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Abstract. Today’s software-intensive Safety-critical Systems (SCSs) are
required to cover a wide range of functionalities, to do it in a safe way,
and to be developed under stringent time and cost constraints. That is
the challenge which the Critical Step project dealt with. In the following,
an overview of the main concepts, challenges, and currently implemented
solutions in SCSs development is presented.
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1 Introduction

A system is referred to as safety-critical when the consequences of its failure can
lead to loss of life, or to significant property or environmental damage. Safety-
critical Systems (SCSs) are developed in many domains, ranging from trans-
portation (e.g., avionics, railway, automotive) to space and telecommunication
systems, from civil and military infrastructure (e.g., nuclear and power plants) to
medical and control devices. Depending on the domain, SCSs are developed fol-
lowing guidelines provided by certification standard, whose typical aim is to give
recommendations to developers regarding all the development process activities.

Software in such systems has by now a prevalent role. Systems are required to
accomplish more and more tasks, and thus software becomes considerably large
and complex to satisfy these requirements. Moreover, even though software is
only a part of the entire system, its impact on overall safety has an increasingly
significant weight. The numerous reported accidents due to software falls [1] sug-
gest that its reliability is one of the weakest links of system reliability [2]. As a
consequence, cost related to software development and assessment activities is
among the highest and least controllable ones of the entire system development
cycle. Thus, researchers and practitioners in this field are more and more con-
vinced that software is the problem.
Although software in SCS is developed by using the most consolidated practices
in software engineering, no methodology, technique, or strategy is currently able
to assure the absence of software failures. More worryingly, it remains extremely
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hard, and expensive, to obtain precise and reliable measures of the quality of a
software product from the safety point of view. Most of difficulties depend on
the intrinsic characteristics of software as compared to other physical systems,
such as its “non-linearity” and discontinuity. Its unique features make it difficult
to develop effective safety assessment methodologies in analogy with other fields
of engineering. This produced, in the last decades, a proliferation of techniques
to tackle software assessment issues. However, results are still far from being as
satisfactory as for system or mechanical engineering.
Since in a SCS development process software development is strictly intertwined
with system development, many of the used techniques have been derived di-
rectly from system-level techniques; but tailoring them to software is not so im-
mediate and has not always produced the expected results. As a matter of fact,
implementing such techniques for software often requires very costly solutions
to achieve adequate performance.

Techniques in this area typically address a set of quality attributes commonly
used also in other engineering fields, and referred to as RAMS (Reliability, Avail-
ability, Maintainability, Safety). The way to achieve acceptable RAMS levels for
software, and then to assess the product quality with respect to them, has gen-
erated software-tailored techniques acting in every phase of the development
lifecycle. Examples are: SFMECA (Software Failure Modes, Effect, and Critical-
ity Analysis), SFTA (Software Fault Tree Analysis), ETA (Event Tree Analy-
sis), SCCFA (Software Common Cause and Failure Analysis), HSIA (Hardware-
Software Interaction Analysis) at upper level; wider techniques are then used
at lower level in order to enforce and provide feedback to RAMS analysis [3],
[4], [5]. They cover all the phases of the development process: design principles
and techniques (e.g., reuse, modularity, partitioning, or supporting techniques
as simulations, mathematical modelling), coding standards and convention, soft-
ware verification and validation (V&V) techniques (e.g., testing and analysis),
assessment techniques (e..g, measurements-based RAMS assessment), fault tol-
erance mechanisms. The key issues in actually implementing these techniques
regard their cost-effectiveness in relation to the quality to assure; in the case of
software, this presents unique and hard-to-tackle challenges, both in the “cost”
and in the “quality assurance” aspect.

In the following, we briefly survey: what is required to developers in order to
produce dependable SCSs; what are the current state-of-the-practice in industry;
what is the contribution that the Critical Step Project provides.

2 What is required to do: certification standards

Software certification is a key aspect of critical systems development and as-
sessment, and its influence on development practices and relation to systems
cost is relevant. It is a matter of fact that certification of software is crucial for
many companies developing mission- and safety-critical systems. As a result of
software-related disasters, professionals and authorities are convinced that certi-
fication is nowadays inevitable. But at present, there is no common agreement on
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what practices are more suitable to provide evidences, safety cases or insurance
on which to base software certification (and consequently system certification).
Several organizations (such as FAA, NRC, EUROCONTROL, CENELEC, IEC,
ISO) produced, in the past, standards for developing critical systems in different
domains, e.g., avionics, railway, automotive, nuclear, healthcare. These standards
are conceived to provide recommendations about activities in the software de-
velopment lifecycle (SDLC). For this reason, they are viewed as process-oriented
standards, working under the assumption that high and controlled quality in
software development activities along all the process implies a high product
quality. Evidences are required on every produced artifact during the develop-
ment in order to claim the certification of the final product.
A process-oriented certification process involves four main entities: the stan-
dard(s), an applicant, an authority and an assessment body that has to be inde-
pendent on the applicant. The certification process typically implies interactions
between the applicant and assessor, so as to drive the SDLC. Applicant has
to provide evidences (sometimes referred to as “certification package”) that the
standard recommendations have been properly implemented. The assessment
body evaluates the certification package and the software product (if it is avail-
able at that specific stage) in order to prove that they complain to the standards.
The authority releases the certification to the applicant on the basis of the as-
sessment body evaluation, or it can ask for further evidences.
In practice, it is not trivial to apply recommendation and to produce evidences
for several reasons; for instance: i) standard guidelines do not prescribe a precise
set of techniques, but they are recommendations; ii) applying a technique may
yield very different results depending on the way and the extent it is applied to
the specific software under assessment; iii) it may happen that applying a tech-
nique thoroughly requires unacceptable cost, and thus the applicant needs to
find the most cost-effective way to apply it and produce the required evidences.

A lot of certification standards are in effect. We can group them on the basis
of the industrial domain in which they are applied, such as nuclear, avionic,
automotive. Examples are: DO-178B and DO-178C, in the Avionic/Aeronautics
Domain; CENELEC EN 50126, EN 50128 and EN 50129 in the railway domain;
ISO 26262 in the Automotive Domain; IEC 61508 for the industrial domain;
ECSS standards for the Space Domain. Despite this wide variety of standards,
they have many aspects in common. All of them require activities (and related
documentation) for quality assurance along all the SDLC phases, from planning
to deployment. In most of cases, software is not thought as a standalone part of
the system, it does not stand on its own; thus, such activities start from system-
level analysis, and then are linked to software: in a typical standard-compliant
process, the following steps and related activities are outlined (e.g., [5]):

– from system-level activities, the following artifacts are given as input to
the software development process: system requirements specification, sys-
tem safety requirements specification and system architecture description:
safety requirements are derived from the risk analysis (i.e., the activity of
identifying risks, estimating their severity and occurrence, and mitigation
strategies);
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– from these artifacts, safety functions allocated to software are identified;
safety functions are assigned an integrity, or assurance, level to satisfy (the
name varies with the standard), representing the risk associated to that
function (scales vary according to the standard);

– safety functions allocated to software are used in the software requirements
specification phase, and in the software architecture specification (which is
based on system architecture information); software requirements are then
apportioned to software components in the architecture;

– from these artifacts, software is designed, implemented and verified/tested
according to a selected SDLC, and according to tools, for which usage further
rules are specified depending on the standard, in order to guarantee that they
do not introduce faults;

– software is finally validated, and handed over to system engineers;
– the operational life of the system and its maintenance is also regulated.

Besides these phases, other aspects that are addressed by almost every stan-
dard are the following: recommendations for integration of Commercial Off The
Shelf (COTS) software, reusability recommendations (also of legacy software);
fault tolerance recommendations; requirements traceability recommendations;
use of tools recommendations.

3 From theory to practice: current solutions and open
challenges

Although certification standards provide a valuable support, one of the major
problems is that the guidelines they suggest are quite general, since their purpose
is not to define what techniques a company must use, or what is their impact on
company’s cost. For instance, cost and effectiveness issues are often neglected in
such guidance documents. As a consequence, there is a gap between what they
suggest and strategies, techniques, and tools that can actually be adopted by
a company. For many of the proposed practices, there are contradictory stud-
ies about their actual effectiveness. This uncertainty poses serious difficulties to
companies, which on one hand are constrained to meet predefined certification
goals, whereas, on the other hand, are required to deliver systems at competitive
cost and time.
Standards’ annexes list a number of techniques recommended for each phase of
the SDLC. Among the many available techniques, in this Section we survey only
the most used ones, in order to have an idea about the type of activities carried
out in practice for each phase.
In the early stages, when safety requirements need to be defined at system and
software level, and allocated to software components, techniques for RAMS anal-
ysis first come into play. RAMS analysis starts at the very beginning of the
system development, but it interacts with system (and software) development
along all the development activities, providing useful information to them and,
at the same time, getting feedbacks from them. As development goes on, RAMS
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analysis becomes more and more accurate, since it obtains more information
from results of the activities.
As for the software development activities, the best software engineering state-of-
the-practice techniques and principles are adopted, from requirements to main-
tenance phase. However, even being the best in this field, the relative immaturity
of software engineering make it challenging to provide highly safe software.

3.1 SW RAMS analysis techniques

SFMEA
Software FMEA (Failure Modes and Effect Analysis)and FMECA (Failure Modes,
Effect and Criticality Analysis) are widely used to analyze failure modes and
effect for software components. SFMEA/SFMECA aims at identifying software-
related design deficiencies; it determines the effect of hardware failures and hu-
man errors on software operation, and the effect on the system of a (software)
component failing in a specific failure mode [3].
SFMEA/SFMECA is based on the more established FMEA/SFMECA [6] for
hardware, and has a similar structure. It includes an initial set up of a list of
failure modes; failure modes are meant as the possible incorrect behavior of the
software, and include: computational failures, algorithmic failures, synchroniza-
tion failures, data handling failures, interface failures [4]. Then it analyzes the
possible causes and consequences (in terms of local component-level effects and
final effects); from its output, several indications for the overall development are
derived, such as: recommendations for mitigating the identified software failures
at design level; guidance for criticality level assignment to the components (at
lower levels of the SDLC); suggestions to allocate V&V activities on the most
critical software components. It also produces knowledge about possible software
failures useful for successive developments.
Despite the similarity with hardware FMEA, there are relevant differences be-
tween SFMEA and FMEA making its application considerably trickier [7]. The
most relevant ones are: i) in FMEA, system is considered free from failed com-
ponents, whereas in SFMEA system is considered as containing software faults,
that may lead to failures if triggered; ii) failure modes are totally different, and
hard-to-define for SFMEA; iii) in SFMEA, measures taken to prevent or miti-
gate the consequences of a failure are different: they can, for example, show that
a fault leading to the failure mode will be necessarily detected by the tests per-
formed on the component, or demonstrate that there is no credible cause leading
to this failure mode due to the software design and coding rules applied.
The main challenges in SFMEA/SFMECA come from failure modes definition.
In [7] authors point out that the term failure mode is different for hardware and
software. For hardware components it is straightforward and can be based on
operational experience of the same and similar components; for software such
history-based information is much less reliable and uniquely identifiable. More-
over, the frequency of occurrence is much harder to define for a software-based
system, and their probability distribution over time is much less characterizable.
Triggering and propagation depends on the operational profile and on complex
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interactions between software at different layers (e.g., OS, middleware, other ap-
plications); sometimes it even appear to be non-deterministic [8]. This makes
SFMEA/SFMECA trickier to apply than the corresponding hardware counter-
part.
SFTA
The output of SFMEA can be used in combination with another widely used
technique, namely the Software Fault Tree Analysis (SFTA). Also in this case,
SFTA comes from system-level FTA [9]. FTA aims at analyzing events or com-
bination of events that can make the system fail (i.e., that can lead to a hazard).
Starting from an event representing the immediate cause of a hazard (named
‘top event’), the analysis is carried out along a tree path, in which events com-
bination is described with logical operators (AND, OR, etc). The analysis stops
when basic events are reached, representing elementary causes whose further de-
composition is not of interest. Probabilistic analysis are performed by assigning
probabilities to basic events, and computing the top event probability. Basic FT
works provided that there are no dependent events. There are many extensions
to basic FT, to perform more complex analysis than the simple combinatorial
one allowed by basic FT, e.g., when dependencies are involved.
Fault Tree Analysis is mainly meant for hardware systems, but it is used also for
software failures analysis. When used in conjunction with SFMEA/SFMECA,
the identified software failure modes are useful to construct the software fault
tree. As for SFMEA/SFMECA, there are interactions between SFTA and devel-
opment activities; output of SFTA may help to identify critical software compo-
nents, to identify the mitigation means able to inhibit the occurrence of the top
event failure, to analyze software design with respect to the top event failure oc-
currence and take design decisions (e.g., partitioning components), to help V&V
(for instance, if used at source code level, it helps to understand the relation
between faults and identified critical failures, in turn useful for test case writing
and techniques selection) and testing resource allocation.
The problems of SFTA are the following: it is not suitable for state-based anal-
yses, whit dependencies among events; it does not scale well, since trees can
become very large and complex; it has the same problems of SFMEA about
to the ambiguity of software failures and software faults. The latter is not an
inherent problem of the techniques, but it is about the nature of software itself
which is very difficult to characterize.
SCCFA
SCCFA (Software Common Cause and Failure Analysis) derives from CCA
(Common Cause Analysis). The purpose of CCA is to identify any accident
sequences in which two or more events could occur as the result of one common
event [6]. Examples in computer systems are common physical location (e.g., if
a system is in one single room, shortcomings in the air-conditioning or external
events such as fire or earthquakes are common mode failures), common design
processes (e.g., error in the common specification of diverse components), com-
mon errors in the maintenance procedure.
SCCFA aims at identifying these causes, relatively to software failures, and at
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providing recommendations to mitigate them. It can be used in conjunction
with SFMEA/SFMECA and SFTA that can help in identifying dependencies
among groups of components, which is essential in SCCFA. The basic steps of
CCA/SSCFA include [6], [10]: i): identification of critical components group to be
evaluated (by identifying the physical/functional links in the system, functional
dependencies and interfaces); ii) within the groups, check for commonalities such
as physical location, a common design process that could introduce a generic de-
sign defect; iii) within each identified commonality, checking for credible failure
modes (SFMEA/SFMECA can help); iv) identifying causes or trigger events
that could lead to the failure modes; v) based on the above, draw conclusions
and make recommendations for corrective action. Corrective actions include re-
quirements redesign, invoking emergency procedures, and function degradation.
SSCFA can be seen as a complement to the previous ones, since it uncover sys-
tem failures caused by common software failures. However, this failures are very
difficult to uncover, especially at requirement/design stage, and it requires ex-
pensive manual reviews/inspection activities and highly skilled and experienced
personnel.
Other techniques that are worth to mention for supporting RAMS analysis are,
the Hardware-Software Interaction Analysis (HSIA) [11], aiming at examining
the hardware/software interface of a design to ensure that hardware failure
modes are taken into account in the software requirements, the State Machine
Hazard Analysis (SMHA), used to determine software safety requirements di-
rectly from the system design, to identify safety-critical software functions, and
to help in the design of failure detection and recovery procedures and fail-safe
requirements [1].

3.2 Software Engineering Techniques in the SDLC

RAMS analysis supports the SDLC activities and receives feedback from them.
Standards recommend a set of techniques and practices for each of the SDLC
phase. Companies try to comply the standard and at the same time to reduce
the cost, by selecting techniques that they believe more suitable for their prod-
uct/process.
We briefly review the most commonly used ones in practice. In the early stage,
despite the advantages of formal languages, the software requirements specifi-
cation is mostly based on natural language. It is the easiest way to specify the
user needs, to communicate with stakeholders, as well as among developers, and
to document the software product at this stage. Of course, the main problem
of natural language is ambiguity; thus, often natural language is supported by
structured notations, by multiple level of specification, or by semi-formal model-
ing techniques (e.g, requirement diagram, use cases). Whenever possible, formal
methods are adopted; they are more often used on smaller critical systems (e.g.,
automotive or control systems domain), or on most critical parts of the system
(RAMS analysis can help in identifying them). The practical problem of formal
methods is the cost for specification, especially in large systems, and the cost
deriving from the required skills: moreover, since interaction with stakeholder is
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more and more common also in these domains, it may happen that requirements
need to be specified also in some form of natural language, besides their formal
specification. One more very common recommendation that is by now adopted
by many companies is the support to a full traceability, from requirements to
code and to the corresponding test cases.
At design stage, there are principles commonly accepted by many companies,
such as modularity, information hiding/encapsulation, iterative refinement, tem-
poral/spatial partitioning, low decoupling and high cohesion, reuse. This is of-
ten part of process flows definition in companies, at least theoretically. Instead,
some of the most expensive design strategies among which producers typically
are called to choose to optimize their cost-quality trade-offs are related to archi-
tectural choices to prevent, remove or tolerate faults: hardware-software redun-
dancy, N-version programming, safety bag, recovery block, backward/forward
recovery, reconfiguration, defensive programming, design by contract, design for
change, formal methods. In many of these cases, there is the support either of
modeling (semi-formal or formal) and/or of simulation. More recently, model-
driven engineering is gaining ground in this field.
As for coding, standards may recommend specific restrictions on the coding pro-
cess, such as the adoption of particular techniques, code style, or programming
language, tied to a specific safety level. For instance, some kinds of program-
ming techniques, such as recursion, may be prescribed for the highest safety
levels. Some functionalities covering a critical role may require the adoption of
a language that does not permit dynamic memory allocation. Companies may
have their own coding standard, specifying restrictions adhering to the standard,
such as avoidance of uninitialized variables, low cyclomatic complexity, limited
use of pointers, use of naming conventions, correct indentation.

After implementation, the most expensive phase takes place: Verifica-
tion & Validation (V&V) [12]. On this point, companies really strive to
find the best cost-quality point. A lot of techniques exist, and are permitted
by standards. Big families are testing and analysis techniques: the former used
typically after the implementation, while the latter are more used from require-
ments specification to coding (especially static manual analysis). As for testing,
we may distinguish three main groups: functional testing, non-functional test-
ing, structural testing. Typical functional testing techniques are random testing
and partition-based testing. Others, e.g., statistical testing, are less used. Func-
tional testing is by far the most adopted technique, and often times also the only
adopted technique at system-level, despite the criticality of systems. At lower
level (e.g., unit testing) structural testing is adopted, also known as white-box
testing. Techniques in this category are distinguished according to the cover-
age criterion: statement coverage, branch coverage, condition coverage, MC/DC
coverage. Standard may prescribe coverage adequacy according to one of these
criterion (e.g., DO-178B requires MC/CS full coverage [13]). Non-functional test-
ing includes techniques to test quality requirements (in SCSs dependability re-
quirements), such as performance testing, stress/load testing, robustness testing.
These are in some cases required by standards (for high level of safety); for in-



Introduction to Safety Critical Systems 23

stance, performance testing is suggested by CENELEC EN 50128 for railway
[5], whereas robustness testing is required by DO-178B for avionics [13]. Per-
formance testing aims at evaluating non-functional performance requirements
fulfillment (such as constraints on response times). Stress testing evaluates the
application’s ability to react to unexpected loads. Robustness testing generates
test cases aiming to evaluate the system behavior under exceptional conditions.
Thus, it deliberately forces the system with unexpected inputs and observes its
ability to manage such values. Robustness testing is often used in conjunction
with functional testing techniques especially in critical systems, since its purpose
is the opposite of functional testing (it has to verify that the system does not do
what is not required).
As for analysis techniques, the most common ones are code/design inspection.
They are static manual analysis techniques, and are the principal means by
which artifacts consistency and correctness at different stage is verified, from
requirements completeness to design, down to the code. Code analysis is also of-
ten supported by automatic analysis tools for determining, for instance, metrics
of interest of the produced code, such as cyclomatic complexity, size metrics,
Halstead’s science metrics, coupling metrics, and others.
Finally, in the cases in which formal methods are used at upper level (prescribed
at some highest critical levels of some standards), formal verification techniques
are adopted at this stage. They include all the verification techniques that auto-
matically verify the software’s correctness against its specification: model check-
ing, symbolic execution through pre and post condition, formal proof.
As for maintenance, a common supporting strategy is keeping records of data
produced during software development process and during operation. Such data
are then analyzed to facilitate software process improvement starting from rel-
evant data from about individual projects and persons. Also, if traceability is
implemented, the impact analysis is used at this stage, in order to identify the
effect of a change in the product before implementing it.

4 Contribution of the Critical Step Project

The Critical Step project favored the development and exchange of know-how
in topics of interest in the field of SCSs. With reference to the topics mentioned
above, involved researchers, other than knowing about the world of SCSs, of their
domains, and of the related certification standards, gained key competences cov-
ering very important parts of the SCS development cycle, namely the software
dependability analysis and evaluation. The focus has been posed on two comple-
mentary perspectives, whose themes have been, during the project, subject of
several knowledge exchanges and joint work: V&V issues on the one hand, and
RAMS analysis process and methods on the other hand.

These topics have been dealt with in the context of certification standards,
which have been the common ground on top of which knowledge has been de-
veloped and shared. Several standards have been surveyed in their basic feature,
with particular reference to the V&V phase and RAMS analysis.
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More specifically, V&V has been studied mainly with respect to non-functional
requirements. Works on robustness testing in the field of critical systems have
been jointly conducted, with the aim of reporting experiences about the usage
of techniques for robustness evaluation in middleware software infrastructure
in critical contexts (e.g., publish/subscribe and web services). Further testing
techniques, such as fault-injection, have been also used to risk assessment and
robustness evaluation, being both valuable outputs for RAMS analysis. From
the RAMS perspective, researchers acquired familiarity with the whole process
of RAMS analysis at software level, with its interaction with system-level RAMS
and with SDLC phases, especially with testing. The main supported and gainful
techniques in real industrial contexts have been taken into account.
Overall, besides single joint works, the project developed background and guid-
ance to address software-specific challenges at RAMS and V&V level, on how
one can benefit from the other, and on potential opportunities to improve the
software product cost-quality balance.
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