Model-in-the-loop Testing
of a Railway Interlocking System

Fabio Scippacercola!, Roberto Pietrantuono!,

Stefano Russo', and Andréds Zentai?

! DIETI, Universita degli Studi di Napoli Federico II,

Via Claudio 21, 80125 Napoli, Italy,
{fabio.scippacercola, roberto.pietrantuono, sterusso}Qunina.it
2 Prolan Process Control Co.,

Szentendreiut 1-3, H-2011 Budakaldsz, Hungary,
zentai.andras@prolan.hu

Abstract. Model-driven techniques offer new solutions to support de-
velopment and verification and validation (V&V) activities of software-
intensive systems. As they can reduce costs, and ease the certification
process as well, they are attractive also in safety-critical domains. We
present an approach for Model-in-the-loop testing within an OMG-based
model-driven process, aimed at supporting system V&V activities. The
approach is based on the definition of a model of the system environment,
named Computation Independent Test (CIT) model. The CIT enables
various forms of system test, allowing early detection of design faults. We
show the benefits of the approach with reference to a pilot project that is
part of a railway interlocking system. The system, required to be CEN-
ELEC SIL-4 compliant, has been provided by the Hungarian company
Prolan Co. in the context of an industrial-academic partnership.

Keywords: Model-Driven Engineering, Safety-critical systems, Model-
Driven Testing.

1 Introduction

The development of systems in safety-critical domains is complex and expensive.
Normative certification standards in such domains require many verification, val-
idation and certification activities to produce evidence that a high level of con-
fidence has been achieved, that take most of resources of the entire development
process. A key role in system V&V activities is played by the environment, whose
correct specification is essential for the generation of proper test sequences.

In critical domains such as railway, automotive, and avionics, Model-Driven
Engineering (MDE) is increasingly adopted with the aim of reducing time and
costs. MDE refers to engineering processes in which models are key artifacts of
the work [1]. Models are defined in (semi-)formal languages, and other artifacts
are derived through defined transformations: model-to-model transformations
(M2M), or model-to-text transformation (M2T) from models to textual docu-
ments, source code or testing artifacts (test cases and test scripts).

The current MDE practices emphasize a strong support to system design
modeling and automatic generation of artifacts at different level of abstraction:
while this is undoubtedly of primary importance, the MDE support to environ-
ment modeling, and more generally to system V&V activities, is still underesti-
mated. If we want to fully exploit MDE potentials for critical contexts, the role
of correct environment modeling for V&V tasks cannot be disregarded.

In the context of the European project CECRIS? - investigating new methods
for certification of critical systems — we have defined a model-driven process
incorporating concepts of the OMG MDA* [2] and MDT? [3] techniques, meant
to support V&V of safety-critical systems [4]. The process has been experimented
in conjunction with Prolan Co., a Hungarian company active in the domain of
railway systems, on a pilot project for a new interlocking system.

In this paper, we focus on the topmost part of the process, and we detail how
our methodology exploits model-driven techniques to define an environmental
model enabling: i) an environment-aware specification supporting the definition
of a test plan; i) the detection of design flaws at early stages of the development
lifecycle; iii) the set-up of a framework to run model-, software- and hardware-
in-the-loop tests. We experiment the approach on a Prolan’s system, named
Prolan Monitor (PM), which is part of a railway interlocking system required
to be certified as SIL-4 (the highest safety level). Results highlight the potential
advantages that can be gained when the environment is taken into account from
the beginning through modeling support.

In the remainder, we briefly survey the state-of-the-art about model-driven
V&V and certification for critical systems (Section 2); then, our MD V-model
process is described (Section 3). Section 4 presents the experience regarding
environment modeling for the railway case study. Section 5 discusses the results.

2 Related work

There are several experiences on the application of MDE in industrial projects; a
systematic review of the available literature is in [5]. Although MDE is generally
perceived as positive — in terms of productivity, quality improvement, or au-
tomation support — not all claimed benefits are fully supported by consolidated
empirical evidence. MDE is used mainly for code generation, while few meaning-
ful studies document its use for simulation, test generation, validation and early
detection of design flaws. In particular, not many success stories are documented
on the adoption of MDA /MDT techniques based on standard (non-proprietary)
modeling notations to support evidence of their maturity.

3 CErtification of CRItical Systems, www.cecris-project.eu.

* MDA (Model-Driven Architecture) is the specific Model-Driven Development
(MDD) approach proposed by the OMG standardization organization.

® MDT (Model-Driven Testing) refers to MDE V&V activities. It is not an OMG
standard, but it is based on a UML standard profile, the UML Testing Profile (UTP),
which adapts UML as a test specification language. In MDT, test infrastructure, test
cases, and test scripts are derived from UTP models through transformations.

MDE has found application for safety-critical systems particularly in the
railway domain. Authors in [6] report a successful application of Simulink/Sta-
teflow models to the design of an on-board equipment of a Train Protection
System. With particular restrictions on models, and using a model-based testing
approach called Translation Validation, the authors were able to certify the
system according to the CENELEC standards. Another interesting application of
MDD for the generation of proper configurations of computer based interlocking
systems is presented in [7]: secondary artifacts are automatically generated by
model transformations to support CENELEC certification.

Indeed, important MD advantages for certification lie in the support for re-
quirements traceability and for formal V&V. An MDE technique for the assess-
ment of railway control systems is proposed in [8]; it is based on specialized UML
profiles enabling translations to specific formalisms, for automated test cases
generation and model checking. In the airborne domain, a similar solution for
integrating model checking with various synchronous dataflow languages adopted
by commercial MDD tools (e.g., MATLAB Simulink or SCADE) is discussed in
[9]. SCADE is a DO-178B qualified model-based environment for mission- and
safety-critical embedded applications [10]. A study on the use of the SCADE
suite for the verification of railway control systems can be found in [11], while a
success story of its application is reported in [12]. Techniques to enhance trace-
ability and documentation capabilities of MDE to ease safety inspections and
certification processes are proposed in [13, 14].

MDE sees a growing adoption for embedded systems development [15], where
it enables additional forms of V&V to achieve the required behavior and qual-
ity. Model-in-the-loop is an iterative testing activity involving the models of
the system and of its environment. When the system model is replaced with
a concrete software implementation, the testing is named Software-in-the-loop,
aiming at identifying faults due the translation of the model into code. Finally,
Processor-in-the-loop and Hardware-in-the-loop testing aim at assessing the sys-
tem in realistic environments, i.e., on the target processor or on the production
hardware. Such forms of testing are spread in the automotive industry, where
MATLAB Simulink is generally adopted [16,17].

3 The overall approach

MDE is often introduced in industrial contexts adapting traditional domain-
specific processes. This Section introduces the proposed model-driven process
originated from a conventional V-model process. The activities are grouped in
those concerning development (left side) and V&V (right side), where we exploit,
respectively, MDA and MDT.

On the left side of the V-model we follow the MDA approach: at each step
we focus on one of the three viewpoints of the system (Computation Independent
Viewpoint, Platform Independent Viewpoint and Platform Specific Viewpoint),
used to define the Computation Independent Model (CIM), the Platform In-
dependent Model (PIM), and the Platform Specific Model (PSM). The same

Sys. Req. Spec.

CIM
(SysML)

Validation Design Validation
Validation
—) CIT |

Model

, /T
Integr. Ver. Design Integration Verif.

System Design

PIM BIa;IrTbox Black box
‘ > PST
SysML/UML
(Sys) (UML/UTP) (UMLIUTP)
Comp. Ver. Design Comp. Verif.
Grey box White box
N PIT » PST
(UML/UTP) (UML/UTP)

Early detection of faults | =
Implementation

Model Driven Development Model Driven V&V

Fig. 1. The proposed model-driven V-Model. Boxes show the activities (e.g., System
Requirements Specification), the models produced (e.g., CIM), and the formalisms used
(e.g., SysML). The arrows indicate that the model at the arrow’s origin is exploited by
the activity at the arrow’s destination (e.g., the Validation Design exploits the CIM
to derive the CIT model). Note that, in a model-in-the-loop testing, the Component
Design also exploits the test models to allow early fault detection.

abstractions are adopted in the activities of the center and right side of the ‘V’,
but focusing on defining additional models that support the V&V exploiting the
different views of the system.

In System Requirements Specification, we define a CIM for modeling the
environment and the system requirements. The CIM is defined in SysML; this
language is particularly suited for this phase, as it offers requirements diagrams
and allows modeling both hardware and software components.

System Design refines the CIM into a PIM, by defining the high-level system
architecture and its components. Requirements are assigned to the components.
In this phase the PIM describes for each component the allocated requirements,
the interfaces, and the expected interactions at components’ interfaces. UML
Protocol State Machines are suited at this stage, because they describe I1/0
relations without reference to the internal design of components.

Component Design completes the PIM with the internal design of the ele-
ments. Considering the software, this model is expressed in UML and should
be specific enough to be subject to simulation. Since the Component Design fo-
cuses on describing the dynamic behavior of the elements, it can exploit UML
Behavioral State Machines.

In the Implementation phase, the PIM is refined into one or more PSMs
bound to the target platforms. For instance, a PSM adapts the generic types
of the variables with the actual ones provided by a programming language, and
binds data and function calls to the interfaces of the middleware and OS that
have been chosen for the instantiation. The PSM can be translated into code to
provide a partial or a total implementation of the system.

In the Validation Design we move to environment modeling. At this stage we
exploit the CIM to define a novel model named Computation Independent Test
model (CIT). The CIT is unaware of computation details, and focuses on the
interactions with the actors. It allows expressing such interactions as properties
and conditions related to the environment, e.g., “the station (interacting with
the interlocking system under development) cannot invert the railway direction
if there is a train occupying the block”. The CIT allows creating a simulated
environment in which engineers are supported in the validation activity of the
systems’ design models. The CIT is a basic block of the proposed Model-in-the-
loop testing approach, as further discussed in the next section.

Integration Verification Design defines a model of the expected behavior of
the system’s components, independent from their inner design. We refer to it
as Black Boz Platform Independent Test model (BB-PIT). This model provides
static and dynamic views of the system’s components, and it is mainly used
to support functional testing in the unit/integration/system verification. The
static description supports the generation of the test infrastructure, including
stubs and drivers for unit and integration testing. The dynamic description is
composed by: (i) behavioral models, such as UML Behavioral State Machines,
defined starting from requirements allocation to components in the PIM model;
(ii) test cases, which are specified by Sequence, Activity and State Machines
diagrams using the UTP profile. Behavioral models are useful indeed for auto-
matic generation of test cases. A BB-PIT models the behavior of one component
with more state machines, each focusing on a different subset of functionalities,
with the possibility of composing test suites by grouping tests derived by several
state machines. In addition, a BB-PIT supports the detection of design faults by
comparing the behavior it describes with the one defined in the PIM. In fact, the
behavior of a component is modeled differently in the PIM and in the BB-PIT,
due to their different purposes: a PIM specifies how to build the system, and
represents the specification of an actual implementation must comply with; a
BB-PIT describes the expected behavior in a way to verify its correspondence
between requirements and implementation (e.g., by using the BB-PIT for test
case generation, the description represents the specification test cases must com-
ply with). It is worth noting that, since BB-PIT derives from requirements and
is barely influenced by design details, it supports validation too.

Component Verification Design refines the BB-PIT defining a Grey Box PIT
model (GB-PIT), exploiting the PIM at Component Design-level that provides a
partial internal view of the system. The GB-PIT enables additional verification
techniques that can exploit structural features to assess correctness. Following
this flow, engineers first focus on a functional V&V modeling in the Integration
Verification Design, and then move to functional and structural V&V modeling
in this phase. Moreover, since an executable PIM is available in this phase, the
PIT allows performing a preliminary verification and validation of the design
model, in order to detect defects before implementation. In addition, by exploit-
ing the CIT properties on the PIM, model checking techniques can assess the
absence of any undesired condition in operation.

The V&V activities of the right side of V-Model refine the CIT and the PITs
considering details of the target platform, of implementation, and of the PSM.
With these refinements, the BB-PIT and the GB-PIT become the Black Box and
the White Box Platform Specific Test (respectively, BB-PST and WB-PST). For
instance, the BB-PST allows to define test cases based on the knowledge of the
target platform arithmetic, while the WB-PST can adopt a coverage criterion
based on source code. Finally, testing plans, test cases, and artifacts supporting
the V&V are derived by the PSTs through (automatic) transformations.

4 Environment Modeling

4.1 The Computation Independent Test model

We have introduced a new form of environment modeling in the process during
the Validation Design, through the definition of a Computation Independent
Test model. The CIT is an ezxecutable model of the environment that captures
the behavior of the system’s context and provides interfaces complementary to
those of the SUT. Therefore, it can be seen as a symmetric PIM and can be
linked or put in a feedback loop with the system to enable early V&V.

The CIT is useful to create a simulated environment to reason about the op-
erational aspects of the system in its context: we can validate the system against
its expected interactions with the external actors and perform special kinds of
system assessment (like performance testing or stress testing) by generating rep-
resentative operational profiles. Also, whenever model checking techniques are
adopted, undesired condition in operation can be detected by analyzing the state
space of the SUT combined with the environment.

4.2 Case study

In our previous work, we experimented the model-driven process integrated in
the V-model in a pilot project of the Prolan Block (PB) railway interlocking
system, under development by Prolan. Here we focus on the environment mod-
eling, considering the Prolan Monitor (PM), another part of the interlocking
system, which must be CENELEC EN50126, EN50128 and EN50129 SIL-4 cer-
tified. The PB shares with the PM the same hardware and middleware platform
(Prosigma), which is the basis of the next generation of the company’s products:
according to the CENELEC terminology, Prosigma is a generic product, the PB
and the PM are generic applications, and their instances are specific applications.
The PM is deployed on railway segments, named blocks. Each block is equip-
ped with a legacy interlocking system and the PM, whose goal is to receive binary
signals from the interlocking system and to transmit the information to newer
devices that adopt different protocols, e.g., as datagrams over an IP network. In
particular, the PM monitors one or more railway objects: these objects send a
bit via couples of electric signals coding the information by valent and antivalent
physical signal values. The PM must transmit the logical values to other devices
and detect invalid states when couples of electric signals are not consistent.

package 1- System context[|| System comex(y

«External block» -#
Power supply Humidity #]
—1 ’7 Temperature

tapellatas

PM

«system»

«External block» InterlockingSystem PM PM A message X25 message | «External block»

Device

Interlocki n
nteriockingSystem Block direction, 1

Block signal stop

Error signal

dsz |*

Diagnostic expert

Fig. 2. A SysML Block Definition Diagram of the CIM, showing the PM in its context.

In the System Requirements Specification, we define a CIM using SysML,
that focuses on the requirements and on the context of the PM (Fig. 2). The
CIM includes: 27 Activity Diagrams, 4 Block Definition Diagrams, 5 Internal
Block Diagrams, 1 Package Diagram, 9 Sequence Diagrams, 7 State Machine
Diagrams, and 1 Timing Diagram.

The timing diagram in Fig. 3 describes the requirements on the PM’s func-
tionality of signal filtering. The PM must sample its input with a period Tsqmpie;
since the input can suffer from transient states, a filtering solution must be imple-
mented. By the valent and antivalent signals, two debounced signals are derived,
which filter out the variations of signal that are shorter than messageFilterTime;
then, the invalid configurations of the debounced couple of signals (i.e., (0,0) and
(1,1)) are masked if they last less than mazTransientTime. The railway objects
assume invalid state if the signals bounce more than mazBouncingTime or if the
transient state lasts more than maxTransientTime.

In the System Design phase, the PIM is created, by defining the high level
architecture of the system, including components’ interfaces and their specifica-
tion. In this pilot project, we design the PM system as composed by multiple
instance of PMRailwayObjects, each of those in charge to manage a couple of in-
put binary signals assigned to a physical railway object. In order to be platform-
independent, the logic for accessing the hardware resources is masked by the
PMiInterface, required by the PMSystem.

In the Component Design phase, the PIM is refined completing the sys-
tem internal design. The PMRailwayObject consists of one Sampler, two PMDe-
bouncers and one PMInputFilter (Fig. 4). The sampler reads from the input
channels and notifies the values to the two PMDebouncers, filtering the valent
and antivalent signal. Finally, the PMDebouncers propagate the signals to the
PMInputFilter that filters out transient states, as specified in Fig. 3.

At this stage, we also define the behavior of the components, by using UML
State Machines or Activity Diagrams. The state machine in Fig. 5 models the

Input Transient Filter

{t1..43 < t1+maxBouncingTime}

Active

ignal

{t3..t3+mesgageFilterTime}

Passive

t 3 td+messageFilterTime

v
Passive Active

pour

{t1..£2 < t1+maxBouncingTime}

=] Active

(12..12 + messageFilterTime}

_

Passive

Anti
&

4+messageFilterTime

4
< Active \ Passive

Y, 4
State_1 Transient State_2

{t2..43 < t2+maxTransientTime}

:RailwayObject | |JuncedAntivalent!

Fig. 3. A UML Timing Diagram included in the CIM, representing the requirements
for the functionality of signal debouncing.

behavior of the PMDebouncers as a two-orthogonal composite state: the state
machine in the left monitors if the input is stable and sends inputStabilized Events
to the region in the right. The latter determines if the input is bouncing for a
time longer than the maximum allowed.

The PIM is defined using IBM Rhapsody Developer (hereinafter: Rhapsody)
[18], following guidelines to let the model be platform-independent.

As the derived model is executable, it can be animated to observe the run-
ning program and the system’s interactions. This is a feature that we exploited
to get an immediate feedback on program behaviour. Moreover, we can easily
create prototype of user interface for interacting with the model: by means of
the Rhapsody Panel Diagrams, we can set the logical signals and observe the
output of the PM (Fig. 9, panel diagram on the left).

In the Implementation phase, we define the PSM. In this project we set
several tagged values and tool-dependent parameters to enrich the PIM; then,
the tool uses the additional information for translating the model into code. The
automatic translation generated around 4.3 thousands of lines of Java code; the
source code is readable, understandable and ready to run.

PMRailwayObject
i valentSignal:PMDebouncer L inputFilter:PMInputFilter
& isValentSignal:boolean @ anth T PASS...
lastNotifiedSignalState: ThreeState @ lastSentvalue:int=0
MAX_BOUNCING TIME MSEC:long=S... |1 1 MAX_TRANSIENT TIME MSEC:long=1000
«Enum» E MESSAGE FILTER TIME MSEC:int=S... —— E state:ThreeState=ThreeState. PASSIVE
itsPMInputFitter
ThreeState & value:boolean @ valentInput: ThreeState=ThreeState. PASSIVE
=3 Th V...
I changevalue(newvalue:booleany:void
E‘PinputchangedEvent()
B inputchangedevent(
i Thi i lent:b.
B inputstabiizedevent()
notifySignalState(newSignalState: Thr...
& i
2D PMDebouncer(_valentsignal:boolean, .. itsPMInputFiter
ﬂ\, itsValentSianal B antivalentSignal:PMDebouncer
1
«Interface> & isvakentsignat:boolean
i sampler:Sampler
& lastiotifiedsignalstate: Threestate
8 channel2):boolean={false, fal... MAX_BOUNCING TIME MSEC: S...
SAMPLING MSEC:int=32*3 E MESSAGE_FILTER TIME MSEC:int=Sampler.S...
< 1 L
i samplevoid B
o :void
E}P inputChangedEvent()
PM_Interfaces::PMInterface E
P inputStabilizedEvent()
& y
%) PMDebouncer(_valentSianal:boolean, value:b. ..

Fig. 4. The UML Internal Structure Diagram of the PMRailwayObject, defined in the
PIM during Component Design.

Running

InputChanged

Stablestate (2)

(3 (value == tr...

|

inputChangedEvent
inputChangedEvent inputStabilizedEvent
MESSAGE_FILTER_TIME_MSEC
Inputstablized BouncingFilter

/PMDebouncer.this.gen(new inputStabilizedEvent())

Invalid &

notifySignalState(Thr.

MAX_BOUNCING_TIME_MSEC

Fig. 5. The UML Behavioral State Machine of the class PMDebouncer, defined in the
PIM during Component Design.

10

The Validation Design phase aims at creating an executable model of the en-
vironment. For the Prolan Monitor, the architecture of the CIT model is formed
by two CITRailwayObjects: each CITRailwayObject controls the couple of logi-
cal signals associated with the binary information that it encapsulates; form the
CIT point of view, the PM is an actor (Fig. 6).

The CITRailwayObjects are modeled as composed by one SignalGenerator
and one FventGenerator: the FEventGenerator determines the next output to be
triggered, as specified by a user-defined operational profile. The EventGenerator
generates the following events:

NoAction: the output is not altered in the next event generation loop;
ChangeStableState: the railway object switches between valid stable states;
CreateSpike: the output moves to an invalid state and then back to the pre-

vious stable state in order to simulate a transient in the electric signals;
Fail: the railway object moves to an invalid state and then fails.

According to the events sent by the FEventGenerator, the SignalGenerator
properly sets the couple of output signals and manages the duration of the
transients. The behavior of the EventGenerator is modeled by an activity dia-
gram, while the behavior of the SignalGenerator by a state machine (Fig. 7):
the SignalGenerator can generate sets of valid or invalid signals; when a change-
OutputFEvent is triggered by the FventGenerator, it evolves to the next stable
state passing through invalid signals (i.e., (1,1) or (0,0)) for a time equals to
transient Duration. Then, if the CITRailwayObject is not failed, the SignalGen-
erator notifies the FventGenerator that the next stable state has been reached,
and it starts to wait for the next event.

A panel diagram allows to interact with the CIT (Fig. 9, on the right): it offers
a couple of knobs to set the period of event generation as well as the duration
of transient states, and shows the output generated by the railway object.

1 railwayObject_0:CITRailwayObject B railwayObject_1:CITRailwayObject

- 1| =1
&} enabled:boolean=false = enabled:boolean=false

= railwayObjectID:int=-1 ™ railwayObjectID:int=-1

& .
& crrRaiwayObjectraitway ObjectIDrint) £) crTRaiwayObject(raiwayObjectID:int)

|| L cIT
\\ o

Valent and antivalent signals

nl

«flow>

«flow>» >

PM

Fig. 6. The architecture of the CIT.

InvalidSignals ValidSignals T
[state 1= ThreeState. INVALID] J
Invalid_1) State_A @
A transientDuration -
[setoutput(true, true) [setoutput(faise, true)
/
transientC to
/F [transientState == true] \ [state == ThreeState.PASSIVE
[else] L e Thr
J/ change [state == ThreeState. INVALID [state == ThreeState ACTIVE]
T & && params.newState != ThreeState. INVALID)/
= transientState = params.transientState; E— @

gsetomput(false,fabe) transientDuration = params. transientDuration;
state = params.newState; gsetoutput(true, false)

changeOutputEvent/

transientState = params. transientState;
transientDuration = params. transientDuration;
state = params.newState;

Fig. 7. The UML Behavioral State Machine model of the SignalGenerator, defined in
the CIT during Validation Design.

4.3 Model-in-the-loop testing

We integrate the CIT and the PIM in order to perform the Model-in-the-loop
testing. Since their interfaces are complementary, we link the two models by an
adapter that simulates a physical relay, the VirtualRelay (Fig. 8): the CIT sends
commands to switch the virtual relays, while the PIM reads their status.

Once the CIT and the PIM are linked, we can execute the whole model and
examine its evolution by means of the output console and of the panel diagrams
of Fig. 9. To use the CIT for Software- and Hardware in-the-loop testing, we just
need to change the adapter to forward the events to the actual SUT. Specifically,
to run Hardware-in-the-loop tests in our case study, we replace the VirtualRelay
with a physical relay card connected to Prosigma.

To assess the fulfillment of the requirements for the functionality of signal
filtering, we have designed a test plan to assess if the events received by the
Ezxternal Device are the expected ones, according to the behavior of the Inter-
locking System and of the input signals (Fig.s 2, 3). We apply category partition
testing (CPT) on the CIT’s interface (Table 1), deriving six test case obligations:
in this type of testing, categories are configurations of the environment (i.e., of

<Interface» VirtualRelay <nterface»

':::'_4 [>G|—

PM_Interfaces::PM_CIM_Interface

PM_Interfaces::PMinterface

Fig. 8. The software adapter linking the interfaces required by the CIT and the PIM.

12

the CIT) that lead to the generation of different sequences of effective stimuli to
the SUT. The test case specification is summarized in Tables 2 and 3. As test
oracle, we implemented a script to analyze the execution traces of the actors and
of the PIM in order to detect any undesired behavior.

Table 1. CPT test categories.

lParameter [Categories [Constraints[Test case ID ‘
Input domain (1.1) Valid values and invalid transients TC1-4
(1.2) Valid and invalid values [ERROR] TC5
Input frequency (2.1) Low frequency TC1-2, TC4-6
(2.2) High frequency SINGLE TC3
. (3.1) Undetectable by the SUT SINGLE TC3, TC6
Duration of = 17375 Detectable by the SUT TC1-2, TCH
transients (3.3) Erroneous for the SUT [ERROR] TC4
Signal (4.1) Low probability TC1, TC3-6
fluctuations (4.2) High probability [SINGLE] TC2

To execute the tests, the code of the model (in configuration in-the-loop)
is generated without the instrumentation needed for animating the model in
Rhapsody, so as to avoid slowing down the execution. Since the tests TC3 and
TC6 require a time granularity of 10 ms, we tuned the time tick to 5 ms: this
parameter specifies the time resolution to be used to poll the time events of the

Teatstmas/ Keventcveve 7 T3 0 V) N e R e Y)

e,

= ORIy

Fig. 9. A screenshot of Rhapsody showing two panel diagrams and an output console:
the panel diagram on the left is linked with the PIM, whereas the panel diagram on
the right is connected to the CIT. In Model in-the-loop configuration, both are linked
through the VirtualRelay, and are part of the animation that produces output in the
console.

13

Table 2. Specification of the test cases. All test cases except TC5 send to the SUT
valid input values ((1,0) and (0,1)) and invalid transient values ((0,0) and (1,1)).

TC ID| Categories |Event Generation|Transient| Probability
covered Period Duration |of Fluctuations
TCIL [1.1, 2.1, 3.2, 4.1 25 s 100 ms 1%
TC2 |1.1, 2.1, 3.2, 4.2 255 100 ms 40%
TC3 [1.1, 2.2, 3.2, 4.1 65 ms 10 ms 1%
TC4 |1.1, 2.1, 3.3, 4.1 258 5,000 ms 1%
TC5 |1.2, 2.1, 3.2, 4.1 258 100 ms 1%
TC6 |1.1, 2.1, 3.1, 4.1 255 10 ms 1%

Table 3. Configuration of the SUT for the experiments.

l Parameter ‘ Value ‘

Tsample 35 ms
messageFilterTime|3 * Tsampie = 105 ms
maxBouncingTime|5 * Tsqmpie = 175 ms

maxTransient Time 1,000 ms
Time tick 5 ms
Execution time 300 s

state machines and of the activities. By analyzing the execution during testing,
we assure that the hardware was adequate to meet the timing constraints.

Note that, as the events are sent to a running software system, we are actually
performing a form of Software in-the-loop testing. However, tests are not exe-
cuted on the final software code, but on the instantiation of the PIM generated
by Rhapsody that we are adopting for animation and testing purposes.

In our experiments, the SUT passed all the tests, behaving correctly. Using
this approach, we enabled an early detection of design fault, because we could
exercise the design model in its context before a complete implementation was
available. Focusing on modeling the environment, we are suggesting a form of
separation of concerns to design the test plan, that guides to design test cases
considering the conditions of the environment.

5 Discussion and conclusions

In this study, we presented an approach for Model-in-the-loop testing, embed-
ded in a model-driven process, aimed at supporting the activities of V&V. The
approach accounts for the relevant role of the environment, especially in safety-
critical system V&V, by introducing modeling activities suited for designing and
executing additional forms of verification and validation. The approach is exper-
imented on a pilot project that is part of an interlocking system required to be
CENELEC EN50126, EN50128 and EN50129 SIL-4 certified.

By exploiting the newly defined Computation Independent Test model (CIT),
we guided the generation of tests based on the analysis of the environment, suc-

14

cessfully supporting a Model-in-the-loop verification. Such a form of verification
can favor the early detection of faults, while taking advantage of the automation
offered by MDE tools. By performing testing on the SUT, we were able to verify
the design model and show the correctness of the PIM integrated with a model
of its environment.

As further remark, it is worth to emphasize that the CIT can be used to
assess multiple systems, where the environment is the same: in other words, we
are introducing a form of environment model reuse. For instance, in our case
study, the CIT can be reused with the Prolan Block, because the PB is based
on the same hardware platform and shares the requirements for input filtering.
Additionally, applying a MDA approach for the development of the CIT, we can
easily deploy the CIT under different configurations, so as to support verification
tasks of a broader range of SUT.

Finally, when the implementation is available, the CIT can be adapted to per-
form Software-, Processor- and Hardware-in-the-loop testing, offering a ready-
to-use environment to execute performance and stress tests.

As future work, we will mainly focus on evaluating the benefits achievable by
the proposed process, as well as further improvement margins, under Software-
and Hardware-in-the-loop tests.

Acknowledgment

This research has been supported by the EU FP7 Programme 2007-2013 under
REA grant agreement n. 324334 CECRIS (CErtification of CRItical Systems,
www.cecris-project.eu) within the IAPP (Industry Academia Partnerships and
Pathways) Marie Curie Action of the People Programme.

References

1. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. 1°* edn. Morgan & Claypool Publishers (2012)

2. OMG: MDA Guide. http://www.omg.org/cgi-bin/doc?omg/03-06-01 (2003) Ver-
sion 1.0.1.

3. Baker, P., Dai, Z.R., Grabowski, J., Haugen, ., Schieferdecker, I., Williams, C.:
Model-Driven Testing: Using the UML Testing Profile. 1°* edn. Springer-Verlag
Berlin Heidelberg (2008)

4. Scippacercola, F., Pietrantuono, R., Russo, S., Zentai, A.: Model-Driven Engi-
neering of a Railway Interlocking System. In: Proc. of MODELSWARD 2015, 3rd
International Conference on Model-Driven Engineering and Software Development,
SCITEPRESS (2015) 509-519

5. Mohagheghi, P., Dehlen, V.: Where Is the Proof? - A Review of Experiences from
Applying MDE in Industry. In: Proc. of the 4th European Conference on Model
Driven Architecture: Foundations and Applications. ECMDA-FA ’08, Springer-
Verlag (2008) 432-443

6. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metr6 Rio
Case Study. Science of Computer Programming 78(7) (2013) 828-842

10.

11.

12.

13.

14.

15.

16.

17.

18.

15

Svendsen, A., Olsen, G.K., Endresen, J., Moen, T., Carlson, E., Alme, K.J., Hau-
gen, O.: The Future of Train Signaling. In: Proc. of MoDELS ’08, 11th International
Conference on Model Driven Engineering Languages and Systems, Springer-Verlag
(2008) 128-142

Marrone, S., Flammini, F., Mazzocca, N., Nardone, R., Vittorini, V.: Towards
Model-Driven V&V assessment of railway control systems. International Journal
on Software Tools for Technology Transfer 16(6) (2014) 669-683

Miller, S.P., Whalen, M.W., Cofer, D.D.: Software Model Checking Takes off.
Communications of the ACM 53(2) (2010) 58-64

Esterel Technologies: SCADE Suite Product Description.
http://www.estereltechnolgies.com (2014)

Lawrence, A., Seisenberger, M.: Verification of railway interlockings in SCADE.
MRes Thesis, Swansea University (2011)

Invensys Rail: Invensys Rail Discovers Agile Development Process with SCADE
Suite. http://www.esterel-technologies.com/success-stories/invensys-rail/ (2014)
Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., Coq, T.: A SysML-based ap-
proach to traceability management and design slicing in support of safety certi-
fication: Framework, tool support, and case studies. Information and Software
Technology 54(6) (2012) 569-590

Panesar-Walawege, R., Sabetzadeh, M., Briand, L.: A Model-Driven Engineering
Approach to Support the Verification of Compliance to Safety Standards. In:
Proc. of ISSRE 2011, IEEE 22nd International Symposium on Software Reliability
Engineering. (2011) 30-39

Shokry, H., Hinchey, M.: Model-based verification of embedded software. Computer
42(4) (2009) 53-59

Amalfitano, D., Fasolino, A.R., Scala, S., Tramontana, P.: Towards automatic
model-in-the-loop testing of electronic vehicle information centers. In: Proc. of
WISE ’14, International Workshop on long-term Industrial Collaboration on Soft-
ware Engineering, ACM (2014) 9-12

Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Automated
Model-in-the-Loop Testing of Continuous Controllers Using Search. In: Proc. of
SSBSE 2013, 5th International Symposium on Search Based Software Engineering.
Volume 8084 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2013) 141-157

IBM Corp.: Rational Rhapsody Developer. http://www-
03.ibm.com/software/products/it /ratirhap (2014)

