
State-Based Robustness Testing of IaaS Cloud Platforms

Domenico Cotroneo, Flavio Frattini, Roberto Pietrantuono, Stefano Russo

Universitá degli studi di Napoli Federico II

{cotroneo, flavio.frattini, roberto.pietrantuono, sterusso}@unina.it

ABSTRACT
An uncountable number of services are deployed over cloud
platforms and provided to millions of consumers. As this
paradigm spreads over, the quality of provided services be-
comes a primary concern. Testing helps in making software
reliable, but it has been overlooked for cloud. In this paper,
we present a method for the robustness testing of software
platforms for IaaS cloud. The method stresses the impor-
tance of considering the state for these systems, which are
characterized by phase-based interactions of many software
components with multiple concurrent users. Applied to a
real cloud platform, the method exposes failures hard to un-
cover with common robustness testing approaches.

1. INTRODUCTION
Testing is a main step to assess and improve software quality
through fault detection. The research on cloud computing
testing focused mainly on how to sell the testing as a ser-
vice rather than on the more basic need of testing the service
provisioning mechanism itself, so far. Many techniques have
been devoted to how to optimize testing in the cloud, rather
than testing of the cloud. Nevertheless, when a cloud user
runs up against the bad quality of a service, the unsatis-
fied requests translate indirectly into a cost for providers.
As a consequence, before deploying a service, providers may
want to assess the robustness of the underlying cloud soft-
ware system. They may want to improve their own platform
to minimize failures and downtime, or simply compare dif-
ferent platforms through benchmarking and choose the best
one for deploying their services1.
Robustness testing is adopted to assess “the degree to which
a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” [2].
Novel robustness testing approaches are required for cloud

1We consider a failure as the manifestation of the activation
of a fault (or defect), as stated in [1]. The aim of testing
is to expose/force the manifestation of failures, in order to
discover defects causing them and/or evaluate system relia-
bility.

platforms, for which existing ones may be di�cult to adopt.
In many cases, they consider services and servers without
state, and the system under test as a stateless black box.
They aim at breaking the system by injecting unexpected
and invalid inputs at its interface in a clean initial state
[3]. While easing both testing and debugging, treating a
system as stateless constitutes also the theoretical and prac-
tical limit of this type of robustness testing.
More recently, researchers are focusing their e↵ort on in-
cluding the impact of the state, especially in the field of
operating systems dependability assessment [4, 5, 6]. When
considering the system as a whole, rather than just the pro-
vided service with whom the user interacts, there is a state,
indeed. Many requests come concurrently without the sys-
tem being reset and some actions need to be executed in a
specific succession. Thus, resubmitting the same inputs un-
der di↵erent states is likely to expose new and more subtle
failures. This is especially true for IaaS (Infrastructure as
a Service) cloud platforms, where phase-based interactions
with multiple concurrent users entail very strong dependen-
cies of a request outcome on the state. Even a concurrency-
aware testing method, encompassing stressful environmental
conditions, may not su�ce. To our knowledge, there is no
approach to assess the robustness of the underlying plat-
form while accounting for its state. Field experts prefer the
approximation given by a pure input-based test, since ac-
counting for the state is di�cult and expensive, and lacks of
a methodical strategy.
This paper presents a systematic approach for state-based
robustness testing of IaaS cloud computing platforms. By
abstracting statefulness from system evolution and user in-
teractions, the approach guides the tester to select e↵ective
test cases to explore subtle failure regions by crossing the
input and state domain smartly while controlling the test
space explosion. The approach is applied to Apache VCL
[7], an open source cloud computing platform. Results show
the e↵ectiveness of the method in finding robustness flaws
with relatively few test cases, and in unveiling failures that
manifest themselves only if considering the state explicitly.

2. RELATED WORK
We first review papers related to testing in the cloud com-
puting field, then those related to state-based testing.

Cloud Testing. In the Cloud computing field, testing is
commonly seen as a service to provide [8]. As for the test-
ing of cloud platforms, very few papers can be found, each
specific for the platform under study and not considering



cloud characteristics. OakLeaf Systems started a project
for testing harness of Windows Azure Storage Services [9].
In [10], it is discussed how to evaluate scalability, autho-
rization, billing, etc., for the Google’s API Infrastructure.
Similarly, in [11], Iyer et al. propose a framework for test-
ing cloud features. It includes elasticity, scalability, security
and performance testing, but it is not focused on reliability
evaluation, which is our main aim. In [12], authors present
a testing framework as a cloud application containing plu-
gins for testing APIs of cloud platforms. Fault injection is
used in [13] and [14] for assessing the reliability of cloud sys-
tems. Adopted approaches are very interesting and reach
their goal of discovering faults in a reduced time with re-
spect to common testing methods. However, the state of
the cloud platform is not considered: as it is shown in Sec-
tion 4, if not considering the state, some software defects
remain hidden and the coverage incomplete.
The manifestation of exceptional events and reliability for
Cloud platforms are strictly related to the interaction of the
numerous software components (often provided by third par-
ties) and to the correct termination of the various stages of
the cloud service (e.g., authentication, resource request, use
of the virtual resource), as discussed in detail in Section
3.3. These observations drove us to consider the state of the
platform for assessing its robustness.

State-based testing. Ballista [3] was the first approach
for evaluating and benchmarking the robustness of commer-
cial operating systems with respect to the POSIX system
call interface. OS robustness testing evolved in dependabil-
ity benchmarks in the framework of the DBench European
project [4]. DBench is a dependability benchmark proposed
to assess OS robustness in terms of OS failures, reaction
time (i.e., mean time to respond to a system call in presence
of faults) and restart time (i.e., mean time to restart the
OS after a test). Experimentations show that the workload
should be representative of the expected usage profile (e.g.,
database or mail server) in order to assess robustness under
common circumstances. This has been further studied in
[15] and [16], where the authors assess the influence of the
workload on the performance and memory consumption of
several software systems by means of stress testing. Apart
from OSs, the state is considered for other software systems,
too. A common approach is to use state-based models. In
[17], several models are used to represent the behavior of
space software under the presence of both normal inputs
and external faults in communication, processor, and mem-
ory. Authors show that a large number of errors are found
when also considering the state. In [18], it is discussed an
approach based on state machine for state base robustness
testing. Tests are performed by considering the paths of the
transitions to cover most of the system states and examine
more transitions than stateless testing.

3. TEST CASE GENERATION APPROACH
We focus on testing of cloud platforms providing IaaS ser-
vices. Even though the approach can be extended to other
services, here we neglect functionalities and arguments that
may be specific to a platform (e.g., software to be included,
in the case of a Platform as a Service) or to a software (e.g.,
input parameters of an application provided as a service, in
the case of a Software as a Service).
Our approach is based on four high-level steps to specify test

cases: 1. Decomposition, i.e. the identification of the set
of independently testable functionalities, 2. Input Model-
ing, 3. State Modeling, 4. Constraints application to
eliminate potentially useless or redundant combinations.

3.1 Decomposition
The first step towards the testing of the platform is the
identification of the provided functionalities. They can be
identified by means of decomposition of the requirements
specification. We model each functionality as: [values] =
F(par1, par2, . . . , parN), namely by a function F represent-
ing a generic request, an output representing the outcome as
a set of one or more values, and a set of input parameters. A
specific value of an input parameter is also called argument.

3.2 Input Modeling
Input modeling considers the input parameters of the func-
tionalities to test as derived from requirements specification;
for the arguments, we adopt a data type based approach [3],
and consider three classes of values: VALID, BOUNDARY
VALID, and INVALID, representing, respectively, the cases
in which a value is as expected, is a boundary valid value
(i.e. valid but uncommon), or is invalid with respect to what
specified. The latter two classes of exceptional values are
used to generate tests with at least one parameter having
an exceptional value. Valid values are considered to pre-
vent the masking of robustness failures: exceptional values
correctly handled for one argument might mask non-robust
handling of exceptional values for other arguments [3].

3.3 State Modeling
The state needs an appropriate modeling for IaaS cloud.
We examined five open source systems to identify common-
alities of a generic cloud computing platform: Apache VCL,
CloudStack2, Nimbus3, OpenNebula4, and OpenStack5. De-
velopers built these platforms by integrating existing soft-
ware components and libraries (e.g., hypervisors, distributed
message brokers, storage systems) with new components re-
sponsible for accepting and orchestrating requests. We focus
on functionalities related to IaaS cloud.
The architectural description of the cloud is derived from
[19]. A platform is intended to serve end users, requesting
for resources (e.g., a Virtual Machine (VM)), and admin-
istrators, who manage, modify, and repair the system.
A generic cloud system consists of these components:
Front End (FE): the interface of the system toward users.
It allows customers to request for or access to a resource, or
administrators to perform management operations.
Resource Manager (RM): responsible for the allocation
of available resources to a request (i.e., the scheduling).
Provisioning Engine (PE): a PE instantiates VMs using
the hypervisor, provides storage using the Storage System,
or network by means of the Network Manager. It also frees
resources once the service period expires.
Hypervisor (HV): provides virtualized abstraction of phys-
ical resources.
Storage System (SS): a SS provides storage capabilities
to VMs and stores the images of the VMs.

2http://cloudstack.apache.org
3http://www.nimbusproject.org
4http://opennebula.org
5http://www.openstack.org

Roberto Pietrantuono


Roberto Pietrantuono




Network Manager (NM): it performs networking tasks,
such as, the creation of VMs’ virtual network interfaces, IP
addresses assignment, etc.
Service Engine (SE): representing both the hardware (e.g.,
CPU, RAM, disks, network interfaces) and the software pack-
ages (e.g., monitoring tools) for providing a service.
Database (DB): a database is commonly used in cloud
platforms to keep track of available resources, instantiated
VMs, users details, etc.
Management Engine (ME): the ME component provides
administrative functionalities. Examples are modification of
delivered services and repair of failed components. It can in-
teract with all the other components.
Formally, a cloud system concurrently provides services to
a set of users U = u1, u2, . . . , ul, each one submitting (a
subset of) m possible request types, R = r1, r2, . . . , rm.
We name a complete interaction of each user with the plat-
form as session. A user session (su) evolves through a set
of n phases P = p1, p2, . . . , pn. We define the (sequential)
phases which a cloud service may evolve through as:

i) Authentication (AN): the first step for accessing the
cloud services;

ii) Submission (SB): when end user submits a resource
request over a certain period;

iii) Placement (PT): when the system looks for free re-
sources to satisfy a request;

iv) Provisioning (PV): the system creates the VM, al-
locates storage space, and sets up the request on the
physical resource;

v) Operational (OP): the user works with the resource
until the service period expiration.

vi) Deprovisioning (DP): the system de-provisions the
deployed resources and frees the physical resources.

A Management (MT) phase encompassing all the admin-
istrative operations, such as upgrades, backup, failure/repair/
migration of components is also considered. It is not is se-
quence with the other phases.

The state of the session of a user u 2 U at time t (su(t)) is
thus characterized by the phase (piu(t), i 2 {1, . . . , n} - the
session of user u is in phase i at time t) and by the request
type being served (rju(t), j 2 {1, . . . ,m} - the session of
user u is serving the request j at time t). The state of the
platform at time t is given by the union of the states of
the active user sessions: [{su(t)} = [{piu(t), rju(t)}. The
number of active sessions implies the concurrency degree at
a given time. The whole set of states is therefore given by:
(i) the number of possible request types, multiplied by (ii)
the maximum number of active sessions, and by (iii) the
number of phases.

To abstract the request types users may submit, we separate
them in groups depending on the weight of the operations
in terms of OS resource usage and processing time. We
consider the following factors and levels:

• TypeADM. For administrators, we distinguish be-
tween inquiring requests (i.e., visualization of usage
information) with LOW weight, and modification re-
quests (e.g., adding/removing host machines or im-
ages) with HIGH weight. This factor also includes
a NONE type, indicating no operations by the admin-
istrator (i.e., concurrency is only among end users).

• TypeUSER. As for end users, we distinguish opera-
tion requests (e.g., connection/use of a VM) with LOW
weight, from reservation requests of a resource, with
HIGH weight. A NONE type applies also in this case,
indicating only administrator requests in act.

We consider a specific factor indicating the level of concur-
rent requests.

• Concurrency. We distinguish LOW and HIGH level
in terms of number of sessions currently active. The
LOW level is expressed as a percentage of the maxi-
mum capacity (e.g., it is set to 30% of the HIGH level
value).

The di↵erence among the levels is to be preliminary con-
firmed for the platform being tested with short-running ex-
periments.
Finally, we consider the phase in which the input case is sub-
mitted. In a normal flow, a request in a certain phase would
be submitted only after the successful execution of all the
previous phases; for the robustness testing, we are also in-
terested in exceptional inputs in both normal and abnormal
sequences (e.g., a resource deprovisioning request submitted
after an unsuccessful provisioning).

• Phase. We consider these levels: (i) PHASE1: input
case submitted in the first phase; (ii) PHASEi-VALID
and PHASEi-INVALID, with i=2 . . . 6 (the 6 sequen-
tial phases): input case submitted in the i-th phase
after a) a successful termination of all the phases from
1 to i � 1, and b) an unsuccessful termination of at
least one of them. We end up with 5 ⇥ 2 + 1 = 11
levels.

3.4 Constraints
Since introducing state related factors, the number of tests
one can perform may be excessively large. Constraints can
discard combinations with higher likelihood to be redundant
or with a reduced chance of discovering defects.
A test case is a vector of actual values selected for the levels
(e.g., a specific VALID argument as input, an administra-
tor operation with LOW weight, HIGH level of concurrency
given by 10 users requesting for a resource). A test frame is a
selection of the possible test cases that can be performed for
a functionality. The aim is to select the tests with higher
chances of discovering defects. The testing of a software
consists in the repetition of test frames with all the possi-
ble combinations of input classes, and levels of state and
concurrency related factors for each functionality.

Input Constraints. For the inputs, we can only operate
on the three defined levels. We implicitly apply a constraint
by discarding the combination with all VALID arguments.
At deeper level, we can further reduce by eliminating com-
binations with the VALID class for one or more parameters
that unlikely impact the discovery of defects.

State Constraints. Some constraints are related to con-
currency factors. They focus on keeping only state classes
believed to be more prone to trigger exceptional conditions.

• Stress Reduction (Str): for some factors, we identi-
fied HIGH and LOW classes. Tester may choose only
combinations with HIGH classes and discard LOW
ones.



Discard the combination of all 
VALID inputs

Thinking there 
is chance of 
masking?

Discard all the combinations 
with VALID inputs

Discard LOW weight 
operations (Str)

Discard NONE levels
(Cnc)

Discard not allowed phase 
related combinations (Unf-Ph)

Random phase selection
(Cpt-Ph)

Assuming the 
phase as non 

influential?

Consider only that phase
(Sng-Ph)

Interested in 
just one 
phase?

Remove robust input-phase 
combinations, if any (Smt-Ph)

Consider only abnormal levels 
of the phases (Str-Ph)

Assuming 
correct phases’ sequence 

meaningless?

END

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

Inp
ut

Co
ncu

rre
ncy

Ph
ase

Sta
te

Interested only in 
complex user/admin 

concurrency?

Assuming robust 
LOW weight 
operations?

Figure 1: Algorithm adopted for applying constraints.

• Concurrency Reduction (Cnc): the tester could
consider only complex cases of concurrency and discard
those with TypeUSER and TypeADM set to NONE.

Other state constraints are related to phases.

• Unfeasible Phase Reduction (Unf-Ph): when cross-
ing a functionality with phases, there might be some
cases not physically allowed by the platform; as an in-
stance, the deletion of a VM may not be performed if
it does not exist, since the system does not provide a
means (e.g., a button) to perform the operation.

• Semantic Phase Reduction (Smt-Ph): for some
input-phase combinations the tester may be reason-
ably sure that the system is robust to them, and thus
useless to test; for instance, a resource request before a
successful authentication is a so simple case that pre-
vious testing stages have probably managed it.

• Stress-based Phase Reduction (Str-Ph): cases
for which the exceptional input is submitted under a
normal sequence are discarded, while only abnormal
levels of the phases are considered (e.g., provisioning
of a VM for which a placement does not exist).

• Single Phase Reduction (Sng-Ph): the tester may
want to exercise a particular phase just once, and not
on all the input combinations.

• Complete Phase Reduction (Cpt-Ph): the ex-
treme case is to submit the input case under a ran-
domly chosen phase; this does not mean that the phase

factor is not considered: with a large number of tests,
it would be possible to cover a large portion of phases
and expose the same failures of a testing where this
constraint is not applied, even if with a reduced e↵ec-
tiveness.

In Figure 1, we report an exemplary algorithm for applying
constraints. Clearly, the selection of the constraints to be
applied depends on (i) the intuition and the experience of the
tester, who feels how much the system is robust to certain
combinations, and (ii) the budget for the testing, that is,
how many test cases can be performed.

4. APACHE VCL CASE STUDY
We apply the testing approach described in Section 3 to
Apache Virtual Computing Lab (VCL) [7], an open source
cloud platform. It can be easily applied to other platforms
by following the four steps detailed in the previous Section
and here exemplified for the VCL case study.
For testing the VCL platform, we created a testbed in our
laboratories. It has two machines, acting as controller node
and hosting node, interconnected by a LAN, equipped with:
Apache VCL 2.3, VMware server 2 as hypervisor, CentOS
6 as OS on the two machines and both Linux and Windows
images for guest machines. Other machines (up to 6) act as
clients of the cloud service.
Table 1 reports the main functionalities of the platform,
to which we apply the method. The corresponding service
phase is reported in the last column.
As for the concurrency factor, we found the high level corre-
sponding to 6 concurrent operations, and fixed the low level
to 2 (integer approximating the 30% of 6).
On the listed functionalities, we perform:

• Input-based robustness testing (Tib): this is a
pure robustness testing as performed in [3]; it only
evaluates the system response to combinations of valid,
boundary and invalid inputs. To reduce the number of
tests, input constraints as defined in Section 3.4 are
adopted.

• Concurrency-based robustness testing (Tcb): this
is the robustness testing considering only the concur-
rency factor for the stressful environmental conditions
defined in [2]; test cases are generated by also consider-
ing TypeADM, TypeUSER and Degree of Concurrency
introduced in Section 3.3; stress and concurrency re-
lated constraints are applied.

• State-based robustness testing (Tsb): this is the
proposed testing approach described in Section 3.

In this way, we distinguish the impact due to considering
the degree of concurrency in addition to an input-based ap-
proach, and the further impact due to the phases and the
other state factors defined in Section 3.3. Note that the test
space of the state-based robustness testing (TSsb) includes
the test space of concurrency-based testing (TScb). In turn,
the latter includes the test space of the input-based robust-
ness testing (TSib). Formally, TSib ✓ TScb ✓ TSsb.
Failures that these testing approaches can expose are cate-
gorized in:

• Input-dependent failures (Fid), which require only
invalid inputs to be exposed, regardless the state.

• Concurrency-dependent failures (Fcd), which re-
quire a specific concurrency level to be exposed, since
their e↵ect can be noted only if a certain number of
users is performing operations of a specific type.



Table 1: Main functionalities of Apache VCL.

Name Inputs Description Phase

ResRequest characteristics, start, end request for a new virtual resource SB

ResModify reservation id, start, end modify existing reservation SB

Place characteristics, start, end placement of a requested resource in a time

period

PT

PlcModify schedule id, start, end modify an existing placement PT

PlcDelete schedule id delete an existing placement PT

CreateVM image id, computer id, hypervisor, cpu, ram, disk, net-
work

load and instantiate the requested resource PV

DeleteVM computer id, vm id remove an instantiated VM DP

AddHost ip address, state, owner, platform id, schedule id, ram,
num procs, proc speed, network, hostname, type, notes,
computer group, provisioning id

add information on a new host computer MT

ModifyHost computer id, ip address, state, owner, platform id, sched-
ule id, ram, num procs, proc speed, network, hostname,
type, notes, computer group, provisioning id

modify information on an existing host com-

puter

MT

• State-dependent failures (Fsd), which manifest only
within a specific state, while remaining latent in oth-
ers.

• Pure-state-dependent failures (Fpsd), whose man-
ifestation is not due to concurrency, but to other state
factors (which in the case of cloud systems are defined
in Section 3.3).

Hence, Fcd ✓ Fsd; Fsd = Fcd
S

Fpsd, and Fcd
T

Fpsd =
;. Also, we notice that (i) input-dependent failures (Fid)
can be found with whatever testing approach (Tib, Tcb, Tsb);
(ii) concurrency-dependent failures (Fcd) can be discovered
only by means of concurrency-based or state-based testing
(Tcb, Tsb); (iii) state-dependent failures (Fsd) can be found
only if using state-based testing (Tsb).
As a metric for the failure-exposing ability of the testing,
we introduce the failures-tests ratio (FTR). It is the to-
tal number of exposed failures over the number of run test
cases.

4.1 Test Case Generation
To generate the test cases, we start from considering all the
combinations of input and state levels, to which constraints
are then applied. For illustrative purpose, we describe the
application of the defined constraints to the ResRequest func-
tionality. The same procedure is applied to all the tested
functionalities. We point out that input constraints can be
used for the three testing approaches; concurrency related
constraints can be applied to concurrency- and state-based
testing; constraints about phases can be used only for the
state-based testing.
ResRequest has 3 input parameters: considering all their
potential combinations of valid, invalid, and boundary val-
ues, there are 33 = 27 input combinations. The state space
includes the discussed (3 TypeADM ⇥ 3 TypeUSER ⇥ 2
Concurrency ⇥ 11 Phase) = 198 state combinations. The
total number of test frames is 5, 346. For input constraints,
we observe that the first input parameter, characteristics,
can be selected only from a drop-down list with fixed val-
ues. Thus, neither invalid nor boundary inputs can be sub-
mitted. We discarde the combination of all valid inputs.
Hence, combinations of inputs are 32-1=8. For concurrency,
being interested in the case of end-user and administrator
tasks concurrency, we discard NONE levels (Concurrency
Reduction constraint). As for the states, we remove com-
binations considering the relation between submission and
the other phases (Semantic Phase Reduction). In fact, while

Table 2: Failures-Tests ratio for input-based, concurrency-based,

and state-based testing.

Functionality FTR(Tib)[%] FTR(Tcb)[%] FTR(Tsb)[%]
ResRequest 37.50 37.50 37.50
ResModify 33.33 75.00 62.50
Place 37.50 37.50 68.75
PlcModify 37.50 50.00 75.00
PlcDelete � 50.00 56.25
CreateVM 37.50 78.13 73.44
DeleteVM � 50.00 56.25
AddHost 62.50 72.22 81.25
ModifyHost 37.50 58.33 55.00
Total 40.30 56.36 62.22

it makes sense considering the usage of a non-existing re-
source, we do not identify any relation between the submis-
sion phase and the following ones. Additionally, we do not
consider the relation with the authentication phase, since
the system does not physically allow a user to access other
functionalities if not authenticated (Unfeasible Input-Phase
Reduction). Thus, the final number of test frames in the
state-based case is (32 � 1)⇥ (2⇥ 2⇥ 2⇥ 1) = 64.

4.2 Analysis of the Results
Results from the testing of Apache VCL are summarized
in Tables 2 and 3. Table 2 reports, for each functionality,
the failures-tests ratio in the cases of input-based testing, of
concurrency-based testing, and of state-based testing. Re-
sults highlight the importance of considering the state when
testing a cloud computing service. It forces the tester to con-
sider not only input, but also state configurations, in which
the service is likely to fail. Overall performance presents an
average failures-tests ratio of 62% for the proposed testing
approach. When considering only inputs, the average FTR
is 40%. Robustness testing accounting for also concurrency
obtained an average FTR of 56%. While the di↵erence be-
tween 40% and 56% is due to considering the concurrency
state factor, the di↵erence between 62% and 56% is due to
the additional failures exposed when the other state factors
are taken into account, especially the phase.
Table 3 details the results of the state-based testing (Tsb).
The number of state-dependent failures can be computed as
Fsd = Fcd + Fpsd. By way of example, consider the Creat-
eVM functionality. 24 over 47 failures are exposed in pres-
ence of invalid inputs. These likely manifest also through
a robustness testing as described in [3] (namely, a Tib-like
approach). Additional 23 failures are due to state. Of such



Table 3: For each functionality tested with the state-based approach: test space dimension, number of performed state-based tests,

applied constraints, input-dependent failures, concurrency-dependent failures, and pure-state-dependent failures.

Functionality # tests (initial) # tests (reduced) Constraints Fid Fcd Fpsd

ResRequest 5, 346 64 Cnc, Unf-Ph, Smt-Ph 24 0 0

ResModify 1, 782 32 Cnc, Unf-Ph, Smt-Ph 16 4 0

Place 5, 346 16 Cnc, Unf-Ph, Str-Ph 0 7 4

PlcModify 1, 782 16 Cnc, Unf-Ph, Str-Ph 0 8 4

PlcDelete 594 16 Cnc, Unf-Ph, Str-Ph 0 8 1

CreateVM 433, 026 64 Cnc, Unf-Ph, Str-Ph, Sng-Ph 24 21 2

DeleteVM 1, 782 48 Cnc, Unf-Ph, Smt-Ph 0 24 3

AddHost 947, 027, 862 64 Str, Unf-Ph 40 12 0

ModifyHost 2, 841, 083, 586 40 Str, Unf-Ph 10 7 5

Total 3, 788, 561, 106 360 - 114 91 19

failures, 21 are due to the high level of concurrency and/or
to the type of the concurrent request. However, 2 out of the
47 failures are exposed only when submitting the request in
an abnormal sequence of the service life cycle; specifically,
this happens when the placement phase does not execute
successfully.
Overall, 224 failures are exposed through the 360 performed
tests. Most of such failures (⇠ 51%) depend only on the
inputs; hence, they would occur also without forcing con-
currency, stress, or specific phase sequences. 110 failures
(49.11%) are state-dependent and represent very hard-to-
reach cases. Exposing these failures with a pure input-based
approach is extremely di�cult, since the forced states rep-
resent rare conditions that cannot be reached by testing the
system always in a clean state. Of this percentage, 40.63
points represent the failures that manifest only if adopt-
ing a testing approach considering stress and concurrency,
apart from inputs (i.e., a Tcb-like approach). Such an ap-
proach should be used if respecting the standard definition
of robustness testing [2]. The remaining 8.48 percentage
points represent those failures that can be exposed only if
considering the state as defined for the cloud service. These
pure-state-dependent failures are the most subtle ones to
expose, as they are not found if not explicitly forcing an
invalid state, and are the actual advantage of our method.
A conventional approach (like input- or concurrency-based)
can achieve a certain level of robustness that is hardly im-
provable even employing a lot of further testing resources,
as it is not conceived to expose pure state-dependent fail-
ures. The state-based method went beyond that level, as it
is naturally oriented toward that kind of failures.

The conducted experiment also provides hints on the selec-
tion of input and state combinations. First, it confirms the
importance of not discarding valid inputs, besides the sin-
gle combination of all valid inputs. This choice avoids a
potential failure masking. For instance, if both the host-
name and the owner parameters of the AddHost function
are invalid, the system checks the owner parameter first,
which, if wrong, causes a failure, masking the behavior in
presence of an invalid hostname. In fact, if only hostname
is invalid a similar behavior is experienced. Similarly to
inputs, also reducing the number of states could mask fail-
ures. By way of example, consider the creation of a vir-
tual machine, which fails both in presence of heavy admin-
istrator operations and of heavy end user operations (Ty-
peADM=TypeUSER=HIGH ). Without considering light op-
erations of both actors, it was impossible to figure out that
concurrent LOW operations can cause a failure, hence hin-
dering the correct identification of the cause. Finally, input

and state combinations could mutually mask some failures
too. For example, consider the ModifyHost function. If the
hostname is invalid and the service correctly reached the pro-
visioning phase (PHASE4-VALID), a failure is experienced
because of the incorrect input. However, with the system
in the provisioning phase and a given combination of other
state classes, a failure is experienced also if the input is valid.

5. CONCLUSION
The presented robustness testing approach started from the
basic intuition that given a software platform providing a
cloud service, its response to the same input may vary due
to (i) the number and type of operations performed concur-
rently, and (ii) the di↵erent use of interacting software com-
ponents during various phases of the service life cycle. This
hypothesis was confirmed by the empirical results from our
experience with Apache VCL. By comparing several testing
approaches, we showed that:

i) When considering only the inputs, few failures from a
specific, restricted set may manifest.

ii) When considering stressful environmental conditions as
the concurrency in users’ operations, additional failures
are exposed; this should be the basic robustness testing
approach to be considered for cloud platforms, account-
ing, at least, for the common large number of users.

iii) By forcing the state, as we specifically defined for the
cloud, further failures may manifest. Such failures are
the peculiarity of the proposed state-based approach,
and can not be exposed otherwise, since underlying
faults are activated only in specific situations.

An important next step is to automatize the execution of the
selected test cases. Open specifications and APIs for cloud
o↵erings can be adopted to this aim. An example is the
Open Cloud Computing Interface (OCCI) [20], providing a
protocol and APIs to perform both management tasks (e.g.,
monitoring, adding hosts) and common end user requests
(e.g., create a new VM, access an existing VM). Many cloud
platforms (e.g., CloudStack, OpenNebula, OpenStack) sup-
port this standard, as well as Amazon EC2 interfaces. Our
future avenues of research will thus be focused on the auto-
matic benchmarking of platforms for IaaS cloud in order to
make them able to deliver reliable services and making the
cloud even more trusted and usable.

6. REFERENCES
[1] A. Avizienis et al., “Basic concepts and taxonomy of

dependable and secure computing,”Dependable and
Secure Computing, IEEE Trans. on, vol. 1, no. 1, pp.
11–33, 2004.



[2] IEEE - Standards Association, “IEEE STANDARD
610.12-1990 - IEEE Standard Glossary of Software
Engineering Terminology,” July 2014.

[3] P. Koopman and J. DeVale, “The Exception Handling
E↵ectiveness of POSIX Operating Systems,” IEEE
Trans. on Software Engineering, vol. 26, no. 9, pp.
837–848, Sep. 2000.

[4] A. Kalakech et al., “Benchmarking the dependability
of Windows NT4, 2000 and XP,” in Dependable
Systems and Networks, 2004 International Conference
on, June 2004.

[5] A. Johansson et al., “On the impact of injection
triggers for os robustness evaluation,” in 18th IEEE
International Symposium on Software Reliability
(ISSRE), Nov 2007.

[6] D. Cotroneo et al., “A case study on state-based
robustness testing of an operating system for the
avionic domain,” in Computer Safety, Reliability, and
Security, ser. Lecture Notes in Computer Science,
2011.

[7] Apache, “Apache VCL,” March 2013,
https://cwiki.apache.org/ VCL/.

[8] L. Riungu-Kalliosaari et al., “Testing in the cloud:
Exploring the practice,” IEEE Software, vol. 29, no. 2,
pp. 46–51, 2012.

[9] OakLeaf Systems, “Azure Storage Services Test
Harness,” Feb 2015, http://oakleafblog.blogspot.it/
2008/11/azure-storage-services-test-harness.html.

[10] A. Vallone, “Testing Google’s New API
Infrastructure,” Feb 2015, http://googletesting.
blogspot.it/2012/08/testing-googles-new-api-
infrastructure.html.

[11] G.N. Iyer et al., “Pctf: An integrated, extensible cloud
test framework for testing cloud platforms and
applications,” in International Conference on Quality
Software, July 2013.

[12] W. Jenkins et al., “Framework for testing cloud
platforms and infrastructures,” in International
Conference on Cloud and Service Computing (CSC),
dec. 2011, pp. 134–140.

[13] P. Joshi et al., “Prefail: A programmable tool for
multiple-failure injection,” in Proc. of the ACM Int.l
Conference on Object Oriented Programming Systems
Languages and Applications, 2011.

[14] H.S. Gunawi et al., “Fate and destini: A framework
for cloud recovery testing,” in Proceedings of USENIX
NSDI, 2011.

[15] D. Cotroneo et al., “A measurement-based ageing
analysis of the JVM,” Software Testing Verification
and Reliability, 2011.

[16] A. Bovenzi et al., “Workload characterization for
software aging analysis,” in IEEE 22nd International
Symposium on Software Reliability Engineering
(ISSRE), December 2011.

[17] A.M. Ambrosio et al., “Designing fault injection
experiments using state-based model to test a space
software,” in Latin-American Conference on
Dependable Computing, Berlin, Heidelberg, 2007.

[18] B. Lei et al., “State based robustness testing for
components,” Electronic Notes in Theoretical
Computer Science, vol. 260, pp. 173 – 188, 2010.

[19] F. Frattini et al., “Analysis of bugs in Apache Virtual
Computing Lab,” in Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on, 2013.

[20] Open Grid Forum, “Open Cloud Computing
Interface,” July 2014.


