
February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 261

Chapter 10

Aging in Virtualized Environments

Roberto Pietrantuono∗, Domenico Cotroneo† and Stefano Russo‡

Università degli Studi di Napoli Federico II, Italy
∗roberto.pietrantuono@unina.it

†cotroneo@unina.it
‡stefano.russo@unina.it

With virtualization technologies becoming a predominant paradigm of computing,
there is a strong need to analyze long-running performance and aging issues in
virtualized environments. Software aging in such environments can have a severe
impact on millions of customers of business-critical applications, as well as on
end-users of more critical (e.g., mission-critical) systems where virtualization is
also vastly being adopted.

This chapter discusses the main existing approaches to studying the aging
phenomena in virtualized environments, and the corresponding rejuvenation
techniques. It targets those contexts where virtual machines are massively
adopted — such as cloud computing platforms — as well as relevant virtualization
technologies.

The chapter covers first model-based methods for the analysis of resource con-
sumption and/or performance degradation, as well as for the optimal scheduling
of rejuvenation in virtualized systems. Then, measurement-based approaches are
discussed, where the statistical analysis of monitored health indicators is exploited
to detect and forecast aging trends in the considered contexts.

10.1. Introduction

This chapter explores the main approaches to deal with software aging analy-
sis and with rejuvenation in virtualized environments. Virtualization is a key
technology for today’s IT organizations. Virtualization solutions greatly ease
the build and deploy of applications, increase their runtime availability, and
alleviate several manual tasks — saving people time to deliver greater value.
Moreover, by reducing the number of physical machines, the infrastructure
cost, the maintenance and IT staffing cost as well as the backup and recovery

261

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 262

262 R. Pietrantuono, D. Cotroneo and S. Russo

cost are drastically lowered. For instance, a Forrester studya found that Red
Hat Virtualization speeds up virtualization tasks and improves performance
by delivering the following results: i) a return on investment of 103% over
3 years; ii) 10% to 20% of the infrastructure developer’s time saved through
an increased number of virtualization tasks and increased process efficiency;
iii) a payback period of 5.6 months.

A main advantage of virtualization is its ability to make better use of
existing resources, enabling multiple systems (i.e., the operating system,
system-level software and application-level software) to run on the same
physical machine, sharing and dynamically acquiring/releasing the same
set of resources (e.g., the CPU, memory and storage) depending on the
runtime need. Systems/services making massive use of virtualization in this
sense are those based on cloud computing. In this case, virtualization is
implemented by means of an intermediate software layer called a hypervisor
or Virtual Machine Monitor (VMM), responsible for managing the execution
of virtual machines and for the interaction with the hardware resources.
It works by separating virtual from physical layers. Another advantage of
virtualization is the much greater portability of applications (and of entire
systems) across various physical environments. Besides cloud computing, a
former successful example of software virtualization technology, with a strong
focus on portability, is the Java Virtual Machine (JVM).

As many enterprises employ virtualization to run their services, the
problem of performance degradation and, more generally of software aging,
becomes critical. Aging has been analyzed by researchers in several modern
virtualized environments, wherein long executions lead to accumulation
errors and gradual performance decrease. Conventional approaches for aging
detection and estimation have been used, which can be roughly divided
into model-based and measurement-based approaches. At the same time,
besides aging detection and estimation, which can be used to determine if
and when an aging failure is likely to occur, the problem of how to rejuvenate
a virtualized system is also of interest to software aging and rejuvenation
research. Indeed, rejuvenation is a key high-availability technique in this
context, since the advantages given by VMs as application “containers”
have led to novel and lightweight rejuvenation strategies (based on restarts,
migration and failover), which are capable of guaranteeing high levels of
service continuity in the presence of aging problems.

a“The Total Economic Impact of Red Hat Virtualization”, available at: www.redhat.com/
it/engage/efficiency-of-virtualization.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 263

Aging in Virtualized Environments 263

The next section introduces the general characteristics of SAR research
in virtualized environments. Section 10.3 contains a survey of the model-
based techniques for aging, while Section 10.4 reviews the measurement-
based techniques. Hybrid approaches combining both types of techniques
are presented in Section 10.5. Section 10.6 presents the main techniques
that are used to perform rejuvenation in virtualized environments. Finally,
Section 10.7 contains the chapter conclusions.

10.2. Aging Analysis and Rejuvenation for Virtualized
Environments

The analysis of software aging deals usually with two main tasks, the
detection and the estimation of aging trends through one or more aging
indicators. These are related to resource exhaustion (e.g., memory, storage,
operating system resources, energy), and/or to user-perceived performance
(e.g., response time, latency, served transactions, throughput). These aging
indicators characterize a degradation phenomenon that is customer-affecting
and that can also be detected at the system level within the execution
environment of the application software. In virtualized environments, the
system level — namely, the execution environment — includes not only the
physical machine with its operating system (OS) and low-level software,
but also the virtual environment, such as the Virtual Machine (VM) on
which the software is running and/or the whole virtualization technology
including the Virtual Machine Monitor (VMM), the most important layer
responsible for creating a VM environment for an OS and its applications.
Figure 10.1 sketches a generic architecture of a virtualized environment.
Virtualization can be implemented: i) via native VMMs, also known as bare-
metal hypervisors, such as Xen, VMware ESX, Oracle Vm Server, in which
there is no “host” OS but the VMM runs on and controls the hardware
directly, or ii) via“hosted” solutions, also known as hosted hypervisors, like,
for instance, VMware Workstation, VirtualBox and Parallels, in which the
access to hardware is managed via the host OS. On top of the VMM,
there are VMs: depending on the proactive/reactive fault tolerance strategy
(including rejuvenation), there can be standby VMs, which can take over
the active VMs in case of failure or upon a rejuvenation request. In a
more general scheme (e.g., in virtualized data centers), there may be other
physical nodes and a VM can be migrated to a different node if, for instance,
the hosting node or part thereof, such as the VMM, fails or needs to be
rejuvenated.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 264

264 R. Pietrantuono, D. Cotroneo and S. Russo

Fig. 10.1. A generic architecture of a virtualized environment.

In such a scenario, the execution environment is quite different from
a traditional non-virtualized environment. From the SAR perspective, this
affects: i) the choice of the most appropriate strategy for aging analysis
(i.e., how to predict the most likely time of aging failure occurrence in
order to figure out when to schedule a rejuvenation action), and ii) the
consequent rejuvenation action to perform (i.e., how rejuvenation should be
performed).

The ultimate goal of aging analysis — encompassing detection and
estimation — is to determine the most likely time of aging failure occurrence,
so as to figure out when to schedule a rejuvenation action. This is done either
through analytical modelling — formulating the problem via stochastic
models and finding the best rejuvenation time, when the system avail-
ability/survivability/performability will be maximized — or by monitoring
a system’s health indicators and applying statistical inference techniques
on time series to forecast future trends. These approaches, also known
as model-based and measurement-based, respectively, are sometimes
combined into a hybrid strategy, wherein models are properly parametrized
by field data. In the next sections, aging analysis and then rejuvenation
techniques proposed for virtualized environments are explained.

10.3. Model-Based Analysis Techniques

Model-based aging analysis techniques for virtualized environments share
the following characteristics:

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 265

Aging in Virtualized Environments 265

• The software applications within a more or less complex virtualized
environment (with one or more VMs, physical hosts, and the associated
rejuvenation strategies) are most commonly modeled by Markov mod-
els, including continuous-time Markov chains (CTMCs), homogeneous
and non-homogeneous, Markov regenerative processes (MRGMs), semi-
Markov processes (SMPs), stochastic Petri nets (SPNs) and stochastic
reward nets (SRNs), that capture the aging behaviour at different levels
of abstraction (the application or virtualized environment or physical
environment level) and, sometimes, the non-aging failing behavior too [1].

• Model-based aging analysis techniques do not usually refer to specific
aging indicators, since the model is assumed to work regardless of which
resource is being depleted or of the user-perceived metric. Even when
the model refers to a specific indicator, it can easily be applied to other
aging indicators. The attribute of interest is related to the final (user-
perceived) metric of availability (or to related metrics, such as survivability
or performability).

• The evaluation of alternatives is one of the objectives of model-based
analyses: in most cases, model-based techniques are associated with the
evaluation of alternative rejuvenation techniques at various levels, such
as at the application level, at the VM level, at the VMM/cloud platform
level, or at the node level. Indeed, exploring many such alternatives with a
measurement-based approach would be too onerous. The adopted models
very often encompass the rejuvenation action being performed, for which
proper parameters are considered (e.g., the time/cost for rejuvenation) for
the availability computation on different rejuvenation alternatives. SAR
research for virtualized systems is addressed by more studies than SAR
literature for generic systems, since, in virtualized environments, there are
more viable options for rejuvenation.

• Model-based techniques are usually validated by means of analysis or
simulation, since the collection of runtime data for all or part of the cases
being modelled is expensive and may not be representative of the system
being modelled.

• Models are, by their nature, applicable to many systems; their drawbacks
lie in the simplifying assumptions, such as those about the underlying
stochastic distributions that characterize the system. This too is not
different in the case of the virtualized environment SAR research area.

An example of the model-based approach, from Chang et al. [2], is shown
in Fig. 10.2.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 266

266 R. Pietrantuono, D. Cotroneo and S. Russo

Fig. 10.2. A model of aging-related service failure/recovery in a virtualized system (from
Chang et al. [2]).

In this CTMC model, the initial state is conditioned to be the service
breakdown. It is assumed that no other failure occurs during the system
recovery. When the service breakdown occurs due to an active VM rejuve-
nation or an active VM reboot caused by an aging-related bug (VMR), a
standby VM on the same host is selected. The failover requires the time 1/β0;
the VM restart requires 1/β2. VMC represents that the service breakdown
is due to a VM crash caused by a non-aging Mandelbug. The failover takes
the time 1/β1 (larger than 1/β0); the VM is repaired in the time 1/β3. After
repair, the state is “VM ready to reboot”, and the service is fully recovered
after 1/β2. Similarly, VMMR is the service breakdown due to the VMM
rejuvenation, and VMMC is the service breakdown caused by a VMM crash.
Live VM migration is applied in these cases, with different time delays. In
this multi-phase CTMC model, transient survivability is considered as the
measure of interest, and VM/VMM rejuvenation is included as well as the
bug-caused failures of these components.

Model-based approaches mostly differ from the presented example in the
type of model adopted, the configuration/architectural model (e.g., single vs
multiple-host), and the attributes of interest analyzed. Several of such works
also propose rejuvenation techniques, which will be presented in Section 10.6.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 267

Aging in Virtualized Environments 267

In the following, a brief overview is given about the main model-based
techniques proposed in the literature.

Zheng et al. [3] propose a single-phase version of the approach proposed
by Chang et al. [2] to model again survivability. Silva et al. [4] evaluate the
survivability of a cloud computing system by exploiting Petri nets rather
than CTMCs.

Xu et al. [5] and Rezaei et al. [6] use Stochastic Reward Nets (SRNs)
for availability modelling in a single-server virtualized system with rejuve-
nation applied at VMM level (by time-based policy), in combination with a
measurement-based policy at VM level. SRNs for availability modeling are
also used in the technique by Nguyen [1] which considers various failure and
recovery modes of multiple VMs and VMMs, and in the one by Han and
Xu [7] which considers three different rejuvenation policies (non-rejuvenation,
time-based rejuvenation, and time and load-based delay rejuvenation) for
single-server virtualization systems with multiple VMs on a single VMM.
Similarly, Machida et al. [8, 9] use SRNs for cold-VM, warm-VM and
VM-migration rejuvenation policies. A further example of multiple-host
multiple-VMs availability analysis is presented by Myint and Thein [10], who
designed a primary-standby server model, encompassing a load balancer VM
in each node responsible for monitoring resources, and a rejuvenation agent
installed on each VM. SRN are also used in the recent works by Escheikh [11,
12] where power management performability analysis is performed to evaluate
the impact on performance and energy consumption in virtualized systems.

The work by Thein et al. [13] analyzes system availability with the
time-based rejuvenation policy under different cluster configurations, 2 VMs
hosted on a single physical server and 2 VMs per a physical server in dual
physical servers. The same authors further present a software rejuvenation
framework named VMSR to offer high availability for application server
systems [14], proposing again a CTMC to model a single-host, multiple-VM
system in the scheme with hot standby replicas.

Machida et al. [15, 16] present the analysis of job completion time under
aging and rejuvenation of the VMM using a semi-Markov process. Okamura
et al. [17] present the transient analysis of the two main rejuvenation policies,
Cold- and Warm-VM rejuvenation, by means of Markov Regenerative
Stochastic Petri Nets (MRSPNs). Zhao et al. [18] formulate the problem by
using a game method, representing the different goals of a service provider
(who wants to maximize availability) and a maintainer (who wants to
minimize cost). Markov Renewal Processes (MRPs) are used to determine
the optimal rejuvenation schedule and compute the steady-state availability

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 268

268 R. Pietrantuono, D. Cotroneo and S. Russo

and maintenance cost. Melo et al. [19] present an SPN model with cloud
availability under two migration-based rejuvenation strategies (with and
without a test before migration).

Finally, some researchers propose slightly different models for aging
analysis: examples include the work by Melo et al. [20], who formulate an
availability model considering live migration for VMM rejuvenation based on
extended Deterministic Stochastic Petri Nets (DSPNs) and Reliability Block
Diagrams (RBDs), and the one by Rahme et al. [21, 22], who use Dynamic
Fault Trees (DFTs) to model cloud-based software rejuvenation.

10.4. Measurement-Based Analysis Techniques

On the other side of the spectrum there are measurement-based approaches,
which monitor and analyze the values of aging indicators through probes
at the system level related to system resources exhaustion (e.g., memory,
storage), as well as at the user level (e.g., response time, latency, throughput,
violations of Service Level Agreements (SLAs)). In a virtualized setting,
measurement-based techniques are characterized by the following features:

• Indicators are measured at any layer of the virtualization technology stack.
Specifically, monitoring can be done at application or OS level within the
VM layer, at the VM layer to probe the state and resource consumption of
the VMs (e.g., for load balancing, scaling, VM migration and rejuvenation
decisions), as well as at the virtualization technology layer, most often
referring to the VMM component. Besides system resources (CPU,
memory, storage, network), other indicators of interest are related to VMs,
for instance, the number of VM new allocations/releases, the time to
start/stop VMs or the time to migration. These are some of the parameters
of interest to the rejuvenation technique cost assessment. These metrics
are collected during execution time, and can be used to forecast future
trends. Other tradeoffs involved in making a rejuvenation decision are
load balancing and resource allocation. These can be static or dynamic.

• Data gathered are analyzed by one or more of the following techniques:

— Time Series Analysis. It is based on trend detection and an estimation
of a set of aging indicators. Tests for trend detection are used to
accept/reject the hypothesis of no trend in data (e.g., Mann-Kendall,
t-student, Seasonal Kendall tests). Trend estimation can exploit many
models, e.g., multiple linear regression, regression smoothing, Sen’s
slope estimate procedure, autoregressive models, non-linear models. In

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 269

Aging in Virtualized Environments 269

the common case of the presence of correlation among multiple aging
indicators, data transformation, feature selection, or dimensionality
reduction techniques are used; an example is the Principal Component
Analysis (PCA) followed by regression.

A time-series analysis technique in virtualized systems is the one by
Araujo et al. [23], who use the linear, quadratic, exponential growth,
and the Pearl-Reed logistic models in order to schedule software reju-
venation properly. These models have been adopted to predict memory
consumption trends on the Eucalyptus cloud computing framework.

Umesh et al. [24] also exploit time series models to identify (and
forecast) software aging patterns of the Windows active directory
service.

DeCelles et al. [25] apply an anomaly detection technique based on
principal component analysis (PCA) aimed at incipient faults such as
software aging. Using case studies involving long-running enterprise
applications, Trade6 and RuBBoS, with injected memory leaks, per-
formance of the PCA-based detector when using just the compressed
data is almost equivalent to the case in which the raw data is completely
available, but with fewer samples with a compression rate over 75%.

Cotroneo et al. [26] define a stress test methodology applied to the
HotSpot JVM, based on Design of Experiment (DoE) for a workload-
based analysis, PCA to remove first-order correlation among aging
indicators at JVM level, clustering to identify workload states, and
then multiple regression to relate JVM aging indicators (transformed
in the PC space) to the OS memory depletion and user-perceived
throughput loss.

Mohan et al. [27] study the effect of aging on power usage by using
linear regression to estimate the trend. Energy consumption is also
considered by Villalobos [28], who presents an IDS-based self-protection
mechanism at the virtualmachine level inspired by software rejuvenation
concepts. A correlation between IDS accuracy, attack rate, cloud system
workload, energy consumption, and response time is identified.

— Machine Learning. Machine learning adopts algorithms from the field
of artificial intelligence (e.g., classifiers and regressors) to identify
trends and classify a system state as robust or failure-prone.

One of the first works in this area is by Alonso et al. [29]. They
analyze a three-tiered J2EE system; a machine learning approach is
used to automatically build regression tree models that relate several
system variables (such as number of connections and throughput)

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 270

270 R. Pietrantuono, D. Cotroneo and S. Russo

to aging trends, based on the observation that such trends can be
approximated using a piecewise linear model. The models are trained
using data samples collected in preliminary experiments, and then used
to predict the Time To Exhaustion (TTE) of system resources under
conditions different than the ones observed during the training phase.

Other techniques use classifiers, like naive Bayes classifiers, decision
trees, and Artificial Neural Networks (ANN). In particular, Sudhakar
et al. [30] use ANN to capture non-linear relationships between resource
usage statistics and the time to failure in cloud systems, to generate a
prediction of the time to failure.

The works by Avresky et al. [31] and Di Sanzo et al. [32] present a
framework using machine learning models to predict failures caused by
the accumulation of anomalies and a proactive system scale up/scale
down technique applied at client-server applications in the cloud. It
predicts the remaining time to the occurrence of some unexpected event
(system failure, service level agreement violation, etc.) of a VM hosting
a server instance of the application. Machine learning is also used in
the work by Simeonov et al. [33], which proposes a framework with
three VMs, one VM master and two identical slaves, one active and
the other in standby; the slaves send health data to the master, which
predicts aging based on the machine learning algorithm running on
such data.

— Threshold-Based Approaches. These approaches define thresholds for
some aging indicators, so as to trigger rejuvenation when the monitored
indicators exceed such thresholds. An examples of this approach is
in the work by Silva et al. [34], which adopts thresholds on mean
response time and on the quality of service indicators. The authors
propose a rejuvenation approach based on self-healing techniques
that exploits virtualization to optimize recovery. They propose a
rejuvenation framework called VM-Rejuv, exploiting virtualization to
optimize recovery, with an aging detector module detecting aging
conditions based on the abovementioned thresholds.

The advantage of a measurement-based approach is that software aging
forecasting can adapt to the current condition of the system, e.g., the
current operational profile, which may not have been foreseen before
operation, and which can accurately predict the occurrence of aging
phenomena. However, this kind of approach may not be easily gener-
alizable, since it exploits some peculiar aspect related to the nature

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 271

Aging in Virtualized Environments 271

of the considered system, e.g., the fact that some particular resource
exhibits seasonal, fractal patterns, or the regularity of the phenomenon.
Moreover, measurement-based approaches are not meant to estimate long-
term dependability measures such as availability.

• Differently from model-based techniques, the analysis and validation of
these techniques consider measurements from real systems, with the goal
of identifying whether the system is in a failure-prone state due to software
aging, in order to forecast the time-to-aging-failure and to plan software
rejuvenation accordingly. The advantage of a measurement-based solution
is the possibility of gathering accurate and detailed information about
the aging state of the system. In addition, there is no need to make
assumptions about model parameters, since real data is available. On the
other hand, findings are very system-specific, and hard to generalize, even
though the large number of systems being analyzed with these approaches
is constantly increasing.

In the context of virtualized environments, systems range from cloud
applications (more often web/application servers running on the cloud)
to entire platforms, the most studied one being Eucalyptus. Specifically,
several authors [23, 35–38] analyze aging and propose rejuvenation in the
Eucalyptus cloud computing infrastructure by using measurement-based
approaches, e.g., time series forecasting. These are applied to common
indicators about resource consumption, especially RAM memory and
swap space exhaustion and CPU utilization by the VMs. Based on the
time series analyses, a prediction-based rejuvenation is scheduled, so as
to reduce the downtime by predicting the proper time to perform the
rejuvenation.

A quite different aging study on Eucalyptus is presented by Langner
et al. [39] The authors propose a technique to detect aging problems
shortly after their introduction by performing runtime comparisons of
different development versions of the same software. In this case — as
in the few other cases in the SAR literature where aging-related bugs are
analyzed at development-time [40–42] — the detection aims at revealing
aging problems before their long-term runtime manifestation.

• Besides studies on cloud computing, a relevant environment to which
measurement-based methods have been applied is represented by the Java
Virtual Machine (JVM) and its related applications (i.e., applications
based on J2EE). In this case, the parameters of interest at the VM level
are about the state of the JVM, which is captured by parameters like
heap usage, instantiated classes, number of threads, object size, number

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 272

272 R. Pietrantuono, D. Cotroneo and S. Russo

of allocations, number of garbage collections, number of JIT compilations,
etc. Several examples of measurement-based approaches in the JVM
present techniques for leak detection.

Haining et al. [43], and then Meng et al. [44], studied the performance
of the JVM running a J2EE Application Server, looking for memory leaks
associated with the garbage collection mechanism in the JVM. They use
the Virtual Machine Profiler Interface (JVMPI), to collect resource usage
data from the application server, including data on the JVM heap memory
usage and CPU utilization, as well as the response time and throughput
at client level.

In the studies by Šor et al. [45, 46], memory leak detection in Java
applications is performed through a statistical approach based on the
“age” of objects, measured as the number of garbage collection cycles
(or generations) they survive. The idea is to analyze how live instances
of the class are distributed over different generations, and evaluate if
objects follow the “generational hypothesis”, i.e., most of them become
unreachable very soon after creation (in other words, they “die” young).
The growth of the number of generations where class instances are present
is a symptom that the application allocates some objects without then
freeing them (memory leak).

Memory leaks are also analyzed by Xu et al. [47], who present an
assertion-based technique for leak detection within the Jikes RVM, a
high-performance Java virtual machine, and then applied it to real leaks
in large-scale applications like Eclipse and MySQL. Xu et al. [48] have
proposed the Self-organizing Maps (SOMs) to capture VMM behaviors
from runtime measurement data. In their work, they have used the
neighborhood area density of a winning neuron as an aging quantification
metric. The results of two experiments injecting different resource leaks
on the Xen platform show that the algorithm has a high true positive
rate and a low false positive rate. Sor et al. [49] use machine learning for
memory leak detection implemented in a commercial tool called Plumbr.

An additional JVM study, Cotroneo et al. [26], investigates throughput
loss and memory consumption in the JVM Hotspot, via a James’
mail server workload. Several JVM parameters are monitored through
JVMMon, a monitoring tool developed for the purpose of aging analysis.
Correlation analysis is used to identify aging JVM components. An
interesting finding is that the garbage collector, which was designed
to limit aging trends in Java applications, was found to suffer from
aging [26].

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 273

Aging in Virtualized Environments 273

10.5. Hybrid Analysis Techniques

An important generalization of the previous two methods for aging analysis
is what are called hybrid approaches, proposed by some researchers as
a combination of model-based and measurement-based solutions. Hybrid
solutions usually adopt a stochastic model to describe the phenomenon,
and determine the model parameters through measurement, that is, via
observed data. Solutions of this type are not yet widely deployed, but have
the potential of taking advantage of the best features found in model-based
and measurement-based approaches. A typical example is the one proposed
by Trivedi and Vaidyanathan [50] in which: i) a measurement-based semi-
Markovian model for a system workload is built; ii) the TTE for each
considered resource and state (using reward functions) is estimated, and
finally iii) a semi-Markov availability model is provided, based on field data
rather than on assumptions about system behavior.

In the context of virtualized environments, a hybrid solution is adopted
by Liu et al. [51], which measures the trends of various resources in a cloud-
based streaming system with ATM endpoints, including the CPU, storage,
and network, at several layers, and uses the measured trends to parametrize
a model to schedule service rejuvenation, implemented by means of the VM
failover to replicas. The end result is an improvement in terms of served
transactions per second.

A further hybrid strategy is proposed by Machida et al. [52], who present
an original countermeasure to software aging different from rejuvenation,
called software life extension — a sort of workaround in which, upon software
aging detection, additional memory is allocated to the VM executing the
aging-affected software. In this case, experimental data on memcached
are used to derive a more general model using a semi-Markov process
formalism.

The solution proposed by Kadirvel et al. [53] is applied to a system
manager for a batch-based job submission system on a virtualized platform,
aimed at managing and controlling virtualized resources to support reme-
diation approaches, such as the elastic increase and decrease of resource
capacity, VM migrations, and dynamic resource configuration changes. The
technique combines a Petri Net-based approach to model a system manager
module, suffering from health deterioration due to resource exhaustion,
with the usage of feedback control theory to control resource consumption
and to delay/prevent resources. Three different rejuvenation strategies are
implemented and tested — process rejuvenation, VM migration and dynamic
increase of resource allocation — chosen based on the planning module.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 274

274 R. Pietrantuono, D. Cotroneo and S. Russo

In all the mentioned classes of studies, an additional analysis factor is
workload dependency. Since aging has been shown to be correlated with
workload variation [54, 55] several studies accounted for its impact; two
examples are the following.

Brueno et al. [56] present a workload-based analysis of VMM aging and
rejuvenation under different policies for availability maximization, under
variable workload conditions. They exploit dynamic reliability theory and
symbolic algebraic techniques, representing the CDFs associated with the
VMM events, under different workload conditions, by continuous phase type
(CPH) distributions, and using the Kronecker algebra to implement the
conservation of the reliability principle and the variable timer policy.

Ficco et al. [57] perform a workload-dependent analysis of performance
degradation and memory indicators in Apache Storm, an event stream
processing (ESP) application that can deploy tasks over a cloud architecture,
by means of a workload-dependent time series analysis. The Mann-Kendall
test and Sen’s procedure, often used for aging trend detection and estimation,
are used on sliced windows where the workload and the performance/memory
trends are judged to be in contrast (e.g., their trends increase despite the
workload decreasing).

10.6. Rejuvenation Techniques

In virtualized environments, several further alternatives are explored besides
the conventional rejuvenation techniques, e.g., application/component,
OS/node reboot, cluster failover. The additional layers (i.e., the VMM and
VM layers) give the opportunity to set up various scenarios (e.g., multiple
hosts with multiple VMs) and this, in turn, enables the development of new
rejuvenation strategies exploiting, for instance, VM restarts, migration and
failover, to guarantee high levels of service continuity in the presence of
aging problems. Figure 10.3 outlines the common rejuvenation techniques at
VMM and at VM level. Software rejuvenation can act on a virtual machine
infrastructure by rejuvenating the VMM and/or its VMs. VMM rejuvenation

Fig. 10.3. Rejuvenation techniques.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 275

Aging in Virtualized Environments 275

can be performed by restarting the VMM or part thereof, and alternative
strategies depend on whether rejuvenation affects only the VMM, or also
the VMs running on top of the VMM [8, 9]. As for VM rejuvenation,
the strategies differ in how the rejuvenation process is managed. They are
explained in detail hereafter.

VMM rejuvenation can be performed by the following techniques:

• Cold-VM rejuvenation, in which the VMs are also restarted when the
VMM is rejuvenated. Cold-VM rejuvenation simply shuts down the hosted
VMs before triggering the VMM rejuvenation and restarts the VMs after
the completion of VMM rejuvenation.

• Warm-VM rejuvenation, in which the execution state of each VM,
including the OS and applications running in the VM, are stored to
persistent memory, and resumed after the restart of the VMM, in
order to reduce the downtime of restarting VMs and their services.
In this type of rejuvenation, the software running in the VMs is not
rejuvenated. This operation can be quickly performed by adopting an
on-memory suspend/resume mechanism, in which the memory images
of VMs are preserved in main memory during the VMM restart rather
than on persistent storage, in order to avoid slow read/write operations to
persistent storage. Kourai et al. [58, 59] propose such a variant, and show
that compared with Cold-VM rejuvenation, a Warm-VM reboot improves
the availability of the applications hosted on the VMs by introducing the
on-memory suspend technique and the quick reload mechanism.

• Migrate-VM rejuvenation is a type of rejuvenation in which the
downtime is further reduced by migrating a VM to another host while
the VMM is being rejuvenated, in order to make it available during
rejuvenation. This latter scheme does not rejuvenate VMs, and is limited
by the capacity of other hosts to accept migrated VMs. Migration can
further be categorized based on the type of live VM migration (stop-and-
copy or pre-copy), and the type of policy with regard to returning back to
the original host after VMM rejuvenation (return-back or stay-on) [9].
Specifically, the stop-and-copy migration stops the VM operation and
copies all the memory contents to the destination server. In the pre-copy
variant, the VM’s memory is first copied to a destination server without
stopping its operation, causing dirty pages in the copied memory contents;
then, a stop-and-copy phase is performed, which, however, updates only
the dirty pages, so considerably reducing the downtime overhead compared
to that which would result from a complete stop-and-copy of the entire

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 276

276 R. Pietrantuono, D. Cotroneo and S. Russo

VM’s memory. As for the restore of the VM on the original host, a return-
back policy foresees the migration to the original host soon after the VMM
rejuvenation is completed; a stay-on policy allows the migrated VM to run
on the other hosting server even after the completion of VMM rejuvenation
on the original host.

The work by Machida et al. [9] uses SRNs for cold-VM rejuvenation,
warm-VM rejuvenation and migration. They studied the steady-state
availability of the VMs and the expected number of transactions lost, find-
ing that Migrate-VM rejuvenation generally achieves higher steady-state
availability compared to Cold- and Warm-VM rejuvenation, because of
the ability to preserve the VM execution even during VMM rejuvenation.

Regarding the types of VM migration, they also found that the pre-copy
approach generally achieves higher availability than the stop-and-copy
approach because it minimizes the downtime caused by VM migration
thanks to the pre-copy phase. For the migration back policy, the return-
back policy is generally more effective than the stay-on policy because a
host that just finished VMM rejuvenation is more reliable than a host that
has been running for some time after the last VMM rejuvenation, i.e., the
availability of the VMs running on the migrated host is affected by the
uptime of the host from the last restart.

Machida et al. [60, 61] propose also the contemporary rejuvenation of
aged VMs and the VMM in virtualized data centers; differently from the
usual Cold-VM rejuvenation, this technique forces shutdown only to aged
VMs which are to be rejuvenated in the near future, while the robust VMs
are moved out from the host server by live VM migration before VMM
rejuvenation.

Kourai et al. [62] present VMBeam, a technique that enables lightweight
software rejuvenation of virtualized systems using zero-copy migration.
The technique starts a new virtualized system at the same host by
using nested virtualization, and then migrates all the VMs from the aged
virtualized system to the clean one. VMBeam relocates the memory of the
VMs on the aged virtualized system directly to the clean system, without
any copy.

Melo et al. [19] use an SPN model under two migration-based rejuvena-
tion strategies (with and without a test before migration).

The approach proposed by Torquato et al. [63] discussed in the previous
section foresees a rejuvenation phase performed by means of VM Live
Migration, applied on a Cloud Computing testbed which uses OpenNebula
and KVM as the VMMs.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 277

Aging in Virtualized Environments 277

• VI Micro reboot. A more complex technique is to perform a very
fine-grained reboot of software modules (a micro reboot), tailored
for the system-level virtualization software (i.e., for the virtualization
infrastructure — VI). The technique has been proposed by Le et al. [64],
who applied a micro reboot to all the modules of the Xen virtualization
software; this consists of three main components: the privileged virtual
machine, the device driver virtual machine, and the virtual machine
monitor. This is an instance of the more general case of micro reboot:
Candea et al. applied a micro reboot to Java-based virtualized envi-
ronments [65, 66]. The technique requires “microrebootable” software, in
which a system can be decomposed into components that are loosely
coupled, e.g., they do not share the same memory address space, and are
stateless, e.g., important states are located in dedicated storage outside the
application, in order to quickly restart a component without affecting the
other ones — an approach suitable for modern service-based systems. The
approach has been successfully implemented in a J2EE application [66]
(in which individual Enterprise Java Beans can be restarted) as well
as in a Java-based mission-critical system [65], consisting of a set of
components running in different Java Virtual Machines. A limitation of
component rejuvenation is that it can be applied only in systems made up
of individually restartable components; if this is not the case, the system
has to be modified based on the microreboot schema.

The best technique, or the best combination of techniques, depends on the
speed of storing/migrating the state of the VMs and on the capacity of hosts,
as well as on the aging rate of VMs and VMMs, therefore the rejuvenation
policy should be determined according to these factors.

In order to rejuvenate VMs themselves, besides the mentioned Cold-
VM rejuvenation that indirectly also rejuvenates the VM, a conventional
replication approach can be applied:

• VM Failover: VM Failover techniques are based on conventional
active/passive replication. The idea is to redirect, upon detection of aging
in a VM, all the incoming requests to another VM, and then rejuvenate
the aged VM (e.g., by restart). A VM can be rejuvenated while the other
replicas are active and the workload is redirected to them, or by activating
a standby (i.e., idle) replica when rejuvenation is triggered.
For example, Silva et al. [34] propose a cluster failover framework for web
applications based on virtualization, namely VM-Rejuv. The framework
consists of a Load Balancer, an Active Server, and a Standby Server,

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 278

278 R. Pietrantuono, D. Cotroneo and S. Russo

each running in a dedicated VM. The Load Balancer redirects requests to
the Active Server while it is correctly working, and monitors the Active
Server for aging symptoms (e.g., performance falls below a threshold).
When rejuvenation is triggered, new requests are redirected to the Standby
Server; the Active Server is rejuvenated only after all pending requests
have been processed and session data have been migrated to the Standby
Server, in order to ensure a clean restart, i.e., in order that rejuvenation
does not cause the loss of session data and the failure of user requests.
This framework can be implemented in a cost-effective way by using off-
the-shelf application servers, monitoring, and load balancing software, at
the cost of a moderate overhead.

In a virtualized environment, the management of the state transfer can
also be done by exploiting the hypervisor. For instance, the work by Distler
et al. [67] addresses the problem of stateful replica management by proposing
an architecture where recovery is allowed in parallel with service execution,
and which uses copy-on-write techniques for state transfer between virtual
replicas of a host. Similarly, Reiser et al. [68] initially proposed to use
hypervisor to initialize a new replica in parallel to normal system execution,
and thus minimizes the time in which a proactive reboot interferes with
system operation.

It is finally worth noting that the advantages of using VMs can be
counterbalanced by a higher memory fragmentation induced by the virtual-
ized environment. Alonso et al. [69] experimentally study the main software
rejuvenation techniques, considering (i) physical node reboot, (ii) virtual
machine reboot, (iii) OS reboot, (iv) fast OS reboot, (v) standalone
application restart, and (vi) application rejuvenation by a hot standby server,
and blame virtualization for the drastic increase in memory fragmentation,
which can cause aging-related failures in long-running systems. This stresses
the importance of choosing the right set of techniques to apply rejuvenation
in a virtualized environment.

10.7. Conclusions

SAR techniques in virtualized environments have increasingly emerged in
the last few years. More than 55% of research studies in this area were
published in the last 5 years, hence it is a relatively young research
area. These research studies have appeared mainly after 2007, after the
widespread adoption of this kind of system. In such studies, researchers often

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 279

Aging in Virtualized Environments 279

analyze several rejuvenation policies based on virtual machine and/or virtual
machine monitor reboot/rejuvenation. Such strategies are then evaluated
both by model-based approaches and by measurements. The availability
of cloud computing software, which can be used to experiment with such
strategies without excessive costs, is favoring aging analysis in the cloud.
A relevant example is represented by the studies on the Eucalyptus cloud-
computing framework. From the model-based perspective, models differ from
each other in the formalism adopted (e.g., CTMC, SPN, SRN, MRGP,
MRP), in the configuration/architectural model (e.g., single vs multiple-
host), in the attributes of interest analyzed (survivability, availability,
performability), and in the rejuvenation schemes (e.g., Cold-VM, Warm-
VM, Migrate-VM, VM failover). Measurement-based approaches differ from
the traditional SAR approach only in the indicators being adopted: as
mentioned, the execution environment concept is quite different from non-
virtualized systems, but the techniques used (mostly, time series analysis
and machine learning) are unchanged with respect to conventional SAR
literature. A relevant difference is that in most of the works on SAR in
the virtualized environment, researchers associate one or more rejuvenation
actions to the aging evaluation task, resulting in a literature review with
many more works including rejuvenation strategies with respect to the
general SAR literature. Looking at the increasing trends of virtualization
and cloud computing, it is easy to envision a proportionally increasing
trend in the studies dealing with aging and rejuvenation in virtualized
environments in the next few years. Moreover, because of the increased
economical impact of availability/performability/survivability and thanks
to the possibilities offered by emerging cloud-based architectures, we will
likely be witness to an increase in the number of deployments of virtualized
rejuvenation solutions, in each of the several layers of the virtualized
environment.

References

1. T. A. Nguyen, D. S. Kim, and J. S. Park. (2014). A comprehensive availability modeling
and analysis of a virtualized servers system using stochastic reward nets. The Scientific
World Journal, 2014, Article 165316.

2. X. Chang, Z. Zhang, X. Li, and K. S. Trivedi. (2016). Model-based survivability
analysis of a virtualized system. In Proceedings of the IEEE 41st Conference on Local
Computer Networks (LCN), Dubai, UAE, November 7–10, pp. 611–614.

3. J. Zheng, H. Okamura, and T. Dohi. (2015). Survivability analysis of VM-based intru-
sion tolerant systems. IEICE Transactions on Information and Systems, E98.D(12),
2082–2090.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 280

280 R. Pietrantuono, D. Cotroneo and S. Russo

4. B. Silva, P. R. M. Maciel, A. Zimmermann, and J. Brilhante. (2014). Survivability
evaluation of disaster tolerant cloud computing systems. In Proceedings of the
Probabilistic Safety Assessment & Management Conference (PSAM 12), Honolulu,
Hawaii, USA, June 22–27, p. 453.

5. J. Xu, X. Li, Y. Zhong, and H. Zhang. (2014). Availability modeling and analysis of a
single-server virtualized system with rejuvenation. Journal of Software, 9(1), 129–139.

6. A. Rezaei and M. Sharifi. (2010). Rejuvenating high available virtualized systems.
In Proceedings of the 5th International Conference on Availability, Reliability, and
Security (ARES), Krakow, Poland, February 15–18, pp. 289–294.

7. L. Han and J. Xu. (2013). Availability models for virtualized systems with rejuvena-
tion. Journal of Computational Information Systems, 9(20), 8389–8396.

8. F. Machida, D. S. Kim, and K. S. Trivedi. (2010). Modeling and analysis of software
rejuvenation in a server virtualized system. In Proceedings of the Second International
Workshop on Software Aging and Rejuvenation (WoSAR), San Jose, California, USA,
November 2, pp. 1–6.

9. F. Machida, D. S. Kim, and K. S. Trivedi. (2013). Modeling and analysis of software
rejuvenation in a server virtualized system with live VM migration. Performance
Evaluation, 70(3), 212–230.

10. M. Myint and T. Thein. (2010). Availability improvement in virtualized multiple
servers with software rejuvenation and virtualization. In Proceedings of the Fourth
International Conference on Secure Software Integration and Reliability Improvement
(SSIRI), Singapore, June 9–11, pp. 156–162.

11. M. Escheikh, Z. Tayachi, and K. Barkaoui. (2016). Workload-dependent software aging
impact on performance and energy consumption in server virtualized systems. In
Proceedings of the IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), Ottawa, Ontario, October 23–27, pp. 111–118.

12. M. Escheikh, K. Barkaoui, and H. Jouini. (2017). Versatile workload-aware power
management performability analysis of server virtualized systems. Journal of Systems
and Software, 125, 365–379.

13. T. Thein, S. Chi, and J. S. Park. (2008). Availability modeling and analysis on
virtualized clustering with rejuvenation. International Journal of Computer Science
and Network Security, 8(9), 72–80.

14. T. Thein and J. S. Park. (2009). Availability analysis of application servers using
software rejuvenation and virtualization. Journal of Computer Science and Technology,
24(2), 339–346.

15. F. Machida, V. F. Nicola, and K. S. Trivedi. (2011). Job completion time on a
virtualized server subject to software aging and rejuvenation. In Proceedings of
the Third International Workshop on Software Aging and Rejuvenation (WoSAR),
Hiroshima, Japan, November 29–December 2, pp. 44–49.

16. F. Machida, V. F. Nicola, and K. S. Trivedi. (2014). Job completion time on a
virtualized server with software rejuvenation. ACM Journal on Emerging Technologies
in Computing Systems, 10(1), 10:1–10:26.

17. H. Okamura, K. Yamamoto, and T. Dohi. (2014). Transient analysis of software
rejuvenation policies in virtualized system: Phase-type expansion approach. Quality
Technology & Quantitative Management, 11(3), 335–351.

18. J. Zhao, Y.-B. Wang, G.-R. Ning, C.-H. Wang, K. S. Trivedi, K.-Y. Cai, and
Z.-Y. Zhang. (2014). Software maintenance optimization based on Stackelberg game
methods. In Proceedings of the IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), Naples, Italy, November 3–6, pp. 426–430.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 281

Aging in Virtualized Environments 281

19. M. Melo, J. Araujo, R. Matos, J. Menezes, and P. Maciel. (2013). Comparative
analysis of migration-based rejuvenation schedules on cloud availability. In Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Manchester, UK, October 13–16, pp. 4110–4115.

20. M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Araujo. (2013). Availability
study on cloud computing environments: Live migration as a rejuvenation mech-
anism. In Proceedings of the 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Budapest, Hungary, June 24–27,
pp. 1–6.

21. J. Rahme and H. Xu. (2015). A software reliability model for cloud-based software
rejuvenation using dynamic fault trees. International Journal of Software Engineering
and Knowledge Engineering, 25(09n10), 1491–1513.

22. J. Rahme and H. Xu. (2015). Reliability-based software rejuvenation scheduling for
cloud-based systems. In Proceedings of the 27th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Pittsburgh, Philadelphia, USA,
July 6–8, pp. 298–303.

23. J. Araujo, R. Matos, P. Maciel, F. Vieira, R. Matias, and K. Trivedi. (2011).
Software rejuvenation in eucalyptus cloud computing infrastructure: A method based
on time series forecasting and multiple thresholds. In Proceedings of the Third
International Workshop on Software Aging and Rejuvenation (WoSAR), Hiroshima,
Japan, November 29–December 2, pp. 38–43.

24. I. M. Umesh and G. N. Srinivasan. (2017). Dynamic software aging detection-based
fault-tolerant software rejuvenation model for virtualized environment. In Satapathy
S. C., Bhateja V., and Joshi A. (eds.). Proceedings of the International Conference on
Data Engineering and Communication Technology, Advances in Intelligent Systems
and Computing, vol. 469. Singapore: Springer.

25. S. DeCelles, T. Huang, M. C. Stamm, and N. Kandasamy. (2016). Detecting incipient
faults in software systems: A compressed sampling-based approach. In Proceedings of
the 9th IEEE International Conference on Cloud Computing (CLOUD), San Francisco,
California, USA, June 27–July 2, pp. 303–310.

26. D. Cotroneo, S. Orlando, R. Pietrantuono, and S. Russo. (2013). A measurement-
based ageing analysis of the JVM. Software Testing, Verification and Reliability, 23(3),
199–239.

27. B. R. Mohan and G. R. M. Reddy. (2015). The effect of software aging on power usage.
In Proceedings of the 9th International Conference on Intelligent Systems and Control
(ISCO), Tamil Nadu, India, January 9–10, pp. 1–3.

28. J. J. Villalobos, I. Rodero, and M. Parashar. (2014). Energy-aware autonomic
framework for cloud protection and self-healing. In Proceedings of the International
Conference on Cloud and Autonomic Computing (ICCAC), London, UK, September
8–12, pp. 3–4.

29. J. Alonso, L. Belanche, and D. Avresky. (2011). Predicting software anomalies using
machine learning techniques. In Proceedings of the 10th IEEE International Symposium
on Network Computing and Applications (NCA), Cambridge, Massachusetts, USA,
July 15–17, pp. 163–170.

30. C. Sudhakar, I. Shah, and T. Ramesh. (2014). Software rejuvenation in cloud systems
using neural networks. In Proceedings of the International Conference on Parallel,
Distributed and Grid Computing (PDGC), Himachal Pradesh, India, December 11–13,
pp. 230–233.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 282

282 R. Pietrantuono, D. Cotroneo and S. Russo

31. D. R. Avresky, P. D. Sanzo, A. Pellegrini, B. Ciciani, and L. Forte. (2015).
Proactive scalability and management of resources in hybrid clouds via machine
learning. In Proceedings of the 14th International Symposium on Network Computing
and Applications (NCA), Cambridge, Massachusetts, USA, October 31–November 2,
pp. 114–119.

32. P. D. Sanzo, A. Pellegrini, and D. R. Avresky. (2015). Machine learning for achieving
self-* properties and seamless execution of applications in the cloud. In Proceedings
of the 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications
(NCCA), Munich, Germany, June 11–12, pp. 51–58.

33. D. Simeonov and D. R. Avresky. (2010). Proactive software rejuvenation based on
machine learning techniques. In Avresky D. R. et al. (eds.). Cloud Computing. Lecture
Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering, vol. 34. Berlin/Heidelberg, Germany: Springer.

34. L. Silva, J. Alonso, and J. Torres. (2009). Using virtualization to improve software
rejuvenation. IEEE Transactions on Computers, 58(11), 1525–1538.

35. J. Araujo, R. Matos, V. Alves, P. Maciel, F. V. de Souza, R. Matias Jr., and K. S.
Trivedi. (2014). Software aging in the eucalyptus cloud computing infrastructure:
Characterization and rejuvenation. ACM Journal on Emerging Technologies in Com-
puting Systems, 10(1), 11:1–11:22.

36. R. Matos, J. Araujo, V. Alves, and P. Maciel. (2012). Experimental evaluation of
software aging effects in the eucalyptus elastic block storage. In Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul,
Korea, October 14–17, pp. 1103–1108.

37. J. Araujo, R. Matos, P. Maciel, and R. Matias. (2011). Software aging issues on the
eucalyptus cloud computing infrastructure. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Anchorage, Alaska, USA,
October 9–12, pp. 1411–1416.

38. J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker. (2011). Experimental
evaluation of software aging effects on the eucalyptus cloud computing infrastructure.
In Proceedings of the Middleware 2011 Industry Track Workshop, Lisbon, Portugal,
December 12–16.

39. F. Langner and A. Andrzejak. (2013). Detecting software aging in a cloud computing
framework by comparing development versions. In Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management, Ghent, Belgium, May
27–31, pp. 896–899.

40. D. Cotroneo, R. Natella, and R. Pietrantuono. (2012). Predicting aging-related bugs
using software complexity metrics. Performance Evaluation, 70(3), 163–178.

41. D. Cotroneo, R. Natella, and R. Pietrantuono. (2010). Is software aging related to
software metrics? In Proceedings of the Second International Workshop on Software
Aging and Rejuvenation (WoSAR), San Jose, California, USA, November 2, pp. 1–6.

42. D. Cotroneo, R. Pietrantuono, S. Russo, and K. Trivedi. (2016). How do bugs surface?
A comprehensive study on the characteristics of software bugs manifestation. Journal
of Systems and Software, 113, 27–43.

43. M. Haining, H. Xinhong, L. Jianjun, and W. Wei. (2013). Detection and analysis of
software aging in a service-oriented J2EE application server. Information Technology
Journal, 12(9), 1857–1862.

44. H. Meng, X. Hei, J. Zhang, J. Liu, and L. Sui. (2016). Software aging and rejuvenation
in a J2EE application server. Quality and Reliability Engineering International, 32(1),
89–97.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 283

Aging in Virtualized Environments 283

45. V. Šor, N. Salnikov-Tarnovski, and S. N. Srirama. (2011). Automated statistical
approach for memory leak detection: Case studies. In Meersman R. et al. (eds.). On
the Move to Meaningful Internet Systems: OTM 2011. Lecture Notes in Computer
Science, vol. 7045. Berlin/Heidelberg, Germany: Springer.

46. V. Sor and S. N. Srirama. (2011). A statistical approach for identifying memory leaks in
cloud applications. In Proceedings of the International Conference on Cloud Computing
and Services Science (CLOSER 2011), Noordwijkerhout, The Netherlands, May 7–9,
pp. 623–628.

47. G. Xu, M. Bond, F. Qin, and A. Rountev. (2011). Leakchaser: Helping programmers
narrow down causes of memory leaks. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), San Jose,
California, USA, June 4–8, pp. 270–282.

48. J. Xu, W.-W. Wu, and C.-Y. Ma. (2014). SOM-based aging detection for Virtual
Machine Monitor. In Proceedings of the IEEE Workshop on Electronics, Computer
and Applications, Ottawa, Ontario, Canada, May 8–9, pp. 782–785.

49. V. Sor, P. Oü, T. Treier, and S. N. Srirama. (2013). Improving statistical approach
for memory leak detection using machine learning. In Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM), Eindhoven, The Netherlands,
September 22–28, pp. 544–547.

50. K. Vaidyanathan and K. Trivedi. (2005). A comprehensive model for software
rejuvenation. IEEE Transactions on Dependable and Secure Computing, 2(2), 124–137.

51. Y. Liu, W. Liu, J. Song, and H. He. (2015). An empirical study on implementing highly
reliable stream computing systems with private cloud. Ad Hoc Networks, 35(C), 37–50.

52. F. Machida, J. Xiang, K. Tadano, and Y. Maeno. (2012). Software Life-Extension:
A New Countermeasure to Software Aging. In Proceedings of the 23rd International
Symposium on Software Reliability Engineering, Dallas, Texas, USA, November 27–30,
pp. 131–140.

53. S. Kadirvel and J. A. B. Fortes. (2010). Self-caring IT systems: A proof-of-concept
implementation in virtualized environments. In Proceedings of the IEEE Second
International Conference on Cloud Computing Technology and Science (CloudCom),
Indianapolis, Indiana, USA, November 30–December 3, pp. 433–440.

54. A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo. (2011). Workload char-
acterization for software aging analysis. In Proceedings of the 22nd International
Symposium on Software Reliability Engineering (ISSRE), Hiroshima, Japan, November
29–December 2, pp. 240–249.

55. A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo. (2012). On the aging effects
due to concurrency bugs: A case study on MySQL. In Proceedings of the 2012 IEEE
23rd International Symposium on Software Reliability Engineering, Dallas, Texas,
USA, November 27–30, pp. 211–220.

56. D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa. (2013). Workload-
based software rejuvenation in cloud systems. IEEE Transactions on Computers,
62(6), 1072–1085.

57. M. Ficco, R. Pietrantuono, and S. Russo. (2018). Aging-related performance anomalies
in the Apache Storm stream processing system. Future Generation Computer Systems,
86, 975–994.

58. K. Kourai and S. Chiba. (2007). A fast rejuvenation technique for server consolidation
with virtual machines. In Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Edinburgh, UK, June 25–
28, pp. 245–255.

February 21, 2020 17:2 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch10 page 284

284 R. Pietrantuono, D. Cotroneo and S. Russo

59. K. Kourai and S. Chiba. (2011). Fast software rejuvenation of virtual machine
monitors. IEEE Transactions on Dependable and Secure Computing, 8(6), 839–851.

60. F. Machida, J. Xiang, K. Tadano, and Y. Maeno. (2012). Combined server rejuvenation
in a virtualized data center. In Proceedings of the 9th International Conference on
Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic
& Trusted Computing (UIC/ATC), Fukuoka, Japan, September 4–7, pp. 486–493.

61. F. Machida, D. S. Kim, J. S. Park, and K. Trivedi. (2008). Toward optimal virtual
machine placement and rejuvenation scheduling in a virtualized data center. In
Proceedings of the IEEE International Conference on Software Reliability Engineering
Workshops, Seattle, Washington, USA, November 11–14, pp. 1–3.

62. K. Kourai and H. Ooba. (2015). Zero-copy migration for lightweight software
rejuvenation of virtualized systems. In Proceedings of the 6th Asia-Pacific Workshop
on Systems (APSys), Tokyo, Japan, July 27–28, pp. 7:1–7:8.

63. M. Torquato, P. Maciel, J. Araujo, and I. M. Umesh. (2017). An approach to investigate
aging symptoms and rejuvenation effectiveness on software systems. In Proceedings
of the 12th Iberian Conference on Information Systems and Technologies (CISTI),
Lisbon, Portugal, June 14–17, pp. 1–6.

64. M. Le and Y. Tamir. (2012). Applying microreboot to system software. In Proceedings
of the IEEE Sixth International Conference on Software Security and Reliability
(SERE), Gaithersburg, Maryland, USA, June 20–22, pp. 11–20.

65. G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda. (2002). Reducing
recovery time in a small recursively restartable system. In Proceedings of the 2002
International Conference on Dependable Systems and Networks, Bethesda, Maryland,
USA, June 23–26, pp. 605–614. doi: 10.1109/DSN.2002.1029006.

66. G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. (2004). Microreboot —
a technique for cheap recovery. In Proceedings of the Symposium on Operating Systems
Design & Implementation, San Francisco, California, USA, December 6–8, pp. 31–44.

67. T. Distler, R. Kapitza, and H. P. Reiser. (2008). Efficient state transfer for hypervisor-
based proactive recovery. In Proceedings of the 2nd Workshop on Recent Advances on
Intrusion-Tolerant Systems (WRAITS), Glasgow, UK, April 1, pp. 4:1–4:6.

68. H. P. Reiser and R. Kapitza. (2007). Hypervisor-based efficient proactive recovery. In
Proceedings of the 26th IEEE International Symposium on Reliable Distributed Systems
(SRDS), Beijing, China, October 10–12, pp. 83–92.

69. J. Alonso, R. Matias, E. Vicente, A. Maria, and K. Trivedi. (2013). A comparative
experimental study of software rejuvenation overhead. Performance Evaluation, 70(3),
231–250.

	Aging in Virtualized Environments
	Roberto Pietrantuono, Domenico Cotroneo† and Stefano Russo‡
	Introduction
	Aging Analysis and Rejuvenation for Virtualized Environments
	Model-Based Analysis Techniques
	Measurement-Based Analysis Techniques
	Hybrid Analysis Techniques
	Rejuvenation Techniques
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /URWChanceryL-MediItal
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

