
Reproducibility of Software Bugs

Basic Concepts and Automatic Classification

Flavio Frattini, Roberto Pietrantuono and Stefano Russo

Abstract Understanding software bugs and their effects is important in several
engineering activities, including testing, debugging, and design of fault contain-
ment or tolerance methods. Dealing with hard-to-reproduce failures requires a deep
comprehension of the mechanisms leading from bug activation to software failure.
This chapter surveys taxonomies and recent studies about bugs from the perspective
of their reproducibility, providing insights into the process of bug manifestation and
the factors influencing it. These insights are based on the analysis of thousands of bug
reports of a widely used open-source software, namely MySQL Server. Bug reports
are automatically classified according to reproducibility characteristics, providing
figures about the proportion of hard to reproduce bug their features, and evolution
over releases.

1 Introduction

Software is commonly characterized by the presence of defects—imperfections that
cause systems to improperly deliver the service they are intended for, resulting in
what is called a failure. Bugs are usually meant as defects in the code, thus with a
more narrow meaning than defects. Bugs have been classified according to various
characteristics from the perspective of software engineering, usually with the aim
of supporting product and process improvement activities by defect analysis [1].
Several schemes are available in the literature: some relevant examples are the HP

F. Frattini (B) · R. Pietrantuono · S. Russo
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione,
Università degli Studi di Napoli Federico II, Via Claudio, 21, 80125 Napoli, Italy
e-mail: flavio.frattini@unina.it

R. Pietrantuono
e-mail: roberto.pietrantuono@unina.it

S. Russo
e-mail: stefano.russo@unina.it

© Springer International Publishing Switzerland 2016
L. Fiondella and A. Puliafito (eds.), Principles of Performance and Reliability
Modeling and Evaluation, Springer Series in Reliability Engineering,
DOI 10.1007/978-3-319-30599-8_21

551

flavio.frattini@unina.it

552 F. Frattini et al.

classification [2], the IEEE 1044 classification [3], and Orthogonal Defect
Classification (ODC) [4].

As software systems grow in size and complexity and are increasingly used for
mission- and business-critical applications, attention is being devoted to the bug
manifestation process and its features with the aim of gaining a deeper understanding
of complex erroneous behaviors. Knowledge of the factors influencing the chain
by which a bug is activated, propagates into the system, and reaches its external
interface,1 serves, for instance, to reproduce the exposure of subtle bugs to then
locate and remove them.

Not all bugs are easily reproducible.2 In fact, software may behave differently
under apparently identical conditions. Attempting to recreate the same conditions
and repeating the steps that led to an observed failure is the usual way to try to
reproduce a bug. However, some bugs require rare combinations and/or relative tim-
ings of inputs, or a specific state to be reproduced; or there may be a long delay
between the fault activation and the failure occurrence. In other cases, the activation
of a fault makes the system traverse several error states. In all such cases it is dif-
ficult to identify the inputs and the conditions to reproduce the failure. Moreover,
concurrent programs are known to suffer from the probe effect, an “alteration in the
frequency of run-time errors observed when delays are introduced”: this effect can
mask synchronization errors [6]. Even when the input values and the system internal
state for an observed failure are known, there are cases where the failure occurs only
under specific environmental conditions, and “as the tester tries to reproduce them,
the environment changes, making the failure disappear” [7].

In this chapter, we survey taxonomies and experimental studies which led to the
current understanding of bugs reproducibility (Sect. 2). Then, we describe a proce-
dure to analyze a bug repository from the reproducibility perspective (Sect. 3). The
procedure is applied to thousands of bugs reported in the MySQL database man-
agement system. Results of the classification and prediction process are presented,
providing insights into the process of bug manifestation and the factors influencing
it (Sect. 4). This chapter ends with a brief discussion of the results (Sect. 5).

2 Studies on Bug Reproducibility

Reproducibility is the basic criterion of several bugs classifications. In the 1980s,
Gray distinguished Bohrbugs andHeisenbugs [7]: Bohrbugs exhibit a deterministic
behavior, hence they can be detected and removedwith testing and debugging—these
are also knownashard or solid ones, forwhich the failure occurrence is always repro-
ducible; Heisenbugs cause transient failures, which may not manifest on a software

1We follow the well-established notion of fault–error–failure chain [5]: a software fault (bug) is a
defect in the application code; when activated, faults cause errors; errors may lead to failures.
2We use the expression “bug reproducibility”—widely used in the literature—to indicate the repro-
ducibility of the failure caused by the bug.

flavio.frattini@unina.it

Reproducibility of Software Bugs 553

re-execution under the same input, thus appearing as “nondeterministic”. These are
known as soft or elusive faults, whose activation is not systematically reproducible;
they may be extremely difficult to identify through testing. Gray named the former
class alluding to the physicist Niels Bohr, who developed the atomic model, and
the latter class referring to the physicist Werner Heisenberg, who formulated the
uncertainty principle.

Grottke and Trivedi [8, 9] recognized that the term Heisenbug had originally
been coined in the 1960s by Lindsay (while working with Gray), referring to “bugs
in which clearly the behavior of the system is incorrect, and when you try to look
to see why it’s incorrect, the problem goes away”; this is a different definition than
the one published later by Gray. The class of bugs defined based on the notion of
non-determinism is not the same as soft faults (as claimed by Gray).

The nomenclature that Grottke and Trivedi revised in the past decade introduces
the category of Mandelbugs in lieu of Heisenbugs: by alluding to the mathematician
Benoit Mandelbrot and his work on fractal geometry, the name somehow suggests
a form of chaotic system behavior [8]. Unlike Heisenbugs, Mandelbugs are defined
in terms of inherent faults properties, that is, faults able to cause failures which are
not systematically reproducible.3

Four factors of complexity in the failure reproduction process are pinpointed by
Grottke, Nikora, and Trivedi as responsible for a bug to be classified as Mandel-
bug [10]: (i) a time lag between the fault activation and the failure occurrence; (ii)
interactions of the software application with hardware, operating system, or other
applications running concurrently on the same system; (iii) influence of the timing
of inputs and operations; (iv) influence of the sequencing of operations.

Several studies show that Bohrbugs aremuchmore common thanMandelbugs: for
instance, 463 out of 637 bugs are classified as Bohrbugs in [11]; 547 over 852 bugs
are considered as always reproducible in [12]. Other studies examine bugs according
to characteristics attributable to Bohr- or Mandelbugs (factors such as concurrency,
resource management), but adopting a different terminology [13–15].

Mandelbugs are often related to unusual hardware conditions (rare or transient
device faults), limit conditions (out of storage, counter overflow, lost interrupt, etc.,),
or race conditions [7]. Changing the environment and removing the chaotic state—
i.e., resetting the program to a proper state—is likely to enable the application to
work. This explains why and how some fault tolerance methods work. For example,
checkpointing is a technique that periodically saves a snapshot of an application
in permanent storage, enabling it to restart after a failure from an internal state
that should allow the proper execution. Similarly, replicating the execution in two

3Gray states: “Heisenbug may elude a bugcatcher for years of execution. The bugcatcher may
perturb the situation just enough tomake it disappear. This is analogous to Heisenberg’s Uncertainty
Principle in physics.” Indeed, Heisenberg ascribed the uncertainty principle to the disturbance
triggered by the act of measuring (observer effect). However, this argument is recognized to be
misleading by modern physicists: the principle states a fundamental property of conjugate entities;
it is not a statement about the observational success of the technology. Curiously, Mandelbugs are
closer than Heisenbugs to the principle these were originally meant to resemble.

flavio.frattini@unina.it

554 F. Frattini et al.

different environments can result in the proper execution of a replica even if the
other fails.

A third category of bugs introduced in [8] are aging-related bugs (ARBs): they
cause the accumulation of errors in the running application or in the system-internal
environment, which result in an increased failure rate and/or degraded performance.
They are viewed as a class of Mandelbugs. It is worth noting that ARBs are hard
to reproduce due to both the system internal state and the time necessary for the
failure to manifest. They might be easy to activate, but the time they take to manifest
themselves as failures make them hard to observe during testing.

In [16–20], we focused on the aging problem and on aging-related bugs, dis-
tinguishing memory-related problems (e.g., leaks), storage-related (e.g., fragmenta-
tion), wrong management of other resources (e.g., handles, locks), and numerical
errors, observing an impact of approximately 5%.

Other researchers focused on the ephemerality of bugs. Chandra and Chen [21]
distinguish environment-independent and environment-dependent bugs, and further
classify the latter as transient and non-transient. Environment-independent bugs
occur independently of the operating environment; if a bug of this kind occurs
with a specific workload, it will always occur with that workload. Environment-
dependent bugs depend on the operating environment: the subset of transient bugs
may appear only in some executions; on the contrary, non-transient bugs occur
always, in a specific environment. Environmental bugs are also examined in [22],
where authors focus on how to reproduce transient bugs by varying factors of the exe-
cution environment. Clearly, there is an overlap between Mandelbugs/Heisenbugs
and environment-dependent transient bugs: in both cases the main characteristics
are the apparent aleatory occurrence and the difficulty of reproduction. In [23],
environment-dependent bugs are categorized to conjecture a possible fault injection
framework for emulating environmental influence on systems failure.

Concurrency bugs are discussed in [13]: the authors select randomly 105 such bugs
from the repositories of 4 open-source applications, showing that their reproducibility
is very hard due to the large number of variables involved or to the dynamics of
memory accesses. Fonseca et al. [24] consider concurrency bugs fromMySQLServer
to understand their effects and how they can be detected or tolerated. In this case, it is
shown that concurrency bugs are likely to remain latent and to corrupt data structures,
but only later cause actual failures. In [14], it is shown that concurrency bugs in
operating system code commonly requires more effort to be identified. Moreover,
the analysis reveals that semantic bugs are the dominant root cause and, as software
evolves, their number increases while memory-related bugs decrease. Aging-related
concurrency bugs are shown in [18] to cause performance decrease over time in a
hard-to-predict way, and the failure rate does not depend on the instantaneous and/or
mean accumulated work.

Performance bugs are analyzed by Nistor et al. [25]. It is shown that: their fixing
may introduce new functional bugs; they appear more difficult to fix than nonperfor-
mance bugs; most performance bugs are discovered through code reasoning rather
than because of users experiencing failures due to bugs. In [26], some rules are
extracted from a set of bugs in order to identify performance problems in MySQL,

flavio.frattini@unina.it

Reproducibility of Software Bugs 555

Apache, andMozilla applications. Security bugs are studied in [27] with reference to
the Firefox software. It is shown that they require more experienced debuggers and
their fixes are more complex than the fixes of other kinds of bugs. For open source
software, an empirical study based on the automated analysis of 29,000 bugs [28]
shows that most bugs are semantic and that bugs related to memory are still the major
component, despite the recent introduction of detection tools.

These studies examine several high-level factors that can be (directly or indirectly)
attributed to the bug manifestation process, considering aspects such as concurrency,
memory, timing, interaction with the operating system or other applications, perfor-
mance, security, resource leaks, wrong error handling. Overall, the literature high-
lights the relevance of the topic, but there is insufficient knowledge of essential
bug reproducibility characteristics. With respect to other bug characteristics (e.g.,
detection or closing times, bug location, i.e., source code, fixing commits, sever-
ity, etc.), that are more amenable to be analyzed automatically, a relevant problem
is the absence of approaches to automatically distinguish bugs according to some
reproducibility characteristic. In the following, we attempt to address this issue by
proposing an automatic classification from reports, in order to enable future analyses
onwider datasets, so as to improve the knowledge about bug reproducibility similarly
to other defect analysis research areas.

3 Analysis of Bug Reproducibility

We describe a procedure to analyze bug reports from the reproducibility perspective,
i.e., considering how they can be exposed and reproduced. We refer to a system
model where we distinguish the application under analysis, its execution environ-
ment, the workload, and the user submitting it. The analysis is meant to discriminate
bugs depending on whether, under a given workload, they are always reproducible,
or not always reproducible, i.e., they may occur or not depending on the state of
the execution environment. The latter is considered as the hardware resources where
the application is deployed (processors, I/O devices, network), and software run-
ning concurrently on each node—including operating systems, middleware layers,
virtualization layers, and other applications sharing the hardware resources.

The user (not necessarily a human) interacts with the application by submitting
workload requests and getting the results.We assume aworkload request represented
as a generic request for service (e.g., a query to a DBMS), characterized by a type
(e.g., query type, like INSERT), and by a set of input parameters (e.g., values of an
INSERT), in turn characterized by a type and a value. To accomplish a well-defined
task, the user can submit a sequence of serial/concurrent requests. We denote with
environment the union of the execution environment and the user.

According to this model, we define two categories of bug manifestation.

• Workload-dependent (WL): the bug manifestation is “workload-dependent” if
resubmitting (at most a subset of) the workload requests that caused a failure
always produces the same failure, for every valid state of the environment (i.e.,

flavio.frattini@unina.it

556 F. Frattini et al.

for every state of the environment in which the traversed application states are
allowed to occur) and for every admissible user inputs’ timing/ordering in each
request of the sequence. In this sense, we talk about always reproducible bugs.

– An example of this kind of bug is the bug 13894 of MySQL Server,4 which
reports “Server crashes on update of CSV table” and also includes the sequence
of statements that crashes the server. The reporter specifies that every time the
sequence is repeated the MySQL Server crashes.

• Environment-dependent (ENV): the bug manifestation is “environment-
dependent” if resubmitting (at least a subset) of workload requests that caused
a failure, there exist at least one (valid) state of the environment or user inputs’
timing/ordering5 causing the same failure to not be reproduced. Note that, unlike
Mandelbugs, these do not include complex but “deterministic” bugs, namely those
bugs requiring a very complex workload but that, under such workload, always
reappear: in this categorization, such bugs fall in the WL category. We talk about
not-always-reproducible bugs.

– As an example consider the bug 18306 of MySQL Server “MySQL crashes
and restarts using subquery”; the report is about a delete operation; the reporter
specifies that “The DELETE query works X times and then mysql crashes.”
Thus, the bug does not manifest every time a specific load is submitted to the
system, further conditions are to be forced in order to reproduce the bug, instead.

The analysis aims at providing insights into the presence of workload-dependent
or environment-dependent bugs and of their evolution over several software versions.
The following procedure is followed: (i) first,manual classification of bugs as either
WL or ENV is performed, by inspecting bug reports of the target software; (ii) then,
webuild predictors forautomatic classification that takes bug reports as input, process
the text contained in the report by text mining techniques, and then automatically
classify the report as either WL or ENV; (iii) based on the predicted values, further
insight about WL versus ENV bugs on an enlarge dataset and on various versions
of the software is obtained; (iv) the most discriminating textual features are also
examined, so as to figure out the characteristics of a bug more related to the bug
manifestation type. The analysis steps are summarized in the next sections.

3.1 Manual Classification

Each problem report is manually inspected to check it documents a real and unique
bug: documentation and build issues, problems turning out to be operator errors,

4MySQL Bugs—https://bugs.mysql.com.
5Valid means admissible, compatible environment state with reference to the input requests; in the
case of user, it means that the same workload request(s) could be submitted in different timing/
ordering producing the same result.

flavio.frattini@unina.it

Reproducibility of Software Bugs 557

and requests for software enhancements (not erroneously marked as such) are put
in a NOT_BUG class and discarded. Then, reports containing insufficient details to
classify the bug (e.g., a bug closed as soon as it was reported, corrected by a new
minor release) are assigned to the class UNKNOWN, and discarded.

The remaining reports are searched for the following indications:
(i) what inputs are required (the failure-causing workload); reports often provide it
in the test case and/or in the steps to repeat the failure occurrence;
(ii) what is the application and the environment configuration;
(iii) if the corresponding failure is observed to be always repeatable (i.e., workload-
dependent) or not (i.e., environment-dependent) by the bug reporter or assignee;
(iv) in the case not always reproducible, what are the conditions hiding the bug
manifestation (i.e., if they are related to the execution environment, or to particular
user actions, such as timing of inputs).

Based on this, we assign a bug report to the workload-dependent (WL) or
environment-dependent (ENV) classes. It is wort noting that the manual analysis
is based exclusively on fixed bugs (as in [12, 15, 16]), since, for bugs that have not
yet been fixed, the reports may contain inaccurate or incomplete information. While
this allows relying on more stable information, results will not refer to non-closed
bugs, which could, in principle, have different patterns of WL or ENV bugs. More-
over, although results of the manual classification are cross-checked by the authors,
we cannot exclude, as any paper where manual inspection is needed, possible clas-
sification mistakes that can affect the results.

3.2 Automatic Classification

The bug classification aims at automatically assigning a bug to a class by analyzing
its report. It consists of two steps: text processing and classification.

3.2.1 Text Processing

The automatic classification is carried out by means of predictors, using bug report
textual description as input features. Some preliminary steps are required to render
text suitable for processing by classifiers. Specifically, in text mining, each term
occurring in the document is a potential dimension; to avoid dealing with a useless
large number, we apply common reduction methods [29, 30]:

1. Tokenization: a textual string is divided into a set of tokens; a token is a block of
text considered as a useful part of the unstructured text (it often corresponds to a
word, but it might also be an entire sentence). Tokenization includes filtering out
meaningless symbols, like punctuation, brackets, and makes all letters lowercase.

flavio.frattini@unina.it

558 F. Frattini et al.

2. Stop-word removal; this consists of removing the terms such as propositions,
articles, conjunctions, which do not convey much useful information and may
appear frequently—thus biasing the classification algorithms.

3. Stemming: reducing commonwords to a single term, e.g., “computerized”, “com-
puterize”, and “computation” are all reduced to “compute”.

3.2.2 Classifiers

To classify the bugs, we adopt two classifiers widely used in the literature of defect
prediction, namely Naïve Bayes and Bayesian Network.

ANaïveBayes (NB) classifier estimates the a posteriori probability of the hypothe-
sis H to be assessed (e.g., “bug is ENV”), that is the probability that H is true given an
observed evidence E . This is given the probability to observe E under the hypothesis
H multiplied by the a priori probability of the hypothesis H (i.e., when no evidence
is available) over the probability of evidence E :

P(H |E) = P(E |H)P(H)

P(E)
. (1)

The evidence E consists of features used to classify, namely the attributes of the
instances to classify, which are extracted through the mentioned text mining tech-
nique. A fundamental assumption of a Naïve Bayes classifier is that each feature Ei

is conditionally independent of any other feature E j , j ̸= i . Under this assumption,
the a posteriori probability can be obtained as:

P(H |E) =
[
∏

i

P(Ei |H)

]
P(H)

P(E)
. (2)

This assumption is apparently oversimplifying, since features usually exhibit some
degree of dependence among each other. Nevertheless, the Naïve Bayes classifier
performs well even when this assumption is largely violated [31].

A Bayesian network (BayesNet) is a directed acyclic graphical model represent-
ing a set of random variables and their conditional dependency (graph nodes and
edges, respectively). A conditional dependency exists between two nodes if the cor-
responding random variables are not conditionally independent. It is assumed that:

P(node|parents plus any other nondescendants) = P(node|parents). (3)

The joint probability distribution for a set of random variables X1, . . . , Xn is:

P(X1, . . . , Xn) =
n∏

i=1

P(Xi |Xi−1, . . . , X1) =
n∏

i=1

P(Xi |Xi ’s parents). (4)

flavio.frattini@unina.it

Reproducibility of Software Bugs 559

Equation4 is used to compute the probability of a hypothesis H represented by
a node of the network, given the conditional probability distributions of each node,
and given a set of observed values.

Classifiers are evaluated by means of the common metrics precision, recall, and
F-measure. We adopt a k-fold cross-validation, with k = 3 and 10 repetitions: the
set is split into three disjoint sets, two of which are used for training, and the third
one for testing. Accuracy metrics are then calculated. The procedure is repeated until
each subset has been used as test set. Accuracy metrics of each step are averaged.
All the steps are repeated ten times; each time the three sets are generated by ran-
domly selecting reports from the set. Finally, the metrics values of each repetition
are averaged to obtain the final accuracy evaluation.

For each data sample in the test set, the predicted class is compared with the
actual class of the sample. Given a target class (e.g., ENV), samples of the test set
belonging to the target class are true positives if they are correctly classified, and are
false negatives otherwise. Similarly, samples belonging to the other class (i.e., WL)
are denoted as true negatives if they are correctly classified, and as false positives
otherwise. From these, we compute:

• Precision (Pr): Percentage of true positives (TP) that are classified as belonging
to the target class (true positives and false positives (FP)):

Precision = TP/(TP+ FP). (5)

• Recall (Re): Percentage of true positives that actually belong to the target class
(true positives and false negatives (FN)):

Recall = TP/(TP+ FN). (6)

• F-measure (F): Harmonic mean of precision and recall:

F-measure = (2 · Pr · Re)/(Pr+ Re). (7)

The higher the precision and the recall (ideally, Pr = Re = 1), the higher the quality
of the predictor, since it avoids false positives and false negatives.

4 Case Study: Analysis of MySQL Bugs

The procedure described in Sect. 3 is here applied to the MySQL Data Base Man-
agement System. This is chosen as case study since it is a modern complex software
system widely adopted in business-critical contexts, and for which detailed bug
reports are publicly available.

We use bug reports related toMySQL Server version 5.1 for manual classification
and training. Then, the prediction is applied to bug reports from other versions of the
software. We consider both versions preceding the 5.1 (MySQL Server 4.1 and 5.0)

flavio.frattini@unina.it

560 F. Frattini et al.

and versions following the 5.1 (5.5 and 5.6). The aim is to figure out if there is a trend
for the types of bugs over various versions, and to understand which modifications
in the software are likely the cause of such a trend, if any.

4.1 Manual Classification

As a preliminary step, the following types of reports are excluded manually from
subsequent inspection:

• reports not marked as closed, so as to proceed with descriptions only of solved
bugs, relevant for the analysis;

• duplicate bugs, that is, from the description we deduced that the reported problem
was caused by the same bug of another report already classified;

• bugs marked as enhancement or feature request in the “severity” field.

This step produces a set of 560 bug reports, which are manually inspected according
to the steps reported in Sect. 3.1, considering the following reports’ sections:

• the textual description of the steps to repeat the failure;
• the textual discussion and comments of developers/users working on that bug;
• the final patch that has been committed, along with the description note in the
change log;

• the attached files (e.g., test cases, environment configuration files).

The manual inspection identifies:

• 402 workload-dependent (WL) bugs;
• 86 environment-dependent (ENV) bugs;
• 44 reports classified as NOT_BUG;
• 28 reports classified as UNKNOWN, because thy contained insufficient details.

We have that 82% of classified bugs areWL, and the remaining 18% are ENV. As in
other studies, workload-dependent bugs are the largemajority [10–12]. Nevertheless,
the minority of environment-dependent bugs are those hard to reproduce and to fix.

4.2 Automatic Classification

The automatic classification is performed on the set of bugs manually categorized as
WL or ENV; it includes the two steps of text processing and classification.

4.2.1 Text Processing

Text processing of reports is performed to identify the features and their occurrence.
To identify the features the three operations of tokenization, stop-word removal, and

flavio.frattini@unina.it

Reproducibility of Software Bugs 561

stemming are performed, as described in Sect. 3.2. 21,477 features are identified. For
each of them it is counted the number of occurrences in each report.

4.2.2 Classifiers

The classifiers are trained and their accuracy is evaluated by means of threefold
cross-validation. Results on the Naïve Bayes and Bayesian Network classifiers are
reported in Table1.

Results show that the Bayesian Network classifier presents a lower precision than
the Naïve Bayes classifier, but recall is better. Overall, the F-measure reveals that the
Bayesian Network is slightly better than the Naïve Bayes classifier.

We also report the confusion matrices, which show, for each class, the number of
bugs correctly classified and the incorrectly classified instances. Tables 2 and 3 are
related to the Naïve Bayes the Bayesian Network classifiers, respectively.

The tables show that most of the incorrect classifications are related to environ-
ment-dependent bugs. In the case of the Naïve Bayes classifier, 73% of environment-
dependent bugs were not correctly classified. This may be due to the reduced
number of examples for training. However, the classification improves when using
the Bayesian Network, both for WL bugs and for ENV bugs.

It is also interesting to consider which features are the most discriminating.
The classifiers predict the type of a bug (i.e., workload-dependent or environment-
dependent) based on the terms used in its report. During the training, the probability,
for each feature, that a bug is of a certain type given that the feature appears in the
description is computed. In Table4, we report the most significant features for the
prediction process.

Table 1 Results of the training
Class Precision Recall F-measure

Naïve Bayes WL 0.94 0.81 0.87
ENV 0.41 0.73 0.53
Weighted 0.86 0.80 0.82

Bayesian
Network

WL 0.90 0.90 0.90

ENV 0.44 0.46 0.45
Weighted 0.83 0.83 0.83

Table 2 Confusion matrix of
Naïve Bayes classifier

Correct Incorrect

113 27 WL

7 19 ENV

In some cases there is just a root indicating a set of words; as an example, concurr
implies that there may be words such as concurrent, concurrency, etc. Note that
most features are commonly linked to hard-to-reproduce conditions, such asmemory

flavio.frattini@unina.it

562 F. Frattini et al.

Table 3 Confusion matrix of
Bayesian Network

Correct Incorrect

125 15 WL

14 12 ENV

Table 4 Most significant
features for prediction

Feature

Thread Memory Concurr

Deadlock Alloc Wait

Run Race Start

Schedul Valgrind

issues, deadlocks, or race conditions. Valgrind is a tool for solving memory issues;
thus, the feature with the same name is also related to memory issues.

It is worth noting that only 259 features, over the total 21,477, are actually used
by the classifiers.

4.3 Prediction Results

The prediction of bug types is performed for the two versions preceding the one used
for the training, and for the two following it: that is for MySQL Server versions 4.1,
5.0, 5.5, and 5.6. Results are shown in Figs. 1 and 2 for the Naïve Bayes classifier
and the Bayesian Network, respectively. In the figures, results achieved by means of
reports’ manual inspection (version 5.1) are marked differently.

As expected, workload-dependent bugs are more than environment-dependent
ones. This is even more evident using the Bayesian network. For preceding versions,
just 6.7% of bugs are ENV. The small number of environment-dependent bugs is

88% 86% 82%

56%

69%

12% 14% 18%

44%

31%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4.1 5.0 5.1 5.5 5.6

WL ENV

Fig. 1 Results on bug type prediction with Naïve Bayes classifier

flavio.frattini@unina.it

Reproducibility of Software Bugs 563

94% 93%
82%

76% 74%

6% 7%

18%
24% 26%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4.1 5.0 5.1 5.5 5.6

WL ENV

Fig. 2 Results of bug type prediction with Bayesian Network

probably related to the type of software considered. The DBMS, in its early versions,
is not made up of many subsystems, each influencing the condition for which a fault
is activated. Environment-dependent bugs are more common for operating systems,
instead [12].

It is also worth noting the increasing trend of environment-dependent bugs’ per-
centage over versions, in line with the common opinion that the prevalence of simple
bugs decreases with time [12]. While in version 4.1 just 6% of the bugs are predicted
as ENV, this percentage increases up to 26% for version 5.6. This may be due to
the greater complexity starting from version 5.5. In the documentation, it is spec-
ified that one of the main changes in later versions, with respect to previous ones,
consists in multiple background I/O threads used to improve I/O performance. The
status of such threads may represent an environmental condition hard to reproduce.
Interestingly, we also found that thread is the most discriminating feature.

5 Discussion and Conclusion

Reproduction of software failures to locate and fix the corresponding bugs is not an
easy task, but it is very important tomake software reliable.We discussed the problem
of bugmanifestation and introduced the two classes ofworkload-dependent and envi-
ronment dependent bugs. For the former class, by resubmitting the same workload
requests that caused a failure, the same failure can be produced. For the latter, there
exists at least one (valid) state of the environment or user inputs’ timing/ordering
that may render the same failure unreproducible even when resubmitting the same
workload request that caused the failure.

The analysis of the literature and themanual inspection of 560 bug reports showed
that environment-dependent bugs are, commonly, in small number with respect to
workload-dependent bugs. They aremore difficult to fix, however. Also, studies in the
scientific literature are usually related to few hundreds of bugs, given the difficulty of

flavio.frattini@unina.it

564 F. Frattini et al.

inspection by hand. Thus, we applied text mining techniques and Bayesian classifiers
in order to automate the classification process.

Results from classification models show that automatic classification can be
performed with an F-measure up to 83%, but with environment-dependent bugs
being more difficult to discriminate. Future works will target the improvement of
environment-dependent bug discrimination by exploiting other sources of infor-
mation (e.g., complexity metrics). Results from the prediction of MySQL reports
confirm that, for large datasets, workload-dependent bugs are more numerous. Nev-
ertheless, it is worth noting that the number of environment-dependent bugs presents
an increasing trend from one version to another. This may be due to the addition of
more software components that may cause the necessity for particular conditions of
each of them in order to produce a failure.

More bug reports from different kinds of software (e.g., web servers, operating
systems, apart from DBMS) should be analyzed in order to understand the trend of
the two types of bugs. Also, how these and other classifiers can be improved in order
to increase the quality of the prediction.

References

1. Carrozza G, Pietrantuono R, Russo S (2014) Defect analysis in mission-critical software sys-
tems: a detailed investigation. J Softw Evol Process 27(1):22, 49

2. Grady RB (1992) Practical softwaremetrics for project management and process improvement.
Prentice Hall, Englewood Cliffs

3. IEEEComputer Society IEEEStandardClassification for SoftwareAnomalies, IEEEStd 1044–
2009

4. Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong M-Y (1992)
Orthogonal defect classification-a concept for in-process measurements. IEEE Trans Softw
Eng 18(11):943–956

5. Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans Dependable Secure Comput 1(1):11–33

6. Gait J (1986) A probe effect in concurrent programs. Softw Pract Exp 16(3):225, 233
7. Gray J (1985) Why do computers stop and What can be done about it? Tandem Tech Report

TR-85.7
8. GrottkeM, Trivedi KS (2005) A classification of software faults. In: Supplemental proceedings

16th IEEE international symposium on software reliability engineering (ISSRE), pp 4.19–4.20
9. GrottkeM, TrivediKS (2007) Fighting bugs: remove, retry, replicate, and rejuvenate. Computer

40(2):107–109
10. Grottke M, Nikora A, Trivedi KS (2010) An empirical investigation of fault types in space

mission system software. In: Proceedings IEEE/IFIP international conference on dependable
systems and networks (DSN), pp 447–456

11. Chillarege R (2011) Understanding Bohr-Mandel bugs through ODC triggers and a case study
with empirical estimations of their field proportion. In: Proceedings 3rd IEEE international
workshop on software aging and rejuvenation (WoSAR), pp 7–13

12. Cotroneo D, Grottke M, Natella R, Pietrantuono R, Trivedi KS (2013) Fault triggers in open-
source software: an experience report. In: Proceedings 24th IEEE international symposium on
software reliability engineering (ISSRE), pp 178–187

13. Lu S, Park S, Seo E, Zhou Y (2008) Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. SIGARCH Comput Architect News 36(1):329–339

flavio.frattini@unina.it

Reproducibility of Software Bugs 565

14. Tan L, Liu C, Li Z,WangX, ZhouY, Zhai C (2014) Bug characteristics in open source software.
Empirical Softw Eng 19(6):1665–1705

15. Carrozza G, Cotroneo D, Natella R, Pietrantuono R, Russo S (2013) Analysis and prediction of
mandelbugs in an industrial software system. In: Proceedings IEEE6th international conference
on software testing, verification and validation (ICST), pp 262–271

16. Cotroneo D, Natella R, Pietrantuono R (2013) Predicting aging-related bugs using software
complexity metrics. Perform Eval 70(3):163–178

17. BovenziA,CotroneoD,PietrantuonoR,RussoS (2011)Workload characterization for software
aging analysis. In: Proceedings 22nd IEEE international symposium on software reliability
engineering (ISSRE), pp 240–249

18. BovenziA,CotroneoD,PietrantuonoR,RussoS (2012)On the aging effects due to concurrency
bugs: a case study onMySQL. In: Proceedings 23rd IEEE international symposium on software
reliability engineering (ISSRE), pp 211–220

19. Cotroneo D, Natella R, Pietrantuono R (2010) Is software aging related to software metrics? In:
Proceedings IEEE 2nd international workshop on software aging and rejuvenation (WoSAR),
pp 1–6

20. Cotroneo D, Orlando S, Pietrantuono R, Russo S (2013) Ameasurement-based ageing analysis
of the JVM. Softw Test Verif Reliab 23:199–239

21. Chandra S, Chen PM (2000) Whither generic recovery from application faults? A fault study
using open-source software. In: Proceedings international conference on dependable systems
and networks (DSN), pp 97–106

22. Cavezza DG, Pietrantuono R, Russo S, Alonso J, Trivedi KS (2014) Reproducibility of
environment-dependent software failures: an experience report. In: Proceedings 25th IEEE
international symposium on software reliability engineering (ISSRE), pp 267–276

23. Pietrantuono R, Russo S, Trivedi K (2015) Emulating environment-dependent software faults.
In: 2015 IEEE/ACM 1st international workshop on in complex faults and failures in large
software systems (COUFLESS), pp 34–40

24. Fonseca P, Cheng L, Singhal V, Rodrigues R (2010) A study of the internal and external effects
of concurrency bugs. In: Proceedings international conference on dependable systems and
networks (DSN), pp 221–230

25. Nistor A, Jiang T, Tan L (2013) Discovering, reporting, and fixing performance bugs. In:
Proceedings 10th conference on mining software repositories (MSR), pp 237–246

26. Jin G, Song L, Shi X, Scherpelz J, Lu S (2012) Understanding and detecting real-world per-
formance bugs. In: Proceedings 33rd ACM SIGPLAN conference on programming languages
design and implementation (PLDI), pp 77–88

27. Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: a case study on
Firefox. In: Proceedings 8th conference on mining software repositories (MSR), pp 93–102

28. Li Z, Tan L, Wang X, Lu S, Zhou Y, Zhai C (2006) Have things changed now?: an empirical
study of bug characteristics in modern open source software. In: Proceedings 1st workshop on
architectural and system support for improving software dependability (ASID), pp 25–33

29. Lamkanfi A, Demeyer S, Soetens QD, Verdonck T (2011) Comparing mining algorithms for
predicting the severity of a reported bug. In: Proceedings 15th European conference on software
maintenance and reengineering (CSMR), pp 249–258

30. Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In:
Proceedings IEEE international conference on software maintenance (ICSM), pp 346–355

31. Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under
zero-one loss. Mach Learn 29(23):103–130

flavio.frattini@unina.it

