
February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 73

Chapter 4

Measurements for Software Aging

Roberto Pietrantuono∗, Javier Alonso† and Kalyan Vaidyanathan‡

Università degli Studi di Napoli Federico II, Italy
Amazon, Seattle, USA

BAE Systems, San Diego, USA
∗roberto.pietrantuono@unina.it

†jjava@amazon.com
‡kalyan.vaidyanathan@baesystems.com

Considerable attention has been devoted to the analysis of software aging based
on measurements from real systems. This approach aims to infer the presence of
aging trends (aging detection) and to forecast the future evolution of such trends
to determine the optimal rejuvenation time through an analysis of collected data.

This chapter will cover the main methods adopted for the analysis and
detection of software aging phenomena based on measurements. It will discuss the
methods for trend detection, estimation, forecasting, as well as data manipulation.

These methods can be classified as threshold-based approaches, statistical
approaches for time series analysis and machine learning approaches for aging
state classification and failure prediction. Mathematical details of the discussed
techniques will be described in Appendix A-2.

4.1. Introduction

A significant amount of effort has been dedicated by academia as well
as industry [1] to the analysis of software aging indicators (i.e., hardware
and software metrics) primarily due to the fact that the software aging
phenomenon can easily be observed in a complex enough system. These
indicators are used to determine the existence of the phenomenon, and once
this has been determined, the remaining time to life of the system under the
effect of software aging is estimated, with the ultimate aim of determining
the optimal moment to trigger the software rejuvenation process.

Depending on the techniques applied on the measurements collected from
the system to estimate the presence of software aging and the estimation
of the time to failure, we can broadly classify measurement-based software

73



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 74

74 R. Pietrantuono, J. Alonso and K. Vaidyanathan

rejuvenation into three major approaches: the threshold-based approach, the
statistics-based approach and the machine learning based approach.

In all of these approaches, a variety of system metrics such as memory
usage, CPU usage, number of system requests, response time and file
descriptors used are monitored. These metrics are used to determine which
parts of the system are affected by the aging phenomena, to determine the
time until the system reaches an unacceptable state, and finally to estimate
the optimal moment to initiate the recovery process. The above-mentioned
approaches differ in the way the system metrics are treated — thereby
resulting in substantial differences in terms of accuracy and limitations, and
in the way prior knowledge about the system is captured.

Threshold-based approaches are based solely on applying some level of
prior knowledge of the system and the metric (or metrics) that exhibit the
aging effect, and determining a threshold. If an aging metric reaches the
pre-determined threshold value, the rejuvenation process is triggered. These
techniques are usually based on some level of expert human knowledge
and/or historical data.

The second group of techniques called the statistics-based approach
use traditional statistical methods and tests. Statistical approaches use
techniques like trend detection or time series analysis to determine if the
aging phenomena actually exist and to estimate the time to failure of the
system. This approach may be further categorized depending on the actual
statistical techniques applied.

Finally, machine learning approaches leverage various machine learning
algorithm families to try and predict system crashes due to software aging
phenomena based on the indicators generated by the system such as memory
usage, file descriptors and CPU usage.

This chapter devotes one section to each of the approaches discussed
above. It can be argued that some statistical techniques can also be
considered part of the machine learning family of approaches or that some
approaches present hybrid solutions involving techniques from two or more
groups of approaches.

This level of overlap can make it hard to classify each individual tech-
nique. However, in the opinion of the authors of this chapter, this proposed
classification represents the best way to understand the idiosyncrasies and
pros and cons of each family. So, when the reader confronts any new (hybrid
or not) solution, they would be in a good spot to analyze it and understand
the implications of such a solution, even if it involves techniques from more
than one method presented here.



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 75

Measurements for Software Aging 75

The rest of the chapter is thus organized as follows: Section 4.2 focuses
on the threshold-based approaches. Section 4.3 analyzes the statistical
approaches and describes the major techniques used within this field.
Section 4.4 describes the main machine learning approaches used to predict
when the system is most likely to crash due to the aging phenomena.
Section 4.5 assists the reader by providing a comprehensive list of metrics
that have been historically linked with the aging phenomena. The main goal
of this section is to provide a good repository of well-known aging metrics.
Section 4.6 concludes the chapter with some final thoughts.

4.2. Threshold-Based Approaches

Threshold-based approaches define thresholds for one or more aging indica-
tors and rejuvenation is triggered when the monitored indicators exceed these
thresholds. Aging indicators used here may refer to resource consumption
levels. With this approach, it can sometimes be hard to assess how to trade-
off between aging-related system crashes and the triggering of superfluous
rejuvenation events.

An example of this approach is presented in the work by Silva et al.
[2], which adopts thresholds on mean response time and on quality of
service indicators. The authors propose a rejuvenation approach based on
self-healing techniques that exploits virtualization to optimize recovery.
They implemented a rejuvenation framework called VM-Rejuv, in which an
Aging Detector module is designed to detect aging conditions based on the
mentioned thresholds. Another work by Silva et al. [3] is a further example
of the threshold-based approach; the paper presents an analysis of software
aging in a SOAP-based server, in which a dependability benchmarking study
is conducted to evaluate some SOAP-RPC implementations, focusing in
particular on Apache Axis, where they detected the presence of aging by
parameter monitoring.

Thresholds are also adopted by Matias et al. [4] to evaluate the aging
effects in the Apache web server based on a controlled experiment. The
memory consumed by Apache is observed together with three controllable
workload parameters: page size, page type (dynamic or static) and request
rate. The authors adopt thresholds on the usage of virtual memory as aging
indications.

Threshold-based approaches can be combined with other approaches.
For instance, a threshold could be established for some parameters for
which a statistical or machine learning approach is difficult to apply (e.g.,



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 76

76 R. Pietrantuono, J. Alonso and K. Vaidyanathan

because of the characteristics of the observations such as high noise or
variability), while time-series or machine learning approaches could be
applied for other indicators. Such an approach has been applied on the
Eucalyptus cloud computing platform: Araujo et al. [5] combined the
threshold-based approach (with a threshold on memory utilization) with
time-series analysis, implementing a rejuvenation policy in Eucalyptus by
using multiple thresholds and forecasting with time series analysis models.
The time-series models adopted in this work are the linear model, quadratic
model, growth curve model, and S-curve trend model.

In related work, Avritzer et al. [6] applied the central limit theorem to
customer response time samples to account for response time variability.
Then, this was used to provide a mechanism to implement a trade-off
between the detection of performance degradation transients and software
rejuvenation events. The authors implement a series of varying buckets to
store response time sample measurements that exceed the response time
threshold. If a sample measurement was found to be less than the response
time threshold, that would be used to cancel a previous sample that exceeded
the response time threshold. The central limit theorem is used to show
that even for a small number of samples, the response time distribution
approaches a symmetric distribution over the mean response time [7]. If a
given bucket sample storage has an overflow condition, the system declares
the detection of performance degradation, creating a new bucket for sample
storage, but not triggering a software rejuvenation event. Therefore, the
system designers had the ability to postpone software rejuvenation, if the
performance degradation was found to be related to a transient load increase.
In contrast, if several buckets showed the overflow condition in sequence,
the software aging detection mechanism would have an increased level of
certainty that the detected performance degradation was not transient and
that software rejuvenation would be beneficial.

4.3. Statistical Approaches

A widely used technique for the measurement-based approach is time
series analysis. Variables potentially related to software aging, such as
system resource consumption or user-perceived performance indicators,
are monitored periodically over time, and the resulting time series data
are analyzed to assess the presence of aging phenomena. A time series
analysis for aging assessment addresses two main problems: 1) detecting
the presence of a degradation trend, and, if such a degradation trend is



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 77

Measurements for Software Aging 77

present, 2) quantitatively estimating the extent of the degradation and its
characteristics (e.g., seasonality in data). The problems are approached using
statistical trend detection and trend estimation techniques, respectively.
Trend detection applies statistical hypothesis testing to determine whether
the values within a time series (i.e., a series of observations of a random
variable) generally increase (or decrease) over a long period of time. The
statistical test is used to make conclusive statements about the presence
or absence of software aging trends with a desired statistical confidence.
Trend estimation allows one to quantitatively characterize the long-term
component of a time series.

The most used trend detection techniques in software aging research
are, by far, the Mann-Kendall test and the seasonal Kendall test. They
are hypothesis tests (for non-periodic and periodic time series, respectively)
that are used to accept/reject the hypothesis of no trend in data. Being non-
parametric tests, they do not make assumptions regarding the distribution
of data and are more robust to outliers than parametric tests; on the other
hand, they are generally conservative, in other words, some actual trend
could be missed. The Mann-Kendall (and seasonal Kendall) test is usually
applied in conjunction with Sen’s (and the seasonal Sen’s) trend estimation
procedure for trend estimation. Sen’s procedure is also a non-parametric
linear regression technique (also insensitive to outliers) that fits a linear
model and computes the rate at which the samples increase over time by
simply estimating the slope as the median of all slopes between paired values
[8, 9]. The combination of the Mann-Kendall test and Sen’s estimator is a
widely used approach and it has been reported in several papers from the
reviewed aging research literature [10–13].

One of the first measurement-based analyses applying the Mann-Kendall
test and Sen’s procedure was by Garg et al. [10] Until then, observations of
software aging had been mainly anecdotal. Instead of collecting metrics on
failure events (which most research on software reliability relies on), the
main idea behind this work was to periodically monitor and store data on
the attributes of a software system that are indicative of the “health” of the
system.

Using the SNMP (Simple Network Management Protocol) framework, a
distributed resource monitoring tool was designed and developed. The goal
was to monitor the health of Unix (Solaris) workstations at the OS level. The
objects (or metrics) that were monitored fell broadly into seven categories —
host details (that are constant), timestamps, OS resources, process states,
file system resources, network resources and I/O resources. The SNMP agent



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 78

78 R. Pietrantuono, J. Alonso and K. Vaidyanathan

ran on each monitored workstation while the monitoring station ran the
SNMP manager and acted as a central data repository. Eight workstations
were monitored for approximately two months with the frequency of data
collection set to fifteen minutes.

Some of the questions that the authors attempted to answer were (a) is
aging present (b) how do the metrics behave over time (c) can observed
failures be related to specific metric values and (d) can software aging
be quantified? Linear and periodic dependency analysis (autocorrelation
and harmonic analysis) and trend detection and estimation techniques (the
seasonal Kendall test) were used to answer these questions. Daily and weekly
dependencies were observed in many of the monitored variables. Smoothing
techniques (non-parametric local weighted regression) and trend detection
(the seasonal Kendall test) were applied to the time-series data to detect
global trends that pointed to evidence of software aging.

The major contributions of this paper were aging quantification and
the estimations of time to failure due to aging. The quantification aspect
was addressed by calculating a slope metric using Sen’s non-parametric
method for each metric and the corresponding time to failure estimation was
performed using a simple linear projection, given the minimum/maximum
of the metric of interest.

The above work was extended by Vaidyanathan and Trivedi [14], where
a measurement-based model was proposed to estimate resource exhaustion
times based on time as well as system workload state. The same setup as [10]
was used to monitor and collect Unix data. Statistical clustering techniques
were employed to identify different workload states and a semi-Markov
state space model was developed. This approach can also be understood
as a machine learning approach. For each of the monitored metrics of
interest, a reward function was computed based on the exhaustion rate
of these metrics (resources) at each of the identified workload states. The
expected accumulated reward was used an indicator of the resource usage
trend and estimates of failure times were computed using this. This work
clearly demonstrated the relation between system workload and resource
exhaustion and supports prior studies that showed that workload does affect
system reliability/availability. Not only were the system workload dynamics
captured in the model but also the effect of workload on resource usage
was quantified by means of reward rates or slopes in the model. In doing
this, the software aging phenomenon was validated with respect to resource
exhaustion. This workload-based model was further expanded in [15] by
feeding the results to a higher level availability model that accounts for



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 79

Measurements for Software Aging 79

failure followed by reactive as well as proactive recovery. Optimal rejuve-
nation schedules are derived that minimize downtime cost and maximize
availability.

Grottke et al. [11] have analyzed the performance degradation in the
Apache Web Server by sampling the web server’s response time to predefined
HTTP requests at fixed intervals, using a similar procedure as the one
adopted by Garg et al. They have also analyzed the seasonal patterns, where
trend analysis accounts for the possible presence of seasonal variation in data.

More recently, Zheng et al. [16] proposed an alternative to the conven-
tional (seasonal) Mann-Kendall test and Sen’s procedure. The authors point
out a few areas where improvements can be made to the Mann-Kendall test
and Sen’s trend estimator (e.g., suitability for linear trends only, sensitivity
to noise and computational complexity) and propose to use a modified
version of the Cox-Stuart test for trend detection and the iterative Hodrick-
Prescott Filter for (linear and non-linear) trend estimation. The Cox-Stuart
test is based on the sign test between pairs of a series of observations (a
modified version is proposed for periodic time series). The Hodrick-Prescott
filter does not presume the structure of the trend (e.g., linear trend); it
solves a “penalized” spline model, fitting the raw time series to be a more
smoothened representation, by using a smooth parameter that penalizes the
variability of the trend component, thus controlling the trade-off between
the goodness of fit and smoothness (the larger its value, the smoother the
trend component). This test is also insensitive to periodicity.

Together with the conventional Mann-Kendall test for trend detection,
Li et al. [17] used time-series ARMA/ARX models for trend estimation on
the Apache Web Server to estimate the resource exhaustion. Compared with
the linear regression and extended linear regression models, the ARX model
incurs higher initial overhead, but once the model parameters are established,
these parameters can be used for prediction without the need for frequent
model re-calibration.

ARIMA (Autoregressive Integrated Moving Average) and Holt-Winters
(Triple Exponential Smoothing) models have been used by Magalhaes
and Silva [18], wherein the authors develop a framework for detection
of performance anomalies caused by aging, which is targeted to web
and component-based applications. In particular, the framework monitors
application/system parameters, used to determine the correlation between
the application response time and the input workload, in turn used to train
machine learning (ML) algorithms. At run-time, parameters collected by
monitoring are estimated by ARIMA and Holt-Winters algorithms, and the



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 80

80 R. Pietrantuono, J. Alonso and K. Vaidyanathan

estimations are classified by the trained ML algorithms to determine if the
application may experience performance anomalies.

Time-series analysis has also been adopted to study the relationship
between software aging and workload in complex systems, including the
Linux Kernel code [19] and the Java Virtual Machine [20]. In both cases, the
analysis of workload parameters is used to provide indications of potential
sources of software aging, by highlighting the subsystems whose parameters
are correlated to the experienced aging trends. In the latter, parametric trend
detection was used for aging detection, specifically the conventional t-student
test. Then, Principal Component Analysis (PCA) followed by multiple linear
regression was also used to remove first-order correlation among predictors
and then to provide linear estimates of aging trends, so as to reduce the
problem of multicollinearity. Clustering is also preliminarily exploited to
separate out different workload states possibly exhibiting different trends.

In the work by Bovenzi et al. [21] the authors adopt a Design of
Experiment (DoE) technique that is used to assess the presence of aging
under different workload configurations in several applications, such as
the James mail server, a middleware for an air traffic control system, the
Apache web server, and the MySQL DBMS. A series of controlled long-
running experiments are planned and executed, and the resulting time series
are analyzed by the conventional Mann-Kendall test and Sen’s procedure
followed by the Analysis of Variance (ANOVA) to assess the impact of
various workload factors on software aging. The impact of concurrency bugs
on aging is also assessed using this technique.

Non-linear time-series analyses are used by Araujo et al. [5] Four different
time-series models have been used to schedule software rejuvenation: 1) the
linear model, 2) the quadratic model, 3) the exponential growth model, and,
4) the model of the Pearl-Reed logistic. They have been adopted to predict
memory consumption trends on the Eucalyptus cloud computing framework.
One further paper considering nonlinear models is by Jia et al. [22] in which
aging is studied in the Apache server by constructing a dynamic model
to describe the software aging process following the method of nonlinear
dynamic inversion. The software aging process is shown to be nonlinear and
chaotic.

In the best practice guide by Hoffmann et al. [23], multivariate nonlinear
models (support vector machines, radials, and universal basis functions)
have been compared with multivariate linear models. The former ones have
shown better performance than linear models in the benchmarking case
studies.



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 81

Measurements for Software Aging 81

Finally, Chen et al. [24] propose a new aging metric based on Mul-
tidimensional Multi-scale Entropy (MMSE) for trend analysis and aging-
related failure prediction. PCA is leveraged to select variables from an
initial set of multiple aging indicators. Using a normalized time series of the
selected indicators, the MMSE metric is computed, where a greater entropy
is demonstrated to relate to a more severe aging phenomenon.

4.4. Machine Learning Approaches

As stated in the previous section, there are several works that use time
series approaches as a first step in the area of machine learning. If we
consider software aging phenomena as a result of two factors (the system
resource presenting the aging bug, and time), time series approaches could
be considered ideal. However, these approaches are drastically limited by the
need to have previous knowledge about the resource that is affected by the
aging phenomena and the affected performance metric (e.g., response time,
throughput). This represents an increasingly higher barrier to adopting time
series approaches with the increasing complexity of the systems and the
interdependency between resources at different system layers.

In this scenario machine learning approaches come into play. Machine
learning approaches are a more sophisticated form of data analysis, which
adopts machine learning algorithms (e.g., classifiers and regressors) to
identify trends (e.g., estimating time to failure) and to classify a system
state as robust or failure-prone.

Pattern recognition methods have been used by Cassidy et al. [25] to
predict software aging in shared memory pool latch contention in large
OLTP servers. The approach applies non-linear, non-parametric regression
to a large set of system variables, and analyzes the residual error between the
predicted and the actual system values using a sequential probability ratio
test, in order to predict the onset of software aging effects. The obtained
results have shown that these methods could be used to detect significant
deviations from “standard” behavior with a 2-hour early warning.

We subdivide the machine learning approaches into two major families
based on the type of machine learning algorithm used: regression approaches
and classification approaches.

The former approach is focused on trying to predict the time to exhaus-
tion (TTE) of the system resource or resources due to aging phenomena.
The later approach is focused on determining the state of the system (i.e.,
stable vs non-stable state).



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 82

82 R. Pietrantuono, J. Alonso and K. Vaidyanathan

There are several published papers within the domain of predicting
the time to crash due to software aging. For example, Alonso et al. [26]
compare different regression algorithm families (i.e., regression trees, linear
regression and hybrids). The authors focus on comparing these algorithms
within the different scenarios and multiple aging phenomena involved. The
conclusion arrived at by the authors was that the aging phenomena was
better modeled by a hybrid model (i.e., MP5) between Decision Trees and
Linear Regression, since the aging phenomena caused by resource exhaustion
due to bugs in the software (i.e., memory leaks or threads unreleased after
use) can be modeled by linear piecewise models capturing different aging
slopes or speeds. In addition to the above, three different machine learning
algorithms (a naive Bayes classifier, decision trees and a neural network
model) have been also used in combination with time-series models to predict
aging in web applications [18].

They automatically built the models relating several system variables
(e.g., the number of connections and throughput) to aging trends, based
on the observation that software aging trends can be approximated using a
piecewise linear model. The models were trained using data samples collected
in preliminary experiments, and were used to predict the TTE of system
resources in conditions different than the ones observed during the training
phase.

An example of the application of machine learning classifier algorithms
is presented by Alonso et al. [27]. The paper compares a large set of families
(i.e., random forest, decision trees, LDA/QDA, Naive Bayes, Support Vector
Machines and K-nearest neighbors) to predict state in the context of a
three-tier J2EE system.

Andrzejak and Silva [28] compare four classification algorithms: J48
(a decision tree based algorithm), Navie Bayes, Support Vector Machines
(i.e., SMO) and ZeroR (The 0/R classifier). The authors compare these
four algorithms in software aging scenarios caused by only one met-
ric with a constant software aging injection rate. The experimental
evaluation suggested that all these four main families of classification
techniques perform similarly, even though SMO presents better overall
results.

An approach not exactly falling within this area but still related to it is
to use reinforcement learning for aging estimation. Eto, Dohi and Ma [29]
used reinforcement learning to estimate the optimal rejuvenation schedule
adaptively, i.e., by considering runtime data to update the estimation. Thus,
their estimation technique does not require a complete knowledge of system



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 83

Measurements for Software Aging 83

failure (degradation) time distribution in the operational phase, even if the
underlying software state transition is governed by models, i.e., by CTMCs
or SMPs. This is an example of a hybrid approach, wherein a measurements-
based approach is used in conjunction with a model-based one [30].

4.5. Relevant Software Aging Metrics: Beyond
Memory Leaks

Aging indicators are an important area of study for measurement-based
approaches. The correct identification of metrics representing the aging of
the system is of paramount importance in order to have a clear assessment of
the system health’s state. Aging indicators can refer to both resource usage
and to performance. The following classes of aging indicators are commonly
used in measurement-based aging analysis techniques:

• Memory consumption: metrics related to memory consumption are by
far the most commonly used metrics for monitoring resource depletion.
Empirical evidence showed that free memory exhibits the shortest Time
to Exhaustion (TTE) among system resources [10] and that memory
management defects are a significant cause of aging failures [31] and of
software failures in general [32]. Therefore, several measurement-based
studies analyze aging phenomena affecting free memory by measuring the
amount of free physical memory and swap space [11, 14, 33], and applying
time series and statistical models to these variables.

• Performance degradation: Measurement-based techniques often refer
to performance degradation in software systems affected by aging, which
is the other symptom (aside from resource depletion) caused by aging.
Performance degradation is indeed related to memory usage: for instance,
the consumption of physical memory increases the time required by mem-
ory allocation procedures and garbage collection mechanisms, since their
computational complexity is a function of the number of memory areas
that have been allocated [20, 34, 35]. But performance degradation can be
also due to other, more complex and hard-to-reproduce, aging causes such
as fragmentation or concurrency management [21, 36]. Common indicators
are response time, latency, throughput, transaction rate or, less commonly,
the number of SLA (Service Level Agreement) violations. In the presence
of this kind of phenomena, software rejuvenation can be triggered when
the quality of service (e.g., in terms of response time or throughput) is
below a given threshold.



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 84

84 R. Pietrantuono, J. Alonso and K. Vaidyanathan

• Other resource consumption: Software aging can impact several other
resources types. Besides memory-related resources (e.g., physical memory,
virtual memory, swap space, cache memory), the reviewed literature also
addressed the following other types of resources:

— filesystem-related resources, such as stream descriptors and file handles
[10, 37, 38]

— storage, whose space may be consumed by bad management [39]
— network-related resources, such as socket descriptors [37]
— concurrency-related resources, such as locks, threads and processes [10,

21, 38]
— application-specific resources, such as DBMS shared pool latches [25]

and OSGi references [40].

In many cases, the approach is not constrained to a specific resource, but is
focused on detecting incorrect API usage and incorrect exception handlers
that may cause a resource leakage. For instance, in the work by Zhang
et al., the authors present an approach that dynamically mines resource
usage patterns by monitoring API calls, and provides an experimental
evaluation of open source programs based on the Java I/O and concurrency
APIs [38]. A frequent kind of resource leak in Java programs is represented
by sockets and file handles, due to faulty exception handlers that do not
release these resources [37, 38]. Other resources can also be affected by
software aging depending on the kind of system, such as free disk space in
DBMS [39]. In some cases, a wider set of resources can be analyzed. The
above-mentioned example by Garg et al. applies time series analysis on a
network of UNIX workstations monitored on several resources (related to
virtual memory, the OS kernel, the file system, the disk, and the network),
noticing a statistically significant trend in the process table size and
in the file table size (although their time-to-exhaustion was lower than
that of free memory). Other resources include CPU utilization, power
consumption, and the number of threads/processes. In cloud systems,
indicators can be measured at any layer of the virtualization technology
stack, e.g., at the application or the OS level within the VM layer, at
the VM layer to probe the state and the resource consumption of the
VMs (e.g., for load balancing, scaling, VM migration and rejuvenation
decisions), as well as at the VMM layer. Besides system resources, other
indicators of interest are related to VMs, for instance, the number of VM
new allocations/releases, the time to start/stop VMs, or to the time to
migration.



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 85

Measurements for Software Aging 85

A recent field in which software rejuvenation is being studied is related
to security attacks [41, 42], that is, attempts by malicious users to access
unauthorized resources, to cause their gradual leakage or to make the
system unavailable. In fact, security attacks may take place and gradually
compromise a system over a long period of time (e.g., password theft through
brute force guessing, or flood attacks that trigger software aging phenomena),
which can be mitigated by periodically rejuvenating a system, such as
by changing cryptographic keys, by restarting compromised processes, and
by randomizing the location of data and instructions in memory [43–48].
Currently, the aging rate is assumed at design time [43, 49] or is based on
imperfect attack/intrusion detectors that could raise false alarms and miss
attacks [50, 51].

Other aging indicators may be aimed at capturing effects like the
accumulation of numerical errors [52] and memory fragmentation [52, 53].
These kinds of aging effects are not necessarily caused by bugs in the
software, but are related to the nature of floating-point arithmetic and
memory allocation algorithms respectively.

4.6. Conclusions

This chapter described the main approaches to dealing with software aging
based on measurements. Unlike model-based approaches, measurements-
based techniques rely on observations from real systems, with the goal of
detecting whether the system is in a failure-prone state due to software aging,
forecasting the time-to-aging-failure, and planning software rejuvenation
accordingly.

The advantage of such solutions lies in the possibility of gathering
accurate and detailed information about the aging state of the system under
analysis, and the use of real data to estimate metrics and model parameters.

However, while the techniques described in this chapter can be applied to
any system for which monitoring is possible, it is also true that the gathered
observations from one system are difficult to generalize. A good example of
this difficulty is that of trained machine learning models, which may work
accurately only for the system that was used to generate the training data.

Moreover, at design time there is no data available to determine the
potential sources of possible aging behaviors — a real system is needed in
order for data to be collected. This requires a tuning of the technique used
based on the system to be analyzed, which considers the indicators that are
more likely related to the aging phenomena of that specific system — hence



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 86

86 R. Pietrantuono, J. Alonso and K. Vaidyanathan

more explanatory of aging behaviors — and that can be monitored with
acceptable overhead.

Due to the underlying limitations of the measurements-based approa-
ches, it is natural to combine measurements-based approaches with model-
based approaches. Real data can be used to estimate the parameters for the
models. So, combining both approaches increases our capabilities to study
the effect of the software aging on a given system in much more detail than
is possible with simple observations.

In the future, we expect the impact of the measurement-based aging
analysis technique to increase in the SAR literature. We expect to see an
increased use of machine learning techniques because they represent a hybrid
between model-based and measurements-based approaches.

Indeed, as systems become more and more complex, several indicators
will need to be analyzed to detect software aging. Moreover, it will become
increasingly difficult to distinguish between software aging and the expected
fluctuations of the system performance, because of inter-relations among
multiple parameters [6, 7].

All these call for more complex statistical techniques able to analyze the
cause-effect relations (and not only correlations) among multiple indicators
and to spot those critical patterns relevant for aging identification in complex
systems. This is a challenge of great importance due to the increasing impact
of aging problems in complex systems.

References
1. J. Alonso, A. Bovenzi, J. Li, Y. Wang, S. Russo, and K. Trivedi. (2013). Software

rejuvenation: Do IT and telco industries use it? In Proceedings of the 2012 IEEE 23rd
International Symposium on Software Reliability Engineering Workshops (ISSREW),
Dallas, Texas, USA, November 27–30, pp. 299–304. doi: 10.1109/ISSREW.2012.96.

2. L. Silva, J. Alonso, and J. Torres. (2009). Using virtualization to improve software
rejuvenation. IEEE Transactions on Computers, 58(11), 1525–1538.

3. L. Silva, H. Madeira, and J. Silva. (2006). Software aging and rejuvenation in a
SOAP-based server. In Proceedings of the 5th IEEE International Symposium on
Network Computing and Applications (NCA 2006), Cambridge, Massachusetts, USA,
July 24–26, pp. 56–65.

4. R. Matias Jr. and P. Filho. (2006). An experimental study on software aging
and rejuvenation in web servers. In Proceedings of the 30th Annual International
Computer Software and Applications Conference (COMPSAC’06), Chicago, Illinois,
USA, September 17–21, pp. 189–196.

5. J. Araujo, R. Matos, P. Maciel, F. Vieira, R. Matias, and K. Trivedi. (2011).
Software rejuvenation in eucalyptus cloud computing infrastructure: A method based
on time series forecasting and multiple thresholds. In Third International Workshop
on Software Aging and Rejuvenation (WoSAR), Hiroshima, Japan, November 29–
December 2, pp. 38–43.



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 87

Measurements for Software Aging 87

6. A. Avritzer, A. Bondi, and E. J. Weyuker. Ensuring stable performance for systems
that degrade. In Proceedings of the 5th International Workshop on Software and
Performance (WOSP ’05), Palma, Illes Balears, Spain, July 12–14, pp. 43–51. ISBN
1-59593-087-6. doi: 10.1145/1071021.1071026.

7. A. Avritzer, A. Bondi, M. Grottke, K. S. Trivedi, and E. J. Weyuker. (2006).
Performance assurance via software rejuvenation: Monitoring, statistics and algo-
rithms. In International Conference on Dependable Systems and Networks (DSN’06),
Philadelphia, Pennsylvania, USA, June 25–28, pp. 435–444. doi: 10.1109/DSN.2006.58.

8. P. K. Sen. (1968). Estimates of the regression coefficient based on Kendall’s Tau.
Journal of the American Statistical Association, 63(324), 1379–1389. ISSN 01621459.

9. H. Theil. (1992). A rank invariant method of linear and polynomial regression
analysis. In Raj, B. and Koerts, J. (eds.). Henri Theil’s Contributions to Economics
and Econometrics: Econometric Theory and Methodology. Dordrecht, Netherlands:
Springer. ISBN 978-94-011-2546-8. doi: 10.1007/978-94-011-2546-8 20.

10. S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi. (1988). A methodology for
detection and estimation of software aging. In Proceedings of the Ninth International
Symposium on Software Reliability Engineering, Paderborn, Germany, November 4–7,
pp. 283–292. doi: 10.1109/ISSRE.1998.730892.

11. M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi. (2006). Analysis of software aging
in a web server. IEEE Transactions on Reliability, 55(3), 411–420. ISSN 0018-9529.
doi: 10.1109/TR.2006.879609.

12. A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo. (2011). Workload charac-
terization for software aging analysis. In Proceedings of the 22nd International Sym-
posium on Software Reliability Engineering (ISSRE), Tokyo, Japan, November 14–17,
pp. 240–249.

13. K. S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova. (2000). Model-
ing and analysis of software aging and rejuvenation. In Proceedings of the 33rd
Annual Simulation Symposium (SS 2000), Washington, DC, USA, April 16–20,
pp. 270–279.

14. K. Vaidyanathan and K. Trivedi. (1999). A measurement-based model for estimation
of resource exhaustion in operational software systems. In Proceedings of the 10th
International Symposium on Software Reliability Engineering, Boca Raton, Florida,
USA, November 1–4, pp. 84–93. doi: 10.1109/ISSRE.1999.809313.

15. K. Vaidyanathan and K. Trivedi. (2005). A comprehensive model for software
rejuvenation. IEEE Transactions on Dependable and Secure Computing, 2(2),
124–137.

16. P. Zheng, Y. Qi, Y. Zhou, P. Chen, J. Zhan, and M. R. T. Lyu. (2014). An
automatic framework for detecting and characterizing performance degradation of
software systems. IEEE Transactions on Reliability, 63(4), 927–943. ISSN 0018-9529.
doi: 10.1109/TR.2014.2338255.

17. L. Li, K. Vaidyanathan, and K. Trivedi. (2002). An approach for estimation of software
aging in a web server. In Proceedings of the 2002 International Symposium on Empirical
Software Engineering, Nara, Japan, October 3–4, pp. 91–102. doi: 10.1109/ISESE.
2002.1166929.

18. J. Magalhaes and L. Silva. (2010). Prediction of performance anomalies in web-
applications based-on software aging scenarios. In Proceedings of the Second Interna-
tional Workshop on Software Aging and Rejuvenation (WoSAR), San Jose, California,
USA, November 2, pp. 1–7. doi: 10.1109/WOSAR.2010.5722095.

19. D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. (2010). Software aging
analysis of the Linux operating system. In Proceedings of the 21st International



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 88

88 R. Pietrantuono, J. Alonso and K. Vaidyanathan

Symposium on Software Reliability Engineering (ISSRE) San Jose, California, USA,
November 1–4, pp. 71–80. doi: 10.1109/ISSRE.2010.24.

20. D. Cotroneo, S. Orlando, R. Pietrantuono, and S. Russo. (2013). A measurement-
based ageing analysis of the JVM. Software Testing, Verification and Reliability, 23(3),
199–239.

21. A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo. (2012). On the aging effects
due to concurrency bugs: A case study on MySQL. In Proceedings of the 2012 IEEE
23rd International Symposium on Software Reliability Engineering, Dallas, Texas,
USA, November 27–30, pp. 211–220. doi: 10.1109/ISSRE.2012.50.

22. Y.-F. Jia, L. Zhao, and K.-Y. Cai. (2008). A nonlinear approach to modeling of software
aging in a web server. In Proceedings of the 15th Asia-Pacific Software Engineering
Conference, Beijing, China, December 3–5, pp. 77–84. doi: 10.1109/APSEC.2008.38.

23. G. Hoffmann, K. Trivedi, and M. Malek. (2007). A best practice guide to resource
forecasting for computing systems. IEEE Transactions on Reliability, 56(4), 615–628.
ISSN 0018-9529. doi: 10.1109/TR.2007.909764.

24. P. Chen, Y. Qi, X. Li, D. Hou, and M. Lyu. (2017). Arf-predictor: Effective prediction
of aging-related failure using entropy. IEEE Transactions on Dependable and Secure
Computing, 15(4), 675–693. ISSN 1545-5971. doi: 10.1109/TDSC.2016.2604381.

25. K. Cassidy, K. Gross, and A. Malekpour. (2002). Advanced pattern recognition for
detection of complex software aging phenomena in online transaction processing
servers. In Proceedings of the International Conference of Dependable Systems and
Networks, Bethesda, Maryland, USA, June 23–26, pp. 478–482. doi: 10.1109/DSN.
2002.1028933.

26. J. Alonso, J. Torres, J. Berral, and R. Gavalda. (2010). Adaptive on-line software aging
prediction based on machine learning. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN), Chicago, Illinois, USA, June 28–July 1,
pp. 507–516. doi: 10.1109/DSN.2010.5544275.

27. J. Alonso, L. Belanche, and D. Avresky. (2011). Predicting software anomalies using
machine learning techniques. In Proceedings of the 10th IEEE International Symposium
on Network Computing and Applications (NCA), Cambridge, Massachusetts, USA,
August 25–27, pp. 163–170.

28. A. Andrzejak and L. Silva. (2008). Using machine learning for non-intrusive modeling
and prediction of software aging. In Proceedings of the IEEE Network Operations and
Management Symposium, Salvador, Bahia, Brazil, April 7–11, pp. 25–32.

29. H. Eto, T. Dohi, and J. Ma. (2008). Simulation-based optimization approach for
software cost model with rejuvenation, In Rong C., Jaatun M. G., Sandnes F. E.,
Yang L. T., Ma J. (eds.). Autonomic and Trusted Computing. ATC 2008. Lecture
Notes in Computer Science, vol 5060. Berlin/Heidelberg, Germany: Springer.

30. D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. (2014). A survey of software
aging and rejuvenation studies. Journal of Emerging Technologies in Computing
Systems, 10(1), 8:1–8:34. ISSN 1550-4832. doi: 10.1145/2539117.

31. D. Cotroneo, R. Natella, and R. Pietrantuono. (2012). Predicting aging-related bugs
using software complexity metrics. Performance Evaluation, 70(3), 163–178.

32. M. Sullivan and R. Chillarege. (1991). Software defects and their impact on system
availability — a study of field failures in operating systems. In Proceedings of
the Twenty-First International Symposium on Fault-Tolerant Computing (FTCS-21),
Montreal, Quebec, Canada, June 25–27, pp. 2–9.

33. M. Ficco, R. Pietrantuono, and S. Russo. (2017). Aging-related performance anomalies
in the Apache Storm stream processing system. Future Generation Computer Systems,
86, 975–994.



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 89

Measurements for Software Aging 89

34. G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo. (2010). Memory
leak analysis of mission-critical middleware. Journal of Systems and Software, 83(9),
1556–1567.

35. T. Ferreira, R. Matias, A. Macedo, and L. Araujo. (2011). An experimental study
on memory allocators in multicore and multithreaded applications. In Proceedings of
the 12th International Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT), Gwangju, Korea, October 20–22, pp. 92–98. doi: 10.1109/
PDCAT.2011.18.

36. D. G. Cavezza, R. Pietrantuono, J. Alonso, S. Russo, and K. S. Trivedi. (2014).
Reproducibility of environment-dependent software failures: An experience report. In
Proceedings of the 2014 IEEE 25th International Symposium on Software Reliability
Engineering, Naples, Italy, November 3–6, pp. 267–276. doi: 10.1109/ISSRE.2014.19.

37. W. Weimer. (2006). Exception-handling bugs in Java and a language extension to avoid
them. In Dony C., Knudsen J. L., Romanovsky A., Tripathi A. (eds.) Advanced Topics
in Exception Handling Techniques. Lecture Notes in Computer Science, vol. 4119.
Berlin/Heidelberg, Germany: Springer.

38. H. Zhang, G. Wu, K. Chow, Z. Yu, and X. Xing. (2011). Detecting resource
leaks through dynamical mining of resource usage patterns. In Proceedings of the
41st IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W) Hong Kong, China, June 27–30, pp. 265–270.

39. A. Bobbio, M. Sereno, and C. Anglano. (2001). Fine grained software degra-
dation models for optimal rejuvenation policies. Performance Evaluation, 46(1),
45–62.

40. K. Gama and D. Donsez. (2008). Service coroner: A diagnostic tool for locating
OSGi stale references. In Proceedings of the 34th Euromicro Conference on Software
Engineering and Advanced Applications, Parma, Italy, September 3–5, pp. 108–115.

41. A. Avritzer, R. G. Cole, and E. J. Weyuker. (2010). Methods and opportunities for
rejuvenation in aging distributed software systems. Journal of Systems and Software,
83(9), 1568–1578. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2010.05.026.

42. A. Avritzer, R. G. Cole, and E. J. Weyuker. (2007). Using performance signatures and
software rejuvenation for worm mitigation in tactical manets. In Proceedings of the 6th
International Workshop on Software and Performance (WOSP ’07), Buenos Aires,
Argentina, February 5–8, pp. 172–180. ISBN 1-59593-297-6. doi: 10.1145/1216993.
1217023.

43. P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissimo. (2010). Highly available
intrusion-tolerant services with proactive-reactive recovery. IEEE Transactions on
Parallel and Distributed Systems, 21(4), 452–465. ISSN 1045-9219. doi: 10.1109/TPDS.
2009.83.

44. A. Tai, K. Tso, W. Sanders, and S. Chau. (2005). A performability-oriented software
rejuvenation framework for distributed applications. In Proceedings of the 2005
International Conference on Dependable Systems and Networks, Yokohoma, Japan,
June 28–July 1, pp. 570–579. doi: 10.1109/DSN.2005.12.

45. A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saidi,
V. Stavridou, and T. Uribe. (2003). An architecture for an adaptive intrusion-tolerant
server. In Christianson B., Crispo B., Malcolm J. A., and Roe M. (eds.). Security
Protocols. Security Protocols 2002. Lecture Notes in Computer Science, vol 2845.
Berlin/Heidelberg, Germany: Springer.

46. B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, and J. Hiser. (2006). N-variant systems: A secretless framework for security
through diversity. In Proceedings of the 15th Conference on USENIX Security



February 18, 2020 18:40 Handbook of Software Aging and Rejuvenation 9.61in x 6.69in 3rd Reading b3767-ch04 page 90

90 R. Pietrantuono, J. Alonso and K. Vaidyanathan

Symposium, Vancouver, British Columbia, Canada, July 31–August 4, Volume 15,
p. 9. USENIX Association, (2006).

47. Y. Huang, D. Arsenault, and A. Sood. (2006). SCIT-dNS: Critical infrastructure
protection through secure DNS server dynamic updates. Journal of High Speed
Networks, 15(1), 5–19.

48. T. Roeder and F. Schneider. (2010). Proactive obfuscation. ACM Transactions on
Computer Systems (TOCS), 28(2), 4.

49. Q. Nguyen and A. Sood. (2009). Quantitative approach to tuning of a time-
based intrusion-tolerant system architecture. In Proceedings of the 3rd Workshop on
Recent Advances in Intrusion-Tolerant Systems, Lisbon, Portugal, June 29–July 2,
pp. 132–139.

50. K. Aung, K. Park, and J. Park. (2005). A model of ITS using cold standby cluster.
In Fox E. A., Neuhold E. J., Premsmit P., and Wuwongse V. (eds.). Digital Libraries:
Implementing Strategies and Sharing Experiences. ICADL 2005. Lecture Notes in
Computer Science, vol 3815. Berlin/Heidelberg, Germany: Springer.

51. A. Nagarajan and A. Sood. (2010). SCIT and IDS architectures for reduced data ex-
filtration. In Proceedings of the International Conference on Dependable Systems and
Networks Workshops (DSN-W), Chicago, Illinois, USA, June 28–July 1, pp. 164–169.

52. M. Grottke, R. Matias, and K. Trivedi. (2008). The fundamentals of software aging. In
Proceedings of the IEEE International Symposium on Software Reliability Engineering
Workshops, Seattle, Washington, USA, November 11–14, pp. 1–6.

53. A. Macedo, T. Ferreira, and R. Matias. (2010). The mechanics of memory-related
software aging. In Proceedings of the 2010 IEEE Second International Workshop on
Software Aging and Rejuvenation (WoSAR), San Jose, California, USA, November 2,
pp. 1–5. doi: 10.1109/WOSAR.2010.5722097.


	Data-driven Approach
	Measurements for Software Aging
	Roberto Pietrantuono, Javier Alonso† and Kalyan Vaidyanathan‡
	Introduction
	Threshold-Based Approaches
	Statistical Approaches
	Machine Learning Approaches
	Relevant Software Aging Metrics: Beyond Memory Leaks
	Conclusions




