of 7 open source software systems to predict
the most fault prone entities and files. They assume that faults do not occur in
isolation, but rather in bursts of several related faults. Table 23 lists the different kinds
of locality, which Kim at al. believe for bug occurrences.

Bug locality Description

Changed-entity If an entity was changed recently,
it will tend to introduce faults
soon.

New-entity If an entity has been added
recently, it will tend to introduce
faults soon.

Temporal If an entity introduced a fault
recently, it will tend to introduce
other faults soon.

Spatial If an entity introduced a fault
recently, “nearby” entities (in the
sense of logical coupling) will also
tend to introduce faults soon.

	

 Table 23. Different kinds of bug locality considered in [81].

The Kim at al. prediction algorithm is executed over the change history of a software
project. In particular, the algorithm yields a small subset (usually 10%) of the projects
files or functions/methods that are most fault-prone. It is basically based on the cache
mechanism for holding the current list of the most fault-prone entities. Therefore,
locations that are likely to have faults are cached. Specifically, starting from the
location of a known (fixed) fault, the algorithm caches: (i) the location itself, (ii) any
locations changed together with the fault, (iii) recently added locations, and (iv)
recently changed locations.

In [81], the BugCache algorithm and the FixCache algorithm for maintaining a cache
based on fault localities are described and evaluated. BugCache updates the cache at
the moment a fault is missed, that is, not found in the cache. The evaluation of this
algorithm provides empirical evidence that fault localities actually exist. On the
																																																								
11 Other examples of metrics can be found in [110].

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 44	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

contrary, the FixCache algorithm shows how to turn localities into a practical fault
prediction model. Kim at al. showed that FixCache predicts further faults with high
accuracy. In particular, they have pointed out that combining a cache model with
different heuristics for fault prediction, the FixCache algorithm has an accuracy of
73%-95% using files and 46%-72% using methods/functions. Details on these
algorithms can be found in [81].

Complexity (entropy) of code changes. As remarked [115], a wealth of metrics,
which measure the complexity of the source code, have been introduced in literature.
On the contrary, Hassan in [115] has focused on the complexity of the code change
process, i.e., the pattern of source code modifications. He proposed to quantify the
complexity over time by using historical code changes instead of source code
attributes.

Source code modifications are done by developers to implement new features and
repair faults. In particular, three types of modifications are identified: (i) the Fault
Repairing modifications (FR) which are done to fix a fault; (ii) general maintenance
modifications which are mainly bookkeeping modifications; and (iii) Feature
Introduction modifications (FI) which add or enhance features. The Hassan approach
uses FIs to calculate the complexity of the code change process. In contrast, FRs are
not used in calculating the complexity of the change process, but are used for
validating the results in the paper case study.

Hassan conjectured that: “A complex code change process negatively affects its
product, the software system. The more complex changes to a file, the higher the
chance the file will contain faults.”[115]. The approach basically predicts defects
using the entropy (or complexity) of code changes. In particular, the approach
exploits the Shannon Entropy in order to measure, over a time interval, how
distributed changes are in a system. The approach has been validated empirically
through a case study on six large open source projects. The case study results
demonstrated that the number of prior faults is a better predictor of future faults in
comparison to the number of prior modifications. Moreover, the author also figured
out that predictors based on our change complexity models are better predictors of
future faults in large software systems (in contrast to using prior modifications or
prior faults).

 Churn of Source Code Metrics. D’Ambros et al. in [107] proposed to use churn of
source code metrics to predict post release defects. The rationale behind this direction
is that higher-level metrics may better model code churn than simple metrics like
addition and deletion of lines of code. They sample the history of the source code
every two weeks, and compute the deltas of source code metrics for each consecutive
pair of samples.

Entropy of Source Code Metrics. D’Ambros et al. in [107] also extended the
concept of code change entropy [115] to source code metrics (i.e., the listed in Table
17). Specifically, they measured the complexity of the variants of a metric over
subsequent sample versions. The entropy is minimum, for example, if in the system
the WMC changed by 100, and only one class is involved. In the contrast, the entropy
is higher, for example, if 10 classes are involved with a local change of 10 WMC.
More details on this approach can be found in [107].

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 45	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

9 SUMMARY OF INDICATORS FOR DECISIONS MODELS

In this section, we present the overall conclusions of our work in the context of
findings expected and novelty of our contribution. To the best of our knowledge, this
is the first attempt to combine cost, schedule/time, and software quality and project
management and application level coordination, for developing, and managing
software applications. We believe that optimizing design and management of next
generation systems can only be handled effectively by modelling and exploiting an
explicit coordination between the, usually conflicting, quality decisions and the
project management decisions (i.e., schedule/time and cost-related decisions).

We also envision that our approach will assist software designers/maintainers and
software project managers during the whole software system lifecycle. Therefore, we
believe that SBSE methodologies combined with multi-objective optimization (and
other existing decision-making methods) and software quality validation techniques,
we will address the major challenges, which now are claimed for next generation
software systems (e.g., the ones for (self-) adaptive systems) and for search-based
project management. Specifically, these are high level research goals (i.e., long term
objectives) that we intend to achieve. We will refine these high level goals into more
concrete subgoals (i.e., short term objective) until it is possible to objectively measure
their satisfaction.	

We claim that addressing the highlighted challenges will require the contributions
from academia and industrial experts in different fields including not only search-
based optimization and quality/cost/time assessments but also the experimentation of
our approach on real world case studies by considering realistic model parameter
values, as well as integration of our frameworks.

To address this latter point, we plan to analyze effort and time necessary to
incorporate our solutions into real-world systems: as intended in the plan of Iceberg
project, this is going to be addressed with some industrial scenarios provided by
industrial partners, namely Assioma.net and DEISER. This part is the result of task
2.5 of the Iceberg project and it is included in this document in Section 10.

As remarked in Section 7, we intend to conduct an interview-survey in which several
representatives of industry will be involved. This information is essential to validate
which options from SOTA (State Of The Art) could be feasible for practitioners
according to SOPA (State Of The Practice). We plan to conduct our survey in
multiple stages. We are currently working on Questionnaire Refinement (see Step 3 of
Table 5). As discussed in Section 7.4, we have already discussed with some industry
representatives our questionnaire.

Regarding these fist questionnaire’s results, we can remark the following points,
which we intend to exploit for the next steps of our interview survey (see Table 5).
Practitioners usually deal with few software metrics, or defect (cost, schedule, and
time) data (see Table 24, 25, 26, 27, 28).

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 46	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

	

 Table 24: Data Collection Unit per Schedule dimension

	

 Type Characteristic Metric Name Description

 Product Quality INCIDENT Incident Report:
Identification of the
associated incident if
the failure report was
precipitated by a
service desk or help
desk call/contact.

 Product Quality DEFECT An imperfection or
deficiency in a work
product where that
work product does
not meet its
requirements or
specifications and
needs to be either
repaired or replaced.

 Table 25: Data Collection Unit per Quality dimension

	

Type Characteristic Metric Description

Product Size MB Megabyte

Product Size FP Function Point

Product Size LOC Number of
lines of code

 Table 26: Data Collection Unit per Size dimension

	

	

	

	

Type Characteristic Metric Name Description

Process Schedule WEEK Calendar week

Process Schedule DAYS Calendar Day

Process Schedule HOURS Time in hours to
develop/maintain the

software system.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 47	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Type Characteristic Metric name Description

Resources Effort PERSON-HOUR Cost per hour to
develop/maintain the

software system.

Resources Effort PERSON-DAYS Cost per day to
develop/maintain the

software system.

Resources Cost MONEY Money value (per
hour/day/week/month)

average or
differentiated by

employee.

Table 27: Data Collection Unit per Cost dimension

	

Therefore, we will investigate the effort required for collecting additional data (e.g.,
additional software metrics or particular cost factors, like the one for test cases
generations or execution). We will better investigate how source code metrics used in
the SOTA (see Table 28) are collected in the industry, and which is the effort required
for collecting it. Since we have pointed out that practitioners already use some tools
for source code metrics evaluation (e.g., Sonar), and bug tracking (e.g., JIRA), or they
are willing to adopt them in their company, we believe that these kinds of software
metrics could be easy collected and evaluated. We will analyze which is the effort
required for using in industry the tools for software metrics evaluation (see Table 29).
As a consequence, we will investigate the “feasibility” of existing prediction
approaches based on these source code metrics. Besides using these kinds of metrics,
we will also exploit the Change Metrics (CM) potential (see Table 30). In fact, we
also believe in the practical application of these metrics.

	

Type Characteristic Metric name Definition

Product Structure WMC Weighted Method
Count

Product Structure DIT Depth of
Inheritance Tree

Product Structure RFC Response For Class

Product Structure NOC Number Of Children

Product Structure CBO Coupling Between
Objects

Product Structure LCOM Lack of Cohesion in
Methods

Product Structure FAN_IN Number of other
classes that reference

the class

Product Structure FAN_OUT Number of other

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 48	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

classes referenced by
the class

Product Structure NOA Number of
attributes

Product Structure NOPA Number of public
attributes

Product Structure NOPRA Number of private
attributes

Product Structure NOAI Number of attributes
inherited

Product Size LOC Number of lines of
code

Product Structure NOM Number of
methods

Product Structure NOPM Number of public
methods

Product Structure NOPRM Number of private
methods

Product Structure NOMI Number of methods
inherited

Product Structure AHF Attribute Hiding Factor

Product Structure MIF Method Inheritance
Factor

Product Structure AIF Attribute Inheritance
Factor

Product Structure MHF Method Hiding Factor

Product Structure POF Polymorphism Factor

Product Structure COF Coupling Factor

Product Structure SIX Specialisation Index per
Class

 Table 28: Source code metrics

	

	

	

	

	

	

	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 49	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Tools

Jdepend Xradar

JCSC Checkstyle

QALab Sonar

CKJM Classycle

CKJM
extended

Jlint

Panopticode Sonar Plugins

Same Squale

FindBugs G++

JavaNCSS Columbus

PMD/CPD Moose

																																							Table 29: Tools for software metrics evaluations

	

Table 30. List of Change metrics used in the study [110].

Type Characteristic Metric name Definition

Process Frequency REVISIONS Number of revisions of a file
Process Frequency REFACTORINGS Number of times a file has been refactored

Process Frequency BUGFIXES Number of times a file was involved in
bug-fixing

Process Size AUTHORS Number of distinct authors that checked a
file into the repository

 Process Size LOC_ADDED Sum over all revisions of the lines of code
added to a file

Process Size MAX_LOC_ADDED Maximum number of lines of code added
for all revisions

Process Size AVE_ LOC_ADDED Average lines of code added per revision

Process Size LOC_DELETED Sum over all revisions of the lines of code
deleted from a file

Process Size MAX_LOC_DELETED Maximum number of lines of code deleted
for all revisions

Process Size AVE_LOC_DELETED Average lines of code deleted per revision

Process Size CODECHURN Sum of (added lines of code – deleted lines
of code) over all revisions

Process Size MAX_CODECHURN Maximum CODECHURN for all revisions

Process Size AVE_CODECHURN Average CODECHURN per revision

Process Size MAX_CHANGESET Maximum number of files committed
together to the repository

Process Size AVE_CHANGESET Average number of files committed
together to the repository

Process Size AGE Age of a file in weeks (counting backwards
from a specific release)

Process Size WEIGHTED_AGE See equation (1)

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 50	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

	

Finally, we have realized that the testing is a typical activity in the industry, and
practitioners are willing to invest to improve it. We think that testing is also a good
“provider” of data for the cost, schedule and time indicators. Therefore, we will
investigate, for example, (i) which are the main features of these tools adopted for the
testing, (ii) how these tools could be integrated with other tools (e.g., the ones for cost
or time evaluations) in order to obtain both cost and time data (e.g., like the one for
test cases generations or execution).

 Table 31 summarizes the feasibility of data gathering.

Table 31. Feasibility Analysis of indicators for decisions models

	

	

	

	

 Type Characteristic Metric Feasibility

 Resources Effort All

High

 Product Size All High

Resources Cost MONEY High

 Product Quality Incidents and Defects High

 Product Quality Source Code Metrics
related to Structure

High

 Product Quality Source Code Metrics
related to Size

High

 Process Quality Change Metrics
related to Frequency

Good

 Process Quality Change Metrics
related to size

To be investigated

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 51	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

10 EVALUATION SCENARIOS

In this section, we describe the validation scenarios that are used in the ICEBERG
project. The scenarios are described adhering to the common methodology, criteria,
metrics, process, and models. The scenario description is composed from the quality
activities process, the scenario objectives and the test data. 	

10.1 METHODOLOGY
The software development process is a structure imposed on the development of the
software product containing information regarding the steps taken in project
implementation. In the ICEBERG project, the following process is used:

• Process of requirements management: this process is related to analysis
phase;

• Process of development: this process is related to design phase and
implementation phase;

• Process of functional test: this process is related to quality assurance phase on
verification and validation of functional requirements;

• Process of non functional test: this process is related to quality assurance
phase on verification and validation of non functional requirements
(maintainability, usability, performance, security, etc.);

• Process of change management: this process is related to deployment phase;
• Process of production management: this process is related to post production

phase.

10.1.1 ITIL Methodology

ITIL (Information Technology Infrastructure Library - http://www.itil-
officialsite.com/), is a set of practices for IT service management that focuses on
aligning IT services with the needs of business. Service desk is one of the four ITIL
functions and is associated with the service operation lifecycle stage. Main task
includes handling incident and request.

End user requests (EUR) are collected using a specific service desk management
system. Each “ticket” (row in data set) can be an incident or a service request.

A service request is a normal request related to the management of the service.

An incident is an event which is not part of the standard operation of a service and
which causes or may cause disruption to or a reduction in the quality of services and
customer productivity.

Incident could be classified based of root cause of the problem in:

• Known error: condition identified by successful diagnosis of the root cause
of a problem, and the subsequent development of a work-around.

• Problem: a condition often identified as a result of multiple incidents that
exhibit common symptoms. Problems can also be identified from a single
significant incident, indicative of a single error, for which the cause is
unknown, but for which the impact is significant.
	

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 52	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

10.2 CRITERIA
The criteria descriptions are structured in a general way emphasizing their reusability
in various evaluation scenarios. The criteria cover typical processes of the software
life cycle. Each process of the software lifecycle allows specific phase information
acquisition. The standard information collection includes metrics and data describing
time, cost and quality criteria. The additional criteria of maturity and diffusion of
each process in scenarios described in this deliverable.

Time is the ability to perform actions fast. Cost quantifies the amount of resources
assigned to the task under consideration. Quality quantifies whether the results
coincide with desired outcomes. Maturity describes how well a process is established
in the enterprise setting. Diffusion describes how often a process is used within the
company.

Time criteria are associated with software development process temporal constraints.
Those temporal constraints can influence on both software development and quality
assurance activities. For instance, project milestones and average time for end user
request resolution are used for estimating time.

Cost criteria are associated with software development process resource constraints.
Those resource constraints influence on any step on the software development
process. For instance, amount of human effort and computational resources are used
for estimating cost.

Quality criteria are associated with constraints introduced with current requirements
and development process chosen for software development. Those constraints
influence on software development activities laying foundation for the software
acceptance phase. For instance, functional points derived from the requirements
specification and code quality metrics are used for estimating quality.

Maturity criteria are associated with constraints of the chosen software development
and/or quality assessment process. Those constraints influence on the ability to
perform software development process activities in effective and efficient manner.
For instance, planning phase factors and development phase factors are used for
estimating maturity.

Diffusion criteria are associated with adoption constraints of the modern software
development processes. Those constraints influence on the ability of the organization
to use current software development process in effective manner. For instance,
change, configuration and release phase factors are used for estimating diffusion.

An example maturity and diffusion evaluation is given on Table 32 illustrating the
metrics associated with the criteria.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 53	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

	Process	factors	

Maturity	 Diffusion	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

Process	of	requirements	management	 		 		
	

		 		 		
	

		
Process	of	development	(use	of	repository,	standard	
guidelines,	reference	application	stack,	…)	 		 		

	
		 		 		

	
		

Process	of	functional	test	(structured	bug	
collection?,	type	of	functional	test,	…)	 		

	
		 		 		

	
		 		

Process	of	non	functional	test	(type	of	non	
functional	test,	static	code	analysys,	performance,	
security,	…)	 		 		

	
		 		

	
		 		

Process	of	change	management	(change,	
configuration	&	release	phase	factors)	 		 		 		

	
		 		 		

	Process	of	post	production	phase	(ITIL,	application	
&	system	operation	phase	factors)	 		 		 		

	
		 		

	
		

Table 32: Maturity and diffusion evaluation

10.3 METRICS
The metrics that are used for criteria evaluation include:

• Requirements phase metrics and data influencing the process of requirements
management, are for example, and function point for functional requirements.

• Development phase metrics and data influencing the process of development
are for example, the number of developers involved, the estimated man days
for development phase.

• Functional quality metrics and data influencing the process of functional
testing, are for example, number of bugs, structured bug collection, structured
test cases, bug history report, the number of testers involved, the estimated
man days for test phase.

• Non functional quality metrics and data influencing the processes of non
functional testing, are for example, software metrics (lines of code, cyclomatic
complexity, code coverage, code churn), data extracted during performance
test, data retrieved from security test.

• Change configuration phase metrics and data are for example the number of
standard changes, the number of emergency changes, and the frequency of
releases of a specific component.

• Post production metrics and data may be collected if there is a service desk
group. Typical metrics and data are the number of tickets, incidents are
collected according to ITIL methodology (see Section 9.1.1).

The metrics used in time evaluation include estimated man days for development
phase, estimated man days for test phase, and frequency of releases of a specific
component.

The metrics used in cost evaluation include number of developers involved, and
number of testers involved.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 54	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

The metrics used in quality evaluation include function points, number of bugs,
structured bug collection, structured test cases, bug history report, software quality
metrics, data extracted during performance test, data retrieved from security test, the
number of standard changes, the number of emergency changes, the number of
tickets, incidents.

Structured bug collection, structured test cases, bug history report, data extracted
during performance test, and data retrieved from security test metrics are estimated
using boolean values. True value stands for presence, false for absence of the given
feature.

Processes described in Section 10.1 are assessed in accordance to maturity and
diffusion criteria. Each of these criteria is associated with a single metric. The values
of the metrics are

• None;
• Low;
• Medium;
• High

Maturity estimation is performed by a human expert. Diffusion estimation is based on
the level of diffusion of the factors under consideration in the organization.

In maturity evaluation none is assigned if the process is not defined; low is assigned
if the process is defined but is not effective; medium is assigned if the process is
defined and effective but need integration with other process; high is assigned if the
process is defined and effective taking into the account that it is integrated with other
process.

In diffusion evaluation none is assigned if the process is not used; low is assigned if
the process is used by less than 20% of projects; medium is assigned if the process is
used by less than 60% of projects; high is assigned if the process is used by at least
60% of projects.

10.4 PROCESS
The data flow of the evaluation process used in the project is depicted on Figure 4.
The training data is loaded into machine learning component along with prediction
models. The output of the machine learning component is the learned model.
Prediction component uses this model with input data to predict the metric values for
the given dataset.

	
Figure 4. Evaluation process

Machine Learning
component

Training
data

Updated
model

M
od

el
s

Prediction component

In
pu

t d
at

a

Predicted
metric
values

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 55	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

The testing dataset is split into training data and input data. The optimal size of the
training data depends on the model used.

10.5 SCENARIOS
Scenarios are relevant to the topic of the ICEBERG project because they deliver the
data allowing to establish the relationships among criteria using variety of metrics
available for computation. Scenarios are adaptable due to the presence and
availability of data allowing their analysis. Scenarios are scalable because they
contain large amount of data allowing discovery of the relationships among the
criteria under consideration. Scenarios are extendable because of the approach tested
in them, for instance, in computation metrics for various criteria, can be used in other
sectors.

10.5.1 Medical Company

This scenario describes application of the QA process at the Italian company that
deals with the diagnosis, application and commercialization of technical medical
solutions. The software described in this section was used at the company branches.
In this scenario, data was collected within 16 months. Data is related to test phase and
post production phase (data provided from service desk).

10.5.1.1 PROCESS

In the reality, the test process is not perfect and immediate, but it follows the
workflow depicted in Figure 5 for the system under analysis.

	

Figure 5: Workflow of the test process. Statuses in gray represent the “idle” part of the
process, where issues are queued waiting to be processed.

When an issue is opened, it becomes new and it is queued, waiting to be processed
(published status). Once an issue starts to be processed (in study), it is assigned
(launched) to a developer and, once completed, it could be assigned to another
developer for further processing, when needed. Then, the amendment is tested,
delivered, and finally closed. It may happen that the testing process may fail. In this
case, the issue becomes suspended after delivered, and then reopened again for
another cycle of processing (transition in the published status). From the data, we
also found issues that never go in the closed status, either because still under
processing (e.g., this happens for recent issues opened in January 2014) or because
finally classified with a “won’t fix” resolution.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 56	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

10.5.1.2 SCENARIO OBJECTIVE

The objective of this scenario is to understand if it is possible predict the number of
tickets during post-delivery phase, using data related to previous phases (especially
test phase). Not all tickets open from service desk are related with software problem
(using ITIL terminology not all tickets are incident, could be also service request). We
would understand if it is possible predict the number of tickets based on data
concerning test phase. Achieving this result will assist in branch budget and staffing
decisions. This will also give the opportunity to estimate the optimal release time for
the given residual defectiveness level.

10.5.1.3 TEST DATA

The test data for evaluation maturity and diffusion is depicted in Table 34.

	Process	factors	

Maturity	 Diffusion	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

Process	of	requirements	management	 		 		 X	 		 		 		 X	 		
Process	of	development	(use	of	repository,	standard	
guidelines,	reference	application	stack,	…)	 		 		

	
		 		 		

	
		

Process	of	functional	test	(structured	bug	collection,	
type	of	functional	test,	…)	 		

	
X	 		 		 X	 		 		

Process	of	non	functional	test	(type	of	non	
functional	test,	static	code	analysys,	performance,	
security,	…)	 		 	X	

	
		 		 X	 		 		

Process	of	change	management	(change,	
configuration	&	release	phase	factors)	 		 		 		

	
		 		 		

	Process	of	post	production	phase	(ITIL,	application	
&	system	operation	phase	factors)	 		 		 		 X	 		 		 X	 		

Table 34: Medical company scenario: maturity and diffusion

The test data for evaluating time, quality and cost is a snapshot of the bug tracking
database, of test management system and of the service desk environment, that
describe the errors encountered during software testing phase along with
communications among users of the quality assurance process, and software
engineers. In this section, data related to this process will be described:

1) Process of functional test:
a. Change request report
b. Bug report
c. Bug history report
d. Test report

2) Process of post-production phase
a. End user request (ticket)

10.5.1.3.1 Change Request Report
The change request report provides information related to changes to be made to
functionality of the system. The change requests are numbered and assigned a unique
key prefixed with application name. The change requests are associated with reporter

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 57	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

and assignee who are opening and closing the bugs. Status fields include severity,
status, resolution, customer reference and labels with additional information. Status
field can take cancelled, closed, completed, delivered, in study, launched, new,
published, quoted, suspended, and tested values. The change request information is
enriched with the dates of change request creation and update along with the versions
where change request was discovered and resolved. Resolution field can take
duplicate, fixed, incomplete, invalidated, not appropriate, out of perimeter,
unresolved, and won't fix values. It’s composed from attributes listed in Table 35.

Attribute name Attribute description Example(s)

Number number of changes in the change request status 1,2,3,…

Key key for the tuples representing a change in the
change request status

CR-1, CR-2, CR-
3,…,

Summary short description of the change request new product
advanced search

Description complete description of change request, can be
empty

clicking on a chart it
is displayed full
screen

Reporter first and last name of the reporter

Assignee first and last name of the assignee, can be
empty

Status status of the change request published,
delivered, in
study,…

Created date and time of the change request
modification request creation

Wednesday 03
October 2012 14:47

Component/s components involved in the change request
resolution, can be empty

Frontend

Subcomponents subcomponents involved in the change request
resolution, can be empty

script

Updated date and time of the change request status
update

Wednesday 27
March 2013 16:18

Affects Version/s affected version number, can be empty 1.4.1, 1.4.4, 1.5.2,…

Fix Version/s fixed version number, can be empty 1.2.1

Resolution whether a change request was resolved unresolved, fixed,…

Customer
reference

who opened a change request, can be empty obtained by sales on
October 9th

Labels additional comments, can be empty release CR2 2nd
phase 15/06/2013

Table 35: The change request report

10.5.1.3.2 Bug Report
The bug report part describes the information related to bugs discovered in the
application. The bugs are numbered and assigned a unique key prefixed with

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 58	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

application name. The bugs are associated with reporter and assignee who are opening
and closing the bugs. Status fields include severity, status, resolution, customer
reference and labels with additional information. Severity field value can take major,
minor, and blocking values. Status field can take cancelled, closed, completed,
delivered, in study, launched, new, published, suspended, tested, and waiting for
information values. The bug information is enriched with the dates of bug creation
and updates along with the versions where the bug was discovered and resolved.
Resolution field can take cannot reproduce, duplicate, fixed, incomplete, incorrect
value, invalidated, not a defect, not appropriate, out of perimeter, unresolved, and
won’t fix values. The bug reporting part is composed from the attributes listed in
Table 36.

Attribute
name

Attribute description Example(s)

Number number of a change in the bug status 1,2,3,…

Key key for the tuples representing a change in the bug
status

BUG-1, BUG-2,
BUG-3,…,

Summary short description of the bug Sales - Quote -
Graphic missing

Description complete description of bug, can be empty when I select a
profile does not
allow me to view
the features

Reporter first and last name of the reporter

Assignee first and last name of the assignee

Severity severity of the bug encountered, can be empty major, minor,…,

Status status of the bug open, closed,…

Created date and time of the bug modification request
creation

Friday 07
September 2012
10:02

Components components involved in the bug resolution, can be
empty

Frontend

Subcomponents subcomponents involved in the bug resolution,
can be empty

sales

Updated date and time of the bug status update Friday 21
September 2012
15:12

Affects
version/s

affected version number, can be empty 1.0.0

Fix versions/s fixed version number, can be empty 1.2.0

Resolution whether a bug was resolved Fixed

Customer
reference

who opened a bug, can be empty Turin branch

Labels additional comments, can be empty Online/Offline

Table 36: The bug report

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 59	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

10.5.1.3.3 Bug History Report
The bug history report part describes attributes related to change in the bug status. It
contains data about the bug, its number and identifier in addition to the data of who
and when modified the bug status. It is composed from attributes listed in Table 37.

Attribute name Attribute description Example(s)

Issue key from the bug and customer reporting parts BUG-4124,
BUG-4123, …

#Issue number from the bug and customer reporting parts 4124, 4123, …

Modified by first and last name of the person modified the bug

Modification
date

bug status modification date, can be empty 20/01/2014
16:36

Field what is changed in relation to a given bug, can be
empty

labels, status,
assignee, …

Original Value original value of the changed attribute, can be empty in study,
launched, …

New Value new value of the changed attribute, can be empty launched,
completed, …

Table 37: The bug history report

10.5.1.3.4 Test Report
The test report part relates test suites and test cases with their priority including also
the versions for which a given test suite was run on a given test case. Priority field can
take medium and high values. The test report also includes the information on number
of tests passed, failed, not run and executed for a given test case. It is composed from
attributes listed in Table 38.

Attribute name Attribute description Example(s)

Test suite test suite run against the given test case phase
1/functional
test/home page

Test case test case string TC-209:
Layout, TC-
221:Main
menu,…

Priority priority of the test case Medium,
High,…

Version attributes (1.0.0,
1.1.0, 1.1.1, 1.2.0, 1.2.1, 1.2.2,
1.2.3, 1.3.0, 1.3.1, 1.4.0, 1.4.1,
1.4.2, 1.4.3, 1.4.4, 1.4.5, 1.5.0,
1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.6.0,
1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.7.0,
1.7.1, 1.7.2, 1.8.0, 1.8.1, 1.8.2,
1.8.3, 1.8.4, 1.9.0, 1.9.1, 1.9.2,

result of the test execution on the given
version of the system

Passed,
Blocked,…

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 60	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

1.9.3)

Last build result of the test execution on the last
build of the system

Passed

Last execution result of the test last execution Passed

Passed number of versions on which the test
passed

1, 3, …

Failed number of versions on which the test
failed

1,2, …

Not run number of versions on which the test
was not run

35, 36, …

Executions number of test suite executions 1,2, …

Table 38: The test report

The data populating these attributes is available for 2 test phases comprising
functional, interface, cross functional, and functional non regression tests.

10.5.1.3.5 End User Request (ticket)
According to ITIL methodology, in this scenario a service desk group collects and
manages end user requests.

Each ticket, provide dates EUR was submitted and closed along with dates when the
data was imported and analyzed, status and branch of the company from which
request originates. EURs are also associated with times of the assignment and
resolution in days along with reference for EUR and its quality properties of whether
the request was open and closed within a day and worked as expected. They also
include detailed information about the dates including weeks when they were opened
and closed, days and month of submission and finalization. The part includes
attributes listed in Table 39.

Attribute name Attribute description Example(s)

Ticket number EUR number 117, 119,…

Date submitted date EUR submitted 04/07/2013

Date closed date EUR closed, can be empty 04/07/2013

Status EUR status closed

Date footprint
imported

date of the data import that must be after
submission date

08/08/2013

Date of final analysis date of final analysis, can be empty 18/07/2013

GTA time of assignment in days, can be empty 14

GTR time of resolution in days, can be empty 14

Supplier ticket
reference

key from the bug report and change request
parts, in some cases refer to problems with string
and empty identifiers

BUG-2814,
Updates
installation

Type request type of the request encountered, can be empty modification
query

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 61	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Open within the day request that is open within the day 1

Close within the day request that is closed within the day 1

Worked as expected software worked as expected 1

Week of submission week of the year on which the software
modification request was obtained

27

Week of resolution week of the year on which the software
modification request was resolved

35

Day of submission day of the month submitted 4, 5, …

Month of submission month of the year submitted 7

Day finalized day of the month the work was finalized 7

Month finalized month of the year the work was finalized 7

Branch branch of the company from which the request is
originating

Turin

First Name first name of the person to whom the bug is
assigned, can be empty

Sara

Table 39: The end user requests

10.5.2 Telecommunications Company

An Italian telecommunications company provides landline, broadband Internet, and
digital TV services. The company employs huge number of IT personnel. It employs
both internal and external software and test factories. In this scenario, data was
collected within 12 months.

10.5.2.1 PROCESS

The software testing phase includes functional, integration and production phases.
The test process is depicted on Figure 6.

When an issue is opened (1-Open) it can either be assigned irrelevant (6-Obsolete)
status or proposed for rejection (5a-Rej. Proposed) and rejected (5-Rejected). The
third option includes acceptance (1a-Accepted) and delivery for workflow draw (3a-
Delivered to FW). From this status, issue might become either fixed (7-Closed) or
not fixed (2-Reopen). The third option includes fixing (3-Fixed) status. After that the
issue might be either fixed (7-Closed) or not fixed (2-Reopen). The third option
includes readiness to test (12-Ready to test). The issue with this status can be
considered either as fixed (7-Closed) or not fixed (2-Reopen). The third option
includes testing (4-Tested) and release (11-Release) after that the issue is considered
as fixed (7-Closed). The not fixed status (2-Reopen) leads to either return to bug
acceptance (1a-Accepted) or bug rejection proposal (5a-Rej. Proposed).

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 62	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Figure 6: Test process.

10.5.2.2 SCENARIO OBJECTIVE

The main objective of the scenario is to define what correlations exist between the
incident detected in production environment and the processes of software quality.
The current process of quality assurance includes integration testing, acceptance
testing, deployment and configuration management, and performance testing. The
process of testing is structured; however, its process is defined according to start-up
structure with several incidents open for years. Moreover, the testing process is poorly
defined and planning of the quality related activities is chaotic.

The second objective of this scenario is to predict the number of change requests on
various phases of testing, using the testing data of the previous phases. Not all change
requests are related with software problem (using ITIL terminology not all change
requests are incident, could be also service request). The aim is to understand if it’s
possible to predict the number of change requests based on data concerning various
test phases.

Achieving this results will assist in taking decisions from the actors envolved in
Software Quality Process. This will also give the opportunity to estimate the optimal
release time for the given residual defectiveness level

10.5.2.3 TEST DATA

The test data for evaluation maturity and diffusion is depicted in Table 40.

	Process	factors	

Maturity	 Diffusion	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

Process	of	requirements	management	 		 		
	

		 		 		
	

		

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 63	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Process	of	development	(use	of	repository,	standard	
guidelines,	reference	application	stack,	…)	 		 		

	
		 		 		

	
		

Process	of	functional	test	(structured	bug	
collection?,	type	of	functional	test,	…)	 		

	
X	 		 		

	
X	 		

Process	of	non	functional	test	(type	of	non	
functional	test,	static	code	analysis,	performance,	
security,	…)	 		 		

	
		 		

	
		 		

Process	of	change	management	(change,	
configuration	&	release	phase	factors)	 		 		

	 	
		 		

	 	Process	of	post-production	phase	(ITIL,	application	
&	system	operation	phase	factors)	 		 		 		 X	 		 		 X	 		

Table 40: Telecommunication company scenario: maturity and diffusion

The test data for evaluating time, quality and cost is a snapshot of the bug tracking
database, of test management system, that describe the errors encountered during
software testing phases. In this section, the data related to this process is described.

10.5.2.3.1 Change Request Report
The change request report provides information related to requested changes of the
system functionality. The change requests collected on these phases are associated
with bug id, project, attributes of status, severity, priority, type, phase, detection and
closing dates. Severity attribute values include 1-low, 2-medium, 3-high, 4-very high,
and 5-blocking. Priority attribute values include 1-low, 2-medium, 3-high, 4-very
high, and 5-urgent. Type attribute values include functional bug, integration bug,
delivery/installation bug, new requirements enhancement, functional analysis bug,
documentation bug, performance bug, functional analysis enhancement, external
system, cleaning, cleaning other system, bug out of warranty, platform bug,
enhancement analysis requirements errata, enhancement infrastructural operations,
and workaround. Found	 in	 phase attribute values include 01-functional, 02-
integration, and 03-production. Closing date attribute is provided for closed value of
the status attribute. It is composed from attributes listed in Table 41.

Attribute name Attribute description Example(s)

Change request
reference

project initiative P130503-may
advertisements HP

Bug id key for the change request 55023

Project application component related to the change
request

RIC

Status status of the change request, number 1 to 12 in
some cases with additional letter and
description

3-Fixed

Severity severity of the change request in [1,5] interval
with description

3-High

Priority priority of the change request in [1,5] interval
with description

3-High

Type type of the change request Request for
functionality
enhancement

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 64	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Found in phase phase of the change request discovery in
interval [1,3] with description

03-Production

Detected on date date of the change request discovery 03/06/2013

Closing date subcomponents involved in the change request
resolution, can be empty

09/09/2013
13:00:15

Table 41: The change request report

10.5.2.3.2 Test Report
Test report part relates change requests with defect and test numbers. It is composed
from attributes listed in Table 42.

Attribute name Attribute description Example(s)

Label change request P130733-TOOL
Regulatory Cost
Control – Reprising
and Decision
Management -
Additional,…

Defects count defects found 385,…

Tests count tests performed, can be empty 1217,…

Table 42: The test report

10.5.3 Financial Company

The multinational company provides banking and financial services. Its primary
businesses are retail banking, direct banking, commercial banking, investment
banking, asset management, and insurance services. In this scenario, data was
collected within 7 months.

10.5.3.1 PROCESS

The data presented in this scenario corresponds to software verification process and
process of the service desk. Software defects found on software verification process
stage are associated with their statuses including assigned, closed, on hold, production
issue, ready for retest, rejected, reopen, testing issue, and under development. The test
process is depicted on Figure 7.

The work (Under dev.) on the open issue (Assigned) either leads to its reopening
(Rejected, Reopen, Under dev.) or fixing (Ready for migration, Ready for retest,
Under retest). Afterwards the issue either thought of as not fixed (Reopen) or fixed
(Closed). Rejected and Closed statuses correspond to production issues while the rest
correspond to testing issues.

Program incidents found on service desk process stage are associated with their
statuses including analysis, open, closed, non-testable, in development, and on hold.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 65	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Figure 7: Test process.

10.5.3.2 SCENARIO OBJECTIVE

The main objective of the scenario is to define what correlations exist between the
incidents detected in service desk process and software defects encountered in
software verification process.

Achieving this results will assist in taking IT decisions. This will also give the
opportunity to estimate the optimal release time for the given residual defectiveness
level

10.5.3.3 TEST DATA

The test data for evaluation maturity and diffusion is depicted in Table 43.

	Process	factors	

Maturity	 Diffusion	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

N
on
e	

Lo
w
	

M
ed
iu
m
	

H
ig
h	

Process	of	requirements	management	 		 		
	

		 		 		
	

		
Process	of	development	(use	of	repository,	standard	
guidelines,	reference	application	stack,	…)	 		 		

	
		 		 		

	
		

Process	of	functional	test	(structured	bug	
collection?,	type	of	functional	test,	…)	 		

	
X	 		 		

	
X	 		

Process	of	non	functional	test	(type	of	non	
functional	test,	static	code	analysis,	performance,	
security,	…)	 		 		

	
		 		

	
		 		

Process	of	change	management	(change,	
configuration	&	release	phase	factors)	 		 		

	 	
		 		

	 	Process	of	post-production	phase	(ITIL,	application	
&	system	operation	phase	factors)	 		 		 		 X	 		 		 X	 		

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 66	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Table 43: The Finance Scenario: Maturity and Diffusion

The test data for evaluating time, quality and cost is a snapshot of the bug tracking
database, of test management system, that describe the errors encountered during
software verification process. In this section, the data related to this process is
described.

10.5.3.3.1 Program Defects
Program defects part connects defects ID with their summary, description along with
names of who detected the defect, to whom and to which group the defect was
assigned, the attributes of their severity and status, change request number, program
environment descriptor, comments, modification, release and detection dates, defect
priority, cause, cycle, reopening count, time to fix, and closing date. Severity attribute
values include 1-low, 2-medium, 3-high, 4-very high, and 5-urgent. Defect manager
priority attribute values include 1-production blocking, 2-medium priority, and 3-low
priority. It is composed from attributes listed in Table 44.

Attribute name Attribute description Example(s)

Defect ID defect numeric identifier 19383

Summary change request summary service
createDelegation

Description change request description The field
CD_PRODOTTO
always takes the
value DDCO while
on CSE is valued as
CORE

Detected By full name in format first_name.last_name

Assigned To full name in format first_name.last_name, in
some cases group

AssignedTo
Group

group, can be empty ICBPI

Severity severity of change request in [1,5] interval 3-High

Status status of the change request Assigned

CR Number change request identifier 8592 B

Environment environment descriptor SIT

Comments messages related to change request, can be
empty

<Name>,
03/03/2014: Fix
effective

Modified modification date 03/04/2014
09:32:39

Release_Date release date 2013-11-30

Detected on date detected on date 17/10/2013

Defect Manager priority assigned by a defect manager in [1,3] 3-Low priority

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 67	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Priority interval, can be empty

Root Cause cause of the defect, can be empty environment defect

Detected in Cycle components involved in the defect resolution,
can be empty

AEA file

Num_Reopen defect reopening count, can be empty

Actual Fix Time time to fix in days, can be empty 3

Closing date date to close defect, can be empty 19/03/2014

Table 44: Defects

10.5.3.3.2 Production Issues
Production issues part connects process identifiers with the channel, production issue,
service desk and link identifiers, owner, description and names of who detected the
defect, to whom the issue was assigned, opening, RD and closure dates, state,
severity, product, cause of the issue, whether the issue is a testing issue and whether it
is testable, who are the first three developers assigned to resolve the issue and in
which applications it can be found. It is composed from attributes listed in Table 45.

Attribute name Attribute description Example(s)

Process process identifier, can be empty INQ.CA

Channel channel, can be empty institutional site

PI production issue identifier 83771

SD open ticket identifier, can be empty SD238876

Link (CR/PI) change request or production issue, which
resulted in this defect

8592

Owner owner full name

Description string with description Balance and
summary for ASP
clients

User user full name

Analyst analyst full name

Open opening date 07/04/2014
10:00:01

RD release date, can be empty 08/04/2014

Closed closed date, can be empty 03/04/2014

State issue state On hold

Severity severity in [1,5] interval 3

Product software product, can be empty CROSS

Root Cause issue cause, can be empty technical problem

Testing issue whether issue is a testing issue Yes

Not testable whether issue is testable Yes

Developer 1 developer full name, can be empty

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 68	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Developer 2 developer full name, can be empty

Developer 3 developer full name, can be empty

Application 1 incident application, can be empty SmartPayments

Application 2 incident application, can be empty

Application 3 incident application, can be empty

Application 4 incident application, can be empty

Table 45: Production issues

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 69	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

11 CONCLUSION

The quality parameters and validation scenarios were described focusing on the key
factors influencing cost, time and quality. Three evaluation scenarios taken from
medical, telecommunication and financial domains were described with a special
emphasis put on quality parameters. The scenarios were selected based on their
relevancy, adaptability, scalability and extendibility.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 70	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

REFERENCES

[1] B. Crosby, “Quality is free. The art of making quality certain”, McGraw-Hill, 1987.

[2] H. J. Harrington, “Poor-Quality Cost: Implementing, Understanding, and Using the Cost
of Poor Quality”, CRC, 1987.

[3] H. J. Harrington, “The Productivity and Quality Connection”, IEEE Journal on Selected
Areas in Communication, vol. 4, nº 7, pp. 1009-1014, 1986.

[4] APM, “A History of the Association for Project Management 1972-2010”, Association for
Project Management, Buckinghamshire, 2010.

[5] A. Schiffauerova y V. Thomson, “Review of Research on Cost of Quality Models and
Best”, International Journal of Quality and Reliability Management, vol. 23, nº 4, 2006.

[6] S. Suthummanon y N. Sirivongpaisal, “Investigation of the Relationship between Quality
and Cost of Quality in a Wholesale Company”, ASEAN Engineering Journal, vol. 1, nº 1,
2011.

[7] R. S. Pressman, “Software engineering: a practitioner’s approach (7th ed.)”, Boston:
McGraw-Hill, 2010.

[8] L. M. Karg, M. Grottke y A. Beckhaus, “A systematic literature review of software
quality cost research”, Journal of Systems and Software, vol. 84, nº 3, pp. 415-427, 2011.

[9] B. Boehm, “Value-Based Software Engineering”, ACM Software Engineering Notes, vol.
28 (2), pp. 1-12, 2003.

[10] J. Thorp, “The information paradox”, New York, NY: McGraw-Hill, 2003.

[11] C. Jones and O. Bonsignour, The Economics of Software Quality, Addison-Wesley
Professional, 2011.

[12] D. Tajima and T. Matsubara, “Inside the Japanese Software Industry,” Computer,
vol. 17, no. 3, pp. 34–43, Mar. 1984.

[13] J. Inglis, “Standard Software Quality Metrics,” AT&T Tech. J., vol. 65, no. 2, pp.
113–118, Mar. 1986.

[14] IEEE: IEEE Std. 1044-2009. Standard Classification for Software Anomalies.

[15] http://www.best-management-practice.com/gempdf/itil_glossary_v3_1_24.pdf

[16] ISO/IEC/IEEE 24765:2010. Systems and software engineering – Vocabulary.

[17] http://standards.ieee.org/findstds/standard/610-1990.html

[18] S. Wagner, Defect Classification and Defect Types Revisited. In : Proceedings of the
2008 workshop on Defects in large software systems, NY, USA, pp.39–40 (2008).

[19] D. Vallespir, F. Grazioli,, J. Herbert. A Framework to Evaluate Defect Taxonomies. In:
VI Workshop Ingeniería de Software (WIS), Argentina, pp.643-652 (2009).

[20] R. Chillarege. Orthogonal Defect Classification. In: Handbook of Software Reliability
Engineering IEEE Computer Society Press and McGraw-Hill edn. M. R. Lyu (1996).

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 71	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

[21] B. Freimut. Developing and Using Defect Classification Schemes. IESE- Report
No.072.01/E, Institut Experimentelles Software Engineering, Sauerwiesen (2001).

[22] R. Grady. Software Failure Analysis for High-Return Process Improvement Decisions.
Hewlett-Packard Journal (1996).

[23] C. Jones, (1998). “Estimating software costs”. Hightstown, NJ: McGraw---Hill, Inc.

[24] N. Fenton and S. L. Pfleeger, Software Metrics (2Nd Ed.): A Rigorous and Practical
Approach. Boston, MA, USA: PWS Publishing Co., 1997.

[25] A. J. Albrecht and J. E. Gaffney, "Software function, source lines of code and
development effort prediction: A software science validation," IEEE Trans. Software Eng,
vol. SE-9, no. 6, pp. 639-647, Nov. 1983.

[26] Cotroneo, D., Natella, R., & Pietrantuono, R. (2013). Predicting aging---related bugs
using software complexity metrics. Performance Evaluation, 70 (3), 163---178.

[27] E. Babbie. Survey Research Method, 2nd edition. Wadsworth Publishing Company,
1990.

[28] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentationin software engineering: an introduction. Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

[29] H. K. Wright, M. Kim, and D. E. Perry. Validity concerns in software engineering
research. In Proceedings of the FSE/SDP workshop on Future of software engineering
research, FoSER ’10, pages 411–414. ACM, 2010.

[30] U. van Heesch and P. Avgeriou. Mature Architecting - A Survey about the Reasoning
Process of Professional Architects. In WICSA, pages 260–269. IEEE Computer Society,
2011.

[31] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, “The
architecture tradeoff analysis method,” in Engineering of Complex Computer Systems, 1998.
ICECCS ’98. Proceedings. Fourth IEEE International Conference on, Aug 1998, pp. 68–78.

[32] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and benefits of architectural
decisions,” in Software Engineering, 2001. ICSE 2001. Proceedings of the 23rd International
Conference on, May 2001, pp. 297–306.

[33] B. Güldali, H. Funke, S. Sauer, and G. Engels, “TORC: test plan optimization by
requirements clustering,” Software Quality Journal, vol. 19, no. 4, pp. 771–799, 2011.

[34] A. Bertolino, P. Inverardi, and H. Muccini, “Software architecture-based analysis and
testing: a look into achievements and future challenges,” Computing, vol. 95, no. 8, pp. 633–
648, 2013.

[35] D. Cotroneo, R. Pietrantuono, and S. Russo, “Testing techniques selection based on
ODC fault types and software metrics,” Journal of Systems and Software, vol. 86, no. 6, pp.
1613 – 1637, 2013.

[36] Y. Jia and M. Harman, “An Analysis and Survey of the Development of Mutation
Testing,” IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649–678, 2011.

[37] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya, “Software
Architecture Optimization Methods: A Systematic Literature Review,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 658–683, 2013.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 72	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

[38] P. Potena, “Optimization of adaptation plans for a service-oriented architecture with cost,
reliability, availability and performance tradeoff,” Journal of Systems and Software, vol. 86,
no. 3, pp. 624 – 648, 2013.

[39] M. Buzdalov, A. Buzdalova, and I. Petrova, “Generation of tests for programming
challenge tasks using multi-objective optimization,” in GECCO (Companion), C. Blum and
E. Alba, Eds. ACM, 2013, pp. 1655–1658.

[40] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Multi-objective Cross-Project Defect Prediction,”in ICST. IEEE, 2013, pp. 252–261.

[41] N. Oster and F. Saglietti, “Automatic Test Data Generation by Multiobjective
Optimisation,” in SAFECOMP, ser. Lecture Notes in Computer Science, J. G´orski, Ed., vol.
4166. Springer, 2006, pp. 426–438.

[42] R. Mirandola, P. Potena, and P. Scandurra, “Adaptation space exploration for service-
oriented applications,” Science of Computer Programming, vol. 80, Part B, no. 0, pp. 356 –
384, 2014.

[43] M. Jørgensen, “The influence of selection bias on effort overruns in software
development projects,” Information & Software Technology, vol. 55, no. 9, pp. 1640–1650,
2013.

[44] H. K. Doloi, “Understanding stakeholders’ perspective of cost estimation in project
management,” International Journal of Project Management, vol. 29, no. 5, pp. 622 – 636,
2011.

[45] C. Heimerl and R. Kolisch, “Scheduling and staffing multiple projects with a multi-
skilled workforce,” OR Spectrum, vol. 32, no. 2, pp. 343– 368, 2010.

[46] H. Li and K. Womer, “Scheduling projects with multi-skilled personnel by a hybrid
MILP/CP benders decomposition algorithm,” J. Scheduling, vol. 12, no. 3, pp. 281–298,
2009.

[47] M. Firat and C. A. J. Hurkens, “An improved MIP-based approach for a multi-skill
workforce scheduling problem,” J. Scheduling, vol. 15, no. 3, pp. 363–380, 2012.

[48] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A. Clark, “The
GISMOE Challenge: Constructing the Pareto Program Surface Using Genetic Programming
to Find Better Programs (Keynote Paper),” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE 2012. ACM, 2012,
pp. 1–14.

[49] E. Diaz, J. Tuya, and R. Blanco, “Automated software testing using a metaheuristic
technique based on Tabu search,” in Automated Software Engineering, 2003. Proceedings.
18th IEEE International Conference on, Oct 2003, pp. 310–313.

[50] F. M. Kifetew, A. Panichella, A. De Lucia, R. Oliveto, and P. Tonella, “Orthogonal
Exploration of the Search Space in Evolutionary Test Case Generation,” in Proceedings of the
2013 International Symposium on Software Testing and Analysis, ser. ISSTA 2013. New
York, NY, USA: ACM, 2013, pp. 257–267.

[51] K. Lakhotia, M. Harman, and H. Gross, “Austin: An open source tool for search based
software testing of c programs,” Information and Software Technology, vol. 55, no. 1, pp.
112 – 125, 2013, special section: Best papers from the 2nd International Symposium on
Search Based Software Engineering 2010.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 73	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

[52] Z. Ye, X. Zhou, and A. Bouguettaya, “Genetic Algorithm Based QoSAware Service
Compositions in Cloud Computing,” in DASFAA (2), ser. Lecture Notes in Computer
Science, J. X. Yu, M.-H. Kim, and R. Unland, Eds., vol. 6588. Springer, 2011, pp. 321–334.

[53] F. Rosenberg, M. Muller, P. Leitner, A. Michlmayr, A. Bouguettaya, and S. Dustdar,
“Metaheuristic optimization of large-scale qos-aware service compositions,” in Services
Computing (SCC), 2010 IEEE International Conference on, July 2010, pp. 97–104.

[54] S. Malek, N. Medvidovic, and M. Mikic-Rakic, “An Extensible Framework for
Improving a Distributed Software System’s Deployment Architecture,” Software
Engineering, IEEE Transactions on, vol. 38, no. 1, pp. 73–100, Jan 2012

[55] D. Rodriguez, M. Ruiz, J. C. Riquelme, and R. Harrison, “Multiobjective Simulation
Optimisation in Software Project Management,”in Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’11. ACM, 2011, pp.
1883–1890.

[56] F. Ferrucci, M. Harman, and F. Sarro, “Search-Based Software Project Management,”
Software Project Management in a Changing World (Springer), 2014, to appear.

[57] J. J. Dolado, “A Validation of the Component-Based Method for Software Size
Estimation,” IEEE Trans. Software Eng., vol. 26, no. 10, pp. 1006–1021, 2000.

[58] A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes, “Using
tabu search to configure support vector regression for effort estimation,” Empirical Software
Engineering, vol. 18, no. 3, pp. 506–546, 2013.

[59] S. Gueorguiev, M. Harman, and G. Antoniol, “Software Project Planning for Robustness
and Completion Time in the Presence of Uncertainty Using Multi Objective Search Based
Software Engineering,” in Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO ’09. ACM, 2009, pp. 1673–1680.

[60] J. D. Kiper, M. S. Feather, and J. Richardson, “Optimizing the V&V Process for Critical
Systems,” in Proceedings of the 9thAnnual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’07. New York, NY, USA: ACM, 2007, pp. 1139–1139.

[61] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this anymore: multi-
objective overtime planning for software engineering projects,” in ICSE, D. Notkin, B. H. C.
Cheng, and K. Pohl, Eds. IEEE/ ACM, 2013, pp. 462–471.

[62] V. Cortellessa, F. Marinelli, and P. Potena, “An optimization framework for ”build-or-
buy” decisions in software architecture,” Computers & OR, vol. 35, no. 10, pp. 3090–3106,
2008.

[63] A. Sharma and D. S. Kushwaha, “Applying requirement based complexity for the
estimation of software development and testing effort,” SIGSOFT Softw. Eng. Notes, vol. 37,
no. 1, pp. 1–11, Jan. 2012.

[64] D. G. e Silva, M. Jino, and B. T. de Abreu, “Machine Learning Methods and
Asymmetric Cost Function to Estimate Execution Effort of Software Testing,” in ICST, 2010,
pp. 275–284.

[65] X. Zhu, B. Zhou, L. Hou, J. Chen, and L. Chen, “An experience based approach for test
execution effort estimation,” in ICYCS, 2008, pp. 1193–1198.

[66] A. Sharma and D. Kushwaha, “A metric suite for early estimation of software testing
effort using requirement engineering document and its validation,” in Computer and

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 74	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

Communication Technology (ICCCT),2011 2nd International Conference on, 2011, pp. 373–
378.

[67] M. E. Helander, M. Zhao, and N. Ohlsson, “Planning models for software reliability and
cost,” IEEE Trans. Software Eng., vol. 24, no. 6, pp. 420–434, 1998.

[68] P. A. Scarf, R. Dwight, and A. Al-Musrati, “On reliability criteria and the implied cost of
failure for a maintained component,” Rel. Eng. & Sys. Safety, vol. 89, no. 2, pp. 199–207,
2005.

[69] C.-T. Lin, “Enhancing the accuracy of software reliability prediction through quantifying
the effect of test phase transitions,” Applied Mathematics and Computation, vol. 219, no. 5,
pp. 2478–2492, 2012.

[70] C.-Y. Huang, S.-Y. Kuo, and M. R. Lyu, “An Assessment of Testing-Effort Dependent
Software Reliability Growth Models,” IEEE Transactions on Reliability, vol. 56, no. 2, pp.
198–211, 2007.

[71] C.-Y. Huang and J.-H. Lo, “Optimal resource allocation for cost and reliability of
modular software systems in the testing phase,” Journal of Systems and Software, vol. 79, no.
5, pp. 653 – 664, 2006.

[72] C.-Y. Huang and M. R. Lyu, “Optimal testing resource allocation, and sensitivity
analysis in software development,” IEEE Transactions on Reliability, vol. 54, no. 4, pp. 592–
603, 2005.

[73] S. Rafi and S. Akthar, “Incorporating fault dependent correction delay in srgm with
testing effort and release policy analysis,” in Software Engineering (CONSEG), 2012 CSI
Sixth International Conference on, 2012, pp. 1–6.

[74] O. Berman and M. Cutler, “Resource allocation during tests for optimally reliable
software,” Computers & OR, vol. 31, no. 11, pp. 1847– 1865, 2004.

[75] V. Cortellessa, F. Marinelli, R. Mirandola, and P. Potena, “Quantifying the influence of
failure repair/mitigation costs on service-based systems,” in 24th International Symposium on
Software Reliability Engineering, ISSRE 2013, Pasadena, CA, USA, November 4-7, 2013,
2013, to appear.

[76] S. Wagner, “Towards Software Quality Economics for Defect-Detection Techniques,” in
Software Engineering Workshop, 2005. 29th Annual IEEE/NASA, April 2005, pp. 265–274.

[77] N. Mead, J. Allen, W. Conklin, A. Drommi, J. Harrison, J. Ingalsbe, J. Rainey, and D.
Shoemaker, “Making the Business Case for Software Assurance (CMU/SEI-2009-SR-001),”
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2009., [Online].
Available: http://resources.sei.cmu.edu/library/assetview .cfm?AssetID=8831, Tech. Rep.

[78] T. Moser, S. Biffl, and D. Winkler, “Process-driven Feature Modeling for Variability
Management of Project Environment Configurations,” in Proceedings of the 11th
International Conference on Product Focused Software, ser. PROFES ’10. ACM, 2010, pp.
47–50.

[79] L. Fernndez-Sanz, M. Villalba, J. Hilera, and R. Lacuesta, “Factors with negative
influence on software testing practice in spain: A survey,” in European Software Process
Improvement Conference (EuroSPI), 2009.

[80] A. Wood, “Software Reliability Growth Models: Assumptions vs. Reality,” in
Proceedings of the Eighth International Symposium on Software Reliability Engineering, ser.
ISSRE ’97. IEEE Computer Society, 1997, pp. 136–.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 75	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

[81] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting Faults from
Cached History,” in Proceedings of the 29th International Conference on Software
Engineering, ser. ICSE ’07. IEEE Computer Society, 2007, pp. 489–498.

[82] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect
density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on, May 2005, pp. 284–292.

[83] A. Hassan and R. Holt, “The top ten list: dynamic fault prediction,” in Software
Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International Conference on,
Sept 2005, pp. 263–272.

[84] T. Ostrand, E. Weyuker, and R. Bell, “Predicting the location and number of faults in
large software systems,” Software Engineering, IEEE Transactions on, vol. 31, no. 4, pp.
340–355, April 2005.

[85] D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic, “Software fault prediction
metrics: A systematic literature review,” Information & Software Technology, vol. 55, no. 8,
pp. 1397–1418, 2013.

[86] T. McCabe, “A Complexity Measure,” Software Engineering, IEEE Transactions on,
vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[87] S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” Software
Engineering, IEEE Transactions on, vol. 20, no. 6, pp. 476–493, Jun 1994.

[88] T. M. Khoshgoftaar, K.Gao, and A. Napolitano, “A Comparative Study of Different
Strategies for Predicting Software Quality,” in SEKE. Knowledge Systems Institute Graduate
School, 2011, pp. 65–70.

[89] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing software metrics for
defect prediction: an investigation on feature selection techniques,” Software: Practice and
Experience, vol. 41, no. 5, pp. 579–606, 2011.

[90] V. R. Basili, G Caldiera, G., and H. D. Rombach, “The Goal Question Metric
Paradigm”, in Encyclopedia of Software Engineering, John Wiley & Sons, Inc., pp. 528-532,
1994.

[91] R. Solingen and E. Berghout, “The Goal/Question/Metric Method: a Practical Guide for
Quality Improvement of Software Development”, McGraw-Hill, Maidenhead. 1999.

[92] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A Systematic Literature
Review on Fault Prediction Performance in Software Engineering,” IEEE Trans. Software
Eng., vol. 38, no. 6, pp. 1276–1304, 2012.

[93] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert
Syst. Appl., vol. 36, no. 4, pp. 7346–7354, 2009.

[94] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation of Object-Oriented Design
Metrics as Quality Indicators,” IEEE Trans. Software Eng., vol. 22, no. 10, pp. 751–761,
1996.

[95] D. Hosmer and S. Lemeshow, Applied Logistic Regression. Wiley-Interscience, 1989.

[96] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object oriented metrics on
open source software for fault prediction,” IEEE Trans. Software Eng., vol. 31, no. 10, pp.
897–910, 2005.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 76	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

[97] M. Lorenz and J. Kidd. Object Oriented Metrics. Englewood, NJ: Prentice Hall, 1994.

[98] P. Tomas, M. Escalona, and M. Mejias, “Open source tools for measuring the Internal
Quality of Java software products. A survey,” Computer Standards & Interfaces, vol. 36, no.
1, pp. 244 – 255, 2013.

[99] V. R. Basili, L. Briand, and W. Melo, “A Validation of OO Design Metrics as Quality
Indicators,” Technical Report CS-TR-3443, 1995.

[100] B. Kitchenham, S. L. Pleeger, and N. Fenton. Towards a Framework for Software
Measurement Validation. IEEE Transactions on Software Engineering, Vol. 21, No. 12, pp
929-944,December 1995

[101] N. E. Fenton, “Software measurement: a necessary scientific basis,” IEEE Transactions
on Software Engineering, vol. 20, no. 3, pp. 199–206, 1994.

[102] N. E. Fenton, S. Lawrence Pfleeger. “Software Metrics. A rigorous & Practical
Approach. 2nd Edition,” ITP, International Thomson Computer Press, 1997

[103] N. F. Schneidewind, “Methodology for validating software metrics,” IEEE Transactions
on Software Engineering, vol. 18(5), pp. 410–422, 1992.

[104] P. T. Devanbu, “GENOA: A Customizable Language- and Front-end Independent Code
Analyzer,” in Proceedings of the 14th International Conference on Software Engineering, ser.
ICSE ’92. ACM, 1992, pp. 307–317.

[105] R. Ferenc and A. Beszedes, “Data exchange with the columbus schema for c++,” in
Software Maintenance and Reengineering, 2002. Proceedings. Sixth European Conference
on, 2002, pp. 59–66.

[106] “Homepage of FrontEndART Software Ltd.” [Online]. http://www.frontendart.com.

[107] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug prediction
approaches,” in Mining Software Repositories (MSR), 2010 7th IEEE Working Conference
on, May 2010, pp. 31–41.

[108] F. Brito e Abreu, W. Melo, "Evaluating the impact of object-oriented design on
software quality," Software Metrics Symposium, 1996., Proceedings of the 3rd International ,
vol., no., pp.90,99, 25-26 Mar 1996, doi: 10.1109/METRIC.1996.492446

[109] S. T. S. Demeyer and S. Ducasse, “FAMIX 2.1 The FAMOOS Information Exchange
Model,” University of Bern, 2001, Tech. Rep.

[110] R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of the Efficiency of
Change Metrics and Static Code Attributes for Defect Prediction,” in Proceedings of the 30th
International Conference on Software Engineering, ser. ICSE ’08. ACM, 2008, pp. 181–190.

[111] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects for Eclipse,” in
Proceedings of the Third International Workshop on Predictor Models in Software
Engineering, ser. PROMISE ’07. IEEE Computer Society, 2007, pp. 9–.

[112] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence using software
change history,” Software Engineering, IEEE Transactions on, vol. 26, no. 7, pp. 653–661,
Jul 2000.

[113] H. Gall, M. Jazayeri, and J. Krajewski, “CVS release history data for detecting logical
couplings,” in Software Evolution, 2003. Proceedings. Sixth International Workshop on
Principles of, Sept 2003, pp. 13–23.

FP7-PEOPLE-2012-IAPP	�–	ICEBERG	-	324356	 77	

	

Deliverable D2.2: “Validation scenarios and quality parameters”

[114] J. Ratzinger, M. Pinzger, and H. Gall, “EQ-Mine: Predicting Short-Term Defects for
Software Evolution,” in FASE, ser. Lecture Notes in Computer Science, M. B. Dwyer and A.
Lopes, Eds., vol. 4422. Springer, 2007, pp. 12–26.

[115] A. Hassan, “Predicting faults using the complexity of code change” in Software
Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, May 2009, pp. 78–88.

[116] K. Gokhale, M. Lyu and K. Trivedi, "Incorporating fault debugging activities into
software reliability models: A simulation approach," IEEE Transaction on Reliability, vol. 2,
2006.

[117] N. Nagappan, T. Ball and A. Zeller, "Mining metrics to predict component failures,"
Proceedings of teh 28th International conference on Software engineering, 2013.

