
April 10, 2019 7:43 ws-rv961x669 Book Title output page 1

Chapter 1

Future Directions for Software Aging and Rejuvenation Research

Alberto Avritzer, Roberto Pietrantuono, Kishor Trivedi

eSulabSolutions, Inc., Princeton, USA
Universit degli Studi di Napoli Federico II, Napoli, Italy

Duke University, USA

1. Introduction

In this chapter we present a summary of some future directions for software aging

and rejuvenation research. This chapter follows the book organization and is divided

into four sections: 1) fundamentals, 2) data-driven approaches, 3) model-driven

approaches, and, 4) applications.

2. Fundamentals

2.1. Control Theory

Measurements of software aging, followed by the analysis of measured data and

prediction of the time to exhaustion of OS resources can allow the execution of a

possible rejuvenation action. This MAPE (Measure, Analyze, Predict and Execute)

loop is well known in feedback control systems. We expect that researchers in future

will take this on-line feedback control view of software aging and rejuvenation.1

These ideas are also being proposed for cyber security.2,3 Essential components of

such a control system are the controlled entity, the controller and the feedback loop.

Furthermore there is also a goal to achieve.

In our case, the controlled entity would be the software system – e.g., the OS,

VMM, VM, an application or an application component. The goal could be to

maximize the software availability, minimize response time, minimize the total cost

of system operation, etc. Alternatively, the goal could be to prevent or postpone

software failures caused by aging-related bugs.

If rejuvenation scheduling is time-based then we need the distribution of time to

failure as one of the inputs. So measured sequence of inter-failure times is needed.

Once this sequence is available, we can either fit a distribution to this data (such

as the Weibull or the hypo-exponential) and then use the 3-state model SMP (as

1



April 10, 2019 7:43 ws-rv961x669 Book Title output page 2

2 A. Avritzer, R. Pietrantuono, K. Trivedi

discussed in Chapter 5 Markov chains and Petri nets by Fumio Machida and Paulo

R. M. Maciel,of this book) to determine the optimal rejuvenation schedule.

Alternatively we can use the non-parametric method discussed in the work by

Dohi et al.4 In the original model, inter-failure time data is assumed to be measured

for a system without rejuvenation. But to use this method in an on-line feedback

control setting we will need to account for the fact that data collected is modified, as

it is inter-failure time data with rejuvenation included. This requires considerable

amount of future research.

In the case that inspection-based approach is used for rejuvenation scheduling,

the data to be measured/collected is for health indicator performance variables

that show the effects of aging. Once the specific performance variables are chosen,

we may determine threshold values for these variables to trigger rejuvenation5 or

use prediction methods to determine the time to resource exhaustion and hence

trigger rejuvenation. Determining what performance variables to monitor and how

to determine threshold values are topics for future research. Though methods of

prediction of individual resource exhaustion are known, prediction of the overall

time to system failure needs further research. On-line measurement of aging will be

increasingly important as a closed-loop feedback control becomes more prevalent.

Finally, software rejuvenation scheduling in the context of multi-granularity software

rejuvenation needs a lot of future research.5,6

3. Data-Driven Approaches

3.1. Data Analysis and Machine Learning

We expect to see an increased use of machine learning techniques because they

represent a hybrid between model based and measurement based approaches. In-

deed, as systems become more and more complex, several indicators will need to be

analyzed to detect software aging.

Moreover, it will become increasingly difficult to distinguish between software

aging and the expected fluctuations of the system performance, because of inter-

relations among multiple parameters.

All these call for more complex statistical techniques that are able of analyzing

the cause/effect relations (besides correlations) among multiple indicators and be-

ing able to spot those critical patterns relevant for aging identification in complex

systems.

3.2. Experimental approaches to detect aging root causes

Experimental approaches to detect software aging are involved in the detection of

aging root causes and approaches to eliminate aging causes.

There is a need to research experimental approaches to deal with aging bugs

pre-release detection, removal or prevention. While many studies assume that ag-

ing is there, and thus deal with how to “tolerate” aging effects and when/how to



April 10, 2019 7:43 ws-rv961x669 Book Title output page 3

Future Directions for Software Aging and Rejuvenation Research 3

rejuvenate the system affected by aging, little effort has been spent to i) prevent

the introduction of aging bugs (e.g., design methodologies), ii) detect and remove

the root causes before software delivery (i.e., at development time) – such as proper

testing and debugging techniques besides dynamic analysis tools used currently, iii)

predict aging bugs before they are triggered at runtime and cause aging. These

are all open topics which future works can cope with.

A few attempts have been made about aging bugs classification and predic-

tion, which can be a starting point for the aging prediction task. The soft-

ware aging and rejuvenation repository7 describes a software aging repository that

can be used to support experimental approaches for software aging detection.

Data are organized into two separate repositories. The former contains informa-

tion on aging-related bugs found in two open-source projects (the Linux kernel

and the MySQL DBMS). This dataset has been used to investigate defect pre-

diction approaches for aging-related bugs, by using software complexity metrics

and machine learning techniques. The associated repository can be accessed on:

https://zenodo.org/record/581659#.XFqeR_x7nVo.

The latter contains a list bugs from four open-source projects (the Linux kernel,

the MySQL DBMS, the Apache HTTPD web server, and the Apache AXIS WS

framework), classified into Mandelbugs, Bohrbugs, or Aging-Related Bugs, by ana-

lyzing the conditions that exercise the bug (i.e., the “fault trigger”). The associated

repository can be found at: https://zenodo.org/record/581660#.XFqePfx7nVo

4. Model-Driven Approaches

4.1. Cloud Computing and Virtualized Infrastructures

There is a need for comprehensive models that are able to account for the

cost/benefits of rejuvenation actions at several layers of the cloud stack, and to

be able to account for the increasing complexity of virtualization technologies. In

addition, research into new aging indicators for the different layers and components

of a cloud-based system, and on measuring cause-effect relations across virtualiza-

tion layers are also needed.

Software rejuvenation research in cloud computing infrastructures may include

the following topics:

• Investigating the cost/benefit of (passive/active) replication-based strate-

gies (for rejuvenation of VMM, VM, container, application) not only in

relation to the downtime reduction, but also considering the cost of setting

up and managing replicas, their energy consumption, the side-effects on

security as well as on scalability,

• Analyzing the overhead of rejuvenation in virtualized systems, e.g., the

effect on memory or storage fragmentation,

• Micro-reboot for parts of the virtualization infrastructure,



April 10, 2019 7:43 ws-rv961x669 Book Title output page 4

4 A. Avritzer, R. Pietrantuono, K. Trivedi

• Security and aging in cloud-based systems: aging-related vulnerabil-

ity/attacks in the cloud (e.g., induced VM leakage),

• Energy consumption as key factor in cloud-based systems, multi-objecive

aging detection and multi-objective rejuvenation (considering availability,

resource consumption, energy, security, ),

• SAR in emerging contexts related to the cloud/virtualization, such as: edge

and fog computing, network function virtualization/software-defined net-

works,

• Impact of deployment on several layers and interactions between them.

How to define a holistic approach for availability improvements when aging

can occur at several layers of the infrastructure, cloud and virtualization?

4.2. Restart approaches

Chapter 7 on Models for Restart, Reboot and Rejuvenation contains a detailed

section (1.7) describing proposals for future work related to black-box models of

restart.

5. Applications

5.1. Operating Systems

Chapter 9 on applications to Operating Systems contains suggestions for future

research related to Operating Systems.

5.2. Software Architecture

Monitoring is a key facility in microservice architectures. Therefore monitoring

could be exploited for software aging detection.

Identifying architecture patterns that are likely to cause software aging is a topic

that is related to research on software performance anti-patterns.8–11 Related re-

search to software performance anti-patterns is a characterization of the sub-set of

performance anti-patterns that could be defined as software aging anti-patterns.

Examples of some software performance anti-patterns that could be related to soft-

ware aging anti-patterns are:

• Circuitous Treasure Hunt - when database statements are poorly organized,

data might be retrieved from several tables in sequence, as if the program-

mer is engaged in a circuitous treasure hunt. As a consequence, response

times of programs that implement this performance anti-pattern are usu-

ally long. As time passes, it is possible that database tables will grow and

the software will appear to age.

• Extensive Processing - if a long running process is in control of a resource

and a thread is blocked waiting for that resource, the extensive processing



April 10, 2019 7:43 ws-rv961x669 Book Title output page 5

Future Directions for Software Aging and Rejuvenation Research 5

anti-pattern will occur. In addition, if the execution time of the long run-

ning process is a function of the process restart time, the software might

show aging.

• Wrong Cache Strategy - when a cache strategy is wrongly implemented, it

might be related to memory leaks and excessive number of garbage collec-

tion events. The accumulation of such events over time can be related to

software aging.

5.3. AI Systems

The resilience requirements of mission-critical systems and the expected ubiquity

of AI systems and Robotics, will require that such system to be tolerant to soft-

ware aging. In these systems, a further difficulty is caused by the complex and

dynamic interaction with surrounding environment, which can cause the software

aging dynamics to be much harder to, model, to detect and to tolerate.

5.4. Mobile Devices and Embedded Systems

Software aging and rejuvenation of embedded and mobile systems have been ad-

dressed.12–14

In the work by Kintala12 memory and stack overflow problems in mobile devices

were attributed to the lack of tools to properly configure memory in mobile devices.

A technique called micro-rejuvenation was introduced to detect and correct memory

and stack overflow problems. This book Chapter 12 on implementation of micro-

rejuvenation with cooperative stack leasing extends on the research presented by

Kintala12 to propose a collaborative approach among system stacks.

This is a very promising future research direction, as software aging and reju-

venation to address mobile devices is a very effective approach to address mobile

systems unreliability issues, such as, stack and heap overflow problems.

5.5. Anomaly Detection Systems

Anomaly detection systems based on system performance metrics have been pro-

posed for the detection of security intrusions.15–18 In addition, software rejuvenation

was introduced to counteract worm epidemics in large distributed systems.19

Related future research on software aging and rejuvenation could address some

of the following topics:

• How to define metrics to detect software aging related to security intru-

sions16?

• How to distinguish between software aging related to security intrusions

and software aging related to performance and reliability issues20?

• How to design and implement an automated approach for software aging

and rejuvenation to counteract security intrusions21?



April 10, 2019 7:43 ws-rv961x669 Book Title output page 6

6 A. Avritzer, R. Pietrantuono, K. Trivedi

6. Other Topics for future research

Prognostics and Health Management-PHM could be combined with software aging

detection and rejuvenation techniques in the future.

Rejuvenation can be also combined with the Remaining Useful Life-RUL pre-

diction, in the sense that rejuvenation schedule could be planned according to RUL

predicted values.

When rejuvenation is implemented, the software system is not shut down. So,

under rejuvenation the system can still operate although in a reduced capability

mode. Thus, this concept cannot be considered when availability is examined, since

in this case the system is considered as down when being rejuvenated. Alternative

performance measures concerning the capability of the system to provide service

(even under rejuvenation) could be defined and examined.

References

1. Y. Hong, D. Chen, L. Li, and K. Trivedi. Closed loop design for software rejuvena-
tion. In Workshop on Self-Healing, Adaptive and self-MANaged Systems (SHAMAN),
(2002).

2. M. Platania, D. Obenshain, T. Tantillo, R. Sharma, and Y. Amir. Towards a practical
survivable intrusion tolerant replication system. In 33rd IEEE International Sympo-
sium on Reliable Distributed Systems, SRDS 2014, Nara, Japan, October 6-9, 2014,
pp. 242–252, (2014).

3. R. Romagnoli, B. H. Krogh, and B. Sinopoli, Design of software rejuvenation for CPS
security using invariant sets, CoRR. abs/1810.10484, (2018).

4. T. Dohi, K. Goševa-Popstojanova, and K. S. Trivedi, Estimating software rejuvenation
schedule in high assurance systems, Comput. J. 44(6), 473–485, (2001).

5. G. Ning, J. Zhao, Y. Lou, J. Alonso, R. Matias, K. S. Trivedi, B. B. Yin, and K. Y.
Cai, Optimization of two-granularity software rejuvenation policy based on the Markov
regenerative process, IEEE Trans. Rel. 65(4), 1630–1646, (2016).

6. W. Xie, Y. Hong, and K. Trivedi, Analysis of a two-level software rejuvenation policy,
Reliability Engineering and System Safety. 87(1), 13–22, (2005).

7. D. Cotroneo, A. K. Iannillo, R. Natella, R. Pietrantuono, and S. Russo. The software
aging and rejuvenation repository: Http://openscience.us/repo/software-aging/. In
2015 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pp. 108–113 (Nov, 2015). doi: 10.1109/ISSREW.2015.7392054.

8. C. U. Smith and L. G. Williams. Software performance antipatterns. In Proceedings of
the 2Nd International Workshop on Software and Performance, WOSP ’00, pp. 127–
136, New York, NY, USA, (2000). ACM. ISBN 1-58113-195-X. doi: 10.1145/350391.
350420. URL http://doi.acm.org/10.1145/350391.350420.

9. C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche, Exploiting load
testing and profiling for performance antipattern detection, Information & Software
Technology. 95, 329–345, (2018). doi: 10.1016/j.infsof.2017.11.016. URL https://

doi.org/10.1016/j.infsof.2017.11.016.
10. T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora. Detecting

performance anti-patterns for applications developed using object-relational mapping.
In Proceedings of the 36th International Conference on Software Engineering, ICSE



April 10, 2019 7:43 ws-rv961x669 Book Title output page 7

Future Directions for Software Aging and Rejuvenation Research 7

2014, pp. 1001–1012, New York, NY, USA, (2014). ACM. ISBN 978-1-4503-2756-5. doi:
10.1145/2568225.2568259. URL http://doi.acm.org/10.1145/2568225.2568259.

11. A. Wert, M. Oehler, C. Heger, and R. Farahbod. Automatic detection of perfor-
mance anti-patterns in inter-component communications. In Proceedings of the 10th
International ACM Sigsoft Conference on Quality of Software Architectures, QoSA
’14, pp. 3–12, New York, NY, USA, (2014). ACM. ISBN 978-1-4503-2576-9. doi:
10.1145/2602576.2602579. URL http://doi.acm.org/10.1145/2602576.2602579.

12. C. M. Kintala, Software rejuvenation in embedded systems, J. Autom. Lang. Comb.
14(1), 63–73 (Jan., 2009). ISSN 1430-189X. URL http://dl.acm.org/citation.cfm?

id=1643359.1643364.
13. J. Xiang, C. Weng, A. Andrzejak, Z. Dongdong, T. Jing, X. Shengwu, and L. Lin.

A new software rejuvenation model for android. In 10th International Workshop on
Software Aging and Rejuvenation, WoSAR 2018 (10, 2018). doi: 10.1109/ISSREW.
2018.00021.

14. D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono. Software
aging analysis of the android mobile OS. In 27th IEEE International Symposium on
Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October 23-27,
2016, pp. 478–489, (2016). doi: 10.1109/ISSRE.2016.25. URL https://doi.org/10.

1109/ISSRE.2016.25.
15. A. Avritzer, R. G. Cole, and E. J. Weyuker. Using performance signatures and soft-

ware rejuvenation for worm mitigation in tactical manets. In Proceedings of the 6th
International Workshop on Software and Performance, WOSP 2007, Buenes Aires,
Argentina, February 5-8, 2007, pp. 172–180, (2007).

16. A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne, Evaluating com-
puter intrusion detection systems: A survey of common practices, ACM Computing
Surveys (CSUR). 48(1), 12, (2015).

17. C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng, A distributed anomaly
detection system for in-vehicle network using htm, IEEE Access. 6, 9091–9098, (2018).

18. C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In Proceedings of
the 10th ACM Conference on Computer and Communications Security, CCS ’03, pp.
251–261, (2003). ISBN 1-58113-738-9.

19. A. Avritzer, R. G. Cole, and E. J. Weyuker, Methods and opportunities for rejuvena-
tion in aging distributed software systems, Journal of Systems and Software. 83(9),
1568–1578, (2010). doi: 10.1016/j.jss.2010.05.026. URL https://doi.org/10.1016/

j.jss.2010.05.026.
20. A. Avritzer, A. Bondi, and E. J. Weyuker. Ensuring stable performance for systems

that degrade. In Proceedings of the 5th International Workshop on Software and Per-
formance, WOSP ’05, pp. 43–51, New York, NY, USA, (2005). ACM. ISBN 1-59593-
087-6. doi: 10.1145/1071021.1071026. URL http://doi.acm.org/10.1145/1071021.

1071026.
21. A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, and A. van Hoorn. A quantita-

tive approach for the assessment of microservice architecture deployment alternatives
by automated performance testing. In 12 European Conference on Software Architec-
ture, (2018).


