
Towards Continuous Software Reliability Testing
in DevOps

Roberto Pietrantuono∗, Antonia Bertolino†, Guglielmo De Angelis‡, Breno Miranda§ and Stefano Russo∗
∗ DIETI - Università degli Studi di Napoli Federico II, Napoli, Italy

Email: {roberto.pietrantuono,sterusso}@unina.it
†CNR–ISTI, Pisa, Italy

Email: antonia.bertolino@isti.cnr.it
‡CNR–IASI, Roma, Italy

Email: guglielmo.deangelis@iasi.cnr.it
§Federal University of Pernambuco, Recife, Brazil

Email: bafm@cin.ufpe.br

Abstract—We introduce the DevOpRET approach for con-
tinuous reliability testing in DevOps. It leverages information
monitored in operation to guide operational-profile based testing,
which is conceived as part of the acceptance testing stage before
each next release to production. We overview the envisaged test
and monitoring pipeline, describe the approach and present a
case-study evaluating how reliability assessment evolves over
subsequent releases.

Index Terms—Acceptance Test, DevOps, Operational Profile,
Quality Gate, Software Reliability Testing

I. INTRODUCTION

DevOps is commonly regarded (Fig. 1) as the intersection
among the scopes of software Development (Dev), Operation
(Ops) and Quality Assurance (QA). Despite its spread, there is
no universally agreed upon definition for DevOps, as discussed
in [1], [2]. Some authors describe it as a cultural shift that IT
organizations should undergo to remove technical or manage-
rial barriers between the Dev and Ops teams, and let them
collaborate under shared responsibilities [3]. Others focus on
the technological capabilities that are necessary to enable such
culture [2]; for instance, Bass et al. define DevOps as “a set
of practices intended to reduce the time between committing a
change to a system and the change being placed into normal
production, while ensuring high quality” [4].

Continuous testing and monitoring are two key DevOps
practices. Continuous testing foresees: on the one side, short
and automated testing rounds that can provide quick quality
feedbacks to continuous integration (CI); on the other side, an
acceptance test stage that checks whether the current software
candidate is ready for release – Humble and Farley state
that “without running acceptance tests in a production-like
environment, we know nothing about whether the application
meets the customer’s specification. . . ” ([5], pag. 124). Mon-
itoring consists in collecting data from the system running
in production as well as users’ feedback, which can be used
by Dev and QA teams for measurement and optimization
in next testing stage. Monitoring is essential for DevOps
as, ultimately, DevOps adoption is motivated and driven by

Fig. 1: DevOps scope

business objectives, which are quantified into measurable Key
Performance Indicators (KPIs). Indeed, measurement is a
central instrument in DevOps success [6]. At each release
cycle, the acceptance testing must include the assessment of
KPIs of interest (such as performance, security) and evaluate
whether the candidate release meets the established targets.
Such KPI targets constitute a quality gate before release.

As noticed in [7], notwithstanding the interest of companies
and consultants, DevOps has not yet received much attention
by the scientific community. As for the most important KPIs
for DevOps, some attention has been devoted to performance
[8], [9] and security [10], [11], but further insights come form
looking at the ample gray literature. In particular, since 2014,
the DevOps Research and Assessment (DORA) company
(recently acquired by Google Cloud) has conducted yearly sur-
veys over more than 30K DevOps professionals. These reports
provide a comprehensive and up-to-date analysis of observed
trends, meant as reference by companies for benchmarking.
Typical KPIs reported by DORA include: Deployment fre-
quency, Lead time for changes, Time to restore service, and
Change failure rate. Notably, in the 2018 edition [12] for the
first time the report has also included a fifth KPI, namely
Availability, meant as “ensuring timely and reliable access to
and use of information".

Indeed, providing an adequate level of reliability in opera-
tion should be an important concern in DevOps and part of
the acceptance testing quality gate, as it certainly contributes
to the final user satisfaction. Yet, surprisingly, the topic of
DevOps reliability has not been addressed in existing work.
Motivated by such argument, we propose here an approach,
called DevOpRET, for introducing continuous software reli-
ability testing in DevOps practice. The approach is inspired
(as suggested by the acronym) by the software reliability
engineered testing (SRET) best practice, early introduced by
Musa [13]. DevOpRET is conceived to exploit usage data to
derive representative test cases and assess reliability before
each release.

In “traditional” software development, the adoption of relia-
bility testing practice can be hindered by the cost and difficulty
of specifying the operational profile. In DevOps, thanks to the
short-circuit between development and production, we claim
that reliability testing is facilitated because the development
and QA team can i) leverage usage data coming from Ops
through monitoring as a feedback to optimize the operational
profile, and ii) rely on it for the next acceptance testing cycle
to refine reliability assessment or improve it.

Towards such a vision, in this paper we provide:
• an overview of the DevOpRET approach (Sect. II), which

to the best of our knowledge (see Related Work, Sect. V)
is the first attempt to apply reliability testing to DevOps;

• a walk-through example of its application to the real-
world open source platform Discourse (Sect. III);

• the evaluation in a simulated environment to show how,
by using Ops data, DevOpRET would converge towards
“true” reliability assessment (Sect. IV), thus enabling
DevOps teams to draw better informed decisions on
whether a candidate release can pass the established
quality gate.

II. DevOpRET OVERVIEW

As anticipated in the introduction, DevOpRET uses the feed-
back from Ops to guide the acceptance testing stage conducted
by the QA team before release. The technique expects the
following assumptions to be met: the input space S of user
demands can be decomposed into i partitions S1, . . . , Si; a
test oracle is available and it is possible to determine if a user
demand fails or succeeds, for demands issued by operational
workload as well as for those issued by DevOpRET tests;
a continuous monitoring facility is available to trace the
user demands in operation. Monitoring data are the key in
DevOpRET to create a characterization of the usage profile
which, ultimately, reduces the pre-release time uncertainty
about the exact knowledge of the operational profile. Formally,
the operational profile is a probability distribution P over the
set of partitions, with each value pi representing the probability
of issuing a user demand with inputs belonging to partition i.
Its estimate is denoted as P̂ (and p̂i).

Figure 2 depicts the scenario of DevOps release cycles
where we envisage the adoption of DevOpRET, which foresees
the following steps:

Fig. 2: Continuous reliability testing in DevOps cycles

1) In a DevOps cycle, the version ready to be released is
black-box tested for reliability assessment by the QA
team. Since the actual operational profile is unknown,
testing is based on an estimated operational profile, P̂ .
Given a budgeted number of test cases, the latter are
generated by an operational testing approach, by which
we i) select a partition i with probability p̂i, and then ii)
select an input from the partition’s input space randomly
according to a uniform distribution.

2) Test results are used to estimate the probability that
the software will fail on a user demand – i.e., the
probability of failure on demand (PFD), which is a
metric of the operational reliability - by a frequentist
approach. Reliability is computed as R = 1 − PFD.
If reliability satisfies the quality gate (e.g.: a minimum
reliability threshold), the software version is released,
otherwise it is sent back to the development team.

3) Once released, the end users’ demands are monitored,
and information about input values of the demands is
collected.

4) Based on the gathered information, the estimate of the
operational profile is updated (i.e., the p̂i values).

5) On the next release, reliability testing will be carried out
based on the updated p̂i values. By using the updated
profile at each cycle, the estimated reliability is expected
to converge to the actual operational reliability.

The next Section details the steps by a case study.

III. CASE STUDY WALK-THROUGH

We illustrate the application of DevOpRET through a work-
ing case study, a popular open-source community platform.

A. Subject

The subject we consider is Discourse, a discussion platform
featuring services for managing mailing lists, forums and long-
form chat rooms.1 It is adopted by over 1,500 customers (e.g.,
companies, institutions, communities, etc.) all over the world;

1https://www.discourse.org/.

as an open-source project it counts on a community of almost
670 committers.

From a technical viewpoint, the front-end of Discourse is
a JavaScript application that can run in any web browser; the
server side is developed mainly in Ruby on Rails. An instance
of Discourse exposes an API which allows to consume the
contents as JSON records. Any functionality offered by the
site version of Discourse can also be accessed using such API.
Specifically, the API offers a set of 85 methods. The API
method invocations are HTTP requests which act on a set of
resources, via conventional GET, PUT, POST and DELETE
operations, according to the REST paradigm.

In this work the acceptance tests are executed on the API
interfaces exposed by Discourse. The main resources accessed
by means of the API are: categories, posts, topics, private
messages, tags, users, and groups.

B. Input space partitioning

The input space of Discourse is partitioned according to
a specification-based criterion. The input arguments of each
API method are grouped in sets of equivalence classes based
on their type. These classes have been defined based on the
API documentation describing the inputs the method accepts.
For each input type, we also considered common corner cases
(e.g., empty string, a number equal to zero), as well as values
clearly invalid for that type (e.g., number with alphabetical
characters), as is usually done in black-box robustness testing
approaches to assess a system under test under more rare
circumstances [14]. Table I lists the equivalence classes we
defined for the Discourse API inputs. It is worth to note that
although we derived them manually, partitioning can be auto-
mated by parsing documentation, as long as a complete API
documentation is available (e.g., in the SWAGGER format).
This is part of our ongoing work.

Table II reports an excerpt of the API methods with their
input classes and partitions. Every partition is a specific
combination of input classes, one for each argument of a
method. The total number of partitions is 8,802. Partition i
is characterized by an estimate of probability of selection in
operation (p̂i) – the estimated operational profile P̂ . These
estimates (which could be assigned by the QA team) corre-
spond to the expected probability by which those methods (and
partitions) will be used in operation. The p̂i values are used to
derive the testing profile Π, namely a probability distribution
over the input space that drives the test generation process.

C. Test generation and execution

We define the procedure to first select partitions, and then
generate a test case from within the selected partition. The
algorithm is based on conventional operational testing: the
selection of partitions is done according to the estimated
profile P̂ values (i.e., higher p̂i values have more chances
to be selected), namely according to the expected usage in
operation. Formally, the testing profile Π is such that πi = p̂i,
meaning the probability πi of selecting partition i for a test is
the same as selecting partition i in operation.

TABLE I: Input classes for case study partitions

Type Name Description
String StrValid Valid string, as per documentation

StrEmpty Empty string
StrNull String with a “null” value
StrVeryLong String length > 216

StrInvalid String with non-printable characters
Numeric NumValidNormal Value within interval [−231; 231]

(integer limits in Java)
NumValidBig Value out of interval [−231; 231]
NumInvalid Not a number
EmailEmpty Empty value
NumAbsMinusOne Value is equal to -1
NumAbsZero Value is equal to 0

Boolean BooleanValid Valid boolean value
BooleanInvalid Value not in {True,False}
BooleanEmpty Empty value

Enum EnumValid Value is one of the enumeration
EnumInvalid Invalid enumerative value
EnumEmpty Empty value

List ListValid List with valid values
ListEmpty Empty list
ListNull List with “null” value

Color ColValid Value represents a color
(6-digits hexadecimal number)

ColInvalid Value is not a color
ColEmpty Empty value

Date DateValid Value is a date (format
as per documentation)

DateInvalid Value is not a date
DateEmpty Empty value

Email EmailValid Value is an email address
(format ’xxx@yyy.zzz’)

EmailInvalid Value is not an email address
EmailEmpty Empty value

The test generation within the selected partition is done by
uniform random testing, i.e., by taking an input from each
class of the partition according to a uniform distribution (each
input having the same chance of being selected). A test case
is a REST HTTP request to the method which the selected
partitions refers to, parametrized with the selected inputs. For
each method, we have verified if any precondition on the used
resource (e.g., categories, posts, users, topics) must hold before
issuing a request: when needed, we have added the code to
meet the precondition before the test (e.g., for a GET request
to retrieve a resource, the precondition is that at least one
instance of the resource is available; if not, our code performs
a PUT before the GET). Dependencies between API methods
is managed in the same way.

D. Output interpretation

The application responses to requests are characterized by
the HTTP status code and message. We distinguish two types
of output:

1) Correct reply: the status code and message are consistent
with the input submitted, such as:

a) a 2xx status code (indicating success) for a request
with inputs belonging to the ValidStr class, or

b) a 4xx status code (indicating a client error) for an
incorrect request (e.g., a numeric input containing
alphabetical characters). These responses are cor-

TABLE II: An excerpt of the case study API methods’ signature, input classes and partitions

Resource Type Endpoint Arg 1 type #Classes Arg 2 type #Classes Arg 3 type #Classes Partitions
Categories POST /categories.json String 5 Color 3 Color 3 45
Post POST /posts.json Numeric 6 String 5 Date 3 90
Users PUT /users/username Numeric 6 Enum 3 String 5 90

/preferences/avatar/pick
..

rect replies to incorrect requests, which the API
client is required to manage.

2) Failure: the application raises an unexpected, unman-
aged, exception, sent to the client, which is reported as
5xx status code (server error).

E. Reliability estimation

The quality measure we assess for the QA team is reliability
on a single demand obtained as R = 1−PFD, where PFD is
the probability of failure on demand (PFD). This corresponds
to reliability of a run, a discrete reliability computation typical
of testing research [15], [16]. Reliability is estimated by
the conventional Nelson model [17], in which PFD = NF

N ,
namely the PFD is the proportion of the number of failing
demands over the N executed ones. This is an unbiased
estimate as the algorithm used to select test cases mimics the
way the user selects inputs, i.e., the real operational usage.

F. Monitoring and update

As software is put in operation, DevOpRET gathers field
data to update the auxiliary information about partitions, that
will be leveraged for reliability testing in the next release
cycle. Specifically, we update the estimates of pi values by
looking at requests/responses. As monitoring data are gathered
and knowledge about actual runtime usage cumulates, the
estimates p̂i tend to the true values pi. The update rule at
the end of DevOps operational cycle k is:

p̂ki = λ(p̂k−1i) + (1− λ)
Nk

i

Nk (1)

where:
Nk is the total number of requests in current cycle k;
Nk

i is the number of requests to partition i in cycle k;
λ is the learning factor, λ ∈ [0, 1], regulating how much

we account for the past history (cycle k − 1) with
respect to observations made in the current cycle k
– it is λ = 0.5 in our setting.

G. Testbed

The testbed includes four components: a Test Generator, a
Workload Generator, a Monitor, and an Estimator.

The Test Generator encapsulates the test case generation
algorithm; it performs the activities of steps 1 and 4 in Fig. 2.
It extracts from monitored data the list of partitions with the
associated probabilities (p̂i), generates and executes the test
cases according to the testing profile Π, and stores the result
in a textual file. Results of testing are used by the Estimator
to compute reliability (step 2 in Fig. 2).

The Workload Generator emulates the real usage of the
software in operation, namely it issues requests according
to an operational profile, which reflects the actual profile in
operation resulting from the user requests (i.e., the true pi
values). The operational profile P is, in general, different from
the estimated operational profile P̂ used during testing. The
generation of P is discussed in the next subsection.

Requests and responses are observed and logged in a textual
file by the Monitor, corresponding to step 3 in Fig. 2. This is
meant to be used for reliability testing of the next release.

H. Procedure

For our evaluation, we consider k = 5 consecutive releases
of Discourse, simulating five DevOps cycles. Each cycle
includes an acceptance testing session in order to decide if
the software is ready to be released or not. The budget of the
acceptance testing session is set to T = 100 at each cycle.
After testing, if the quality gate (a reliability requirement,
in our case) is met, then the software is “released” in the
simulated environment and the operational testing phase starts.
The number of requests issued by the Workload Generator
in an operational cycle is set to N = 1000, after which we
assume a new release is ready, and a new cycle starts.

1) Testing phase: DevOpRET testing is done at each De-
vOps cycle before release, using the information associated
with partitions, namely the values p̂ki at cycle k. At cycle zero,
we need to assume an initial value of p̂0i representing the initial
estimated probabilities for the test partitions. Whatever the
initial estimated profile, DevOpRET foresees the update of the
profile as monitoring data are gathered after each operational
cycle, getting closer to the true usage and thus yielding a
reliability estimate converging to the true one. In the reality,
the better the initial estimates the earlier the approach will
converge.

For the purpose of the evaluation, we consider two different
ways of defining the initial profile (resulting in two different
scenarios). The former assumes complete ignorance by testers
about the expected usage of partitions. Hence: p̂i = 1

M , where
M is the number of partitions, These are used as initial testing
profile – let’s denote it as Π0

1, namely the testing profile Π
at cycle 0, scenario 1. The second scenario gives a smaller
usage probability to partitions with corner case and invalid
input classes, to represent a more realistic situation. This is
accomplished by assigning: p̂i = |valid|

|allClasses| , then normalized
to sum up to 1 (i.e., p̂i ← p̂i/

∑
j p̂j). Partitions with more

valid classes will have bigger p̂i. The testing profile generated
using this information at cycle 0 is denoted as Π0

2, i.e., testing
profile Π at cycle 0, scenario 2.

After testing, the Estimator provides an assessment of the
achieved PFDs.

2) Operational phase: Assuming that a quality gate is
satisfied (i.e., we have a reliability above a desired threshold),
software is released in a local environment and is stressed by
the Workload Generator.

The Workload Generator issues requests according to the
operational profile P . We create an operational profile (as-
sumed to be the true one) that differs from the testing-time
estimated profile P̂ by a variation factor v. In fact, what
matters to assess DevOpRET is the difference between the
expected and the real usage, P̂ and P . Specifically, given a
variation factor v ∈ [0, 1] and an estimated profile P̂ , the
procedure is as follows:

1) Split the set of M partitions in two subsets in any
arbitrary way, S1 with M1 partitions and S2 with M2

partitions.
2) Generate, for S1, M1 random numbers between 0 and

1 such that their sum is v/2.
3) Generate, for S2, M2 random numbers between -1 and

0 such that their sum is −v/2.
4) Concatenate the two sets of values in one set

S ← S1 ∪ S2, and shuffle it.
5) Sum the elements si of S to p̂i values, obtaining the

vector w such that: wi ← p̂i + si.
6) If there is at least one wi < 0, sum 1 to all values:

wi ← wi + 1.
7) Normalize the obtained values: pi ← wi/

∑
j wj , so as

the sum is 1. The set of pi values is the generated true
profile P .

During the operational phase, requests and responses are
monitored and used to update P̂ according to the described
Eq. 1. This is repeated for each cycle, i.e., at each release. In
our evaluation, we considered two values of v so as to assess
DevOpRET under a more or less severe error in the initial
profile estimate: v = 0.3, v = 0.7.

3) Evaluation metric: As evaluation metric, we consider the
difference between the estimated reliability R̂ = 1 − PFD
and the true one (∆ = |R − R̂|). The true reliability is
assessed (once for all in the whole evaluation) by running
10,000 requests generated according to the true profile (as
explained in Section III-C) and using again the Nelson es-
timator: R = 1 − NF /10, 000, where NF is the number of
failed requests2.

IV. RESULTS

Figure 3 shows the offset between the true and the esti-
mated reliability at each step (representing the k-th release
of Discourse), under the two defined scenarios: a) the initial
estimated profile is uniform; b) the initial estimated profile is
proportional to the number of valid equivalence classes. In
both cases, T = 100 test cases and the difference between
estimated and true profile is 30%, i.e., v = 0.3.

2We assume a number of 10,000 requests are considered enough to provide
an accurate estimate of true reliability, being it one to two orders of magnitude
bigger than the executed test cases T (T goes from 100 to 1,000)

Fig. 3: Offset. T = 100 test cases, v = 0.3

In the first scenario, we observed 864 failures out of 10,000
requests, hence with a true reliability under the generated
profile R = 0.9136. In the second scenario, we got 722
failures leading to a true reliability of R = 0.9278. Since the
estimated profile is proportional to valid classes (i.e., partitions
with invalid classes are less likely exercised) and the true
profile is not much different (v = 0.3), the true reliability
in the second scenario is more representative of the actual
reliability experienced by an end user. The offset is similar
in the two cases, as the it does not depend on the specific
true or estimated profile, but mainly on the difference between
them. In both scenarios, as information is gathered from the
operational phase, the assessed reliability gets closer to the
true one, and the offset closer to zero.

In Figure 4, we assess DevOpRET when the estimated
profile differs from the true one by 70% (v = 0.7), meaning
that the QA team, in its assessment of the usage profile,
has missed by a large extent the true profile. In such a
case, the initial offset is more pronounced than the case of
v = 0.3, especially for the proportional profile. In fact, with a
profile proportional to valid classes, but a high variation factor
(v = 0.7), the derived true profile is more likely to exercise
the invalid classes compared to the case with v = 0.3 – the
true reliability turned out to be R = 0.8974 in this case. Using
updated information is of paramount importance in such cases
in order to correct the initial estimate – at step 4, the offset
for both scenarios goes below 0.01.

For a given length of the learning window (i.e., number of
user requests between two testing sessions), which is set to
1,000 in our evaluation, the speed at which the assessment

Fig. 4: Offset. T = 100 test cases, v = 0.7

(a) Initial estimated profile: uniform

(b) Initial estimated profile: proportional

Fig. 5: Offset. T = 100, 200, 500 and 1000 test cases, v = 0.3

converges to the true one depends mainly i) on how much
the initial profile estimate deviates from the true one, as we
observed from Figures 3 and 4, but also ii) on the number
of executed test cases. Figure 5 reports the offset under 200,
500 and 1,000 test cases (we report also the previous case,
T=100) for both uniform and proportional profile. Expectedly,
increasing the number of tests considerably improves the
assessment accuracy, with an offset under 0.005 (i.e., about
0.5%) in the best case of 1,000 test cases. In summary, con-
sidering that the test case space we derived has 8,802 partitions
(which is an indirect measure of the testing complexity of the
application), a testing budget amounting to about 1/8 of the
number of partitions has been spent to achieve an accuracy of
the reliability estimate of 0.995%.

V. RELATED WORK

Despite its claimed popularity within grey-literature sources,
testing within the context of DevOps still appears to be under-
considered in the academic scientific literature [18]. On the
one hand, to identify motivational factors driving DevOps
testing several works [19] [20] [21] analyse the state-of-the-
art of continuous software engineering. On the other hand, few
of them actually describe studies or detailed aspects that are
specifically tailored for continuous testing, and that explicitly
concern settings from the DevOps environments.

With respect to the former category of related works, it is
interesting to remark how our research contributes to some of
the key activities in Continuous software engineering identified
by [22]. Specifically, DevOpRET contributes to Continuous
Testing, Continuous Use, and Continuous Improvement of the
targeted system: by using the actual operational profile as a

means for data-driven planning of the future reliability testing
activities DevOpRET guides the Dev or QA teams to solve
issues that are closer to the user-significant scenarios fostering
their continuous engagement.

In the latter category of related works: the approach in [23]
supports the study of performance issues (already revealed or
potential) by analysing profiled data collected at run-time. The
context referred in [23] is quite similar to the context described
in our work. Nevertheless a first main difference is about the
target: they are only focusing on performance-driven software
refactoring and specifically on load testing. Another difference
is that that paper does not clarify the rules/conditions that
regulate the sampling of the data within the operational profile.
Possibly in the case of load testing it is more interesting to
use the whole set of data observed during operation in order
to better study the nature of the failure; nevertheless this is not
always the case for other testing approaches (e.g. functional,
and non-functional) where in general it is either unfeasible,
or not economically sustainable to exploit the whole set of
monitored data also for testing purposes.

The work in [24] also focuses on software performance
aspects. Specifically it aims to support robust performance
estimation by efficiently evaluating the impact of fluctuation
in the values of the parameters adopted within the prediction
models. The authors highlight how their approach can be
integrated in DevOps methodologies in order to take decisions
about the next version releases. In this sense, the interesting
relation with DevOpRET is that in our future work we could
consider similar techniques in order to take into account how
the operational profile observed during the current op-cycle
could vary in the next one.

In [25] the authors proposed a method for predicting soft-
ware defects within the context of projects running continuous
integration, and continuous delivery practices. Even though
their overall objective is similar to the goal of our work, the
main difference between the two proposals is that the authors
of [25] do not use the actual operational profile in order to
plan the testing activities for the next release, while its model
for early defect prediction is based on user stories together
with defect data from a previous release. In our opinion, the
main advantage of DevOpRET is that the QA teams involved
in the dev cycle can tailor their decision based on actual
usage of the system (i.e., by considering both correct replies
and failures), and not only on the basis of a combination of
revealed defects and user’s intentions (i.e., stories).

VI. CONCLUSIONS AND FUTURE WORK

We have presented the DevOpRET approach that supports
black-box testing based on the operational profile within a
DevOps cycle. The idea is to leverage the information that
is usually monitored in Ops for the purpose of refining an
estimate of reliability during the next acceptance testing stage.
We envisage that reliability-related KPIs (here for example
we considered an estimate of the probability of failure on
demand) should be included into the acceptance quality gate
that a product should pass before each new release.

This work included the outline of a scenario of a reliability
testing framework included within a DevOps cycle: this is
the first proposal in this direction. We also implemented a
preliminary version of DevOpRET and carried out an initial
evaluation on a real world open source platform, aiming at
ascertaining how the approach behaves in terms of reliability
assessment while more usage data are collected. As expected,
the results confirm that leveraging usage data contributes
to quickly converge towards “exact” reliability prediction.
Of course, this paper is only a first step towards a more
comprehensive framework for DevOps reliability assessment
and improvement, and further developments and evaluation
studies are required.

In the future, our aim is to improve results and extensively
validate them by: i) working on the learning phase with the
aim of expediting the convergence of the estimated profile
to the true one (we aim at investigating the adoption of
machine learning to characterize the profile); ii) adopting
more sophisticated testing algorithms based on probabilistic
sampling developed in previous work [26], aimed to expedite
the assessment by exploiting auxiliary information besides the
profile (such as the observed probability of failure of each
partition); iii) working on automatic partition extraction (form
documentation) and update (from monitoring data) and iv)
deploying the approach under a true workload (not synthet-
ically generated as in the case study developed here) as well
as more case studies. More specifically with respect to this
last item, an interesting future work includes the study of the
impacts (e.g., performance, scalability, effort, maintainability,
etc.) of DevOpRET when it is adopted in an actual deployment
pipeline.

ACKNOWLEDGMENT

This work has been partially supported by: the PRIN
2015 project “GAUSS" funded by MIUR (Grant n.
2015KWREMX_002); the European Project H2020 731535:
ElasTest; and the Italian Research Group: INdAM-GNCS.

B. Miranda wishes to thank the postdoctoral fellowship
jointly sponsored by CAPES and FACEPE (APQ-0826-
1.03/16; BCT-0204-1.03/17).

REFERENCES

[1] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and DevOps,” in IEEE/ACM 3rd International Workshop on
Release Engineering (RELENG). IEEE, 2015, pp. 3–3.

[2] J. Smeds, K. Nybom, and I. Porres, “DevOps: A definition and perceived
adoption impediments,” in Agile Processes in Software Engineering and
Extreme Programming, C. Lassenius, T. Dingsøyr, and M. Paasivaara,
Eds. Cham: Springer International Publishing, 2015, pp. 166–177.

[3] M. Walls, Building a DevOps culture. " O’Reilly Media, Inc.", 2013.
[4] L. J. Bass, I. M. Weber, and L. Zhu, DevOps - A Software Architect’s

Perspective, ser. SEI series in software engineering. Addison-Wesley,
2015.

[5] J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. Addison-Wesley
Boston, 2011.

[6] N. Forsgren and M. Kersten, “DevOps Metrics,” Communications of the
ACM, vol. 61, no. 4, pp. 44–48, 2018.

[7] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “Towards a
benefits dependency network for DevOps based on a systematic literature
review,” Journal of Software: Evolution and Process, vol. 30, no. 11, p.
e1957, 2018.

[8] A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring,
C. Heger, N. R. Herbst, P. Jamshidi, R. Jung, J. von Kistowski,
A. Koziolek, J. Kroß, S. Spinner, C. Vögele, J. Walter, and
A. Wert, “Performance-oriented devops: A research agenda,” CoRR,
vol. abs/1508.04752, 2015. [Online]. Available: http://arxiv.org/abs/
1508.04752

[9] M. Mazkatli and A. Koziolek, “Continuous integration of performance
model,” in Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’18. New
York, NY, USA: ACM, 2018, pp. 153–158. [Online]. Available:
http://doi.acm.org/10.1145/3185768.3186285

[10] A. A. U. Rahman and L. Williams, “Software security in devops: Syn-
thesizing practitioners’ perceptions and practices,” in 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery
(CSED), May 2016, pp. 70–76.

[11] J. S. Lee, “The devsecops and agency theory,” in 2018 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops
(ISSREW), Oct 2018, pp. 243–244.

[12] N. Forsgren, J. Humble, and G. Kim, “Accelerate: State of
DevOps, strategies for a new economy,” pp. 436–440, 2018,
accessed: 2019-01-23. [Online]. Available: https://cloudplatformonline.
com/2018-state-of-devops.html

[13] J. D. Musa, “Software-reliability-engineered testing,” IEEE Computer,
vol. 29, no. 11, pp. 61–68, 1996.

[14] N. Laranjeiro, M. Vieira, and H. Madeira, “A robustness testing
approach for soap web services,” Journal of Internet Services and
Applications, vol. 3, no. 2, pp. 215–232, Sep 2012. [Online]. Available:
https://doi.org/10.1007/s13174-012-0062-2

[15] K.-Y. Cai, “Towards a conceptual framework of software run reliability
modeling,” Inf. Sci., vol. 126, no. 1-4, pp. 137–163, Jul. 2000. [Online].
Available: https://doi.org/10.1016/S0020-0255(00)00018-9

[16] P. G. Frankl, R. G. Hamlet, B. Littlewood, and L. Strigini, “Evaluating
testing methods by delivered reliability [software],” IEEE Transactions
on Software Engineering, vol. 24, no. 8, pp. 586–601, Aug 1998.

[17] T. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability. North-
Holland Publishing, TRW Series of Software Technology, Amsterdam,
1978.

[18] J. Angara, S. Prasad, and G. Sridevi, “The Factors Driving Testing in
DevOps Setting - A Systematic Literature Survey,” Indian Journal of
Science and Technology, vol. 9, no. 48, 2017.

[19] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: trends and challenges,” in Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. ACM, 2014,
pp. 1–9.

[20] M. Soni, “End to end automation on cloud with build pipeline: the
case for devops in insurance industry, continuous integration, continuous
testing, and continuous delivery,” in IEEE International Conference on
Cloud Computing in Emerging Markets (CCEM). IEEE, 2015, pp.
85–89.

[21] E. Di Nitto, P. Jamshidi, M. Guerriero, I. Spais, and D. A. Tamburri,
“A software architecture framework for quality-aware DevOps,” in Pro-
ceedings of the 2nd International Workshop on Quality-Aware DevOps
(QUDOS). ACM, 2016, pp. 12–17.

[22] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[23] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche, “Ex-
ploiting load testing and profiling for performance antipattern detection,”
Information and Software Technology, vol. 95, pp. 329–345, 2018.

[24] A. Aleti, C. Trubiani, A. van Hoorn, and P. Jamshidi, “An efficient
method for uncertainty propagation in robust software performance
estimation,” Journal of Systems and Software, vol. 138, pp. 222–235,
2018.

[25] R. Mijumbi, K. Okumoto, A. Asthana, and J. Meekel, “Recent advances
in software reliability assurance,” in IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2018, pp. 77–82.

[26] R. Pietrantuono and S. Russo, “On adaptive sampling-based testing for
software reliability assessment,” in IEEE International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2016, pp. 1–11.

