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Abstract—The interaction of software with its execution envi-
ronment is an underestimated cause of complex faults activation
and systems failure. This paper discusses a possible framework to
emulate anomalous environment conditions in order to assess the
impact of the execution environment on a software application
under test. We discuss a characterization of the software’s
execution environment, introducing a classification of failure-
exposing conditions of the environment state. Based on this,
a set of possible environmental fault operators is introduced,
aimed to assess the reaction of an application under unforeseen
environment conditions. Practicability of the approach by means
of existing fault injection and mutation testing technologies is
discussed, along with future challenges and research directions.

I. INTRODUCTION

Software-related system failures are a major cause of dis-
ruption in today’s complex systems. There is a significant
share of software bugs removed during the pre-release testing
stage, especially for systems with high reliability requirements.
Advanced verification and validation techniques (e.g., static
analysis, formal proof, stress testing, model checking) are
extensively used to clean the code from bugs; however, the
interaction with the runtime environment causes unexpected
software bugs activation whose impact might be disastrous
[1]. Until few years ago, failures due to the interaction with
the environment received a very scarce consideration as a
testing or V&V problem, while they have been more care-
fully considered in the requirements and design specification
phase (e.g., hazard analysis, FMECA, FTA) or as a runtime
fault tolerance problem. However, the increased awareness
of the potential impact of complex environment-dependent
bugs (e.g., Mandelbugs), observed, with high percentage, even
in critical systems [31], is shifting the system-environment
interaction problem to the pre-release testing stage, wherein
more extensive activities are required to explore potential
interaction patterns, and support fault detection as well as
fault tolerance design. This trend emphasizes the need for
developing testing techniques that are able to account, since
their formulation, for the impact of the execution environment
on systems failure.

This paper discusses a possible fault-based testing frame-
work to emulate anomalous conditions of the execution en-
vironment and assess its impact on a given software under
test (SUT). We discuss a characterization of the environment
in order to define what are the most important environment
components with a potential impact on a software program
behaviour. We define a set of elementary conditions of the

environment that can cause the software under test to fail,
which represent potential triggers of environment-related soft-
ware failures. These triggers are defined as conditions that are
necessary, but may be not sufficient by themselves, allowing
complex faults activation to be represented as consequence
of one or several triggers occurring together. Based on this
characterization, we discuss a set of possible mutation op-
erators (namely, environmental fault operators) whose aim is
to alter the environment to induce the SUT interacting with
it to failure. The outcome is a framework of operators over
the environment, which can be used either to improve the test
suite by considering the SUT robustness to the environment, or
to improve the design of runtime fault tolerance mechanisms
for guaranteeing the adoption of correct countermeasure in
response to specific environmental states.

The paper ends up with a discussion on the applicability
of fault operators by means of current tools and technologies,
highlighting the major challenges and research directions. In
the following, section II surveys relevant work in the field of
mutation testing; section III describes the characterization of
the environment in terms of triggers; section IV defines fault
operators; section V and VI discuss the existing technologies
that could be used for implementing the defined operators, the
challenges and the main research directions.

II. BACKGROUND AND RELATED WORK

The idea of using faults artificially inserted into a system
under test is exploited in various fields in the software engi-
neering and fault tolerance community. The main techniques
exploiting this idea are known as mutation testing and fault
injection. Mutation testing is a well-known technique to assess
a test suite with respect to its ability to detect software faults
[2]. A set of faults are deliberately injected by means of
mutation operators assumed to be representative of realistic
mistakes that programmers might have introduced into the
code. Applying mutation operators, many faulty versions of
the software are created; test cases are run against such
versions (called mutants) and the good performance (namely,
the adequacy score) of the test suite is measured based on the
number of killed non-equivalent mutants (i.e., mutants where
the fault is detected). The adequacy score is the ratio between
the number of dead mutants and the number of non-equivalent
mutants. Mutation operators play a key role for this technique
to be effective; many operators have been proposed in the
literature with the goal of being representative of classes of



real faults [3], [4]. Besides the type of operator applied, a lot of
research has been conducted on mutation analysis for the cost-
effective computation of mutants (e.g., selecting the best set of
mutation operators [5], [6], [7]) – a survey is presented in [8].
The cost of such a computation is, in fact, a serious obstacle
to the applicability of mutation testing to large programs.

Most of the literature on mutation testing focuses on how
to modify the source code of the program, without interest
in assessing it against changed or unexpected environments.
This is an underestimated problem in the testing literature
in general. Some exceptions consider the environment under
various perspectives. For instance, authors in [9] use mutation
testing on environment properties of a LUSTRE program;
while authors in [10] use hazard injection to emulate hostile
physical environments. In both cases, the focus more on
properties of the physical environment that must hold rather
than the computing execution environment. Instead, authors
in [11] propose to extend mutation testing considering a
specific class of environmental bugs, the ones involving integer
arithmetic. This is a good example of environment mutation,
even though limited to one class of bugs. The work in [12]
proposes mutation testing to detect what they call interaction
faults between hardware and software in an embedded system.
The work in [13] considers the environment perturbation
as possible way to analyze the impact on the program, but
authors’ focus is on security problems.

The area of fault injection offers valuable techniques and
tools for emulating faults in the execution environment. In
addition to hardware fault injection, significant research fo-
cused on software-implemented fault injection (as known as
SWIFI). Its objective is to emulate hardware faults using data
or instruction corruption by bit-flip or stuck-at models, which
were showed to accurately represent hardware faults with the
advantage of being less expensive and easy to implement [14]
(e.g., NFTape [15], Xception [16], DOCTOR [18], FERRARI
[17]). The ability to corrupt data at such a low level make
them useful tools also as an indirect form of software fault
injection, namely as error injection techniques. In fact, what
is being injected is not the fault itself but only a possible
effect of the fault [19]. Another form of error injection is
inserting faults at interface level; in this case, the error inserted
at the interface between modules as parameters corruption
in functions, API, or even OS system calls. This is usually
referred to as robustness testing, and many tools exist to aid
such mechanisms (e.g., BALLISTA [20], RIDDLE [21]). Since
we are interested in assessing the effect of the environment
on the software under test, both error injection approaches
(data corruption and robustness testing) can be very useful,
as discussed later. Approaches for injecting software faults in
terms of programming mistakes have been developed. One of
the most popular approaches was the G-SWFIT (Generic Soft-
ware Fault Injection Technique) [22]. G-SWFIT acts at binary-
level by modifying the executable of target application, namely
by first identifying sequences of machine code instructions
representing the high-level constructs, and then applying a
code change in them according to a set of fault operators based

on common programming errors. There are approaches to
inject software faults at source code level, namely by applying
fault operators as changes in the source code (e.g., SAFE
tool [23], [19]). Although the injection approach is similar to
mutation testing (i.e., inserting artificial faults), the objective
in this case is not to assess a test suite, but to evaluate the
behaviour of the system when a fault that escaped during the
test phase appears at operational time. This entails differences
in the way fault operators are defined and injected into the
code, as there is a different concept of representativeness.

For the purpose of our work, existing techniques, both error
injection and source code level mutation, can be very useful
to implement environmental fault operators. Mutating the en-
vironment to assess its impact is an activity that can be useful
both at testing time, e.g., to improve test suites (as mutation
testing [2]) or to assess testing techniques performance [24],
and or at operational time, e.g., to assess fault tolerance [19]
or monitoring mechanisms [25]. The next section introduces
a characterization of the environment and of possible failure-
epxosing environmental conditions, based on which we define
the fault operators.

III. ENVIRONMENT AND TRIGGERS DEFINITION

Common experience suggests that repeating the steps that
caused the failure, to recreate the same conditions, is the
immediate way to reproduce and debug it. In more complex
cases, this is not enough, as a particular state of the execution
environment is needed for the bug to reappear. This often
causes a sort of “non-determinism” in failure reproduction
due to the influence of external factors as the execution
environment hardware and software, as well as the user, whose
behaviour is unpredictable [26], [32]. The focus of this work
is to capture such potential failure-impacting conditions of
the execution environment, and then introduce a conventional
mutation technique on these conditions. We first define a
system model to clarify what we mean by environment.

A. System Model
Similarly to [26], we hereafter consider the application

under test interacting with the main external entities having a
potential impact, namely the user and the execution environ-
ment. We assume the application as composed of processes
and/or threads communicating with each other to accomplish
the intended function, with communication channels imple-
mented by either a global (e.g., shared memory) or a local
model (e.g., message exchange). The state of the application
includes the states of local processes (and/or threads), and
of communication channels among them. A local state is
the set of data (e.g., stored in memory or files) which the
processes/threads can operate on (i.e., read from/write to).
We assume the execution environment as made up of concur-
rently running software and hardware possibly deployed across
multiple machines. Software includes the system software of
each machine (i.e., both operating system kernel and other
system software such as compilers, linkers, debuggers, editors,
user interface, utility software, libraries), middleware (e.g.,



virtual machines, middleware for distributed computing), and
application-level programs. Hardware includes the physical
machines on which the application is deployed, I/O devices, as
well as the network connecting them. The user (not necessarily
a human) is the other external entity; s/he interacts with
the application by submitting workload requests to it and
getting results. We assume that a workload request can be
represented as a generic request of service (e.g., a query to a
DBMS), characterized by a request type (e.g., query type, like
INSERT) among a set of types, and by a set of request’s input
parameters (e.g., values of an INSERT), in turn characterized
by a type and a value. The request is processed and produces
an output result (returned as value(s) or as a state change).
To accomplish a well-defined task, the user can submit a
sequence of (one or more) serial/concurrent requests. It may
happen that a sequence of requests to accomplish the task is
allowed to be submitted with different timing and/or ordering
among requests, i.e., various timing/ordering alternatives are
admissible for accomplishing that task.

B. Environment Bug Triggers
According to the system model, we have the following

contributors for the bug manifestation process: the workload
submitted to the application, along with the application initial
state, the execution environment, and the user behaviour.
While the workload is always necessary to activate a bug,
the environment influence might be present or not. When
the workload request(s) are the only condition necessary to
expose a failure, then the bug manifestation is systematically
reproducible. In such a case, reproduction may be an easy
task (whenever the bug re-appears by re-submitting the last
– or last few – request(s)) or a more complex activity (if
longer request sequences are needed): in both cases, when the
bug manifestation is just “workload-dependent”, we have that
resubmitting (at most a subset of) the same workload requests
that caused a failure always produces the same failure, for
every valid state of the environment (i.e., for every state of
the environment in which the traversed application states are
allowed to occur) and for every admissible alternative of
requests timing/ordering.

Workload-dependent cases are, of course, a desirable sit-
uation from the tester and debugger perspective, as their
reproduction depends exclusively on submitted program’s in-
puts. The problem we focus on is when the environment
comes into play and makes the bug discovery a daunting task
– namely, whenever, given the same workload sequence, a
bug may be activated or not depending on the state of the
environment. More formally, we define a bug manifestation
as “environment-dependent” if resubmitting (at least a subset)
of the same workload requests that caused a failure, there
exists at least one (valid) state of the execution environment or
user inputs’ timing/ordering1 causing the same failure to not
occur. We wish to describe this environment dependency by

1As before, valid means admissible, compatible environment state w.r.t. the
input requests; in the case of user, it means that the same workload request(s)
could be submitted in different timing/ordering producing the same result.

abstracting a set of conditions of the execution environment
and of user requests that are necessary for a failure to be
exposed (we call them “triggers” – examples are in Table I).

Specifically, the execution environment triggers are char-
acterized by three dimensions, distinguishing whether: i) the
condition involves one of these components of the execution
environment, categorized according to the system model: OS
kernel’s subsystems (namely: OS memory management, OS
device drivers, OS filesystem, OS networking, OS process
management [33]), other system software (e.g.: utility software,
development software, user interface, libraries), middelware,
application-level interacting software, hardware resources
(e.g., CPU, disk, physical memory, I/O devices, buses, physical
network); ii) the condition affects the activation or the prop-
agation (sometimes, certain environmental conditions may be
required just for the bug activation, after which the failure will
inevitably appear; in other cases, it happens that activating the
bug is not enough, because it may be “contained” by the rest
of the application, whereas more persistent conditions must
hold after the activation to observe a failure – the case of
“propagation” begin affected); iii) the required condition is
direct or indirect. In particular, with respect to the second and
third dimensions, the four alternatives are:

• Direct Conditions (DC), affecting the Activation (A):
there is an environmental condition, which caused the
bug activation, that: i) directly affects the state of the
application (i.e., it causes a state change) before the bug
activation, and ii) does not hold in a successive attempt to
repeat the failure-causing steps (namely, the bug activa-
tion is not deterministic). Examples are failures caused by
particular threads scheduling provoking a race condition
(i.e., system-dependent concurrency bugs)2. Others are
changes of shared variables by another application, which
on a successive retry does not reoccur.

• Indirect Conditions (IC), affecting the Activation (A):
The same as before, but the state of the application is not
directly affected before the bug activation. For instance,
the disk is temporarily full, a resource is temporarily
unavailable, or another interacting application fails and
these events are not managed correctly.

• Direct Conditions (DC), affecting the Propagation (P):
The bug is deterministically activated in an environment-
independent way (i.e., the retry always causes the bug ac-
tivation), but there is an environmental condition affecting
the error propagation, which: i) causes the error being
propagated in a different way on retry (and a different
failure reaches the interface – it may even cause the
failure to not appear, if the error is contained before
reaching the interface), ii) directly affects the state of
the application before the bug activation. For instance,
the application is designed to change a policy whenever
a particular environmental condition occurs (e.g., free
memory threshold exceeded), and this change does not

2Note that in such a case, due to the execution of a thread instead of another,
the state is in general affected before the bug activation



TABLE I
CHARACTERISTICS OF TO THE BUG MANIFESTATION PROCESS

Category Description of the trigger Example
USER TIMING/ORDERING The timing or ordering of user requests Atomicity violation in concurrent requests
EXEC-ENVIRONMENT- An environmental condition causing the bug activation, that A race condition caused by the OS scheduling
〈∗, DC,A〉 directly affects the state of the application before the bug activation
EXEC-ENVIRONMENT- An environmental condition causing the bug activation, that does not The disk is temporarily full, and the bug is activated
〈∗, IC,A〉 directly affect the state of the application before the bug activation on a file writing request in that time lag
EXEC-ENVIRONMENT- An environmental condition affecting the bug propagation The application enables some features when a memory threshold
〈∗, DC, P 〉 that directly affects the state of the application is exceeded, and this changes the way a deterministically

before the bug activation activated bug propagates (it may even be contained)
EXEC-ENVIRONMENT- An environmental condition affecting the bug propagation, A memory leak is activated deterministically on a requests sequence,
〈∗, IC, P 〉 that indirectly affects the state of the application and the way it leads to failure changes on a retry, depending on the

before the bug activation free memory and on the other application tasks during that retry

affect the bug activation, but affects the error propagation
(i.e., on a retry, the bug is always activated, but the policy
change causes the error being propagated differently).

• Indirect Conditions (IC), affecting the Propagation (P)
The same as before, but the state is not affected before the
bug activation. For instance, if a bug causing memory leak
is activated deterministically on a requests’ sequence, the
way it leads to failure changes on a retry, depending on
the available free memory and on the other applications’
tasks during that retry. Indirect conditions triggers, both
affecting activation and propagation, may be seen as pure
environment-dependent conditions, as the state of the
application is not influenced by the environment before
the bug activation.

We denote the execution environment groups as a triple,
for instance: 〈OS Memory,DC,A〉 is a memory state that
directly influences the bug activation; 〈Hardware,DC,A〉,
may be a bit-flip, a disk ECC errors, or clock interrupt causing
a change in the application state. Regarding the user, we define
the following condition:
USER TIMING/ORDERING A sequence of requests to
accomplish the intended task may be submitted with several
timing or ordering among requests: if these admissible alter-
natives affect the bug surfacing (namely, a different timing or
ordering may prevent the bug surfacing), the bug manifestation
is said to depend on this trigger. For instance, if a minimal time
lag between two requests is necessary to avoid the failure, the
submission timing affects the bug activation. User-dependent
concurrency bugs (e.g., atomicity violation, order violation)
are also labelled with this trigger. The trigger may appear
together with any previous condition.
Note that what typically and ambiguously intended as “bug
type” (e.g., resource leak, concurrency, OS interaction) falls
in any of the presented categories depending on how it is
triggered and surfaces. Triggers are, in fact, properties of the
bug manifestation process, not of the bug itself. For instance,
bugs due to software aging3, as a memory leak, may appear
as 〈OS Memory, IC,P〉 if ideterministically activated, as 〈OS
Memory, IC, A〉 if not (e.g., activated by concurrency [27]).

3Software aging is a phenomenon causing a continued and growing degra-
dation of software internal state during its operational life. It is experienced in
many long- running applications, such as web servers [28], middleware (e.g.,
[29], [30]) and even mission- and safety-critical system [31]

IV. ENVIRONMENTAL FAULT OPERATORS

Fault operators are required to emulate instances of the
environment conditions on each identified environment com-
ponent. Differently from conventional mutation testing, oper-
ators will not represent programming mistakes, but anoma-
lous/unexpected conditions in the environment, similar to
fault/error injection approaches. Triggers can manifest them-
selves in several different ways. We first distinguish different
modes in which an unexpected failure-exposing condition may
appear, regardless the involved environment component:
• Data corruption: the data on which the SUT acts (by

read/write) are corrupted. This may be due to several
environment components (e.g., to faulty applications shar-
ing these data, to OS or shared libraries corruption, or to
hardware faults, such as disk or memory errors).

• SUT program corruption: the SUT itself is corrupted, e.g.,
by a bit flip (so called soft error) or a hardware memory
error affecting the program instructions.

• Altered SUT program operations timing/ordering: the
operations of the SUT are scheduled in an unforeseen way
(e.g., activating a synchronization bug such as a deadlock
or race condition).

• Interaction wrong value: in a direct interaction (i.e.,
request/reply) with another environment software com-
ponents (namely, with a library, with a middleware or
a virtual machine service request, or OS system calls),
the reply’s value or data type (e.g., a parameter) is
not as expected. This may happen because of faults in
the interacting software (e.g., a library is corrupted) or
because of unforeseen interactions.

• Interaction wrong timing or omission: in a direct inter-
action with other environment software components, an
expected reply is provided earlier or later than needed
(given two thresholds). We include, in this category, also
the omitted reply case, e.g., due to a problem in the
interacting application (such as a library not present, an
interacting application crashed).

• Resource request delayed or denied: this is a special case
of the previous category, whenever the interaction regards
a resource request (hence the interacting unit regards a
subset of the OS system calls), which is denied or delayed
(e.g., disk unavailable, memory access denied, network
access is delayed).



TABLE II
ENVIRONMENT FAULT OPERATORS

Mode Data SUT Prog. SUT Program Interaction wrong Interaction Resource
Env. component corruption corruption ops. tim/ord value tim/omission denied/delayed
OS memory mng. MEM-DC MEM-PC – MEM-IWV MEM-TIM, MEM-OM MEM-R DEN, RES-R DEL
OS device dirvers DRV-DC DRV-PC – DRV-IWV DRV-TIM, DRV-OM DRV-R DEN, DRV-R DEL
OS filesystem FS-DC FS-PC – FS-IWV FS-TIM, FS-OM FS-R DEN, FS-R DEL
OS network NET-DC NET-PC - NET-IWV NET-TIM, NET-OM NET-R DEN, NET-R DEL
OS process mng. PROC-DC PROC-PC PROC-P TIM/ORD PROC-IWV PROC-TIM, PROC-OM PROC-R DEN, PROC-R DEL
Other system sw SYS SW-DC SYS SW-PC – SYS SW-IWV SYS SW-TIM, SYS SW-OM –
Middleware MW-DC MW-PC – MW-IWV MEM-TIM, MEM-OM –
App-level sw APP-DC APP-PC – APP-IWV APP-TIM, APP-OM –
Hardware HW-DC HW-PC – HW-IWV HW-TIM, HW-OM –
User – – USR-P TIM/ORD – USR-TIM –

Operators are obtained by crossing the modes with the environ-
ment components that cause the conditions to happen. Table
II lists the operators we identify. The same mode is applied
in the same way to different environment components (e.g.,
a corrupted parameter in a memory management or process
management system call). Moreover, for each operator, we
distinguish if it is a direct or indirect condition, depending
on whether the altered condition impacts the application
state also before the bug activation (e.g., a corruption of
a shared variable), or not (e.g., disk full due to tasks by
other applications)4 – a topic addressed, differently, also in
[13]. Each operator represents the last erroneous condition
before the propagation to the SUT. For instance, any kind
of fault, even from different environment parts, can cause a
disk access to be delayed, but the last environment component
before the error propagation to the SUT is the OS system call
requiring access to the disk: operators do not represent the
original cause of the fault, but the last erroneous condition
before the propagation to the SUT (this is the reason why
not all the possible crosses make sense in the Table). This
does not mean that the way we inject anomalous conditions
is necessarily an error injection approach: we can adopt fault
injection or mutation testing to cause the desired erroneous
condition whenever it is more convenient (for instance, if it
is less expensive or more representative). Therefore, all the
mentioned techniques can be exploited to understand how to
implement a specific operator. In the next section, a discussion
about existing technologies to implement the operators are
discussed.

V. INJECTION TECHNOLOGIES

There are valuable technologies that can be used to ef-
fectively implement operators in the identified environment
components. We survey some of the most relevant ones:
• NFTape: it can inject CPU, memory, and I/O faults (e.g.,

data corruption into memory, registers, and disk) to assess
the fault tolerance of a system; it can also create stressful
conditions thanks to a synthetic workload generator unit.

• FERRARI: it uses software traps to inject CPU, memory,
and bus faults; when a trap is triggered (e.g., by specific

4At this time, we are not able to define operators distinguishing the
activation/propagation cases, for which complex propagation analyses would
be required. This is left to future research.

memory location access or a timeout), it injects a data
corruption in the selected memory location or register,
resulting in either a permanent or transient fault.

• DOCTOR: DOCTOR can inject memory and register
faults, but also network communication faults (using,
as triggers, a combination of time-out, trap and code
modification). It can emulate both instructions and data
corruption, both transient and permanent faults.

• Ballista: Ballista is a robustness testing tool; it adopts a
data-type based fault model, defining a subset of invalid
values for every data type. It was successfully applied to
assess the robustness of commercial OSs with respect to
the POSIX system call interface; it is suitable to test the
APIs of COTS software.

• Riddle: it provides an environment to combine random
input, malicious input, and boundary values to test the
system under anomalous conditions; it was successfully
used to assess the robustness of native Windows NT
system utilities and Win32 ports of the GNU utilities.

• ORCHESTRA: for testing distributed real-time systems;
it is a script-based tool to inject faults in network pro-
tocols, by intercepting messages and injecting message
corruption or delays.

• Xception: it uses the processor’s exception handling capa-
bilities to trigger fault injection, requiring no modification
to the software. Faults are triggered upon access to
specific memory locations, which could be either for
data or fetching instructions, making tests accurately
reproducible. Time-based triggers (timeouts) are also
supported.

• LFI: it is a library fault injection tool; it identifies errors
exposed by shared libraries, finds potentially buggy error
recovery code, and injects faults at the boundary between
shared libraries and applications.

• CFIT: it is a concurrent fault injection tool, which gener-
ates program mutants based on four common concurrent
fault patterns as mutation operators.

• ExhaustiF: it is a commercial tool able to inject faults
into both software and hardware, distinguishing software
faults into variable corruption and procedure corruption,
and hardware faults into Memory (I/O, RAM) and CPU
(Integer Unit, Floating Unit).



• Codenomicon Defensics: a commercial tool that injects
faults in more than150 different interfaces including net-
work protocols, API interfaces, files, and XML structure.

• SAFE: differently from the previous ones, it allows insert-
ing faults at source code level, according to fault types
derived from the orthogonal defect classification (ODC)
scheme; several operators are defined whose aim is to
faithfully represent programming mistakes.

• µJava: a well-known mutation testing tool for Java pro-
grams, including both traditional mutation testing opera-
tors and class-level operators.

• PIT: a bytecode-based mutation testing tool for Java,
working with Ant, Maven, Gradle and other project and
build management systems.

• Proteum: a family of testing tools supporting mutation
analysis; it can be configured to test programs in many
procedural languages, with many mutation operators.

There are many other tools for fault injection, robustness
testing, and mutation testing, both at binary- and at source-
code level, at runtime or compile-time. This subset gives an
idea of the several possibilities that can be used. For instance,
binary-level data and instruction corruption tools (such as
NFTape, FERRARI, DOCTOR, Xception, ExhaustIF) are very
useful for the data corruption error injection approach, and
can implement many of the defined operators (Table II) effec-
tively, since the main execution environment components (e.g.,
memory, I/O) are covered. Network errors are, for instance,
covered by tools like ORCHESTRA, Codenomicon Defensics,
DOCTOR. Errors at interface level can be effectively injected
by robustness testing solutions (namely, BALLISTA, RIDDLE,
Xception, as well as Codenomicon Defensics); LFI is able to
inject errors in shared libraries; RIDDLE has been tested on
several software systems utilities; CFIT is designed to inject
concurrency faults, that can be related to the timing/ordering
operators; soruce-code fault injection, such as SAFE and muta-
tion testing tools, are particularly useful to insert programming
faults into interacting application, middelware, libraries, or
system software, well-suited to emulate the case where pro-
gramming errors in environment applications cause an error
at the interface propagating to the SUT. It is likely that
more tools should be used together to cover the environment
fault operators, and different tools can be used depending
on several criteria: the objective (e.g., improve the test suite,
assess fault tolerance), the availability of source code, the need
for representativeness (e.g., if artificial faults are required to
be closer to hardware faults, as might be the case of well-
tested software with low likelihood of having software faults,
or closer to programming mistakes, as in the case of poorly
tested software), the context (e.g., a safety-critical context
might require completeness of operators at the expense of
testing cost due to the application of many different operators).
Since we are discussing a conceptual framework, the room
for customization is wide open; in the following we highlight
few major challenges we believe can be addressed in the near
future for such a technique to be useful.

VI. CHALLENGES AND FUTURE RESEARCH

The sketched framework opens several challenges and re-
search directions that can be pursued; some are more generally
referred to mutation testing and fault injection, while others
are specific to our approach. We outline five main trends:

1) Toolchain design: we mentioned several tools that ad-
dress specific aspects useful to alter the environment
in accordance with the defined operators. A valuable
future direction is to combine the benefits of these
tools into a unique framework, where, depending on
the operator and on the mentioned criteria, an injection
technique is applied among SWIFI, G-SWFIT, mutation
testing, robustness testing. Due to the extent of execution
environment, which includes software at various abstrac-
tion levels as well as hardware and network, a holistic
approach is needed to create effective “mutants”.

2) Refinement of operators: defined operators are intention-
ally under-specified. There are numerous fault models
that the mentioned techniques apply, depending on the
SUT and on fault classes they are interested in. Our
future research will focus on current operators to inves-
tigate whether suitable sub-classes, resembling the com-
monly experienced faults at environment level, should
be defined. An immediate refinement could be to detail
the semantic of a “corruption” and “wrong value”. For
instance, approaches of error injection (like robustness
testing) distinguish several types of parameter corruption
occurring at interface level, e.g., syntactic corruptions or
semantic alteration. However, the refinement of opera-
tors makes sense depending on the objective: in fact, the
definition of sub-classes might be different if we want to
enrich a test suite or to test the SUT for fault tolerance
[19]. Moreover, the explosion of mutants needs always
to be balanced with the cost of applying them.

3) Injection procedures: a further line of research regards
the way of inserting faults. The traditional problems
of fault injection and mutation testing are transferred
to this context, in that the analysis of when, where,
and how to inject faults is even more more tough. In
this case, several environment components are involved,
possibly affecting each other; the main challenge is to
identify locations and time instants more likely to impact
the SUT in order to avoid useless injections (e.g., by
exploring static or dynamic analysis techniques).

4) Cost reduction: as in conventional mutation testing, there
is a constant need for devising techniques to reduce the
cost for generating mutants and thus to the efficiency
of fault operators. In the case of environment, this chal-
lenge is exacerbated as the involved code can be huge.
Current techniques to reduce the number of mutants
without significant loss of test effectiveness (e.g., mutant
sampling, mutant clustering, selective mutants) should
be tailored for the environment mutation analysis. Again,
the objective of the mutation can make one technique
better than others, as the notion of “test effectiveness”



changes. Suitable approaches need to be developed to
control such a trade-off between cost and test effective-
ness, which will be likely tied to how effectively the
previous points are addressed.

5) Higher-order mutation (HOM): the most complex faults
are activated as consequence of several environment con-
ditions (i.e., triggers) occurring together. An attractive
research direction is to figure out how to combine more
injections in one experiment while controlling mutual
dependencies, e.g., masking effect (similarly to higher
order mutation testing). Along this line, the understand-
ing of subsumption relations among environment faults
and the development of efficient algorithms (e.g., search-
based optimization) techniques to look for the hard-to-
detect combinations of simple faults that partially mask
one another are valuable topics. Applying HOM to the
environment would allow emulating very subtle circum-
stances – a useful means for safety-critical systems.

The outlined challenges suggest that there is long way to go.
However, in any future testing technique, the mutual min-
gling of software systems with its surrounding execution (and
physical) environment, as well as the interaction with other
systems, make it unimaginable to reason in terms of “closed”
systems. The spread of paradigms as the Internet of things and
the development of cyber-physical systems, exposed to large
and changing environments, demands an integrated notion of
software systems, in which the environment is required to be
in the loop of development and testing as an active and subtle
contributor to software-related system failures.
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