
Bug Localization in Test-Driven Development

Massimo Ficco(2)(3), Roberto Pietrantuono(1), and Stefano Russo(1)(3)

(1) Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II
Via Claudio 21, 80125 Napoli, IT

(2) Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli
Via Roma, Aversa (CE), IT

(3) Laboratorio ITeM “C. Savy” - Consorzio CINI, Via Cinthia - Edificio 1, 80126 Napoli, IT
{ficco, roberto.pietrantuono, stefano.russo}@unina.it

ABSTRACT
Software development teams that use agile methodologies
are increasingly adopting the test-driven development prac-
tice (TDD). TDD allows to produce software by iterative
and incremental work cycle, and with a strict control over
the process, favouring an early detection of bugs. However,
when applied to large and complex systems, TDD benefits
are not so obvious: manually locating and fixing bugs intro-
duced during the iterative development steps is a non-trivial
task. In such systems, the propagation chains following the
bugs activation can be unacceptably long and intricate, and
the size of the code to be analyzed is often too large. In
this paper, a bug localization technique specifically tailored
to TDD is presented. The technique is embedded in the
TDD cycle and it aims to improve developers’ ability to lo-
cate bugs as soon as possible. It is implemented in a tool,
and experimentally evaluated on newly developed Java pro-
grams.

1. INTRODUCTION

Test Driven Development (TDD) is a technique to incre-
mentally develop software, that was sporadically used for
decades, and that re-emerged in the last years as develop-
ment paradigm in the context of the so-called agile method-
ologies.
The increasing adoption of Extreme Programming (XP) in
various industrial projects as well as the identification of
TDD as a key strategy in agile software development have
captured in recent years an increasing attention also by aca-
demic research. As stated by Janzen et al. [1], the TDD
is an example of how the academic research sometimes fol-
lows the most spread and accepted software practice, rather
than leading it. The XP methodology is conceived to re-
duce the time-to-market of software systems, and the use
of TDD practice in XP allows developing more robust pro-
grams. Several studies showed this trend, claiming the at-
tention of various researchers, which started to study the

ability of TDD to detect software faults earlier in the devel-
opment process [2, 3, 4, 5].
In TDD, the developer writes unit tests from a set of user
requirements/functionalities, before writing the code itself.
Then s/he implements the code needed to pass the tests,
until he succeeds. When a bug is detected, it is promptly
fixed. Once the tests are passed, the developer performs the
refactoring of the code to acceptable standards; then s/he
proceeds to define a new set of test cases for other function-
alities, and implements a new piece of code to pass them.
In this cycle, even when the tests are successful, the code for
new functionalities can easily compromise the previously im-
plemented ones, introducing what are called regression bugs.
This is not an unusual event in the TDD, since whenever the
developer writes the code for some functionalities s/he does
not have a complete view of the whole system in detailed
design documents (differently from traditional development
cycles), and thus can affect the behavior of the code already
implemented.
In order to identify potential regression bugs, the developer,
once implemented a group of functionalities, executes re-
gression tests [6], before proceeding to implement new func-
tionalities. To obtain robust programs in low development
times, it is essential for developers to be able to correct these
bugs promptly.
The described process is particularly suited for relatively
small systems. However, when the size and complexity of
the system significantly increase, locating regression bugs
manually becomes a very challenging task. When regression
tests reveal a failure, the debugger should track the bug
propagation chain by repeatedly running the tests step-by-
step, until s/he identifies the bug source. If the system is
large and complex, with many interacting units and intricate
interdependencies, the effort to locate a bug can become un-
acceptable. In this phase, a tool to improve the debugging
process would allow the TDD practice to yield high produc-
tivity also in large projects.
In this paper, we propose a technique to speed up the bug
localization activity in the TDD process. It is based on
an anomaly detection approach that is iteratively applied
to each TDD cycle. The basic idea is to compare at each
cycle the behaviour of the application observed during re-
gression testing with a reference “correct” behavioral model
as intended by the developer, i.e., a model describing how
the application should behave. In particular, when a failure
occurs the technique identifies any deviation from the refer-
ence model, and then highlights the ones most likely related
to the bug.

To this aim, we implemented a tool that collects deviations
from the expected behavior and assigns them a weight mea-
suring their likelihood of representing the bug. Evaluation
metrics are defined and implemented in order to assign such
weights and rate the identified anomalies. Based on this
ranking, the debugger inspects directly those points that
are most likely related to the bug.
The implemented metrics are evaluated by applying the tool
to a known open-source Java library, namely JFreeChart1,
using a fault injection technique to reproduce the presence
of bugs in the code, and considering the goodness of the final
deviations ranking.
The overall approach and the implemented tool are also
evaluated by running a set of experiments in which several
groups of students developed a new application from scratch
(from the same set of requirements) by using the TDD ap-
proach. In these experiments the debugging times, measured
during the development without the support of the proposed
technique, are compared with the tool-supported debugging
times, in which developers employed the tool at each TDD
cycle. Results show a significant improvement of debugging
times across TDD cycles.
The rest of this paper is organized as follows: Section 2
outlines the background about the TDD practice, Section 3
describes the proposed solution, and provides some imple-
mentation details. Section 4 shows the experimental evalua-
tion and discusses the obtained results. Finally, Section 5 is
devoted to related work, and Section 6 concludes the paper.

2. TDD

TDD consists of few basic steps iteratively repeated over
time, with the aim of translating user requirements into test
cases, that guide the developer in the code implementation
process. It does not replace traditional testing, instead it
defines a proven way to ensure effective unit testing and
provides a working specification for the code. Figure 1 shows
the main steps of a TDD process. They may be summarized
as follows:

1. The developer writes an automated test case that de-
fines a new functionality to be implemented.

2. Then, he writes the code necessary to pass the defined
test.

3. The developer runs the test. If the test gives negative
outcome, he refactors the new code, and skips to the
next functionality. Otherwise, he refines its code until
the test is passed.

4. The developer periodically re-runs all the written test
cases, to be sure that the new code does not cause fail-
ures in the previous code (the previously implemented
functionality). This phase is called regression tests.

In the literature, the features of TDD have been shown to
bring benefits not only by reducing the development time,

1JFreeChart (version 1.0.9) is a free Java chart library
to develop professional quality charts. It is available at:
http://www.jfree.org/jfreechart/

Figure 1: TDD process

but also by producing more robust code [5]. Several em-
pirical studies have been conducted on the effectiveness of
TDD practice, both by industry and by academia. George
and Williams [7] shown how TDD produced, in their exper-
iments, higher quality code. In the same year, Williams et
al. [8] reported reduction in defects density up to 40% com-
pared to an ad-hoc testing approach, while in [6] and [3] the
authors reported respectively, quality improvements of 18%
and 50%, with an impact on the development time of 15-
20% (i.e., they showed that sometimes TDD adoption took
longer) with respect to a traditional development. Another
study [9] confirmed these results, reporting an even higher
reduction in faults density. However, results in [4] show that
TDD helps in reducing overall development effort and in im-
proving developer’s productivity, but authors observed that
the code quality seems to be affected by the actual test-
ing efforts applied during a development style. There are
other studies, like the one conducted by Miller et al. [10],
or two other academic ones [11, 12], that observed no sig-
nificant differences in the developer’s productivity, even if
they involved programmers who had little or no previous
experience with TDD. Authors highlighted the need to im-
prove testing skills of the developers for effectively adopting
test-first approaches.

2.1 Regression Tests
An important role in the TDD is played by regression tests.
Unlike traditional development cycle, in the TDD regression
bugs are very likely to be introduced during the work cycles,
since when developer implements a functionality, s/he does
not have a complete view of the system to develop in its
detailed design (e.g., due to lack of a design documentation,
or because the user requirements are not yet fully defined).
Developer does not clearly know how the successive func-
tionalities will affect the current one. Hence, changes in a
code area may inadvertently cause a software bug in another
area, and a function that worked correctly in a previous step
may stop working.
The detection of regression bugs is therefore a crucial step
in TDD, which occurs “inside” the development, not after.
For instance, let us suppose we are developing a simple soft-
ware application (e.g., an online bookshop) made up of 7
functionalities, and that we have already developed the first
two functionalities (see Example 1).

Example 1. Regression bugs in an online bookstore

1 Functionality F2::shipOrder
...

orderData getOrderData() {...}

void ship(sellOrderData) {

if(orderData.Number < 0 || !(checkISBN(orderData.ISBN))

{// return error }

N = F6::getCurrentN(orderData.ISBN);

if((N - orderData.Number) < 0) {

//return error

...

}

else {

//ship order

...

F6::updateAvail(sellOrderData)

...

}

}

//other methods to support the shipment

...

3 Functionality F2::shipOrder, modified after F6 implmen-
tation
string SalePurchase = ‘sale’;

orderData getOrderData() {...}

void ship(sellOrderData) {

if(orderData.Number < 0 || !(checkISBN(orderData.ISBN)

&& !(stringIsValid(SalePurchase))

// return error

//!---wrong logical condition ----!

...

N = F6::getCurrentN(orderData.ISBN);

if((N - orderData.Number) < 0) { //return error}

else { //ship order

F6::updateAvail(sellOrderData, SalePurchase) }

...

} //other methods to support the shipment

For simplicity, suppose that the functionality F2 is respon-
sible for shipping an order; it will include a method ship
(ISBN) that needs the current number of available items
with the given ISBN, denoted with currentN. The manage-
ment of the current availability of books is devoted to an-
other functionality, F6, not yet implemented. F6 will be in
charge of verifying the current availability (by the method
verifyAvail) and of updating it (the method updateAvail).
During the implementation of F2, test cases give negative
outcome, hence the developer skips to develop the third
functionality. F2 test cases assume that the currentN value
comes from F6 methods (i.e., they use a driver, since F6
is still not implemented). Based on the number of ordered
items and on the currentN value, it ships the order (and up-
dates the availability, temporary through a stub) or returns
an error.
The developer then proceeds in the development up to the
sixth functionality, responsible for managing the items avail-
ability. During the F6 implementation, developer realizes
that the updateAvail method needs to distinguish between a

2 Functionality F6::ManageAvailability

Boolean verifyAvail() {...}

updateAvail (orderData, SalePurchase) {

if (SalePurchase == ’Sale’) {

if ((currentN - orderData.Number) < 0) {

//return error

...

}

else {

//execute update

currentN = currentN - orderData.Number

...

}

}

else if (SalePurchase == ’Purchase’) {

currentN = currentN + orderData.Number

//!! ---check on Maximum Capacity missed---- !!

...

}

}

else { ... //error}

...

}

// other methods

...

sale order, by a client, or a purchase order by the bookshop
manager to increase the current availability. Then s/he in-
troduces a boolean variable (SalePurchase) to discriminate
the two cases. As a consequence of this unforeseen require-
ment, s/he has to modify F2 code. The modified code is
reported in the part 3 of Example 1. As may be noted,
the developer makes a mistake during the F2 modification,
introducing a bug: a wrong logical condition in the firstif
statement is specified (an AND operator instead of an OR).
Test cases for F6 give negative outcome, hence the developer
skips to the seventh functionality. The problem comes up
only when the developer executes regression tests. When the
developer implemented the ship method in F2, s/he did not
have a clear view of F6 and did not handle the case causing
the failure.
An example of more subtle bugs is in the F6 code: during
the F6 implementation, the developer makes a mistake in
the computation of the variable currentN (used by F2) in
the function updateAvailability. In particular, s/he omits a
check on the maximum capacity of items that can be stored.
Test cases for F6 give negative outcome, since they have only
to check that the availability is correctly updated. Hence,
the developer skips to the next functionality; however, the
variable currentN can assume a wrong value (greater than
the maximum capacity), which can bring to erroneous be-
haviours of the F2 functionality. Again, the problem comes
up only when the developer executes regression tests, when
s/he can realize that the variable currentN may be in an
inconsistent state.
In a complex system, the situation is typically worse than
the exemplified ones, since from the bug activation to the
failure manifestation there may be a very long and intricate
chain (e.g., the variable currentN of the example could have
been used by other functionalities without causing failures

up to F2); tracking back from the failure to the bug is not
trivial. The present work aims to ease the identification of
this kind of bugs that are not detected by unit tests, and that
typically are the main cause of development time wasting in
the TDD cycle.

3. ANOMALY DETECTION APPROACH

The use of a debug-aiding technique in the TDD process
allows guiding the debugger through the identification of
potential root causes of failures introduced during the de-
velopment, as the one reported in the previous example.
In the following, we refer to a failure occurrence as a con-
sequence of a chain fault-error-failure, in which a software
fault, once activated, becomes an error, propagating through
the system up to the interface. As bugs in the code are soft-
ware faults, just for the purpose of this work we use the
term software fault or simply fault interchangeably with the
term bug. During the fault propagation, the system exhibits
some behaviors different from the expected ones. We call
such deviating behaviors anomalies or violations. In the
described example, the omitted control in the updateAvail
method represents the bug, which, once activated (i.e., the
control flows through the method) propagates up to the ship
method and becomes a failure when an order is shipped with
a wrong currentN value (greater than the number of books
actually available). In that case, a violation may be a value
of the currentN variable at the exit point of the getCurrentN
method different than expected (e.g., outside an expected
range).
From the bug activation to the failure manifestation there
is, in general, a chain of one or more violations. Highlighting
such violations may be very important for debugging pur-
poses, since they point out where the bug is propagating.
However, identifying a violation requires (i) a clear descrip-
tion of the system expected behavior, and (ii) the definition
of what a deviation from this behavior means. Moreover,
since there can be a high number of violations and very
complex violation chains, we need a way to distinguish the
most relevant violations (i.e., the most related to the failure-
causing bug). Thus, a tool should support the tasks of: (i)
building an accurate model of the expected behavior of the
system, (ii) identifying violations with respect to the built
model, and (iii) discriminating the most relevant violations
(according to their proximity to the bug). This support
would lead the debugger to inspect directly the points clos-
est to the bug, thus reducing debugging (and development)
time.

In this work, the description of the expected system behavior
relies on a dynamic analysis technique that derives behav-
ioral models from execution traces. The behavioral model
is described by a set of execution traces reporting the in-
teractions among methods. The interactions are described
in terms of invariants and call sequences. An invariant is
a relation describing a property that should be always pre-
served. In particular, we consider input/output (I/O) invari-
ants, which can be inferred from tests execution by observing
the exchanged argument values. For instance, an invariant
involving a single variable x may require it to be comprised
in the range [a, b]; an invariant involving two variables may
require they to respect the relation x < y. A behavioral
model is therefore made up of a set of I/O invariants and

a sequence of function calls (reported in a trace file). For
building such models, we consider the technique presented
in [13], which produces a trace file representing the behav-
ioral model that reports the sequence of calls and invariants
on I/O method’s arguments, built (and updated) at each en-
try/exit point of methods. Note that the iterative nature of
TDD process favors the adoption of techniques based on in-
variants construction, since it allows building more and more
accurate behavioral models as development proceeds across
TDD cycles. A violation to this model is caused either by a
deviation from the built invariants (i.e., an argument value
that violates the property described by the invariant) and/or
by a sequence of calls different from the expected ones. For
instance, for an I/O invariant over a variable x such that
a < x < b, a violation is caused by a value of x outside the
range]a, b[.

Figure 2: The proposed approach. Ti are test cases,
Ei are execution traces resulting from tests execu-
tion, and Mi are the inferred models. Vi are the final
list of violations

As shown in Figure 2, the solution we propose is based on an
anomaly detection approach that acts in three phases: train-
ing, detection and ranking, which are applied to each TDD
cycle. In the training phase, the behavioral model of the
application representing the expected “correct” behavior is
built. In the detection phase an anomaly detection method
is adopted to highlight the deviating behaviors (i.e., viola-
tions) with respect to the correct behavior. Then, in the
ranking phase, all inferred violations are rated, in order to
identify the violations closest to the bug.

Training. TDD steps include writing tests for a given group
of functionalities, and then writing code to pass the them.
Tests are executed until success, before skipping to the next
functionalities. Training takes place during the (successful)
execution of these tests, that represent the desired behavior

for those functionalities. In particular, while executing these

tests (T1, .., Tn), traces (E
′
1, .., E

′
n) are gathered and a series

of behavioral models (M
′
1, .., M

′
n) are built. The models, ob-

tained from the test executions (only from passed tests), rep-
resent the behaviors that are expected for the functionality
being tested, i.e., the desired and hence “correct” behavior.

Detection. After that a group of functionalities is imple-
mented, in the last step of a TDD cycle, regression tests are
executed (with the already available test suites). During this
step, execution traces are gathered again, and compared to
the built models to detect violations. In practice, the call
sequences and the argument values are observed and com-
pared with the call sequences and the I/O invariants of the
correct behavioral models. Thus, if some code fragment,
written to implement a new functionality, has altered the
behavior of a previously implemented one, or if a bug intro-
duced in a functionality (and not correctly fixed) causes a
behavior different from the expected one, the technique will
capture these violations.

Ranking. During the detection phase, different violations
are inferred. We call “bug-related” violations all those vio-
lations directly related to a bug (i.e., that are consequence
of bug activation). The remaining violations that are not
related to a bug represent false positives. In order to dis-
criminate false positives, as well as to reduce the time re-
quired to analyze the volume of bug-related violations, we
propose a weight-based solution for ranking. In particular,
the detected violations are rated according to their likeli-
hood of being the closest violation to the bug that caused
the failure.

3.1 Ranking
As previously stated, the adopted anomaly detection ap-
proach does not directly detect the bug, but it identifies vi-
olations that appear along the fault-failure chain. However,
such an approach may generate a large volume of violations,
and no diagnosis is provided in order to help the debugger
to identify whether a violation is a true positive (i.e., bug-
related) or a false positive (i.e, behaviours not related to
the bug). Moreover, in the case of true positives, no infor-
mation is provided to determine which violation is closest
to the bug activation. The goal of the ranking phase is to
rate bug-related violations according to their closeness to the
bug activation. In this process, more distant bug-related vi-
olations have to be rated in the lower part of the ranking;
false-positives, which are not related to the bug, should be
rated even lower, in the last positions. To this aim we de-
fined a metric that assigns a value to violations representing
their likelihood of being the closest one to the bug.
In particular, we consider three criteria to determine the
final probability values:

1. We consider that during the execution of regression
tests, if a bug is present, it may cause more than one
test case execution to fail. Hence, we will have a set
of execution traces corresponding to the failed tests.
In this case, those violations that are common to more
executions with failing outcome are deemed more likely

to be related to the failure-causing bug. Essentially, if
a violation (e.g., an argument value out of the expected
range) is always present when the system fails, then it
will be more likely related to the bug.

2. Given a violation vi, we consider, as additional criteria
to determine the final probability value of vi, the num-
ber of violations present in the failed execution traces
containing vi.

3. The occurrence position of vi in such traces.

Trying to translate these qualitative considerations into a
metric, we define, given a violation vi, the following param-
eters:

1. Number of failed executions in which vi is present (Nf)
over the number of executions in which vi is present
(N). The violation vi is as much likely to be a bug-
related violation as the ratio Nf/N is close to 1. In the
case that the ratio amounts to 1, this means that each
execution containing vi failed.

2. For each failed execution, we consider the ratio 1/nP,
where nP is the number of violations in that execution.
If vi was the only violation in that execution, it would
be very likely related to the bug causing the failure.
The less the number of violations, the more likely a vi-
olation is deemed responsible for (i.e., directly related
to) the failure.

3. For each failed execution, we consider the position of
vi in the execution trace with respect to the other de-
tected violations. Also in this case, we consider the
ratio 1/pos, where pos is the position (starting from
1 to n, with n being the number of violations in the
considered execution). If vi is the first violation in
the considered failed execution, it will be not a conse-
quence of other violations (thus, it is considered more
likely related to the bug). On the other hand, when
the position of vi is closer to n, it is more likely a con-
sequence of other violations (thus, it is less likely the
closest one to the bug activation).

Taking the extreme case, vi has probability 1 to be related
to the bug if the following conditions contemporary stand:

1. Nf = N, i.e., each time vi is present in an execution,
that execution fails;

2. P
executions[pF ∗ (1/nP ∗ 1/pos)] = Nf with

pF = 1 if the execution containing vi is failed,
pF = 0 otherwise.

(1)
Equation 1 means that for each failed execution (pF =
1), which contains vi, vi is the only present violation,
which implies it is in the first position (i.e., nP = 1
and pos = 1).

In these conditions, the contributions 1 and 2 will be both
equals to N. Therefore, the metric can be formalized, with
respect to the extreme case, as follows:

pi = P (vi is bug-related) =

=
Nf+

P
executions[pF∗((1/nP)α∗(1/pos)β)]

2N

(2)

that is 1 in the described extreme conditions. The factors
α and β (both comprised between 0 and 1) are needed to
weigh the importance of the parameters 2 and 3 respectively
(i.e., the number of violations and the relative position).
Referring to the example presented in section 2.1, suppose
that the bug introduced in the F6 functionality produces a
value of the currentN variable, that violates an I/O invari-
ant built on the method getCurrentN of F2 (i.e., a value out
of the range observed during the model construction phase).
Assume that this violation appears in three different exe-
cutions during the regression tests, and that two of these
executions fail (i.e., Nf = 2 and N = 3). Now, assuming
that the violation appears in the two failed executions in the
positions pos = 10 and pos = 5 respectively, and that for
these executions nP = 120, and nP = 50. In such a case,
the probability value assigned to the violation would be:

P (vi is bug − related) =

= 2+[(1/120)0.3∗(1/10)0.5]+[(1/50)0.3∗(1/5)0.5]
6

= 0.369
(3)

In this example, the main contribution is given by the num-
ber of failed executions in which vi is present (two out of
three) that is 0.333. Instead, the high number of violations
in both failed executions causes a very little contribution
(0.035). At the extreme, if vi was the only present violation
in the two failed executions, the value would be 0.666, which
is the maximum value assignable with two failed executions
over three. The conditions (1) and (2), that correspond,
respectively, to the first and the second terms of equation 2
numerator, both contribute to the final probability with a
value between 0 and 0.5. In this case, with two failed exe-
cutions containing vi, their contribution is at most 0.333 for
both. Thus the value Nf , other than determining the first
contribution, also limits the second contribution, since the
latter considers only failed executions. An improvement to
this metric can be brought by considering that it does not
take into account potential relationship among violations
referring to the same method. More violations referring to
the same method could indicate a high likelihood that the
fault is located in that method. Thus, a further refinement
is possible: all the violations referring to the same method
(even with different I/O violations on the exchanged param-
eters) are grouped together, and for each method M in the
execution trace the following value is assigned:

M value =

P
i piP
j pj

(4)

where pi is the probability value assigned to the violation vi.
The index i belongs to the set of all violations referring to
the method M and j refers to all the violations. In this way,
a ranking with respect to the likelihood for the method to
exhibit the violation closest to the bug is done, rather than
on the single closest violations. This second version of the
metric has shown significant improvements, as described in
the experimental section.
With this schema other refinements are possible. For in-
stance, in order to further penalize those violations with

lower probability, a third version is obtained by consider-
ing each probability pi divided by the relative position of vi

(considering just the ranking relative to the method M). For
instance, consider two methods A and B. Suppose that the
method A is responsible for the bug, and the second version
of the metric reported one violation rated in the first posi-
tion of the method A’s ranking (e.g., v1

A with probability p1

= 0.9), and the method B has two violations (e.g., v1
B and

v2
B with probabilities p1 = 0.7 and p2 = 0.3 respectively),

in the first and second position of the method B’s ranking.
The M value numerator assigned to A with the second met-
ric would be 0.9, and the M value numerator for B would
be: 0.7 + 0.3 = 1. Instead, by considering the relative posi-
tion (third version of the metric), the numerator for A will
still be 0.9, but the numerator value assigned to B will be:
0.7+ 0.3/2 = 0.85, penalizing the second violation in B; this
would correctly identify the method A as the most probable
related to the bug.
More drastic refinements could be considered, by further
penalizing the violations that are in the lowest part of the
ranking, but they would not always yield the right result. At
the extreme, the risk is to cancel the positive effect intro-
duced by the second version. Thus, in the experimentation
we took into account only the three described versions of the
implemented metric, referring to them as first, second and
third metric.

3.2 Implementation
A prototype tool embedded in the TDD cycle has been im-
plemented, to evaluate performance of the described tech-
nique. Figure 3 represents the tool high level architecture.
We named the tool ReTest.

The first block is the Model builder. It is responsible for

Figure 3: The tool architecture

instrumenting the application, monitoring it and building,
from the execution traces, the behavioral models. For each
execution trace, it builds and stores a model. In particular,
the Model builder block uses the tool Daikon [13]. Daikon
is a dynamic analysis tool that derives invariants from exe-
cution traces. It infers a set of invariants by observing the
exchanged parameter values and by statistically comparing

them with a set of 160 predefined templates. It starts with a
set of syntactic constraints for the considered variables, and
incrementally considers the input values. At each step, it
eliminates the constraints violated by the value to obtain a
set of constraints satisfied by all inputs. Statistical consider-
ations allow Daikon to identify constraints that are verified
incidentally. The output of Daikon is a list of I/O invariants
for each of the instrumented points.
The behavioral model is therefore described by a set of exe-
cution traces reporting the sequence of calls and invariants
built (and updated) at each entry/exit point of methods,
and stored in a file. Figure 4 shows a simple example devel-
oped by Daikon’s author [14] describing invariants built on
a Java class StackAr that implements a stack with a fixed
maximum size. The class has two fields, namely: Object[]

theArray, and int topOfStack, representing, respectively,
the array that contains the stack elements and the index of
the top element (with -1 meaning stack empty). Among the
class methods, Figure 4 shows invariants produced for the
isFull method.

Figure 4: An excerpt of invariants of the StackAr

program

The output for each invariant is described below:
this.theArray != null: the reference theArray was never
observed to be null after it was set in the constructor.
this.theArray.getClass() == java.lang.Object[].class:
the runtime class of theArray is Object[].
this.topOfStack >= -1, and
this.topOfStack <= this.theArray.length - 1:
topOfStack is between -1 and the maximum array index,
inclusive.
this.theArray[0..this.topOfStack] elements != null:
all of the stack elements are non-null, i.e., the test suite
never pushed null on the stack.
this.theArray[this.topOfStack+1..]elements == null:
all of the elements in the array that are not currently in the
stack are null.
Likely invariants are also found at each method entry and
exit. These correspond to the pre- and post-conditions for
the method. There is one pre-condition for the StackAr con-
structor: capacity >= 0: StackAr was never created with

a negative capacity.
The post-conditions for the StackAr constructor are:
orig(capacity) == this.theArray.length: the size of the
array that will contain the stack is equal to the specified ca-
pacity.
this.topOfStack == -1, and
this.theArray[] elements == null: initially the stack is
empty and all of its elements are null. There are no pre-
conditions for the isFull method other than the object in-
variants. The post-conditions are:
this.topOfStack == orig(this.topOfStack),
this.theArray == orig(this.theArray), and
this.theArray[] == orig(this.theArray[]): neither the
topOfStack index, nor the reference to the theArray array,
nor the contents of the array are modified by the method.
(return == true) <==>

(this.topOfStack == this.theArray.length - 1):
when isFull returns true, topOfStack indexes the last ele-
ment of theArray.
(return == false) <==>

(this.topOfStack < this.theArray.length - 1):
when isFull returns false,topOfStack indexes an element
prior to the last element of theArray.

Models are traces containing such kind of invariants in se-
quence for each instrumented method call, and that are it-
eratively updated.
The second block is the Violation Detector, which is respon-
sible for detecting differences between the models obtained
in the training phase and the models obtained in the de-
tection phase. The Violation Detector block is based on a
tool related to the Daikon suite, that is InvariantDiff, whose
goal is to detect violations to a set of I/O invariants. This
block detects both I/O invariant violations, supported by
InvariantDiff, and violations to the sequence of calls that
have been recorded.
Violations are stored and then analyzed by the Violation
Analyzer block. This block rates violations to determine
their likelihood of being related to a bug. The block imple-
menting the three described metrics is the Default Metric
block. Finally, the tool design also includes a Metric Loader
block, to allow the user to define and adopt its own met-
ric. The output is a list of violations reporting the involved
methods and variables, and the corresponding probability
values assigned by the metric.
Figure 5 shows a screenshot of the tool, during experiments,
displaying the output file that reports the final list of viola-
tions. Information reported in this output file is: the name
of the violation detected, the name of the involved package,
class and method, and the values of each parameter used
by the metric (i.e., Nf , N , the positions of violation in the
failed execution traces, the number of violations in failed
executions, the values for α and β, and the final probabil-
ity value assigned to that violation). In the example, the
reported violation had a probability of 0.351 to be the clos-
est one to the bug activation (i.e., it is the one most likely
related to the bug). Debugger would start its debugging
process from the first violation reported in this output file.

The implemented tool uses Java as development language,
Eclipse as development environment, and JUnit to run test
cases. Hence it can be executed during development in con-
junction with JUnit framework, and seamlessly added as a

Figure 5: The output file reporting the violations
list

plugin to the Eclipse IDE. This aspect favors the usability
of the tool, since both Java and JUnit are widely used and
well-known in both industry and academia. In our experi-
ments, students confirm these considerations; however, the
tool is a prototype, and has been used only by students;
hence, any systematic evaluation of usability would still be
premature.
As for portability, being based on JUnit and on a Daikon
Java front-end (i.e., Chicory), the implemented tool cur-
rently works only with Java programs. However, future ex-
tension is straightforward, since it is sufficient to use the
xUnit family tools and the other Daikon front-ends, to sup-
port other languages too (such as C/C++).

4. EXPERIMENTATION

The proposed ranking metrics are evaluated by emulating
both the development of additional functionalities to an ex-
isting application (i.e., an extension to an existing applica-
tion), and the presence of various types of faults (by a faults
injection campaign). These experiments allowed us to eval-
uate the three metrics by considering the goodness of the
ranking, i.e., the closeness of the first rated bug-related vio-
lation to the actual bug. A comparison with a well-known
algorithm for debugging, namely SOBER [31], is also pro-
vided. Once evaluated the ranking ability of the proposed
metrics, the technique is also experimented on an applica-
tion developed from scratch by using the TDD approach.

4.1 Metric Evaluation
To evaluate metrics performance, ReTest is applied to a well-
known open-source Java library, namely JFreeChart2, be-
ing available both the source code and the unit test cases.
JFreeChart source code consists, in the chosen version, of
a set of about 560 classes and 7500 functions, amounting

2JFreeChart (version 1.0.9) is a free Java chart library
to develop professional quality charts. It is available at:
http://www.jfree.org/jfreechart/

to nearly 200K Lines-of-Code (LoC). ReTest is applied to a
subset of this code in the packages org.jfree.chart.util,
and org.jfree.chart.renderer, corresponding to 2618 LoC.

4.1.1 The procedure
In order to evaluate the effectiveness of the three metrics in
a TDD process, we emulated the development by executing
the four steps of TDD, and by emulating the presence of
faults via fault injection.
The first two steps of TDD (i.e., “Write Tests” and “Write
Code”) do not require relevant efforts, since both the tests
and the source code are available. The third and fourth steps
(i.e., “Run Tests” and “Regression Tests”) are carried out by
using the JUint framework. In the regression test phase,
ReTool evaluates the violations caused by injected bugs and
rates them according to the defined criteria. In particular,
the experiments are performed as follows:

• as first step, we choose a group of functionalities (and
the corresponding unit test cases to be run), that rep-
resent the functionalities to be developed.

• Then we manually inject a fault in the code, by pay-
ing attention to not inject faults detectable by unit
test cases (because in this case, the fault is supposed
to be removed before completing the functionality im-
plementation, and thus prior to the regression tests).
If injected faults are detected by unit test cases, the
experiment is repeated by changing the injection.

• Once injected the fault, the unit test cases correspond-
ing to the chosen functionalities are run (with the in-
strumentation of our tool), in order to verify if the
code passes the tests. During unit tests execution, the
behavioral models are built.

• When unit tests do not detect any faults, development
of that functionality is supposed to end. Then, re-
gression tests are performed over all the functional-
ities developed till then, since the injected bug can
cause anomalies in previously developed functionali-
ties, as argued above. During regression tests, the tool
automatically collects violations, computes metric val-
ues and classifies them according to their likelihood of
being related to the injected bug.

Thus, the output of the last step is a list of violations, which
can be either false positives or bug-related violations. The
debugger starts in such a bug report from the violation rated
in the first position by the tool. If it is a bug-related violation
(i.e., a consequence of the bug), s/he locates the bug by
inspecting the code starting from that violation. If it is a
false positive, s/he is not able to locate the bug and, after
some time, skips to the second violation, until s/he meets a
bug-related violation. Hence, it is possible to consider two
evaluation measures:

1. the first one is the position of the first bug-related vi-
olation in the ranking carried out by the tool. The
higher this position, the higher the debugging time.

2. We consider the violation chain, V C = {v1, v2, . . . ,
vn}, as the sequence of violations in the execution trace

that occurred from the bug activation to the failure.
Let V denote the bug-related violation reported by the
tool in the first position of the bug report, as the clos-
est one to the bug according to its ranking. To evaluate
how much this ranking is correct and useful, the second
measure is the length of the violations chain between
the bug and V , we call it VC length. Since debug-
ger would start from V to localize the bug, the higher
VC length, the more time the debugger will employ to
locate the bug (more code needs to be inspected).

The latter measure turned out to be much more important
than the position of the first bug-related violation, since in
almost all the performed experiments the tool rated in the
first position a bug-related violation (i.e., false positives are
almost always rated in the lowest positions). Actually, if
the tool rates in the first position a false positive, the tool
performance has to be considered not acceptable (as showed
in the next section), since the debugger would be misled,
and would spend too much time before skipping to the sec-
ond violation. When the first violation is a bug-related one
(in almost all the cases), the relevant evaluation measure is
therefore the V C length in the execution trace.

4.1.2 Fault injection
Fault injection is a common approach to evaluate debug-
ging techniques (e.g., [31], [33], [34], [36]-[39]). There are
several approaches to emulate software faults. Faults can be
reproduced either by modifying the source code of the tar-
get application, i.e., by injecting the actual fault (Software
Mutation, SM), or by injecting errors. Software Mutation
has been showed to be the most accurate way to emulate
software faults [15]. It can be applied when the source code
is available, and it allows to emulate all the software faults
encompassed by a well-known classification scheme, i.e., the
Orthogonal Defect Classification (ODC, [16]).
For these reasons, we preferred SM to error injection tech-
niques, such as SWIFI, and to Binary Mutation also known
as G-SWFIT [17]. Indeed, SWIFI does not allow to repro-
duce software faults that require large modifications to the
code, or that are due to design deficiencies, such as Function
Faults (see [16]). By G-SWFIT it is tricky to assure that
injection locations actually reflect the high-level constructs
where faults are prone to appear. Moreover, it cannot assure
that binary mutations are the same as generated by source
code mutations. Hence, we inject faults directly into the
source code, (according to the ODC classification). Table 1
indicates the ODC types that have been injected and their
meaning.

4.1.3 Results
We applied the outlined procedure for an experimental set of
20 different faulty versions, and evaluated the performances
of the three implemented metrics. Experiments produced
the results reported in Table 2, for the three implemented
metric versions. In particular, Table 2 shows, for each ex-
periment, the VC length between the bug activation and V ,
(i.e., the bug-related violation reported in the first position
by the tool), and the number of violations detected during
each experiment. Note that more violations may refer to
the same method called several times. Experiments marked
with a ‘*’ character are the ones in which the tool rated as

Table 1: Kind of injected faults

ODC Type Description

Affects significant capability
Function (such as end-user interfaces

or global data structure)
Requires design change
Affects a few lines of code

Assignment (such as initialization of control
blocks or data structure)
Addresses program logic

Checking that has failed to validate
data and values
Include efficiency or correctness

Algorithm problems that affect the task
and requires re-implementation

first violation a false-positive (in which cases the tool perfor-
mances are considered as not acceptable). In all the other
cases, the first rated violation is a bug-related violation.
Results show that best performances are obtained by the
third metric. In 75% (15 over 20) of the experiments the
VC length is less than six. Compared to the first metric, the
latter shown the same results for just 6 experiments (30%),
while the second metric for 14 over 20 experiments (70%).
In the remaining cases (respectively, 25%, 70% and 30%),
the VC lenght is always greater than ten, thus significantly
compromising the ability of the technique to locate bugs in
acceptable time (also in these cases, the third metric shows
better results).

Table 2: Results showing the VC length in the execu-
tion trace from the bug activation to the bug-related
violation V, and the number of total violations in
each test

Test VC length/ VC length/ VC length/
Tot. Violations Tot. Violations Tot. Violations

by Metric 1 by Metric 2 by Metric 3
1 73/596 1/596 1/596
2 1/77 2/77 1/77
3 39/293 3/293 3/293
4 142/168 133/168 126/168
5 49/301 1/301 1/301
6 211/291 13/291 13/291
7 109/172 3/172 3/172
8 87/231 5/231 5/231
9 1/46 22/46 22/46
10 1/31 1/31 1/31
11 16/56 4/56 4/56
12 21/133 6/133 6/133
13 23/129 5/129 5/129
14 276/312 * 211/312 * 19/312 *
15 37/93 2/93 2/93
16 1/43 2/43 1/43
17 2/77 1/77 1/77
18 123/149 * 61/149 * 33/149 *
19 16/211 103/211 3/211
20 1/37 1/37 1/37

4.1.4 Considerations
Results show that the introduction of the second criterion
(i.e., violations grouped according to the method they refer
to) has been successful. A further improvement has been
obtained by giving less importance to the violations rated

at the lowest part of the ranking (i.e., the third metric),
bringing the most of the VC length values under six. In the
experimentation phase, described in the next section, we
adopted the third metric, which provided the best results.
From the analysis of the injected faults, it has been also
possible to observe the metrics behaviors with respect to
different fault types. The diagram in Figure 6 represents
the number of violations whose VC length is in the range
1-6 (i.e., the best results), classified per injected fault type
and per used metric.

Figure 6: Number of violations (in the range 1-6)
per fault type and per metric

The three metric versions behave almost in the same way
for Assignment and Checking fault type. This means that
grouping violations by methods is quite irrelevant for these
types of fault. The second and third metrics introduce im-
provements in the Function and Algorithm category. The
changes introduced by these metrics affect the ability to
localize faults related to the “logic” of the code (e.g., “Al-
gorithm”). The most relevant improvement introduced by
the third metric is about the Function Faults. This type of
faults affects the design, requiring design changes and large
modifications to the code. Grouping by methods and giving
more importance to the first violations led to better localiza-
tion of these more complex faults. This can be explained by
considering that faults requiring significant design changes
very likely cause more violations for the method where they
are injected.

4.1.5 Comparison with SOBER
Performances of the ranking algorithm are compared with
a known debugging algorithm, called SOBER [31]. Sober
is a statistical approach to localize bugs that models eval-
uation patterns of predicates in both correct and incorrect
runs. It regards a predicate as bug-relevant if its evalua-
tion pattern in incorrect runs differs significantly from that
in correct ones. In particular, given a set of instrumented
predicates, SOBER computes for each predicate P a score
indicating its bug-relevance, based on values taken by P in
both correct and failing executions. Observing the values of
P , its evaluation bias, representing the probability that P is
observed as true in each evaluation, is computed as follows:
π(P) = nt/(nt + nf), where nt is the number of times P is

evaluated to true in one execution, and nf the number of
times P is evaluated to false.
Considering multiple executions, SOBER computes the prob-
ability density function (pdf) of π(P) in all correct execu-
tions, and the pdf of π(P) in failing executions: the big-
ger the “dissimilarity” between the two pdf s (according to a
given similarity function; see [31] for details), the higher the
bug-relevance score of the predicate P .
Our approach, even using different information, shares with
SOBER the principle of distinguishing correct and incorrect
runs, and of evaluating the difference between them to as-
sign a score to violations.
We applied SOBER our case-study, comparing results with
the ones obtained with ReTool. We instrumented test cases
execution during regression tests, i.e., in the step four of the
procedure outlined in Section 4.1.1. The instrumented pred-
icates have been then classified by the SOBER algorithm.
Then, we proceeded with debugging considering the top-5
most suspicious predicates in the ranking, adhering to the
choice made in [31] (i.e., k = 5, k being the number of pred-
icates taken into account in the bug report).
Table 3 shows obtained results in terms of (approximated)
percentage of inspected statements to reach the bug. With
respect to the three metrics of ReTool, we observe that
SOBER has, in the average (i.e., last row of Table 4.1.5),
better performances than the first metric of ReTool and sim-
ilar performance to the second metric. The third metric of
ReTool outperforms SOBER, even though with a little mar-
gin (it requires about 4 % less code to be inspected w.r.t.
SOBER), confirming that the choice of penalizing violations
with lower bug-relevance probability is valid. Note that ex-
periments number 14 and 18 required a great percentage of
code to be examined with ReTool, since the first violation
was not bug-related (i.e., it was a false positive). Hence,
future effort should be deveoed to eliminate the occurrence
of false-positives. It should be also noted that SOBER and
the third metric of ReTool exhibit a more regular behavior,
i.e., with low variations among experiments (with regard to
this aspect, SOBER is slightly better than the third met-
ric, since variance of SOBER results is about 10% less than
variance of metric 3).

Figure 7 reports the same data grouped by the percentage
of code inspected, i.e., the number of bugs that have been
found when a certain percentage of code is inspected. In
this histogram, it is important to observe the number of
bugs found with the lowest percentages of inspected code;
indeed, bug reports requiring high percentages of code to be
inspected may be not very useful.
By inspecting less than 1% of the code, ReTool allowed find-
ing more bugs than SOBER. Considering the inspection of at
least 5% of the code (i.e., [0-1) and [1-5) intervals) , SOBER
outperforms metric 1, but not metric 2 and 3; when the
percentage goes up to 20 % of inspected code, SOBER per-
formance reaches metric 2 and 3 (15, 16, and 17 bugs are
found, respectively, for SOBER, metric 2 and 3, whereas
metric 1 finds 9 bugs). The other bugs are clearly found
when more than 20 % of the code is inspected. It should be
noted that metric 2 and 3 does not have intermediate val-
ues: either they allow revealing a bug within 20 % of code,
or with more than 50 % of code inspected.

Table 3: Results showing the percentage of code
inspected before finding the bug with ReTool and
SOBER

Test Inspected Inspected Inspected Inspected
Code (%) Code (%) Code (%) Code (%)

Metric 1 Metric 2 Metric 3 SOBER

1 48.1 0.4 0.4 3.2
2 0.3 0.9 0.3 0.2
3 38.0 3.1 3.1 6.4
4 67.8 70.6 75.2 18.5
5 41.3 0.2 0.2 11.9
6 92.6 15.1 15.1 4.8
7 54.4 1.4 1.4 7.2
8 49.5 2.6 2.6 1.0
9 0.2 18.3 18.3 46.3
10 0.8 0.8 0.8 2.6
11 17.8 5.9 5.9 8.0
12 19.5 7.4 7.4 32.1
13 20.7 4.6 4.6 65.4
14 96.2 91.3 55.0 14.1
15 32.2 1.5 1.5 9.9
16 0.4 0,6 0.4 3.2
17 1.3 1.0 1.0 0.2
18 87.6 74.5 53.0 67.9
19 13.6 62.3 2.1 3.4
20 0.5 0.5 0.5 22.8

Mean 34.14 18.15 12.44 16.46

Experimental results should be interpreted with care.
As threats to validity, it should be noted that:

• we selected for SOBER k = 5, as suggested by authors
in [31]. Choosing a different value for k may change
SOBER performances in these experiments. On the
other hand, it makes no much sense trying different k
values and then starting the debug; it would require
too much time;

• experimentation is carried out on one program; this,
of course, limits the generalization of results (for in-
stance, also performances of SOBER are different, and
are better, with respect to experiments described in
[31]). Certainly, the case-study application affects ex-
perimental results;

• the program structure may influence performance of
ReTool. Indeed, violations indicate the method con-
taining the bug, and also the variable(s), passed as
argument, which violated the invariant. The inspec-
tion points are actually the set/get points regarding
that variable(s) in that method. Thus, the average
number of LoC of methods affect performance of Re-
Tool : in our case, JFreeChart is well designed, since it
has about 25 lines of code per method, hence actually
reducing the inspection to few points per method, but
this could not be always the case.

Considering that SOBER acts with a different source of in-
formation (i.e., predicates), neglecting information at method
level, the latter point suggests that combining SOBER and
ReTool is certainly a valuable way to be pursued in the fu-
ture.

Figure 7: Number of violations (in the range 1-6)
per fault type and per metric

4.2 Case Study
Performances of the proposed technique (in terms of obtain-
able saving of time in the bug localization process) have been
also experimentally evaluated on an application for multi-
media library management, implemented by several student
teams according to the TDD approach. Differently from the
previous case, thus application is a newly developed applica-
tion. The involved groups of students started from the same
requirements, consisting in a set of 16 use cases describing
the functionalities to be developed. The experimentation
was carried out in two steps.
In the first step, the application development has conducted
according to the TDD cycle. Each time a group of function-
alities was developed, the team executed the corresponding
regression tests, obtaining a certain number of failures. At
the end of each of these cycles , the “faulty” version of the
current implemented software was stored. Then the team
started the debugging process, and proceeded with the de-
velopment of new functionalities.
In this first step, a manual debugging was carried out in
order to locate and fix the bugs, during which information
about the debugging process was collected. In particular, at
each debugging session, developers recorded the number of
fixed faults, the time needed to remove each fault, and in-
formation to identify a fault (i.e., the method where it was
located, and the code line number). At the end of the devel-
opment of all functionalities, developers reported the list of
manual debugging times for each located fault. Such results
are shown in the third column of Table 4.
In the second step, the debugging times with the support of
the tool are compared with manual debugging times previ-
ously measured. In particular, by using ReTest, the teams
performed the debug on stored intermediate software faulty
versions. To avoid mutual influences, each team worked
on the program faulty versions developed by another team.
Each time a failure was experienced, the tool reported vi-
olations rated according to their likelihood of being related
to the bug, and debugging started from the first violation
(the tool-supported debugging time is shown in the fourth
column of Table 4).
Table 4 summarizes the results for three of the developer

groups. In these experiments, violations were rated accord-
ing to the best version of the implemented metric, i.e., the
third one. The table reports the manual debugging times
(column 3), as well as the tool-supported debugging times
(column 4). The first column represents the program ver-
sion stored at the end of each implementation session. Since
the groups developed the code independently, the number
of times they decided to run regression tests (thus the num-
ber of implementation sessions) is also, in general, different
from one group to another. Of course, the same stands for
the number of committed faults (second column). The last
row of each sub-table reports the first-order statistics (mean
and variance) for the manual debugging time (third column)
versus the tool-supported debugging time (fourth column).
The fifth column values indicate if the tool rated in the first
position a bug-related violation or a false positive. In partic-
ular, it reports the position of the first bug-related violation
in the ranking carried out by the tool (a value per each fault).
In the considered experiments, only one case presents a false
positive in the first position (the last version of the second
group).
The sixth column reports the length of the violation chain.
As discussed, this parameter is more important than the
fifth column parameter, since in all the cases, except one,
the tool rated in the first position a bug-related violation.
At the bottom of the Table, mean and variance for the over-
all experiments, as well as the total debugging times, are
reported.

Table 4: Debugging times with manual vs tool-
supported experiments. The 5th column indicates
the position in the ranking of the first bug-related
violation (BR) (a value per fault). The 6th column
is the VC length in the execution trace from the bug
activation to the bug-related violation V.

Group 1

Version #Faults Manual Tool Position of VC
Time Time the 1st BR length

N1 1 11’10” 2’00” 1 1
N2 3 16’20” 9’30” 1,1,1 3,4,1
N3 1 7’40” 9’20” 1 9

Manual Time Mean (and Variance) per fault: 7’02” (38070”)
Tool Time Mean (and Variance) per fault: 4’10” (32350”)

Group 2

Version #Faults Manual Tool Position of VC
Time Time the 1st BR length

N1 0 0 0 - -
N2 2 23’40” 8’10” 1,1 3,1
N3 1 19’00” 12’50” 1 5
N4 1 7’20” 13’50” 2 1

Manual Time Mean (and Variance) per fault: 12’30”(110470”)
Tool Time Mean (and Variance) per fault: 8’42”(106090”)

Group 3
Version #Faults Manual Tool Position of VC

Time Time the 1st BR length
N1 3 35’00” 9’30” 1,1,1 3,1,4
N2 1 8’10” 15’20” 1 14
N3 3 24’20” 9’50” 1,1,1 2,2,1

Manual Time Mean (and Variance) per fault: 9’38”(84681”)
Tool Time Mean (and Variance) per fault: 4’57”(81457”)

Summary

Manual Time Mean (and Variance) per fault: 9’ 32” (82087”)
Tool Time Mean (and Variance) per fault: 5’ 38” (74865”)

Results show that performances of the tool allowed develop-
ers to gain, in the average, 2’52” per fault (i.e., 40.75%)
in the program developed by the first group, 3’48” (i.e.,
30.40%) in the one developed by the second group, and 4’41”
(i.e., 48.61%) in the third group’s program. By averaging
the whole set of experiments (last row), the mean saving
time amounted to 3’54” per fault (that is 40.91%). Vari-
ances of tool-supported debugging times also turned out to
be lower in all the three experimented cases, being 5720”
(i.e., 15.02%) less than the manual debugging time in the
first group program, 4380” (i.e., 3.96%) in the second, and
3224” (i.e., 3.80%) in the third (7222”, i.e., 8.80% in total).
A lower variance in results indicates that the use of a semi-
automatic tool allows reducing the differences among faults
in terms of difficulty to be found, hence balancing the effort
required to find different kinds of faults.
Results are also supported by the t-student hypothesis test,
which indicates that the difference between tool-supported
debugging time and manual debugging time is significant at
a confidence level greater than 98% (p− value = 0.014774).

4.2.1 Considerations
As shown in the last columns of Table 4, when the first bug-
related violation is not in the first position of the ranking
(i.e, the tool rated a false positive as first violation), perfor-
mances significantly reduces (see the last row of the second
group), since the debugger spends too much time in the in-
spection of the code starting from a violation that is not
related to the bug. Moreover, we experienced that in the
other cases, in which the first rated violation is a bug-related
violation, the tool-supported times are significantly lower
than the manual times. In two cases, namely the third row
of the first group and the second row of the third group, the
tool-supported time is higher than the manual time (in par-
ticular, when the violations chain is longer than eight). This
happens because the debugger has to inspect too many code
lines before locating the bug, due to the distance (in terms
of number of violations) between the first-rated bug-related
violation and the actual bug. The threshold of eight is of
course limited to the experimented case study. In general,
there will be for a given application a limit of the violation
chain length over which the application of the tool is worse
than the manual debugging. In the average, the usage of the
tool allowed us to obtain significant time savings.

4.2.2 Scalability
One more relevant point is the scalability of the proposed
tool. The cost of our tool is caused by i) instrumentation,
and ii) ranking algorithm. As for the first point, the cost
regarding instrumentation (i.e., Model Builder and Viola-
tion Detector) is dependent on Daikon tool suite, since it is
the tool used to build invariants and detect violations. This
aspect is treated in detail in [13]. To summarize the main
points, this cost is: i) linear in the number of potential in-
variants at a program point; actually, since most invariants
are soon discarded, time is linear in the number of true in-
variants, which is a small constant in practice; ii) it is linear
in the number of times a program point is executed (i.e.,
linear to test suite size), and iii) linear in the number of in-
strumented program points (that is proportional to the size
of the program). Some actions that can be taken to reduce

instrumentation and invariants computation cost are3: i)
reducing the number of instrumented points to few critical
points, ii) reducing the number of executions, iii) reducing
the number of variables.
The scalability of the ranking algorithm depends on the
number of executions, and the number of violations in each
execution. Indeed, in order to assign probabilities to viola-
tions, for each violation vi the algorithm has to scan both
correct and incorrect executions (let us denote them with
Nf , and Nc, respectively), to see if vi is present in those
executions, and to determine its position of occurrence (cf.
with Equation (2)). The time complexity per each viola-
tion is therefore O((Nf +Nc)∗AverageV), being AverageV
the average number of violations in each execution. Then,
probability values assigned to violations have to be ordered.
Thus, the total complexity is: O((Nf +Nc) ∗AverageV) +
V ∗ log ∗ V), where V is the final list of violations.
As for the second metric, the complexity is unchanged, since
probability values for each method, which have to be summed
to generate M-Values (cf. with Equation (4)), are stored in a
data structure and summed while the algorithm scrolls and
scores violations.
As for the third metric, a further operation proportional to
the number of the final list of violations V is required, in
order to divide pi values for the relative position of the vi-
olation, hence getting to: O((Nf + Nc) ∗ AverageV) + V ∗
log ∗ V + V).
Comparing with SOBER, we note that i) the first and the
second metric have the same complexity, being SOBER com-
plexity equal to O((Nf +Nc)∗k)+k ∗ log ∗k) where k is the
number of predicates; ii) the third metric has higher com-
plexity than SOBER, due to the additional factor V ; but
iii) the number of violations V is typically lower than the
number of predicates, since it refers to methods.

5. RELATED WORK

In the past, much work dealt with bug localization by either
static analysis or dynamic analysis techniques. Static anal-
ysis approaches rely on source code knowledge and are used
to verify program correctness against one or more properties
(e.g., relevant examples are software model checking [18],
[19], or static slicing, by Weiser [20], [21]).
Dynamic analysis, as opposed to static analysis, aims to
give information about the system by observing its execu-
tion traces. It attempts to overcome the static analysis limi-
tations, such as the difficulty to cope with large-size applica-
tions, with changes of evolving systems and with the increas-
ing use of off-the-shelf (OTS) items, where the source code
is not always available. Most of approaches today are classi-
fiable as dynamic analysis; examples are (i) dynamic slicing,
(ii) techniques based on behavioral models, (iii) and statis-
tical debug. Our approach also falls into dynamic analysis
category, being based on runtime execution traces analysis.
Dynamic slicing approaches monitor the system during an
execution and trace the program elements covered. Only the
statements covered at runtime are considered to build the
slices: this lead to smaller slices with respect to those gener-
ated by static slicing approaches. It was first introduced by
Korel and Laski [22]. A recent approach based on dynamic

3see “the Daikon Invariant Detector”,
http://groups.csail.mit.edu/pag/daikon/

slicing is proposed in [23], which through a callstack-sensitive
slicing and slices intersection, reduces the slice sizes by lever-
aging the series of calls active when a program fails. Similar
approaches considering the sequence of active function calls
to improve slicing was previously proposed in [24], and [25].
Several dynamic analysis approaches and tools based on be-
havioral models appeared in the literature (e.g., [26, 27, 28,
29, 13]). Among these, one of the most successful ones is
Daikon [13]. It is a tool that automatically discovers likely
invariants from executions of instrumented programs, by
building a wide spectrum of invariants using definite invari-
ant templates. Authors in [26], [30] extend Daikon, propos-
ing a tool (BCT), that allows to infer invariants on both the
observation of call sequences among monitored objects (i.e.,
interaction invariants), and on the exchanged parameter val-
ues (i.e., the I/O invariants). It uses the Daikon inference
engine for discovering I/O invariants, and an incremental al-
gorithm, named Kbehavior, to build a finite state automata
(FSA) representing the call sequences among objects.
The DIDUCE project tool [29] tests a more restricted set
of predicates within the target program, and relaxes them
in a similar manner to Daikon at runtime. When the set
of predicates becomes stable, it relates further violations as
indications of potential bugs.
Also our approach relies on the use of behavioral models
builder tools to describe the behavior of the system under
development, and in particular it is based on Daikon. How-
ever, differently from the mentioned tools and techniques,
the presented tool adds the ability to distinguish those be-
haviors most likely related to the bug, through a ranking
process of detected violations by the implemented proxim-
ity metrics.

There are several approaches that use statistical considera-
tions to assign a score to events of interest. One technique
falling into this category is SOBER [31], presented in Section
4.1.5. Even if SOBER describes the application behavior
differently from our approach (it uses predicates), our tool
takes some concepts from it to define the metric for viola-
tions ranking (such as the distinction between correct and
incorrect executions to judge a violation).
Other statistical techniques have been proposed in the pro-
gram analysis and bug detection [32, 33, 34]. Among these,
authors in [34] present a statistical debugging algorithm that
aims at separating the effects of different bugs and identi-
fies predictors that are associated with individual bugs, with
the goal of making it easier to prioritize debugging efforts.
Statistical debugging is recently improved by an adaptive
monitoring strategy [35] that starts by monitoring a small
portion of the program, and then automatically refines in-
strumentation over time. Based on analysis of feedback in a
given stage, the technique automatically chooses new behav-
iors that could cause failures, and monitors them during the
successive stage, thus reducing the overhead. This approach
can be complementary to ours, since it is able to improve
performances in terms of instrumentation overhead.
Similarly, the HOLMES project [36] also contributed to sta-
tistical debugging by introducing a strategy based on paths
profiling (it counts the number of times each path is taken in
an acyclic region) to pinpoint likely causes of failures. The
tool also uses an iterative profiling for an adaptive instru-
mentation, by exploiting partial feedback data to select and
instrument predicates in successive iterations.

Authors in [37] propose a context-aware approach also based
on control flow paths, which considers predicate correlations
and control flow paths that connect the bug predictors for
better diagnosis of bugs. One more statistical debugging al-
gorithm is presented in [38], which aims at identifying pre-
dictors that are associated with individual bugs, separating
the effects of different bugs. The algorithm, differently from
previous ones (and from our approach), does not consider
exact values of predicate counts, but considers whether a
predicate was true at least once, making no further distinc-
tions among nonzero counts. This makes instrumentation
lighter and more scalable. However, unlike in [35], the in-
strumentation is non-adaptive.
Another relevant tool falling in this category is Tarantula
[39]. Tarantula algorithm assigns scores to statements, and
ranks the statements from most suspicious to least suspi-
cious. It utilizes a concept similar to ours, in that it con-
siders pass/fail information about test cases (along with the
entities that were executed by each test case, such as state-
ments, branches, methods, and the source code), and the
concept that entities executed by failed test cases are more
likely to be faulty than those executed by passed test cases.
Performances of this tool are also evaluated in [40].

An important debugging technique is the Delta Debugging
[41], [42]. It was introduced in 1999 by A. Zeller in a semi-
nal paper in this area [43], and used in several contexts (e.g.,
in diagnosis [44]). Delta debugging aims at simplifying or
isolating failure causes by systematically narrowing down
failure-inducing circumstances until a minimal set remains.
The algorithm aims at identifying the smallest set of changes
that caused a regression in a program. It requires the fol-
lowing information: a test that fails because of a regression,
a previous correct version of the program, and the set of
changes performed by programmers. The Delta Debugging
algorithm works in this way: it iteratively applies different
subsets of the changes to the original program to create dif-
ferent versions of the program and identify the failing ones.
The minimal set of changes that permit to reproduce the
failure is reported.

Our approach lies in between “Daikon-like” techniques, i.e.,
based on behavioral models, and statistical debug techniques,
since it uses the former approach to describe the application
behavior (in terms of invariants) and to detect violations (in
the training and detection phases), and some criteria of the
latter to rate those anomalous behaviors possibly related to
bugs (in the ranking phase).
Moreover, a key difference is that the presented technique
is specifically tailored for the TDD process: the continuous
iterations of TDD allowed us to embed a semi-automatic
debug step from the earliest stages of the development cy-
cle, where a greater effectiveness in bug detection is actually
required. Indeed, debugging applications during their devel-
opment helps greatly reducing maintenance costs.
The structure of the TDD approach also justifies the adop-
tion of techniques based on behavioral models in the training
phase, since repeated iterations allows for building more and
more accurate behavioral models.

Finally, it worth reporting some different approaches to de-
bugging, such as those taken in [45] and in [46]. In the former
authors present a technique for supporting in-house debug-

ging of field failures, based on a three-step procedure: field
failing executions recording, execution traces minimization,
and replaying of the minimized execution to help debug-
ging (within a debugger). In the latter ([46]), a spectra-
based technique is presented; here the concept of execution
time is considered as an indicator of anomalous behaviors,
and hence of potential bugs: time spectra are collected from
passing and failing runs, observed behavior models are cre-
ated using the time spectra of passing runs, and deviations
from these models in failing runs are identified and scored
as potential causes of failures.
The tool presented in [47], named Whyline, combines more
program analysis techniques, such as static and dynamic
slicing, precise call graph, in order to allow user to choose
a set of why or why didn’t question about program output
derived from program’s code and execution, and then to gen-
erate an answer to the questions. Such questions represent
the user’s will to understand the program’s behaviour start-
ing from the output.
There are several other, more narrowed, approaches that
focus on some specific aspects of bug localization problem.
Examples are the techniques presented in [48], [49], where
the problem of memory leak detection is faced, and in [50],
whose focus is on faults in concurrent programs.

6. CONCLUSION AND FUTURE WORK

In this work we presented a technique to help developers lo-
calize bugs, embedded in the Test-driven development cycle.
The technique has been implemented in a tool, written in
Java, that during the unit tests execution, allows to build
a model of the expected behavior of the software under de-
velopment, and then compares the behavior observed in the
regression test phase with the built model in order to detect
anomalies.
These anomalies are rated according to the defined met-
rics and assigned a probability to be related to the failure-
causing bug. Developer uses the ranking to inspect the code
and localize the bug. The proposed metrics has been evalu-
ated through an existing open-source application, in which a
fault injection campaign has been carried out and the good-
ness of the ranking process carried out by the tool has been
analyzed. The technique performances have been verified
by evaluating the tool’s ability to reduce debugging time
with respect to manual debugging on a new application de-
veloped by groups of students according to the TDD cycle.
Results encourage further investigation of the tool on other
software applications, and potential integration with exist-
ing approaches.
In particular, as for future work, we are attempting to im-
prove the accuracy of the implemented metrics in the iden-
tification of bug location, by considering the the combina-
tion of features of other statistical-based algorithms with
our technique. The goal is to improve the bug proximity
information inside the method that most likely contains the
bug, by combining violations of invariants on methods and
on object values with approaches based on predicates, which
currently do not consider information related to methods.
Moreover, we are evaluating the introduction of static in-
formation derived from software specifications (such as con-
straints on some critical exchanged values or mandatory se-
quences of calls) in order to ease the distinction among false

positives and erroneous behaviors.
Finally, we are investigating the factors that mainly impact
the value of α and β, in order to reduce the start-up time
spent to tune them; preliminary analyses show that the cou-
pling degree among modules has a significant impact, but
further investigations are needed.

7. REFERENCES
[1] D. Janzen, H. Saiedian. Test-Driven Development:

Concepts, Taxonomy, and Future Direction. In IEEE
Computer, vol. 38, no. 9, Sept. 2005, pp. 43-50.

[2] R. Kaufmann, D. Janzen. Implications of test-driven
development: a pilot study. In Proc. of the 18th ACM
SIGPLAN Conf. on Object-oriented programming,
systems, languages, and applications, OOPSLA 2003,
pp. 298-299.

[3] E.M. Maximilien, L. Williams. Assessing Test-Driven
Development at IBM. In Proc.of the IEEE 25th Int.
Conf. on Software Engineering (ICSE 03), 2003, pp.
564-569, IEEE CS Press.

[4] A. Gupta, P. Jalote. An Experimental Evaluation of
the Effectiveness and Efficiency of the Test Driven
Development. In Proc.f the First Int. Symp. on
Empirical Software Engineering and Measurement
(ESEM 2007), Sept. 2007, pp. 285-294.

[5] R.C. Martin, Professionalism and Test-Driven
Development. In IEEE Software, vol. 24, no. 3,
May-June 2007, pp. 32-36.

[6] B. George, L. Williams. A Structured Experiment of
Test-Driven Development. In Information and
Software Technology, vol. 46, no. 5, 2004, pp. 337-342.

[7] L. Williams, E. M. Maximilien, M. Vouk. Test-driven
development as a defect-reduction practice. In Proc.of
the IEEE 14th Int. Symp. on Software Reliability
Engineering (ISSRE ’03), pp. 34, 2003. IEEE
Computer Society.

[8] B. George, L. Williams. An initial investigation of test
driven development in industry. In Proc.of the 2003
ACM Symp. on Applied Computing (SAC ’03), 2003,
pp. 1135-1139. ACM Press.

[9] T. Bhat, N. Nagappan. Evaluating the efficacy of test
driven development: industrial case studies. In Proc.
of the ACM/IEEE Int. Symp. on Empirical Software
Engineering (ISESE ’06), 2006, pp. 356-363. ACM
Press.

[10] A. Geras, M. Smith, J. Miller. A prototype empirical
evaluation of test driven development. In Proc. of the
10th Int. Symp.on Software Metrics (Metrics ’04),
2004, pp. 405-416. IEEE Computer Society.

[11] M.M. Muller, O. Hagner. Experiment about Test-First
Programming. In Proc. of the Int. Conf. of Software
Engineering (ICSE), 2002, pp. 131-136.

[12] M. Pancur, Ciglaric, M. Trampus, M. T. Vidmar.
Towards Empirical Evaluation of Test-Driven
Development in a University Environment. In Proc. of
the Int. Conf. on Computer as a Tool (Eurocon 2003),
vol. 2, 2003, pp. 83-86.

[13] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. In IEEE Trans. on
Software Engineering, vol. 27, no. 2, Feb. 2001, pp.
99-123.

[14] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, vol. 69, no. 1-3,
Dec. 2007, pp. 35-45.

[15] M. Hiller, J. Christmansson, and M. Rimèn. An
experimental comparison of fault and error injection.
In Proc. of the IEEE Inter. Symp. on Software
Reliability Engineering (ISSRE ’98), 1998, pp.
369-378.

[16] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J.
Halliday, D.S. Moebus, B.K. Ray, M.-Y. Wong.
Orthogonal Defect Classification-A Concept for
In-Process Measurements. In IEEE Trans. on Software
Engineering, vol. 18, no. 11, Nov. 1992, pp. 943-956.

[17] J. Duraes and H. Madeira. Emulation of software
faults: A field data study and a practical approach. In
IEEE Trans. on Software Engineering, vol. 32, no. 11,
2006, pp. 849-867.

[18] E. Clarke, O. Grumberg, and D. Peled. Model
Checking, 1999, MIT Press.

[19] T. Ball, M. Naik, and S. K. Rajamani. From symptom
to cause: localizing errors in counterexample traces. In
POPL: Principles of Programming Languages, pp.
97–105, 2003.

[20] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10, pp. 352-357, July 1984.

[21] M. Weiser. Programmers Use Slicing When
Debugging. Communications of the ACM, Vol. 25(7),
pp. 446–452, July 1982.

[22] B. Korel and J. Laski. Dynamic Program Slicing.
Information Processing Letters, vol. 29, no. 3, pp.
155-163, 1988.

[23] S. Horwitz, B. Liblit, and M. Polishchuk. Better
debugging via output tracing and callstack-sensitive
slicing. IEEE Transactions on Software Engineering,
36(1): pp. 7–19, Jan./Feb. 2010.

[24] D. Binkley. Semantics Guided Regression Test Cost
Reduction. IEEE Transactions on Software
Engineering, vol. 23, no. 8, pp. 498–516, Aug. 1997

[25] J. Krinke. Context-Sensitivity Matters, but Context
Does Not. In Proc. of the International Workshop
Source Code Analysis and Manipulation, pp. 29- 35,
2004.

[26] L. Mariani, M. Pezzé, Behavior Capture and Test:
Automated Analysis of Component Integration. In
Proc. of the 10th IEEE Int. Conf. on Engineering of
Complex Computer Systems (ICECCS 2005), pp.
292-301.

[27] V. Dallmeier, C. Lindig, A. Wasylkowski, A. Zeller.
Mining Object Behavior with ADABU. In Proc. of the
Int. Conf. on Software Engineering, 2006, pp. 17-24.

[28] B. Schmerl, D. Garlan, H. Yan. Dinamically
discovering architectures with DiscoTect. In Proc. of
the European Conf. on Software Engineering
Conference (ESEC/FSE), 2005, pp. 103–106.

[29] S. Hangal, M. S Lam. Tracking Down Software Bugs
Using Automatic Anomaly Detection. In Proc. of the
24th Inter. Conf. on Software Engineering, ICSE 2002,
pp. 291-301.

[30] D. Lorenzoli, L. Mariani, and M. Pezze’. Automatic

generation of software behavioral models. In Proc. of
the 30th international conference on Software
engineering (ICSE ’08). ACM, New York, NY, USA,
501-510.

[31] C. Liu, X. Yan, L. Fei, J. Han, S. P. Midkiff. SOBER:
statistical model-based bug localization. In Proc. of
the 10th European Software Engineering Conference
(ESEC/FSE’05), pp. 286-295.

[32] A. Podgurski, D. Leon, P. Francis, W. Masri, M.
Minch, J. Sun, and B. Wang. Automated support for
classifying software failure reports. In Proc. of the
25th Int. Conf. on Software Engineering (ICSE’03),
2003, pp. 465-475.

[33] W. Dickinson, D. Leon, and A. Podgurski. Finding
failures by cluster analysis of execution profiles. In
Proc. of the 23rd Int. Conf. on Software Engineering
(ICSE’01), 2001, pp. 339-348.

[34] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. I.
Jordan. Scalable Statistical Bug Isolation. In Proc. of
the 2005 ACM SIGPLAN Conf. on Programming
language design and implementation, 2005, pp. 15-26.

[35] M. B. Dwyer, A. Kinneer, and S. G. Elbaum.
Adaptive online program analysis. In Proc, of the 29th
IEEE International Conference on Software
Engineering (ICSE ’07), pp. 220–229, IEEE Computer
Society, 2007.

[36] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori,
and K. Vaswani. HOLMES: Effective statistical
debugging via efficient path profiling. In Proc, of the
31st IEEE International Conference on Software
Engineering (ICSE ’09) pp. 34–44, IEEE Computer
Society, 2009.

[37] L. Jiang and Z. Su. Context-aware statistical
debugging: From bug predictors to faulty control flow
paths. In R. E. K. Stirewalt, A. Egyed, and B.
Fischer, editors, ASE, pp. 184–193. ACM, 2007.

[38] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable statistical bug isolation. In V. Sarkar
and M. W. Hall, editors, PLDI, pp. 15–26. ACM,
2005.

[39] J. A. Jones and M. J. Harrold. Empirical evaluation of
the Tarantula automatic fault-localization technique.
In D. F. Redmiles, T. Ellman, and A. Zisman,
editors, ASE, pp. 273–282. ACM, 2005.

[40] R. Santelices, J. A. Jones and Y, Yu and M. J.
Harrold. Lightweight Fault-Localization Using
Multiple Coverage Types. In Proc, of the 31st IEEE
International Conference on Software Engineering
(ICSE ’09), pp. 56–66, IEEE Computer Society, 2009.

[41] A. Zeller, R. Hildebrandt. Simplifying and Isolating
Failure-Inducing Input. In IEEE Transactions on
Software Engineering, vol. 28, no. 2, Feb. 2002, pp.
183-200.

[42] Holger Cleve and Andreas Zeller. 2005. Locating
causes of program failures. In Proc. of the 27th
international conference on Software engineering
(ICSE ’05). ACM, New York, NY, USA, 342-351.

[43] Andreas Zeller. 1999. Yesterday, my program worked.
Today, it does not. Why?. In Proc. of the 7th European
software engineering conference held jointly with the
7th ACM SIGSOFT international symposium on
Foundations of software engineering (ESEC/FSE-7).

Springer-Verlag, London, UK, 253–267.

[44] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros
Xanthos, and Yuanyuan Zhou. Triage: diagnosing
production run failures at the user’s site. In SOSP
’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pp.
131–144. ACM, 2007.

[45] James Clause and Alessandro Orso. 2007. A
Technique for Enabling and Supporting Debugging of
Field Failures. In Proc. of the 29th international
conference on Software Engineering (ICSE ’07). pp.
261–270, IEEE Computer Society, 2007.

[46] Yilmaz, C., Paradkar, A. M., and Williams, C. (2008).
Time will tell: fault localization using time spectra. In
Schafer, W., Dwyer, M. B., and Gruhn, V., editors,
Proceedings of the 30th International Conference on
Software Engineering (ICSEÕ08), pp. 81–90, ACM
Press.

[47] Andrew J. Ko and Brad A. Myers. 2008. Debugging
reinvented: asking and answering why and why not
questions about program behavior. In Proc. of the
30th international conference on Software engineering
(ICSE ’08), pp. 301–310, ACM, New York, NY, USA,
2008.

[48] Guoqing Xu and Atanas Rountev. 2008. Precise
memory leak detection for java software using
container profiling. In Proc. of the 30th international
conference on Software engineering (ICSE ’08), pp.
151–160, ACM, New York, NY, USA, 2008.

[49] James Clause and Alessandro Orso. 2010.
LEAKPOINT: pinpointing the causes of memory
leaks. In Proc. of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1
(ICSE ’10), Vol. 1., pp. 515–52, ACM, New York, NY,
USA, 2010.

[50] Sangmin Park, Richard W. Vuduc, and Mary Jean
Harrold. 2010. Falcon: fault localization in concurrent
programs. In Proc. of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1 (ICSE ’10), Vol. 1., pp. 245–254, ACM, New
York, NY, USA, 2010.

